Boundary rigidity of finite CAT(0) cube complexes

Jérémie Chalopin and Victor Chepoi, LIS, Marseille, France

Seminaire de Topologie, Institut Fourier, Grenoble

Boundary rigidity of finite CAT(0) cube complexes

Jérémie Chalopin and Victor Chepoi, LIS, Marseille, France

Seminaire de Topologie, Institut Fourier, Grenoble

Based on the paper:

• J. Chalopin and V. Chepoi, Boundary rigidity of finite CAT(0) cube complexes, arXiv:2310.04223, 2023.

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

• Facet of a cell C: a maximal by inclusion proper subcell of C.

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C: a maximal by inclusion proper subcell of C.
- Boundary ∂X of X: the downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell of X.

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C: a maximal by inclusion proper subcell of C.
- Boundary ∂X of X: the downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell of X.
- 1-Skeleton of X: the graph G = G(X) with 0-cells as vertices and 1-cells as edges and endowed with the standard graph-distance d_G .

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C: a maximal by inclusion proper subcell of C.
- Boundary ∂X of X: the downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell of X.
- 1-Skeleton of X: the graph G = G(X) with 0-cells as vertices and 1-cells as edges and endowed with the standard graph-distance d_G .
- Boundary rigidity of X: X can be reconstructed from the pairwise distances (computed in G) between all vertices belonging to ∂X .

• Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any very simple compact Riemannian manifold (M,g) with boundary is boundary rigid, i.e., its metric d_g is determined up to isometry by its boundary distance function.

- Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any very simple compact Riemannian manifold (M,g) with boundary is boundary rigid, i.e., its metric d_g is determined up to isometry by its boundary distance function.
- Known results: Confirmed in the case of 2-dimensional Riemannian manifolds by Pestov and Uhlmann in 2005. Widely open in higher dimensions, verified for a few classes, Besson, Courtois, and Gallot (1995) and Burago and Ivanov (2010).

- Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any very simple compact Riemannian manifold (M,g) with boundary is boundary rigid, i.e., its metric d_g is determined up to isometry by its boundary distance function.
- Known results: Confirmed in the case of 2-dimensional Riemannian manifolds by Pestov and Uhlmann in 2005. Widely open in higher dimensions, verified for a few classes, Besson, Courtois, and Gallot (1995) and Burago and Ivanov (2010).
- Discrete version: I. Benjamini asked if any plane triangulation in which all inner vertices have degrees ≥ 6 is boundary rigid. Confirmed by Haslegrave in 2023.

- Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any very simple compact Riemannian manifold (M,g) with boundary is boundary rigid, i.e., its metric d_g is determined up to isometry by its boundary distance function.
- Known results: Confirmed in the case of 2-dimensional Riemannian manifolds by Pestov and Uhlmann in 2005. Widely open in higher dimensions, verified for a few classes, Besson, Courtois, and Gallot (1995) and Burago and Ivanov (2010).
- Discrete version: I. Benjamini asked if any plane triangulation in which all inner vertices have degrees ≥ 6 is boundary rigid. Confirmed by Haslegrave in 2023.
- Partial results for CAT(0) cube complexes: 2-dimensional and embedded in \mathbb{R}^3 3-dimensional CAT(0) cube complexes (Haslegrave et al., 2023).

Definition

• Geodesic triangle: $\Delta = \Delta(x_1, x_2, x_3)$ consists of three points and a geodesic between each pair of vertices.

- Geodesic triangle: $\Delta = \Delta(x_1, x_2, x_3)$ consists of three points and a geodesic between each pair of vertices.
- Comparison triangle: for $\Delta(x_1, x_2, x_3)$ is a triangle $\Delta(x_1', x_2', x_3')$ in \mathbb{E}^2 such that $d_{\mathbb{E}^2}(x_i', x_i') = d(x_i, x_i)$ for $i, j \in \{1, 2, 3\}$.

