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Separation in convexity spaces

Convexity spaces

Definition
A convexity space (or a closure space) is a pair (𝑋,ℭ) where 𝑋 is a
set and ℭ is a family of subsets of 𝑋 such that ∅, 𝑋 ∈ ℭ and ℭ is
closed by taking intersections.

The convex hull 𝔠(𝐴) of 𝐴 ⊆ 𝑋: 𝔠(𝐴) is the intersection of all convex
sets containing 𝐴. A set 𝐴 is convex if 𝐴 = 𝔠(𝐴).
A polytope is the convex hull of a finite set of points and a 𝑘-polytope
is the convex hull of at most 𝑘 points.
A convexity space (𝑋,ℭ) is called domain-finite if 𝔠(𝐴) is the union of
𝔠(𝐴′) such that 𝐴′ ⊆ 𝐴 and |𝐴′

| < ∞. (We will consider only
domain-finite convexities with convex points).
A convexity space (𝑋,ℭ) has arity 𝑛 if 𝐴 ∈ ℭ if and only if 𝔠(𝐴′) ⊂ 𝐴
for any 𝐴′ ⊂ 𝐴 with |𝐴′

| ≤ 𝑛.
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Separation in convexity spaces

Separation axioms

Definition
Halfspace: a convex set 𝐻 with convex complement 𝑋 ⧵𝐻 . Then
(𝐻,𝑋 ⧵𝐻) is a pair of complementary halfspaces.

Semispace (copoint): for 𝑥0 ∈ 𝑋, a semispace at 𝑥0 is a maximal by
inclusion convex set 𝑆 ∈ ℭ not containing 𝑥0.
Separation: 𝐴,𝐵 are halfspace separable if there exists a pair (𝐻 ′,𝐻 ′′)
of complementary halfspaces such that 𝐴 ⊆ 𝐻 ′ and 𝐵 ⊆ 𝐻 ′′.
Kakutani 𝑆4-separation axiom: any two disjoint convex sets 𝐴,𝐵 of ℭ
are halfspace separable.
𝑆3-separation axiom: any point 𝑥0 and any convex set 𝐴 not
containing 𝑥0 are halfspace separable.
𝑆3 is equivalent to the condition that all semispaces are halfspaces.
Join-Hull Commutativity (JHC): for any point 𝑥 and any convex set
𝐶, 𝔠(𝑥 ∪ 𝐶) =

⋃

𝑦∈𝐶 𝔠(𝑥, 𝑐).
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Separation in convexity spaces

First stop, at hotel Manoj (with Martyn Mulder)
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Separation in convexity spaces

History of separation

Separations theorems in linear spaces (with numerous applications in
geometry, functional analysis, optimization, machine learning):

Farkas’s lemma (1902);
Minkowski’s separation theorems (1911);
Hahn-Banach theorem (1927, 1929);
Kakutani (1937) and Tukey (1942) 𝑆4-separation theorem (Stone
(1937) for distributive lattices);
Definition of semispaces: Hammer (1955), Motzkin (in ℝ3, 1951),
Köthe (1960);
Characterization of semispaces: Hammer (1955), Klee (1956), and
Köthe (1960).
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Separation in convexity spaces

History of separation

Separations theorems and abstract convexity spaces:
Axiomatic approach to convexity: Levi (1951);
Ellis (1952): characterization of JHC 𝑆4-spaces via the Pasch axiom;
Axiomatic approach to convexity: Calder (1971, Ekhoff (1968),
Hammer (1955,1965), Kay and Womble (1971), Jamison (1974), van
de Vel (1983), Soltan (1984), Prenowitz and Jantosiak (1979),. . . ;
Soltan (1976): characterization of finite-dimensional normed
𝑆4-spaces;
Jamison (1974): characterization of 𝑆4 spaces by the separation of
polytopes;
van de Vel (1984): characterization of 𝑆4 spaces by screening;
Chepoi (1986): characterization of 𝑆4 by convexity of shadows,
characterization of 𝑆4 𝑛-ary spaces by separation of 𝑛-polytopes.
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Separation in convexity spaces

Shadows and 𝑆4

Definition (Shadow)

Given two sets 𝐴,𝐵 of a convexity space (𝑋,ℭ) the shadow of 𝐴 with
respect to 𝐵 is the set

𝐴∕𝐵 = {𝑥 ∈ 𝑋 ∶ 𝔠(𝐵 ∪ {𝑥}) ∩ 𝐴 ≠ ∅}.

