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Abstract. Lopsided sets introduced by Jim Lawrence in 1983 can be regarded as finite

partial hypercubes for which the intersections with any fibers (alias faces) yield isometric

subgraphs. In a previous article we characterized lopsided sets in various combinatorial ways.

A particularly attractive feature of lopsided sets, which we study here, is their geometric

realization as cubihedra by which they can be characterized. Several other characterizations

can be established which are inspired by the geometry of l1-spaces. This testifies to the

naturalness of the concept of lopsided sets in the context of cubical complexes.

1. Introduction

This paper is the follow-up of [3], in which we presented a list of combinatorial, recursive,

and graph-theoretical characterizations of lopsided sets first introduced and investigated by

Lawrence [8]. In the present paper, we provide several geometric characterizations of lopsided

sets, each emphasizing one or another feature of lopsidedness and its relationships with some

fundamental concepts from the geometry of l1-spaces. We will repeatedly refer to the first

part [3] for definitions, properties and characterizations of lopsided sets.

Throughout this paper, X denotes a finite set with n := #X elements, {±1}X is the set of

all (“sign”) maps from X into the two-element set {±1}, and S denotes a subset of {±1}X .

The set-theoretic complement of S is written as S∗ :

S∗ := {±1}X − S.

The Hamming distance D(s′, s′′) between two sign maps s′, s′′ ∈ {±1}X equals the cardinality

of the difference set

∆(s′, s′′) = {x ∈ X|s′(x) ̸= s′′(x)}.

Wemay view the set {±1}X as the vertex set of the graphic hypercubeG({±1}X) representing

the 1-skeleton of the (solid) hypercube [−1,+1]X where two vertices s′, s′′ ∈ {±1}X are

adjacent if and only if D(s′, s′′) = 1. Note however that the solid edges of the 1-skeleton have

length 2 and hence twice the length of their discrete counterparts in the graph G({±1}X).

Further, we can associate the induced subgraph G(S) = (S, E(S)) of the graphic hypercube

G({±1}X) to any subset S of {±1}X . The set S is called connected if G(S) is connected, and
it is called isometric if every pair of vertices s′, s′′ of S can be connected in G(S) by a path

of length D(s′, s′′).
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Given any subset Y of X, one can always associate two subsets SY and SY of {±1}X−Y

with an arbitrary set S ⊆ {±1}X of sign maps:

SY := {t ∈ {±1}X−Y | some extension s ∈ {±1}X of t belongs to S},

SY := {t ∈ {±1}X−Y | every extension s ∈ {±1}X of t belongs to S}.

SY = {s|X−Y | s ∈ S} encodes the projection of S onto the graphic subhypercube {±1}X−Y .

In contrast to SY , the smaller set SY requires the existence of a full fiber isomorphic to

{±1}Y within S rather than just one point from S. The two operators defined by (3) and

(4) suggest two ways to derive a simplicial complex from S:

X (S) := {Y ⊆ X| SX−Y = {±1}Y },

X (S) := {Y ⊆ X| SY ̸= ∅}.

To give an example, let X = {1, 2, 3} and consider the subset S of {±1}X that consists of all

sign maps except the two constant ones. Then S encodes an isometric 6-cycle in G({±1}X).

For every singleton Y the projection of S onto {±1}X−Y is surjective, but S does not include

a full fiber isomorphic to this 4-cycle. Therefore X (S) comprises all proper subsets of {1, 2, 3},
whereas X (S) consists of the empty set and the three singletons. In [3] it is shown that

#X (S) ≤ #S ≤ #X (S)

holds in general. We called a set S ample if the equality #S = #X (S) holds. Ampleness

turned out to be preserved when passing to the complementary set S∗ and to the sets SY ,SY ,

and to imply connectedness (and, even more, isometricity) of the subgraph G(S) induced by

S in the graphic hypercube G({±1}X). It followed that SY and SY had to be connected

(isometric) subgraphs of G({±1}X−Y ) for every ample subset S of {±1}X . Conversely, con-

nectivity (or isometricity) of SY for all Y ⊆ X turned out to imply ampleness, suggesting to

call such subsets superconnected or superisometric. Further investigation finally resulted in

recognizing that our ample sets coincided exactly with Lawrence’s lopsided sets and that an

amazingly rich and multi–facetted theory regarding such subsets of {±1}X could be devel-

oped. Here is a list of the most remarkable properties of lopsided sets established in [3], each

of which could be used to define them:

superisometry: SY is isometric for all Y ⊆ X,

superconnectivity: SY is connected for all Y ⊆ X,

iso-recursivity: S is isometric, and both Se and Se are lopsided for some e ∈ X,

con-recursivity: S is connected, and Se is lopsided for every e ∈ X,

commutativity: (SY )Z = (SZ)
Y holds for any disjoint Y, Z ⊆ X,

ampleness: #S = #X (S),

sparseness: #S = #X (S),
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hereditary Euler characteristic 1: for every face F of [−1,+1]X intersecting S,∑
i≥0

(−1)ifi(S ∩ F ) = 1

holds where fi(S ∩ F ) counts the number of graphic i-cubes contained in the intersection of

S with F .

Wiedemann [13] in his PhD thesis of 1986 rediscovered lopsided sets under the name

“simple sets” in terms of the last property. Note that our Corollary 2 of [3], which is covered

by his results, was not correctly formulated in that the equation can only hold for the faces

F that intersect S.
Every subset S of {±1}X gives rise to a (not necessarily connected) cubical complex com-

prising all faces of the hypercube [−1,+1]X all of whose vertices belong to S; cf. [12]. This

(compact) cubical polyhedron (a cubihedron for short) will be denoted by |S| and called the

geometric realization of S. The vertices of |S| are exactly the elements in S. Actually, |S|
is the largest subcomplex of [−1,+1]X with this property. The 1-skeleton |S|1 of this cubi-

hedron is the scale 2 “geometric” graph realizing the graph G(S) defined above; recall that

the distance d1(s, t) in |S|1 between any two vertices s and t of G(S) equals 2D(s, t). If S
is connected, then |S| is connected as well and therefore can be endowed with an intrinsic

l1-metric d|S|. The resulting metric space (|S|, d|S|) is geodesic but not necessarily a metric

subspace of (RX , || · ||1). For example, if S comprises the six vertices of an isometric 6-cycle

in the 3-cube, then |S| is a solid 6-cycle of R3. The l1-distance between the midpoints of two

opposite sides of this cycle is 2, while the intrinsic l1-distance between the same points is 3.

In this paper, we will establish that path-l1-isometry of the associated cubical complex in RX

is yet another characteristic feature of lopsidedness, thus demonstrating that lopsided sets

constitute a fundamental domain for l1-geometry:

path-l1-isometry: |S| endowed with the intrinsic path-metric is a metric subspace of

(RX , || · ||1).