- Geodesic triangle: $\Delta = \Delta(x_1, x_2, x_3)$ consists of three points and a geodesic between each pair of vertices.
- Comparison triangle: for $\Delta(x_1, x_2, x_3)$ is a triangle $\Delta(x_1', x_2', x_3')$ in \mathbb{E}^2 such that $d_{\mathbb{E}^2}(x_i', x_i') = d(x_i, x_i)$ for $i, j \in \{1, 2, 3\}$.
- Comparison axiom: If y is a point on the side of $\Delta(x_1,x_2,x_3)$ with vertices x_1 and x_2 and y' is the unique point on the line segment $[x_1',x_2']$ of the comparison triangle $\Delta(x_1',x_2',x_3')$ such that $d_{\mathbb{E}^2}(x_1',y')=d(x_i,y)$ for i=1,2, then $d(x_3,y)\leq d_{\mathbb{E}^2}(x_3',y')$.

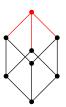
- Geodesic triangle: $\Delta = \Delta(x_1, x_2, x_3)$ consists of three points and a geodesic between each pair of vertices.
- Comparison triangle: for $\Delta(x_1, x_2, x_3)$ is a triangle $\Delta(x_1', x_2', x_3')$ in \mathbb{E}^2 such that $d_{\mathbb{E}^2}(x_i', x_i') = d(x_i, x_i)$ for $i, j \in \{1, 2, 3\}$.
- Comparison axiom: If y is a point on the side of $\Delta(x_1, x_2, x_3)$ with vertices x_1 and x_2 and y' is the unique point on the line segment $[x_1', x_2']$ of the comparison triangle $\Delta(x_1', x_2', x_3')$ such that $d_{\mathbb{E}^2}(x_i', y') = d(x_i, y)$ for i = 1, 2, then $d(x_3, y) \leq d_{\mathbb{E}^2}(x_3', y')$.
- CAT(0) space: A geodesic metric space (X, d) in which all geodesic triangles satisfy the comparison axiom.

CAT(0) cube complexes

• Cube complex: a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

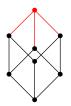
CAT(0) cube complexes

- Cube complex: a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.
- Cube condition: any three d-cubes, pairwise intersecting in (d-1)-cubes and all three intersecting in a (d-2)-cube, belong to a (d+1)-cube.



CAT(0) cube complexes

- Cube complex: a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.
- Cube condition: any three d-cubes, pairwise intersecting in (d-1)-cubes and all three intersecting in a (d-2)-cube, belong to a (d+1)-cube.

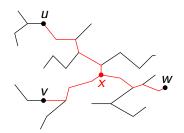


Theorem (Gromov, 1987)

A cube complex X endowed with the ℓ_2 -metric is CAT(0) iff X is simply connected and X satisfies the cube condition.

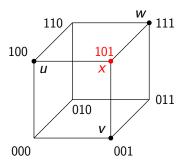
• In a graph G, the interval I(u, v) between two vertices u and v is

$$I(u, v) = \{x : d(u, x) + d(x, v) = d(x, v).\}$$



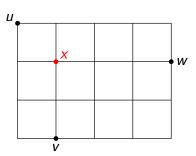
• In a graph G, the interval I(u, v) between two vertices u and v is

$$I(u, v) = \{x : d(u, x) + d(x, v) = d(x, v).\}$$



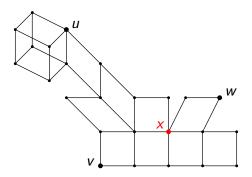
• In a graph G, the interval I(u, v) between two vertices u and v is

$$I(u, v) = \{x : d(u, x) + d(x, v) = d(x, v).\}$$



• In a graph G, the interval I(u, v) between two vertices u and v is

$$I(u, v) = \{x : d(u, x) + d(x, v) = d(x, v).\}$$



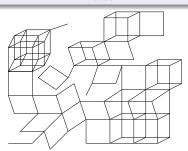
CAT(0) cube complexes and median graphs

Theorem (Chepoi, 1998, Roller, 1998)

A cube complex X is CAT(0) iff it 1-skeleton is a median graph.

Theorem (Chepoi, 1998)

A graph G is a median graph if and only if its cube complex $X_{cube}(G)$ is simply connected and G satisfies the 3-cube condition. Furthermore, if X is a CAT(0) cube complex, then $X = X_{cube}(G(X))$.