Defined by Chepoi (1986) and called penumbra (twilight?).
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Separation in convexity spaces

Shadows and 𝑆4

Theorem (Chepoi, 1986)

(1) A convexity space (𝑋,ℭ) is 𝑆4 iff 𝐴∕𝐵 and 𝐵∕𝐴 are convex for any
𝐴,𝐵 ∈ ℭ.

(2) If (𝑋,ℭ) has arity 𝑛, then (𝑋,ℭ) is 𝑆4 iff for any 𝑛-polytope 𝐴 and
(𝑛 − 1)-polytope 𝐵, the shadow 𝐴∕𝐵 is convex and iff any two disjoint
𝑛-polytopes 𝐴 and 𝐵 can be separated by halfspaces.

(3) If (𝑋,ℭ) has arity 2, then (𝑋,ℭ) is 𝑆4 iff Pasch axiom holds:
∀𝑢, 𝑣,𝑤 ∈ 𝑋, 𝑥 ∈ 𝔠(𝑤, 𝑢), 𝑦 ∈ 𝔠(𝑤, 𝑣), ∃𝑧 ∈ 𝔠(𝑢, 𝑦) ∩ 𝔠(𝑣, 𝑥).
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Separation in convexity spaces

What about 𝑆3?

Proposition (Chepoi, 1986)

A convexity space (𝑋,ℭ) satisfies 𝑆3 iff for any polytope 𝑃 and any point
𝑥0 ∉ 𝑃 , the shadow 𝑥0∕𝑃 is convex.

Remark
While the characterizations of 𝑆4 for 𝑛-ary convexities is efficient, the
characterization of 𝑆3 is not efficient. No efficient characterizations of 𝑆3
are known in arity 𝑛 or even arity 2. The following questions are open:

Q.1: Characterize (if possible) 𝑆3-convexity spaces of arity 𝑛 (arity 2
or geodesic convexity in graphs) via a condition (a) on specific subsets
or (b) on subsets with a fixed number of points.
Q.2: What is the complexity of deciding if a convexity space is 𝑆3?
Q.3: Characterize the semispaces in convexity spaces of arity 𝑛 (2).
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Separation in convexity spaces

Second stop: drinking some (partially hidden) beer with Manoj (and not
only him)
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𝑆3-graphs

Properties of 𝑆3-graphs

Let 𝐺 = (𝑉 ,𝐸) be a connected, simple, non necessarily finite graph
endowed with the standard graph-metric.

Definition
Metric interval: [𝑢, 𝑣] = {𝑧 ∈ 𝑉 ∶ 𝑑(𝑢, 𝑧) + 𝑑(𝑧, 𝑣) = 𝑑(𝑢, 𝑣)}.
Geodesic convexity: ∀𝑢, 𝑣 ∈ 𝐴, [𝑢, 𝑣] ⊆ 𝐴.
𝑆3-graph: the geodesic convexity of 𝐺 satisfies 𝑆3.

(1) If 𝐺 is an 𝑆3-graph, then the intervals [𝑢, 𝑣] and the shadows 𝑥0∕𝐴
with 𝐴 convex are convex sets.

(2) If 𝑆 is a semispace of 𝐺, then there exists 𝑥0 adjacent to 𝑆, such that
𝑆 is a semispace at 𝑥0.
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𝑆3-graphs

Imprints and proximal sets

Definition
Imprint: 𝜄𝑥0(𝐴) = {𝑧 ∈ 𝐴 ∶ [𝑥, 𝑧] ∩ 𝐴 = {𝑧}}.
Proximal set: A set 𝐾 ⊆ 𝑉 of 𝐺 is 𝑥0-proximal if
(P1) 𝜄𝑥0 (𝐾) = 𝐾 and 𝑥0 ∼ 𝐾;
(P2) 𝔠(𝐾) of 𝐾 does not contain the vertex 𝑥0.