The primary motivation of Lawrence in his paper [8] was to investigate and generalize

those subsets

S(K) := {s ∈ {±1}X | {t ∈ K | t(x)s(x) ≥ 0 for all x ∈ X} ≠ ∅}

of {±1}X which represent the closed orthants of RX intersecting a convex subsetK of RX . He

(as well as Wiedemann [13]) showed that such sets are lopsided. However, not every lopsided

set encodes the orthant intersection pattern for a convex set in Euclidean space; see [8]. It

comes close, though. As we will show below, in order to have a full geometric representation,

one has to resort to a weaker concept:

S encodes the orthant intersection pattern for some geodesic metric subspace K of (Rn, ||·||1),
that is, a sign vector x belongs to S exactly when the orthant determined by x also includes

a point from K.
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Lopsided sets S can also be characterized via their “cocircuits”, i.e. the barycentric maps

of the facets (maximal faces) of the associated cubihedron |S|, which are particular mappings

from X to {±1, 0}X . Every subset R of {±1, 0}X can be extended to the cubihedron [R]

consisting of all cubes whose barycenters belong to R. We will then show that the cubihedron

[R] is path-l1-isometric if and only if R satisfies the signed-circuit axiom from the theory of

oriented matroids [4]:

signed-circuit axiom: for all r1, r2 ∈ R and e ∈ X with r1(e) · r2(e) = −1 there exists some

r0 ∈ R such that r0(e) = 0 and r0(x) ∈ {0, r1(x), r2(x)} for all x ∈ X.

Then we establish that the cocircuits of lopsided sets are exactly the sign maps that satisfy

the signed-circuit axiom and consist of pairwise non-dominated maps (maximality). The

characterization of cocircuitsR ⊆ {±1, 0}X of oriented matroids also involves maximality, the

signed-circuit axiom, but, additionally, requires the symmetry (r ∈ R implies that −r ∈ R)

[4]. Nevertheless, the lack of symmetry implies that lopsided sets can differ substantially

from oriented matroids regarding their combinatorial and geometric structure.

The paper is organized in the following way. In Section 2 we discuss the intrinsic path

metrics associated with an arbitrary metric space (M, d). Sections 3 and 4 present character-

izations of lopsided cubihedra via metric conditions and via projections. Then the geometric

realization of lopsided sets in terms of intersection pattern with orthants is established in

Section 5. The final Section 6 investigates the concepts of circuits and cocircuits and their

relation to the geometric structure of lopsided cubihedra.

2. Intrinsic path metrics

In this section we recall some basic notions about intrinsic path metrics and the length

of paths, which are relevant for the intrinsic metrics of cubihedra. In an arbitrary metric

space (M, d) one can trivially define the length ℓ(P ) of a finite x, y-path P of points x =:

t0, t1, . . . , tk := y as the sum

ℓ(P ) := Σk
i=1d(ti−1, ti).

The modulus of this path P is the maximum of all single step lengths d(ti−1, ti) for i = 1, ..., k.

Then the infimum

inf{ℓ(P )| P is a finite x, y-path in M with modulus(P ) < ϵ}

of the lengths of all finite paths between two points x and y in M having modulus smaller

than ϵ exists because the length of every finite path between x and y is bounded below by

d(x, y) by virtue of the triangle inequality. Then the supremum

δM,d(x, y) := sup{inf{ℓ(P )| P is a finite x, y-path in M with modulus(P ) < ϵ}| ϵ ∈ R+}

will be called the (intrinsic) finite-path distance between x and y in the metric space (M, d),

which may formally take the value ∞ of the extended real line when the supremum does

not exist. If, however, all values are real numbers then we could speak of the (intrinsic)

finite-path metric of (M, d), since evidently (M, d) satisfies the triangle inequality.
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If there exists a (general) x, y-path in (M, d), that is, a continuous map γ : [0, 1] → M
with γ(0) = x and γ(1) = y, then its length [10, p.11]

L(γ) := sup
{ k∑

i=1

d(γ(ti−1), γ(ti))
∣∣ 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ 1 where k ≥ 1

}
is an upper bound for the lengths ℓ(P ) of all finite x, y-paths P contained in γ. If an x, y-

path γ exists with L(γ) < ∞, then x and y are said to be connected by a rectifiable path in

(M, d) [10, p.35]. Taking the infimum over all general x, y-paths, we obtain

δM,d(x, y) := inf{L(γ)| γ is an x, y-path in M},

referred to as the path (or length) distance in M relative to d (in the book [10] the length

distance is denoted by dℓ). If each pair of points in M is connected by a rectifiable path,

then by [10, Proposition 2.1.5] δM,d is a metric on M, referred to the (intrinsic) path metric

of M associated to d. We thus have the inequalities

d(x, y) ≤ δM,d(x, y) ≤ δM,d(x, y),

with the understanding that either δ value could equal ∞. In the extreme case, δM,d could

be a metric whereas δM,d is the constant ∞ map on pairs of distinct points. Consider, for

example, the rational unit interval M = Q[0, 1] with its natural metric d: since paths of

any modulus exist, the intrinsic path metric coincides with the natural metric, but geodesics

between distinct points do not exist, whence the intrinsic length distance is infinite. Therefore

the advantage of using δM,d rather than δM,d is that we do not need to impose existence of

rectifiable paths. In the important case that (M, d) is a length (or path-metric) space [10,

p.35], that is, d coincides with δM,d, both concepts of intrinsic metrics can be equated with

the original metric d. The property δM,d = d carries over to dense subspaces of (M, d). In

an arbitrary length space (M, d) general x, y-paths of length d(x, y), that is, x, y-geodesics,

need not exist. When however they exist for all pairs of points then the space is called

geodesic. A geodesic space (M, d) is called a real tree if every geodesic constitutes the unique

path between its end points. Note that a compact real tree (M, d) may have infinitely many

branching points, i.e. points p for which M−{p} has at least three connected components.

Every finite graph G = (V,E) has a trivial geometric realization as a 1-dimensional cell

complex obtained by replacing each edge {x, y} by a solid link, that is, a copy [ux, uy] of

the unit interval [0, 1] of the real line such that two copies intersect in an endpoint exactly

when the corresponding edges are incident. The resulting geometric graph (alias network) M
inherits its metric δ from the standard-graph metric d of G and the usual distance of [0, 1].

Informally speaking, the distance δ(p, q) between a point p from a link [uv, uw] and a point q of

a link [ux, uy] in the geometric graph M is the smallest of the four sums |p−uv|+d(v, x)+|q−
ux|, |p− uv|+ d(v, y) + |q− uy|, |p− uw|+ d(w, x) + |q− ux|, and |p− uw|+ d(w, y) + |q− uy|.
More formally, one can apply the general construction of the length metric as described

in [10, Example 2.1.3(iv)] or [5, Section I.1.9]. In this way, one obtains a geodesic space

(M, δ). Similarly, in ad hoc manner, one could deal with the geometric realization of any
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finite cubical complex, but for lopsided sets we can obtain the length space property for the

associated geometric realizations in a canonical way; see below.