Facts about median graphs

• Quadrangle condition: For any u, v, w, z such that $v, w \sim z$ and d(u, v) = d(u, w) = d(u, z) - 1 = k, there is a unique vertex $x \sim v, w$ such that d(u, x) = k - 1;

Facts about median graphs

- Quadrangle condition: For any u, v, w, z such that $v, w \sim z$ and d(u, v) = d(u, w) = d(u, z) 1 = k, there is a unique vertex $x \sim v, w$ such that d(u, x) = k 1;
- Cubes a gated: Cubes of median graphs are gated;

Facts about median graphs

- Quadrangle condition: For any u, v, w, z such that $v, w \sim z$ and d(u, v) = d(u, w) = d(u, z) 1 = k, there is a unique vertex $x \sim v, w$ such that d(u, x) = k 1;
- Cubes a gated: Cubes of median graphs are gated;
- Downward cube property: For any basepoint z and any vertex v, there exists a unique cube C(v) containing all neighbors $\Lambda(v)$ of v in I(v,z). The vertex \overline{v} opposite to v in C(v) is the gate of z in the cube C(v).

Definition

• A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G .

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G .
- A corner peeling of G = (V, E) is a total order v_1, \ldots, v_n of V such that v_i is a corner of the subgraph $G_i = G[v_1, \ldots, v_i]$ induced by the first i vertices of this order.

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G .
- A corner peeling of G=(V,E) is a total order v_1,\ldots,v_n of V such that v_i is a corner of the subgraph $G_i=G[v_1,\ldots,v_i]$ induced by the first i vertices of this order.
- A monotone corner peeling (mcp) of G with respect to z is a corner peeling $v_1=z,v_2,\ldots,v_n$ such that $d(z,v_1)\leq d(z,v_2)\leq\ldots\leq d(z,v_n)$.

Definition

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G .
- A corner peeling of G=(V,E) is a total order v_1,\ldots,v_n of V such that v_i is a corner of the subgraph $G_i=G[v_1,\ldots,v_i]$ induced by the first i vertices of this order.
- A monotone corner peeling (mcp) of G with respect to z is a corner peeling $v_1 = z, v_2, \ldots, v_n$ such that $d(z, v_1) \le d(z, v_2) \le \ldots \le d(z, v_n)$.

Proposition

For any basepoint z of G, any ordering $v_1=z,v_2,\ldots,v_n$ such that $d(z,v_1)\leq d(z,v_2)\leq \ldots \leq d(z,v_n)$ is a mcp. Furthermore, $C(v_i)$ is the unique cube of G_i containing v_i and the neighbors of v_i in G_i and the vertex $\overline{v_i}$ opposite to v_i in $C(v_i)$ is the gate of z in C_i .

Mcp and lemmas about boundaries

Notations: Let $v_1=z,v_2,\ldots,v_n$ be a mcp of G. Denote by ∂G_i the boundary of the cube complex $X_i=X_{cube}(G_i)$ restricted to G_i , $i=n,\ldots,1$. Let $C_i=C(v_i)$ the unique cube of G_i containing v_i and $\Lambda(v_i)$ be the set of all neighbors of v_i in G_i . Denote also by $u_i=\overline{v_i}$ the opposite of v_i in C_i .

Lemma

All vertices of the cube C_i except eventually u_i belong to the boundary ∂G_i of G_i .

Set $S(G_n) = \partial G_n = \partial G$ and $S(G_{i-1}) = S(G_i) \setminus \{v_i\} \cup \{u_i\}, i = n-1, \dots 2$. We call $S(G_i)$ the extended boundary of G_i .

Lemma

For any i = n, ... 2, we have $\partial G_{i-1} \subseteq \partial G_i \cup \{u_i\}$ and $\partial G_i \subseteq S(G_i)$.

Proof of Lemma 2

Lemma

For any i = n, ... 2, we have $\partial G_{i-1} \subseteq \partial G_i \cup \{u_i\}$ and $\partial G_i \subseteq S(G_i)$.

Proof: Inclusion $\partial G_{i-1} \subseteq \partial G_i \cup \{u_i\}$.