Maximal proximal sets: Maximal elements of the partial order: for
𝑥0-proximal sets 𝐾,𝐾 ′, define 𝐾 ⪯𝑥0 𝐾

′ if and only if 𝐾 ⊆ 𝐾 ′∕𝑥0.
Max(Υ∗

𝑥0
) is the set of all maximal 𝑥0-proximal sets.
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𝑆3-graphs

With some abstraction, an illustration of imprint 𝜄𝑥0(𝐴) in ℝ2, where 𝑥0 is
at bottom-middle and 𝐴 is the barque. The imprint 𝜄𝑥0(𝐴) is 𝑥0-proximal.
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𝑆3-graphs

Suspense about shadows: will they be used again?
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𝑆3-graphs

𝑆3-graphs and their semispaces

Theorem (C., 2024)

Let 𝐺 = (𝑉 ,𝐸) be an 𝑆3-graph and 𝑥0 be an arbitrary vertex of 𝐺. If 𝑆 is
a semispace at 𝑥0 adjacent to 𝑆, then 𝜄𝑥0(𝑆) ∈ Max(Υ∗

𝑥0
) and

𝑆 = 𝜄𝑥0(𝑆)∕𝑥0. Conversely, if 𝐾 ∈ Max(Υ∗
𝑥0
), then 𝐾∕𝑥0 is a semispace at

𝑥0 adjacent to 𝑥0. Consequently, there exists a bijection between the
semispaces at 𝑥0 adjacent to 𝑥0 and the sets of Max(Υ∗

𝑥0
).

Theorem (C., 2024)

For a graph 𝐺 = (𝑉 ,𝐸), the following conditions are equivalent:
(i) 𝐺 is an 𝑆3-graph;
(ii) for any 𝑥0 ∈ 𝑉 and 𝐾 ∈ Max(Υ∗

𝑥0
), the shadows 𝐾∕𝑥0 and 𝑥0∕𝐾 are

convex and disjoint;
(iii) for any 𝑥0 ∈ 𝑉 and 𝐾 ∈ Max(Υ∗

𝑥0
), 𝑥0 and 𝔠(𝐾) can be separated by

halfspaces.
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𝑆3-graphs

𝑆3-graphs satisfying (TC): semispaces

Definition
Triangle condition (TC): for any 𝑢, 𝑣,𝑤 ∈ 𝑉 with
1 = 𝑑(𝑣,𝑤) < 𝑑(𝑢, 𝑣) = 𝑑(𝑢,𝑤) there exists a common neighbor 𝑥 of 𝑣
and 𝑤 such that 𝑑(𝑢, 𝑥) = 𝑑(𝑢, 𝑣) − 1.
Pointed maximal clique: a pair (𝑥0, 𝐾), where 𝐾 is a clique, 𝑥0 ∉ 𝐾,
and 𝐾 ∪ {𝑥0} is a maximal by inclusion clique of 𝐺.

Theorem (C., 2024)

If 𝐺 is an 𝑆3-graph satisfying (TC), then 𝑆 is a semispace at 𝑥0 adjacent
to 𝑥0 if and only if there exists a pointed maximal clique (𝑥0, 𝐾) such that
𝑆 = 𝐾∕𝑥0.

Corollary (C. 2024)

The semispaces of a finite 𝑆3-graph 𝐺 satisfying (TC) can be enumerated
in output polynomial time.
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𝑆3-graphs

𝑆3-graphs satisfying (TC): extended shadows

Definition (Extended shadow)

For a clique 𝐾 ′ = 𝐾 ∪ {𝑥0}, the vertex set 𝑉 of 𝐺 is the disjoint union of
the sets 𝐾∕𝑥0,𝑊=(𝐾 ′) ∶= {𝑣 ∈ 𝑉 ∶ 𝑑(𝑣, 𝑦) = 𝑑(𝑣, 𝑧) for all 𝑦, 𝑧 ∈ 𝐾 ′},
and 𝑥0|𝐾 ∶=

⋃

𝑦∈𝐾 𝑥0∕𝑦. Let 𝑥0∕∕𝐾 = 𝑥0|𝐾 ∪𝑊=(𝐾 ′) and call it the
extended shadow of 𝐾 with respect to 𝑥0.
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𝑆3-graphs

𝑆3-graphs satisfying (TC): characterization

Theorem (C., 2024)

For a graph 𝐺 = (𝑉 ,𝐸) satisfying (TC) the following conditions are
equivalent:
(i) 𝐺 is an 𝑆3-graph;
(ii) for any pointed maximal clique (𝑥0, 𝐾), 𝑥0 and 𝐾 can be separated by

complementary halfspaces;
(iii) for any pointed maximal clique (𝑥0, 𝐾), the shadow 𝐾∕𝑥0 and the

extended shadow 𝑥0∕∕𝐾 are convex.
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𝑆3-graphs

Third stop: in the search for a non-existing tiger
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Meshed 𝑆3-graphs