A metric space (M, d) is Menger-convex if for any two distinct points x, y ∈ M there exists

some point z between x and y, that is, z belongs to the segment

[x, y]M = {z ∈ M| d(x, z) + d(z, y) = d(x, y)}

such that, in addition, z is different from x and y. Menger [9] himself has shown that Menger-

convexity in a complete metric space (M, d) entails that (M, d) is geodesic (see also [1] or [11,

§18.5]). Completeness is an essential prerequisite here. Indeed, the intersection (M, d) of the

Cantor set with the irrational (open) unit interval is Menger-convex but δM,d(x, y) = ∞ holds

for all pairs x, y of distinct points. In the absence of Menger-convexity the requirement δM,d <

∞ together with some local compactness condition can at least guarantee that (M, δM,d) is

a geodesic space. We say that a metric space is boundedly compact if every closed bounded

subset is compact. Note that in the context of Riemannian geometry and length spaces one

usually calls these spaces “proper”.

Lemma 1. If a boundedly compact metric space (M, d) admits a finite-path metric δM,d < ∞,

then (M, δM,d) is a geodesic space, whence δM,d = δM,d holds.

Proof. For any distinct points x, y we can approximate α := δM,d(x, y) by finite x, y-paths of

moduli 1/n (n → ∞). Specifically, for every n ∈ N there exists a finite x, y-path Pn of length

smaller than α(1 + 1/(2n)) and modulus smaller than α/(2n). On each path Pn pick the

first point yn for which the initial x, yn-subpath P ′
n exceeds length α/2, whence the length

of the final yn, y-subpath of Pn is then smaller than α(1 + 1/(2n)). Since the sequence (yn)

is contained in the closed 2α-ball centered at x, it includes a subsequence (zn) converging

to some point z such that, say, d(zn, z) < α/(2n). Inserting this limit point z into each Pn

directly after yn yields a path consisting of an initial x, z-subpath plus a final z, y-subpath

both of modulus smaller than α/(2n) and with lengths between α/2− 1/(2n) and α/2+1/n.

Therefore

δM,d(x, z) + δM,d(z, y) ≤ α/2 + α/2 = α = δM,d(x, y),

whence by virtue of the triangle inequality z is the midpoint of the segment between x and

y relative to the finite path metric δM,d. We can now iterate this midpoint construction by

applying the procedure first to the pairs x, z and z, y, and so on. Then we eventually obtain

a dense subset Z of the segment [x, y] relative to the metric δM,d, admitting an isometry ζ

from (Z, δM,d|Z×Z) to the set of α-multiples of the dyadic fractions of 1 endowed with the

natural metric.

Every non-dyadic number τ from the unit interval is the limit of some sequence (τn) of

dyadic fractions of 1, for which the α-multiples each have a pre-image un under ζ in Z.

Then (un) is a Cauchy sequence relative to δM,d and hence to d, which converges to some

point u due to completeness of (M, d). For any two points v and w of Z with ζ(v) < ατ

and ζ(w) > ατ almost all un are between v and w relative to δM,d. Therefore one can

approximate δM,d(v, w) by pairs of concatenated finite v, un-paths and un, w-paths of moduli
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converging to 0 and total lengths converging to δM,d(v, w) (n → ∞). Substituting un by u in

all paths yields a sequence of concatenated paths approximating both δM,d(v, u)+δM,d(u,w)

and δM,d(v, w). This shows that u is between v and w relative to δM,d. In summary, we

have thus established an isometry from the closure Z of Z in (M, δM,d) to the interval [0, α],

where Z is a x, y-geodesic in (M, δM,d). □

Let A and B be two sets of maps from some disjoint nonempty sets Y and Z, respectively,

to a set Λ. Then we write A×B for the set of all maps r : Y ∪Z → Λ for which r|Y belongs

to A and r|Z belongs to B. For singletons A or B, set brackets are omitted. Given a finite

set X and a nonempty subset Y of X, the set ΛY × r0 for any r0 ∈ ΛX−Y is called a fiber

of the Cartesian power ΛX , namely the Y -fiber of ΛX at q0 × r0 for any q0 ∈ ΛY . If Λ is

endowed with a (natural) metric, then we will denote by d the product metric dX on the the

product space ΛX , where X is a finite set. When Λ is connected, a subspace R of ΛX is

called fiber-connected if the intersection of R with each fiber of ΛX is connected (or empty).

Similarly, when Λ is a geodesic space, R ⊆ ΛX is said to be fiber-geodesic if R intersects each

fiber of ΛX in a geodesic subspace (or the empty set). The X-fiber of ΛX is understood to

be the entire space ΛX .

Corollary 1. Let Λ be a boundedly compact geodesic space. For a closed subset R of some

finite power ΛX of Λ (endowed with the product metric d = dX), the following statements are

equivalent:

(i) the intrinsic finite-path metric δR,d of R coincides with the restriction d|R of the

product distance d = dX of ΛX ;

(ii) R is a geodesic subspace of ΛX ;

(iii) R is fiber-geodesic.

Proof. Clearly, (ii)⇒(i)&(iii) and (iii)⇒(ii). Since Λ is boundedly compact and X is finite,

ΛX is also boundedly compact. This carries over to (R, d|R) because R is a closed subset of

ΛX . If (i) holds, then (R, δR,d|R) is a geodesic space by Lemma 1, because δR,d|R = d|R < ∞.

Therefore R is a geodesic subspace of ΛX , thus establishing the implication (i)⇒(ii). □

Corollary 1 can be applied, for instance, to the closed subsets R of the Euclidean space

RX : thus, the restriction of the Euclidean (l2-)metric to R constitutes the intrinsic (finite-)

path metric of R relative to the Euclidean metric exactly when R is closed under taking

line segments, that is, R is convex. In the l1 case condition (iii) of Corollary 1 can be

weakened further depending on the space Λ. Namely, in order to replace fiber-geodesity by

fiber-connectedness, the factors need to be real trees.

Lemma 2. Let Λ be a boundedly compact real tree (equipped with the natural metric) in

which every segment includes only finitely many branching points. Then a closed subset R of

some finite power ΛX of Λ is a geodesic subspace of ΛX if and only if R if fiber-connected.