- (1) Let $x \in \partial G_{i-1} \setminus \partial G_i$.
- (2) $x \in \partial G_{i-1} \Rightarrow \exists C \in X_{i-1}$ s.t. $x \in C$ and C is a facet of unique $C' \in X_{i-1}$.
- (3) $X_{i-1} \subset X_i$ and $x \notin \partial X_i \Rightarrow C$ is a facet of yet another cube C'' of X_i .
- (4) $C'' \in X_i \setminus X_{i-1} \Rightarrow v_i \in C''$.
- (5) All cubes of X_i containing v_i are included in $C_i \Rightarrow x \in C_i$.
- (6) $C_i \setminus \{u_i\} \subset \partial X_i$ and $x \notin \partial G_i \Rightarrow x = u_i$.

Inclusion $\partial G_i \subseteq S(G_i)$. By induction on $i=n,\ldots,1$. For i=n, $S(G_n)=\partial G_n$. Suppose the assertion holds for G_i and consider G_{i-1} . Since $v_i \notin G_{i-1}$, the first inclusion and the induction assumption yield

$$\partial G_{i-1} \subseteq \partial G_i \setminus \{v_i\} \cup \{u_i\} \subseteq S(G_i) \setminus \{v_i\} \cup \{u_i\} = S(G_{i-1}).$$

The reconstruction algorithm, I

Goal: Reconstruct a median graph G and its cube complex $X = X_{cube}(G)$ from the pairwise distances between the vertices of the boundary ∂G . **Variables**:

- Pick an arbitrary vertex $z \in \partial G$ as a basepoint.
- During the algorithm, the reconstructor knows a set S of vertices (that is initially ∂G) as well as the distance matrix D of S.
- The reconstructor constructs a graph Γ that is initially the subgraph of G induced by ∂G and will ultimately coincide with G.
- To analyze the algorithm, we consider the values S_i of the set S, D_i of the distance matrix D, and Γ_i of the graph Γ at the beginning of the ith step of the algorithm, and at each step, we decrease the values of i.
- For the analysis of the algorithm, we also consider a graph G_i (unknown to the algorithm), where $G_n = G$.

The reconstruction algorithm, II

Step n: The input consists of the set $S_n = \partial G$ and its distance matrix D_n . The graph Γ_n is computed from D_n . Step i:

- 1. The reconstructor picks a vertex v_i of S_i furthest from z;
- 2. The reconstructor removes v_i from S_i and eventually adds to S_i (if it is not already in S_i) the vertex u_i opposite to v_i in the unique cube C_i of G containing v_i and its neighbors in S_i . The resulting set is denoted by S_{i-1} .
- 3. From D_i , we compute the distance matrix D_{i-1} of S_{i-1} by computing the distances from u_i to the vertices of $S_{i-1} = S_i \setminus \{v_i\} \cup \{u_i\}$. These distances are easily computed since C_i is gated and $C_i \setminus \{u_i\} \subset S_i$.
- 4. If $u_i \in S_i$, we set $\Gamma_{i-1} = \Gamma_i$, otherwise Γ_{i-1} is Γ_i plus u_i and the edges between u_i and its neighbors in $S_{i-1} \cup \{v_i\}$ (detected via D_{i-1}).

Endstep: The algorithm ends when S_i becomes empty.

Correctness, I: the invariants

Let G_i be the subgraph of G obtained from G by removing the vertices $v_n, \ldots v_{i+1}$. Note that G_i is not known to the reconstructor. Suppose that the removed vertices v_n, \ldots, v_{i+1} and the eventually added vertices u_n, \ldots, u_{i+1} satisfy the following inductive properties:

- ② each vertex v_j with $n \ge j \ge i+1$ is a corner of the graph G_j ,
- for each n ≥ j ≥ i + 1, either all neighbors of v_j in G_j are in S_j, or u_j is the unique neighbor of v_j in G_j, and u_j ∈ S_{j-1},
- **4** S_i coincides with the extended boundary $S(G_i)$ of G_i , D_i is the distance matrix of $S(G_i)$ in G_i , and $\Gamma_i = G[\bigcup_{n \geq j \geq i} S_j]$.