Meshed graphs

Definition (Meshed graph (Bandelt, Mulder, Soltan, 1994))

A graph 𝐺 = (𝑉 ,𝐸) is called meshed if for any vertex 𝑢 its distance
function 𝑑 satisfies the following Weak Quadrangle Condition (QC−):

for any 𝑢, 𝑣,𝑤 ∈ 𝑉 with 𝑑(𝑣,𝑤) = 2, there exists a common neighbor
𝑥 of 𝑣 and 𝑤 such that 2𝑑(𝑢, 𝑥) ≤ 𝑑(𝑢, 𝑣) + 𝑑(𝑢,𝑤).

Meshed graphs comprise large and important classes of graphs:
Weakly modular graphs are meshed (median, modular, bridged, Helly,
dual polar, sweakly modular);
Basis graphs of matroids and of even Δ-matroids are meshed;
Meshed graphs satisfy triangle condition (TC).
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Meshed 𝑆3-graphs

Meshed 𝑆3-graphs

Theorem (C., 2024)

A meshed graph 𝐺 = (𝑉 ,𝐸) is 𝑆3 if and only if it does not contain the
following five graphs as induced subgraphs.

Corollary
Meshed 𝑆3-graphs can be recognized in polynomial time.
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Meshed 𝑆3-graphs

Main steps of the proof

(1) (Local convexity implies convexity) A connected induced subgraph 𝐻
of a meshed graph 𝐺 is convex if and only if 𝐻 is locally-convex.

(2) If 𝐺 is a meshed graph not containing the 5 forbidden graphs, then:
Intervals of 𝐺 are convex;
𝐺 satisfies the Positionning condition (PC);
Shadows 𝑥∕𝑦 are convex;
for each maximal pointed clique (𝑥0, 𝐾) the shadow 𝐾∕𝑥0 is convex;
for each maximal pointed clique (𝑥0, 𝐾) the extended shadow 𝑥0∕∕𝐾 is
convex.
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Examples of 𝑆3-graphs

Examples of 𝑆3-graphs

The following graphs are 𝑆3:
partial cubes,
partial Hamming graphs,
partial Johnson graphs satisfying (TC),
planar (3,6)-,(4,4)-, and (6,3)-graphs,
the Petersen graph and the 1-skeleta of Platonic solids.

Additionally, the following graphs are meshed 𝑆3-graphs:
hyperoctahedra, the complete graphs, the icosahedron, and the graph
Γ from the paper,
basis graphs of matroids,
median, quasi-median, and weakly median graphs,
the 2-dimensional 𝓁∞-grid ℤ2

∞ and any its subgraph contained in the
region of ℝ2 bounded by a simple closed path of the grid.
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Examples of 𝑆3-graphs

Fourth stop: back to luxury nature
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Halfspace separation problem

Halfspace separation problem

Definition (Seiffart, Horváth, and Wrobel, 2023)

Given a pair (𝐴,𝐵) of sets of a convexity space (𝑋,ℭ), decide if 𝐴 and 𝐵
are separable by complementary halfspaces 𝐻 ′,𝐻 ′′ and find 𝐻 ′,𝐻 ′′ if they
exist.

Halfspace enumeration method
Enumerate the complementary halfspaces of (𝑋,ℭ).
Given (𝐴,𝐵), test if 𝔠(𝐴) ∩ 𝔠(𝐵) = ∅. If “yes”, then test all pairs of
(𝐻 ′,𝐻 ′′) of complementary halfspaces and find one that separate 𝔠(𝐴)
and 𝔠(𝐵). Return “not” if such a pair does not exist.

Is polynomial when (𝑋,ℭ) has a polynomial number of halfspaces.
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Halfspace separation problem

Classes of graphs with a few halfspaces

Known results
Glantz and Meyerhenke (2017) proved that bipartite graphs have at most
𝑂(|𝐸|) halfspaces and planar graphs have at most 𝑂(𝑛5) halfspaces and
can enumerate them in polynomial time.

Theorem (C., 2024)

If (𝑋,ℭ) is a convexity space on 𝑛 points and Radon number 𝑟, then (𝑋,ℭ)
has at most 𝑂(𝑛𝑟) halfspaces. If ℭ is a convexity with connected sets on a
graph 𝐺 = (𝑉 ,𝐸) not containing 𝐾𝑘+1 as a minor, then ℭ has at most
𝑂(𝑛2𝑘) halfspaces. If 𝐺 is planar, then ℭ has at most 𝑂(𝑛5) halfspaces.