Proof. By Corollary 1, any closed geodesic subspace of ΛX is fiber-geodesic and hence fiber-

connected. Conversely assume that R is a fiber-connected closed subspace of ΛX . Since
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(ΛX , d) is complete and R is closed, (R, d|R) is also a complete metric space. Thus to prove

that R is a geodesic subspace of ΛX , it suffices to establish that R is Menger-convex with

respect to d. We proceed by induction on #X. Since any proper fiber R0 of R is a closed

fiber-connected subset of ΛY × r0 for a proper subset Y of X and a map r0 ∈ ΛX−Y , by

induction assumption we can assume that R0 is a geodesic subspace of ΛY × {r0} and ΛX .

Suppose by way of contradiction that R is not Menger-convex. In view of the induction

hypothesis, we may then suppose that there exist r1, r2 ∈ R with

[r1, r2]R = R∩ [r1, r2]ΛX = {r1, r2}

such that r1(x) ̸= r2(x) holds for all x ∈ X.

For any x ∈ X, let Λx be the xth factor (a copy of Λ) of the product ΛX . Then ΛX−{x} ×
r1(x) is the (X−{x})-fiber of ΛX that contains the point r1 of R. By Λx

+ = Λx
+(r1, r2) denote

the set of all points λ of the real tree Λx for which r1(x) is not between λ and r2(x), that is,

Λx
+ := {λ ∈ Λx| [λ, r1(x)]ΛX ∩ [r1(x), r2(x)]ΛX ̸= {r1(x)}}.

Then Λx
+ is an open subset of the real tree Λx and its closure Λx

+ = Λx
+ ∪ {r1(x)} is a

boundedly compact subtree of Λx. Trivially, the closure of ΛX
+ :=

∏
x∈X Λx

+ equals

ΛX
+ =

∏
x∈X

(Λx
+ ∪ {r1(x)}).

(Note that ΛX
+ resp. ΛX

+ equal the open resp. closed first orthant of RX in the case that

Λ = R, r1 = 0 and r2 > 0.) We claim that

R∩ ΛX
+ = (R∩ ΛX

+ ) ∪ {r1(x)}.

Suppose the contrary, that is, suppose that there exists a point

r ∈ (R− {r1}) ∩
∏
y∈X

(Λy
+ ∪ {r1(y)} with r(x) = r1(x)

for some x ∈ X. Then both r and r1 belong to the fiber ΛX−{x} × r1(x) and hence are

connected by a geodesic γ in R, according to the induction hypothesis. On the other hand,

as Λ is a real tree, there exists a point s of ΛX (the median point of r1, r, s) such that

[r1, s]ΛX = [r1, r2]ΛX ∩ [r1, r]ΛX .

The complement Y = {y ∈ X| r1(y) ̸= r(y)} of the equalizer of r1 and r does not contain

the element x. Then the geodesic γ between r1 and r is included in the Y -fiber at r1 (and

r). By the initial hypothesis, r(y) ∈ Λy
+ and hence r1(y) ̸= s(y) for each y ∈ Y . Let ϵ be the

minimum of the distances of r1(y) and s(y) for y ∈ Y in the copies of the real tree Λ. Then

the intersection of γ with the closed ball of radius ϵ centered at r1 is included in the box

[r1|Y , s|Y ]ΛY × r1|X−Y ⊆ [r1, r2]ΛX ,

whence

{r1} & γ ∩ [r1, r2]ΛX ⊆ [r1, r2]R,

contrary to the assumption that [r1, r2]R = {r1, r2}.
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Figure 1. Projection of a geodesic γ in Λx × Λy to the factors

The intersection R+ := R∩ΛX
+ is an open set in the (topological) subspace R of ΛX that

includes r2 but not r1. We wish to show that R+ is closed as well. By what has just been

shown,

R+ ⊆ R+ ∪ {r1} ⊆ R.

So suppose that r1 ∈ R+. Then there exists a sequence (sn) in R+ converging to r1. The

sequence (tn) of median points tn of r1, r2, and sn (n ∈ N) also converges to r1. Since (sn) is

fully included in ΛX
+ , so is (tn). It follows from [r1, r2]R = {r1, r2} that either tn(x) = r2(x) or

tn(x) is a branching point of Λx for each coordinate x and index n. This, however, conflicts

with the initial requirement on Λ that all segments of Λ contain only finitely many branching

points. We conclude that R+ = R+ as asserted. Therefore R+ is both open and closed in

R, which finally contradicts connectedness of R, and the proof is complete. □

A standard example shows that the finiteness condition on branching points in segments

cannot be dropped in Lemma 2. Consider the compact tree Λ shown in Figure 2 in two copies

Λx and Λy. It connects three vertices of a right-angled triangle with legs of length 1 where

the sequence of leaves is located on the hypotenuse and converges to the intersection point µ

of the hypothenuse and one leg. The branching points of Λ lie on that leg and converge also

to µ. The total length of Λ equals 3. A path γ = γ0 ∪ γ1 ∪ γ2 ∪ . . . ∪ {(µx, µy)} between two

points (λx, λy) and (µx, µy) in Λx × Λy can be constructed by alternating x-fibers γ0, γ2, . . .

and y-fibers γ1, γ3, . . . , with (µx, µy) as limiting point; see Figure 1 for the two projections of

γ on Λx and Λy. Then γ intersects the segment between (λx, λy) and (µx, µy) only in its two

end points. Thus, the closed subset γ of Λx × Λy is fiber-connected but not Menger-convex

and hence does not constitute a geodesic subspace.

3. Metric Characterizations

For a connected subset S of the finite graphic hypercube G({±1}X), its geometric realiza-

tion |S| within the hypercube [−1,+1]X (endowed with the l1-metric d) admits an intrinsic

path metric

d|S| := δ|S|,d||S| = δ|S|,d||S| .

Indeed, any pair of points in |S| can be connected by a rectifiable path in |S| relative to d,

whence d|S| exists by virtue of Lemma 1. Although (S, d|S |) is a geodesic space in its own

9



right, it is not necessarily a metric subspace of ([−1,+1]X , d), even when S is isometric in

G({±1}X). We say that a subset R of [−1,+1]X is path-l1-isometric if the restriction of the

l1-metric d on R constitutes the intrinsic path metric of R. The theorem proved in this

section describes under which circumstances this holds in the case of R = |S|.
A face F of [−1,+1]X is a Y -fiber of the form

F = [−1,+1]Y × s0 for some s0 ∈ {±1}X−Y

with Y ⊆ X. By convention, the entire hypercube is its X-fiber and its vertices are the

faces that are ∅-fibers. We say that two faces of [−1,+1]X are parallel if they are both

Y -fibers with respect to the same subset Y of X. Parallel faces thus arise by intersecting the

hypercube with parallel (affine) Y -planes

{p ∈ R| p|X−Y = c} for c ∈ [−1,+1]X−Y .

The faces of [−1,+1]X are known to be gated in the following sense. A subset A of any

metric space (M, d) is called gated [7] if for every point x ∈ M there exists a (necessarily

unique) point x′ ∈ A, the gate of x in A, for which

d(x, y) = d(x, x′) + d(x′, y) for all y ∈ A.