Correctness, II: v_i is a corner of G_i

Lemma

Let v_i be a vertex of S_i maximizing $d(z, v_i)$. Then $d(z, v_i) \ge d(z, v)$ for any vertex v of G_i and thus v_i is a corner of G_i .

- **Proof:** (1) Suppose $\exists u$ in G_i s.t. $d(z, v_i) < d(z, u)$ and wlog u maximizes d(z, u) among vertices of G_i .
- (2) Since $d(z,v_n) \ge ... \ge d(z,v_{i+1}) \ge d(z,v)$ for any vertex of v of G_i by invariant (1), from Proposition 1 there exists a mcp of G starting with v_n, \ldots, v_{i+1}, u .
- (3) Thus u is a corner of G_i , i.e. $u \in \partial G_i$. Since $\partial G_i \subseteq S(G_i)$ by Lemma and $S(G_i) = S_i$ by invariant (4), $u \in S_i$, contradicting the choice of v_i .
- (4) Hence v_i is a vertex of G_i maximizing $d(z, v_i)$ and a corner of G_i .

Correctness, III: the invariants again

- ② each vertex v_j with $n \ge j \ge i+1$ is a corner of the graph G_j ,
- $\textbf{ o} \ \, \text{for each} \,\, n \geq j \geq i+1, \,\, \text{either all neighbors of} \,\, v_j \,\, \text{in} \,\, G_j \,\, \text{are in} \,\, S_j, \,\, \text{or} \,\, u_j \\ \text{is the unique neighbor of} \,\, v_j \,\, \text{in} \,\, G_j, \,\, \text{and} \,\, u_j \in S_{j-1}, \\$
- **3** S_i coincides with the extended boundary $S(G_i)$ of G_i , D_i is the distance matrix of $S(G_i)$ in G_i , and $\Gamma_i = G[\bigcup_{n \geq j \geq i} S_j]$.

Correctness, IV: the invariants hold after step i

Invariants (1) and (2) follow from previous Lemma and the definition of v_i . Invariant (3) follows from the definition of u_i and lemmas 1,2 about boundaries.

- Invariant (4): (a) Since $S_i = S(G_i)$, and by the definitions of v_i and u_i , we have $S_{i-1} = S_i \setminus \{v_i\} \cup \{u_i\} = S(G_i) \setminus \{v_i\} \cup \{u_i\} = S(G_{i-1})$.
- (b) Since the distances from u_i to all vertices of S_{i-1} have been correctly computed, by induction hypothesis, D_{i-1} is the distance matrix of S_{i-1} that coincides with $S(G_{i-1})$.
- (c) If $u_i \in S_i$, then $\Gamma_{i-1} = \Gamma_i = G[\bigcup_{n \geq j \geq i} S_j] = G[\bigcup_{n \geq j \geq i-1} S_j]$. If $u_i \notin S_i$, then $V(\Gamma_{i-1}) = V(\Gamma_i) \cup \{u_i\} = \bigcup_{n \geq j \geq i-1} S_j$. Now, pick any edge $u_i w$ of G with $w \in V(\Gamma_{i-1})$. If $w \in S_{i-1} \cup \{v_i\}$, then the edge wu_i is in $E(\Gamma_{i-1})$. Otherwise, $w = v_j$ with j > i. However, since $u_i \notin S_i$, we have $u_i \notin S_j$, and this implies by invariant (3) that $u_i \in S_{j-1}$ and thus in S_i , a contradiction. Therefore, Γ_{i-1} is the subgraph of G induced by $\bigcup_{n \geq i \geq i-1} S_i$.

The main result

Lemma

The graph Γ_0 returned by the reconstructor is isomorphic to G.

Proof: By invariant (1), z is the last vertex removed from S. By the last lemma 3, when z is considered by the algorithm, all vertices of G have been already processed. This implies, that each vertex $x \in V(G)$ belongs to some S_i and thus to $V(\Gamma_0)$, establishing $V(\Gamma_0) = V(G)$. By invariant (4), Γ_0 is an induced subgraph of G and is thus isomorphic to G. \square

From this lemma and the bijection between X and $X_{cube}(G(X))$, we obtain:

Theorem

Any finite CAT(0) cube complex is boundary rigid.

Merci!