Corollary

A Helly graph 𝐺 has at most 𝑂(𝑛𝜔(𝐺)) halfspaces and any chordal graph 𝐺
has at most 𝑂(𝑛𝜔(𝐺)+1) halfspaces (𝜔(𝐺) is the clique number of 𝐺).
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Halfspace separation problem

Classes of graphs with a few halfspaces

Proposition (C., 2024)

The halfspace enumeration and the halfspace separation problems can be
solved for geodesic convexity in a graph 𝐺 with 𝑛 vertices in the following
classes of graphs:
(1) 𝑂(poly(𝑛)) time if 𝐺 is bipartite;
(2) (Glantz and Meyerhenke, 2017) 𝑂(poly(𝑛)) if 𝐺 is planar;
(3) 𝑂(poly(𝑛)𝑛𝜔(𝐺)) if 𝐺 is chordal or Helly;
(4) 𝑂(poly(𝑛)𝑛2𝜂(𝐺)) if 𝐺 is meshed and admits a hereditary dismantling

order.

V. Chepoi 𝑆3-separation in graphs May 15 27 / 33



Halfspace separation problem

Shadow-closed and osculating pairs

Definition
Shadow-closed pair: 𝐴 = 𝐴∕𝐵 = 𝔠(𝐴∕𝐵) and 𝐵 = 𝐵∕𝐴 = 𝔠(𝐵∕𝐴).

Osculating pair: 𝐴 ∩ 𝐵 = ∅ and 𝑑(𝐴,𝐵) = 1.

Remarks:
(1) The pair (𝐴,𝐵) is separable iff the pair (𝐴∕𝐵,𝐵∕𝐴) of shadows is
separable iff the pair (𝔠(𝐴∕𝐵), 𝔠(𝐵∕𝐴)) is separable. Thus passing from a
pair (𝐴,𝐵) to the shadow-closure (𝐴∗, 𝐵∗) does not change separability.
(2) A shadow-closed pair (𝐴∗, 𝐵∗) is separable iff any shortest path 𝑃
between any pair of closest vertices 𝑢 ∈ 𝐴∗, 𝑣 ∈ 𝐵∗ contains an edge 𝑢𝑖𝑢𝑖+1
such that 𝔠(𝐴∗ ∪ {𝑢𝑖}) and 𝔠(𝐵∗ ∪ {𝑢𝑖+1}) are separable.
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Halfspace separation problem

Illustrations of the method
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Halfspace separation problem

The three-step method
(1) Compute the shadow-closed pair (𝐴∗, 𝐵∗) for (𝐴,𝐵). Return “not” if

𝐴∗ ∩ 𝐵∗ ≠ ∅.
(2) For (𝐴∗, 𝐵∗), pick a shortest path (𝐴,𝐵)-path 𝑃 and for each edge

𝑢𝑖𝑢𝑖+1 of 𝑃 , set 𝐴+
𝑖 = 𝔠(𝐴∗ ∪ {𝑢𝑖}) and 𝐵+

𝑖 = 𝔠(𝐵∗ ∪ {𝑢𝑖+1}) and for
(𝐴+

𝑖 , 𝐵
+
𝑖 ) compute the shadow-closed pair (𝐴∗∗

𝑖 , 𝐵∗∗
𝑖 ) using Step 1. If

𝐴∗∗
𝑖 ∩ 𝐵∗∗

𝑖 ≠ ∅ for all edges of 𝑃 , return “not”.
(3) For each shadow-closed osculating pair (𝐴∗∗

𝑖 , 𝐵∗∗
𝑖 ), solve the separation

problem using a case-oriented algorithm. If “yes” is returned for at
least one pair, then return “yes”, otherwise, return “not”.

The three steps method works for:
gated convexity in graphs.
monophonic convexity in graphs.
some classes of graphs with geodesic convexity.

For monophonic convexity, different solutions were obtained by Elaroussi,
Nourine, and Vilmin (arXiv:2404.17564v1, 26 Apr 2024) and Bressan,
Esposito, and Thiessen (arXiv:2405.00853v1, 1 May 2024).

V. Chepoi 𝑆3-separation in graphs May 15 30 / 33



Merci and Questions

Last stop...

Merci!
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Merci and Questions

Questions?

Discussions about convexity in the middle of the nature
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