Given S ⊆ {±1}X , the faces of the geometric realization of S are those faces F of the

hypercube for which F ∩ {±1}X ⊆ S. For a point r of |S| we denote by [r] the smallest face

of [−1,+1]X containing r. Note that this face (necessarily included in |S| by definition) is

determined by the coordinates r(z) (z ∈ X) for which −1 < r(z) < +1 :

[r] = [−1,+1]X(r) × r|X−X(r), where

X(r) := {z ∈ X| − 1 < r(z) < +1}, and

r|X−X(r) ∈ {±1}X−X(r).

The barycenter of the face [r] is given by the map from X to {±1, 0} that is the zero map on

X(r) and coincides with r|X−X(r) elsewhere. Then Baryc(|S|) collects the barycenters of all

faces of |S| :

Baryc(|S|) : = {t ∈ {±1, 0}X | ∃r ∈ |S| with r(x) · t(x) > 0 ∀x ∈ X with r(x) ̸= 0}

= |S| ∩ {±1, 0}X .

We now introduce the notation RY and RY for (connected) subsets R of [−1,+1]X in

analogy to SY and SY for subsets S of {±1}X . Namely,

RY := {r|X−Y | r ∈ R} ⊆ [−1,+1]X−Y

is isomorphic to the orthogonal projection of R onto the (X − Y )-plane, whereas

RY := {r|X−Y | [−1,+1]Y × r|X−Y ∈ R} ⊆ [−1,+1]X−Y

encodes the location of the Y -fibers in R that are also Y -fibers (faces) of [−1,+1]X .

Theorem 1. For a subset S of {±1}X , the following statements are equivalent:

(i) S is lopsided;
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(ii) |S| is a path-l1-isometric subset of [−1,+1]X ;

(iii) S is isometric in G({±1}X) and every face of |S| is gated in (|S|, d|S |);
(iv) the restrictions of the intrinsic metric d|S| and the l1-metric d on Baryc(|S|) coincide;
(v) the barycenters u and v of any two parallel faces of |S| have the same distance with

respect to the intrinsic metric and l1-metric:

d|S|(u, v) = d(u, v).

Proof. The two implications (ii)⇒(iv)⇒(v) are trivial. The implication (ii)⇒ (iii) is also

obvious: For a face F of |S| and a point r ∈ |S|, take the gate r′ of r in F relative to the l1-

metric d of the hypercube [−1,+1]X . Since r′ ∈ F ⊆ |S| and |S| is path-l1-isometric, we have

d|S|(r, r
′) = d(r, r′), whence r′ also serves as the corresponding gate within the cubihedron

|S|.
To establish (i)⇒(ii), we only need to show that |S| is fiber-connected, by virtue of Corol-

lary 1 and Lemma 2. A fiber F of |S| is the intersection of |S| with some Y -plane, say,

F = |S| ∩ ([−1,+1]Y × r|X−Y ) for some r ∈ |S| and Y ⊆ X.

Note that the smallest face of |S|Y containing r|X−Y has the form

[r|X−Y ] = [−1,+1]Z × r|X−Y−Z where

Z = X(r)− Y = {z ∈ X − Y | − 1 < r(z) < +1}.
Thus, the smallest face of |S| containing any point of F has [−1,+1]Z as its factor:

[−1,+1]Z ×FZ ⊆ |S|.

This can also be expressed by saying that FZ = {q|X−Z | q ∈ F} is the Y -fiber of |SZ | con-
taining r|X−Z . Since the positions at which the points of FZ have their coordinates properly

between -1 and +1 all belong to Y, we infer that FZ equals the geometric realization of the Y -

fiber of SZ at r|X−Z . Since SZ and its fibers are lopsided and hence connected by [3, Theorem

3], we conclude that FZ is connected and so is F .

Next we show that (iii)⇒(v) holds. If u and v are the barycenters of two parallel faces, then

these faces are [u] and [v] having the say dimension k, say. Then they lie on parallel Y -planes

for some subset Y ⊆ X with |Y | = k. Let q be any vertex of [u] (necessarily belonging to

S) and r be the corresponding vertex from [v] (and S), thus satisfying q|Y = r|Y . Since S is

isometric and u is the barycenter of [u], we have

d|S|(u, r) ≤ d|S|(u, q) + d|S|(q, r)

= d(u, q) + d(q, r) = d(u, r),

whence equality holds. Therefore the gate of u in [v] must have distance k/2 to all vertices

of [v]. The unique point in [v] with this property is the barycenter v. Consequently, v is the

gate of u in [v] relative to the intrinsic metric d|S|. In particular, d|S|(u, v) = d(q, r) = d(u, v),

as required.

Finally, we establish the implication (v)⇒(i). Connect the barycenters u and v of two

parallel Y -faces [u] and [v] by a geodesic γ in |S|. Then every point r of γ has the same
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projection on [−1,+1]Y as u and v. Therefore [r] has a Y -cube as a factor, and consequently,

the geodesic γ projects onto a geodesic γY of |S|Y which connects the vertices u|X−Y and

v|X−Y of SY . To show that u|X−Y and v|X−Y are at distance d(u, v) in SY , we use induction

on the (l1-)distance between u|X−Y and v|X−Y . Let r be the point of γ at distance 2 from

u. Then [r] is some (Y ∪ Z)-cube within S with ∅ ̸= Z ⊆ X − Y, which necessarily includes

[u] as a face. Then every point in [r|X−Y ] belongs to |S|Y . In particular, the neighbor s′

of r|X−Y with r|X−Y−{e} = s′|X−Y−{e} and s′(e) = −r(e) for some e ∈ Z also belongs to

|S|Y and is between u|X−Y and v|X−Y . By virtue of the induction hypothesis s′ and v|X−Y

are at distance d(s′, v|X−Y ) = d(u, v) − 2. Therefore SY is isometric and consequently S is

lopsided. □

4. Projection and dimension

We will now show that for a subset S of {±1}X the two operators of (orthogonal) projection

and geometric realization commute exactly when S is lopsided. To this end we will make

use of the calculus involving sets of the form (SZ)Y , as developed in [3]. First observe that,

essentially by definition, we have

|S| =
⋃

Z⊆X

⋃
s∈SZ

[−1,+1]Z × s.(1)

Therefore the (topological) dimension of the cubihedron |S| can be expressed as

dim |S| = max {#Z
∣∣ SZ ̸= ∅} = max {#Z

∣∣ Z ∈ X (S)},

using the terminology of [3]; see also the Introduction. Applying the above equation to SY

instead of S yields

|SY | =
⋃

Z⊆X−Y

⋃
t∈(SY )Z

[−1,+1]Z × t.(2)

For the projection from [−1,+1]X to [−1,+1]X−Y applied to R = |S| we compute

|S|Y =

 ⋃
Z⊆X

⋃
s∈SZ

[−1,+1]Z × s


Y

=
⋃

Z⊆X

⋃
s∈SZ

[−1,+1]Z−Y × s|(X−Z)−Y

=
⋃

Z⊆X

⋃
t∈(SZ)Y −Z

[−1,+1]Z−Y × t

⊆
⋃

Z⊆X

⋃
t∈(SZ−Y )Y

[−1,+1]Z−Y × t

because for every subset Z of X we have the inclusion

(SZ)Y−Z = ((SZ−Y )Z∩Y )Y−Z ⊆ ((SZ−Y )Z∩Y )Y−Z = (SZ−Y )Y .
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Note that here the first and last equations use formulas from (13) of [3], whereas the inclusion

is derived from formula (12) of [3]. If Z is chosen to be disjoint from Y , then the preceding

chain of expressions just collapses to (SZ)Y and [−1,+1]Z equals [−1,+1]Z−Y . This shows

that actually equality holds above:

|S|Y =
⋃

Z⊆X−Y

⋃
t∈(SZ)Y

[−1,+1]Z × t.(3)

Since (SZ)Y ⊆ (SY )
Z by (13) of [3], we infer from (2) and (3) the inclusion

|S|Y ⊆ |SY |.

Using (3), the dimension of the projected complex can be expressed as

dim |S|Y = max{#Z| (SZ)Y ̸= ∅ for some Z ⊆ X − Y }(4)

= max{#Z| Z ⊆ X − Y with SZ ̸= ∅}.

Now, the prerequisites for proving the announced result are all in place.

Theorem 2. For a subset S ⊆ {±1}X , the following statements are equivalent:

(i) S is lopsided;

(ii) |S|Y = |SY | holds for all Y ⊆ X;

(iii) dim (|S|Y ) = dim (|SY |) holds for all Y ⊆ X.

Proof. If S is lopsided, then (SZ)Y = (SY )
Z according to [3, Theorem 2] and consequently

|S|Y and |SY | are equal by (2) and (3). The latter equality trivially implies equality of the

corresponding dimensions.

To complete the proof assume that

dim |S|X−Y = dim |SX−Y | for all Y ∈ X (S),

that is, Y ⊆ X with SX−Y = {±1}Y . Then

#Y = dim[−1,+1]Y = dim |SX−Y |
= dim |S|X−Y

= max{#Z| Z ⊆ Y with SZ ̸= ∅},

whence SY ̸= ∅, that is, Y ∈ X (S). Therefore S is lopsided by [3, Theorem 2]. □

5. Orthant intersection pattern

Every closed orthant of RX includes a unique sign map s from {±1}X by which it can be

identified as O = O(s) :

O(s) := {r ∈ RX | r(x) · s(x) ≥ for all x ∈ X}.

Conversely, given r ∈ RX , the set

Sign(r) := {s ∈ {±1}X | r(x) · s(x) ≥ 0 for all x ∈ X},
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which constitutes a fiber of {±1}X , indicates the orthants to which r belongs. Then given

any subset R of RX , the following set Sign(R) encodes the intersection pattern of R with

the closed orthants determined by the sign maps of {±1}X :

Sign(R) :=
⋃
r∈R

Sign(r) = {s ∈ {±1}X | R ∩ O(s) ̸= ∅}.

Thus s ∈ Sign(R) exactly when there exists some r ∈ R with r(x) · s(x) ≥ 0 for all x ∈ X.

This construction was performed for convex sets by Lawrence [8]. He showed that Sign(R)

is lopsided whenever R is a convex set in the Euclidean space RX , but not every lopsided set

S can be realized in this way.

The clue for a realization within a wider class of subsets of RX with some weaker convexity

properties comes from the rather obvious realization

Sign(|S|) = S if S ⊆ {±1}X is lopsided.(5)

Indeed, the inclusion S ⊆ Sign(|S|) is trivial. Now, if t ∈ S∗ = {±1}X − S, then the

corresponding closed orthant O(t) does not intersect any fiber F ⊆ S of {±1}X and hence is

disjoint from the face |F| of |S|, whence t /∈ |S|.
We will now show that for a closed subset R of RX path-l1-isometricity suffices to ensure

that Sign(R) is lopsided. To this end we may consider only compact subsets of [−1,+1]X .

Since S = Sign(R) is finite, there exists a finite subset R0 of R with S = Sign(R0). We may

scale R with some λ > 0 such that λR0 ⊆ [−1,+1]X . Then

R̃ := [−1,+1]X ∩ λR

is compact and path-l1-isometric in [−1,+1]X with S = Sign(R̃).

Theorem 3. A subset S of {±1}X is lopsided if and only if there exists a closed path-

l1-isometric subset R of RX (or, equivalently, a compact path-l1-isometric subset R of

[−1,+1]X) with S = Sign(R).

Proof. It remains to show that S = Sign(R) is lopsided whenever R is a closed path-l1-

isometric subset of [−1,+1]X . We proceed by induction on #X. For e ∈ X with Se ̸= ∅ we

claim that Se = Sign(R′), where

R′ = {r|X−{e}| r ∈ R with r(e) = 0}.

Clearly, {±1} × Sign(R′) ⊆ S. Conversely, if s′ ∈ Se, then both extensions s1, s2 ∈ {±1}X
of s′ (with s1(e) = −1 and s2(e) = +1) belong to S. Hence there exist r1, r2 ∈ R with

r1(e) = −1, r2(e) = +1 and r1(x) · s′(x) ≥ 0, r2(x) · s′(x) ≥ 0 for all x ∈ X − {e}. Then
any geodesic γ connecting r1 and r2 in R must contain a point r with r(e) = 0, so that

necessarily r(x) · s′(x) ≥ 0 for all x ∈ X holds as well. This establishes Se = Sign(R′).

Obviously, the intersection of R with the e-hyperplane through 0 is path-l1-isometric in

[−1,+1]X−{e}. Therefore Se is lopsided by the induction hypothesis.

Finally, to prove that S is isometric, assume that for some subset Y with #Y > 1 we have

s1, s2 ∈ S with s1|X−Y = s2|X−Y and {s1(y), s2(y)} = {±1} for all y ∈ Y. For notational
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convenience, assume that s1(y) = −1 and s2(y) = +1 for all y ∈ Y. By definition of S there

exist r1, r2 ∈ R with ri(x) · si(x) ≥ 0 for i = 1, 2 and all x ∈ X − Y but r1(y) ≤ 0 ≤ r2(y)

for all y ∈ Y. Any geodesic γ connecting r1 and r2 in R contains a point r with r(z) = 0

for some z ∈ Y such that all interior points on the subgeodesic of γ connecting r1 and r

have negative coordinates at Y. Necessarily r(x) · si(x) ≥ 0 for i = 1, 2 and all x ∈ X − Y.

Therefore the neighbor s of s1 on a shortest path between s1 and s2 in the graphic hypercube

G({±1}X) satisfying s(z) = +1 and s|X−{z} = s1|X−{z} belongs to Sign(r) ⊆ S. A trivial

induction on #Y thus shows that S is isometric. Then by [3, Theorem 4] we conclude that

S is lopsided. □

6. Circuits and cocircuits

In this section we will characterize the lopsided sets S via the barycenter maps of the

maximal faces of their cubihedra |S|. It turns out that only a single axiom is required,

which is analogous to the “weak elimination” axiom for (signed) circuits in oriented matroids

(see [4, Definition 3.2.1]). We say that a subset T ⊆ {±, 0}X satisfies the signed-circuit axiom

if the following condition holds:

for all t1, t2 ∈ T , and e ∈ X with t1(e) · t2(e) = −1 there exists some(SCA)

t0 ∈ T such that t0(e) = 0 and t0(x) ∈ {0, t1(x), t2(x)} for all x ∈ X.

This property shows up naturally with the intersection patterns of path-l1-isometric subsets

of RX with open orthants and coordinate (hyper-)planes:

Lemma 3. In R is a path-l1-isometric subset of [−1,+1]X , then

Sign0(R) := {t ∈ {±1, 0}X | ∃r ∈ R with r(x) · t(x) > 0 ∀x ∈ X with r(x) ̸= 0}

satisfies the sign-circuit axiom (SCA).

Proof. Assume that t1(e) = −1 and t2(e) = +1 hold for some t1, t2 ∈ Sign0(R) and e ∈ X.

Then there exist r1, r2 ∈ R such that r1(e) ≤ 0 ≤ r2(e). Since R is path-l1-isometric in

[−1,+1]X , there must exist some r0 ∈ R on a geodesic connecting r1 and r2 such that

r0(e) = 0 and r(x) is between r1(x) and r2(x) for all x ∈ X − {e}. Define t0 ∈ {±1, 0}X by

t0(x) :=


−1 if r0(x) < 0,

+1 if r0(x) > 0,

med(t1(x), t2(x), 0) if r0(x) = 0.

Then t0(x) takes the same sign as one of t1(x), t2(x) if r0(x) ̸= 0. If r0(x) = 0, then t0(x)

is between t1(x) and t2(x); in particular, for x = e the median choice guarantees t0(e) = 0.

Therefore t0 qualifies as a member of Sign0(R) as recognized by r0 ∈ R and it satisfies the

requirement in (SCA) relative to the given maps t1 and t2. □

In order to express inclusion of faces of [−1,+1]X in terms of the corresponding barycenter

maps we use the standard ordering≺ of signs−1,+1, 0 for which−1 and +1 are incomparable,

0 ≺ −1 and 0 ≺ +1; see Fig. 2(a). The product ordering ≺X on {±1, 0}X will also be denoted
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Figure 2. (a) Ordering of signs. (b) Product ordering on {±1, 0}2; the shaded
nodes correspond to the barycenter maps of a lopsided set

by ≺. The undirected Hasse diagram of ({±1, 0}X ,≺) is a grid graph (viz., the Cartesian

X-power of a path with two edges) and will be denoted by G({±1, 0}X); see Fig 2(b) for

#X = 2. Thus, t1 ≺ t2 for two maps t1, t2 ∈ {±1, 0}X holds if and only if t1(x) ∈ {0, t2(x)}
for all x ∈ X, or equivalently, if for the associated faces the inclusion [t2] ⊆ [t1] holds.

For a given subset T ⊆ {±1, 0}X one defines the upper set ↑T relative to the ordering ≺
by

↑T = {t′ ∈ {±1, 0}X | t ≺ t′ for some t ∈ T }.
Note that the upper set ↑T satisfies (SCA) exactly when the stronger version

for all t1, t2 ∈↑T , and e ∈ X with t1(e) · t2(e) = −1 there exists(SCA↑)
some t0 ∈ [t1, t2]∩ ↑T with t0(e) = 0

holds, where [t1, t2] is a segment (box) of [−1,+1]X . Indeed (SCA) yields some t ∈↑T with

t(x) ∈ {0, t1(x), t2(x)} for all x ∈ X − {e} and t(e) = 0. Then the map t0 defined by

t0(x) :=

{
t1(x) if t(x) = 0 and x ̸= e,

t(x) otherwise

dominates t and hence belongs to ↑T ∩ [t1, t2].

To T ⊆ {±1, 0}X one associates the set of sign maps

Sign(T ) = {s ∈ {±1}X | ∃t ∈ T with s(x) · t(x) ≥ 0 ∀x ∈ X} =↑T ∩ {±1}X = Sign(↑T )

and then the corresponding geometric realization |Sign(T )|. This realization can be compared

to the union [T ] of the smallest faces [t] of [−1,+1]X containing t for t ∈ T :

[T ] :=
⋃
t∈T

[t] ⊆ |Sign(T )|.

One can retrieve ↑T from [T ] as ↑T = Sign0([T ]) = Baryc([T ]).

Theorem 4. The following statements are equivalent for a set T ⊆ {±1, 0}X :

(i) [T ] is a path-l1-isometric subset of [−1,+1]X ;

(ii) T satisfies (SCA);

(iii) ↑T satisfies (SCA);
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(iv) ↑T is an isometric subset of the grid graph G({±1, 0}X);

(v) ↑T ∩ {±1}X is lopsided such that [T ] = | ↑T ∩ {±1}X |.

Proof. If [T ] is path-l1-isometric, then ↑T = Sign0(T ) satisfies (SCA) by Lemma 3. This

establishes (i)⇒(iii).

Now, we will show that (ii)⇐⇒(iii). Trivially, T and ↑T have the same set of minimal

elements. Assume that T satisfies (SCA) and let t′1, t
′
2 ∈↑T with t1 ≺ t′1 and t2 ≺ t′2 for

some t1, t2 ∈ T . If t′1(e) · t′2(e) = −1 for some e ∈ X, then t0 can be chosen to be one of

t1, t2 in case that 0 ∈ {t1(e), t2(e)}. Otherwise, one may choose t0 in T with t0(e) = 0 and

t0(x) ∈ {0, t1(x), t2(x)} for all x ∈ X. Conversely, assume that ↑T satisfies (SCA). Since the

minimal choices relative to ≺ for establishing (SCA) in ↑T belong to T , it follows that (SCA)

holds for T as well.

To prove that (iii)⇒(iv) holds, suppose that there were some distinct t1, t2 ∈↑T which

are not adjacent in the graph G({±1, 0}X) such that the box [t1, t2] in [−1,+1]X intersects

↑T only in t1 and t2. If for some e ∈ X we have t1(e) · t2(e) = −1, then there exists some

t0 ∈ [t1, t2]∩ ↑ T with t0(e) = 0 by (SCA↑). Then t0 /∈ {t1, t2}, however, conflicts with

the initial hypothesis. Therefore t1(x) · t2(x) ≥ 0 for all x ∈ X, that is, all coordinates

of t1 and t2 have comparable signs. Consequently, the join t of t1 and t2 exists in the

ordered set ({±1, 0}X ,≺) and is given by t(x) = min{t1(x), t2(x)} for all x ∈ X. Then

t ∈ [t1, t2]∩ ↑T = {t1, t2}, say t2 ≺ t = t1. Since t1 and t2 are not adjacent in the graph

G({±1, 0}X), there exist at least two distinct coordinates e and f at which they differ, whence

t2(e) = t2(f) = 0 and t1(e), t1(f) ∈ {±1}. Then the map t defined by

t(x) :=

{
0 if x = e,

t1(x) if x ̸= e

is different from t1 and t2 but belongs to [−1,+1]X∩ ↑T , yielding a final contradiction.

For the proof of (iv)⇒(v) we first claim that the smallest isometric subset U of the grid

graph G({±1, 0}X) that includes some Y -fiber of {±1}X at some vertex s ∈ {±1}X is the

Y -fiber of {±1, 0}X at s. In fact, as {±1}Y × s|X−Y ⊆ U and in each coordinate 0 is needed

to connect −1 to +1, we may assume by induction on #Y that for some e ∈ Y,

{±1, 0}Y−{e} × {±1}e × s|X−Y ⊆ U ,

whence {±1, 0}Y−{e} × {0}e × s|X−Y constitutes the set of unique common neighbors in the

grid graph for the pairs t1, t2 with t1|Y−{e} = t2|Y−{e}, {t1(e), t2(e)} = {±1}, and t1|X−Y =

s|X−Y = t2|X−Y . Hence {±1, 0}Y × s|X−Y ⊆ U , as asserted.
Since ↑T is isometric in G({±1, 0}X), we can apply the preceding observation to infer that

for S =↑T ∩ {±1}X the upper set ↑T encompasses Baryc(|S|). Since the reverse inclusion

is trivial because ↑T is an upper set, we have thus established ↑T = Baryc(|S|), whence it

follows that

[T ] = [↑T ] = [Baryc(|S|)] = |S|,
as required. Isometry of ↑ T also entails that SY is isometric for every Y ⊆ X. Indeed,

for each pair s1, s2 ∈ SY , the barycenter maps ti corresponding to {±1}Y × si (i = 1, 2)
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belong to ↑T by what has just been observed. Then any isometric path connecting t1 and

t2 in ↑ T projects to an isometric path connecting s1 and s2 in G({±1, 0}X−Y ) because

t1|Y = t2|Y is the zero map on Y and ti|X−Y = si for i = 1, 2. To show that s1 and s2
are actually connected by a shortest path in G({±1}X−Y ) (which is scale 2 embedded in

G({±1, 0}X−Y )), we use a trivial induction on the (l1−)distance between s1 and s2. Let the

neighbor w of s1 on the projected path equal 0 at the coordinate e ∈ X − Y. Then the sign

map s′1 with s′1|X−Y−{e} = s1|X−Y−{e} = w|X−Y−{e} and s′1(e) = −s1(e) = s2(e) belongs

to SY because w ≺ s′1. Since s′1 is a neighbor of s1 between s1 and s2 in G({±1}X−Y ), we

conclude that SY is isometric. This finally shows that S is lopsided.

Finally, if (v) holds, then the geometric realization |S| of the lopsided set S =↑T ∩ {±1}X
is a path-l1-isometric subset of [−1,+1]X according to Theorem 1 and coincides with [T ] by

(v). This establishes (i), and the proof is complete. □

Conditions (ii) to (v) of the preceding theorem are purely combinatorial and their equiva-

lence can be proven without employing the metric/topological features of the entire geometric

realization. In fact, our combinatorial proof established (ii)⇐⇒(iii)⇒(iv)⇒(v). The implica-

tion left, (v)⇒(iii) can be shown directly, without the (de)tour through cubihedra: Assuming

that T ⊆ {±1, 0}X satisfies (v), the “top” set S =↑T ∩ {±1}X of sign maps is lopsided, and

the second part of (v) guarantees that all barycentric maps of the cubihedron |S| belong to

↑T . Let t1 and t2 be two members of ↑T with t1(e) = −1 and t2(e) = +1 for some e ∈ X.

The zero coordinates of ti determine the set Yi ⫋ X, so that ti encodes some Yi-cube of

G({±1}X) for i = 1, 2. The Y1-cube and Y2-cube admit mutually nearest vertices (gates) s1
and s2 within G({±1}X). Then t1 ≺ s1 and t2 ≺ s2. By the choice of e and the gate property

for s1 and s2, we have

e ∈ ∆(s1, s2) = {x ∈ X| s1(x) ̸= s2(x)} ⊆ X − (Y1 ∪ Y2).

Since S is lopsided, SY1∩Y2 is isometric, whence there exists a shortest path P in S connecting

s1 and s2, which projects onto a shortest path between s1|Y1∩Y2 and s2|Y1∩Y2 in SY1∩Y2 .

Necessarily, P passes through two adjacent vertices s′1 and s′2 with s′1(e) = −1 and s′2(e) = +1.

Thus, there exist Y1∩Y2-cubes at s′1 and s′2, which are fibers of a (Y1∩Y2)∪{e}-cube containing
s′1 and s′2. Let t0 denote the barycenter map of this latter cube. Then

t0(x) :=


0 if x ∈ (Y1 ∩ Y2) ∪ {e},
s2(x) = t2(x) if x ∈ ∆(s1, s

′
1),

s1(x) = t1(x) if x ∈ ∆(s′1, s2),

s1(x) = s2(x) otherwise.

Note that for y ∈ Yi − Yj one has si(y) = t0(y) = tj(y), where {i, j} = {1, 2}. Therefore t0
satisfies the requirements in (SCA).

The preceding theorem demonstrates that the set of minimal elements in Baryc(|S|) relative
to the order ≺ on {±, 0} deserves naming:

Cocirc(S) := {t ∈ Baryc(|S|)| t′ ≺ t implies t′ = t for all t′ ∈ Baryc(|S|)}.
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The members of Cocirc(S) are referred to as the cocircuits of S, since their characteristic

feature (SCA) in the case of lopsided sets S bears resemblance with one of the axioms for

circuits in an oriented matroid. The cocircuits of S correspond to the facets of the cubihedron

|S|. Then

Baryc(|S|) =↑Cocirc(S) = {t ∈ {±1, 0}X | ↑{t} ∩ {±1}X ⊆ S}

= {t ∈ {±1, 0}X | t|X−X(t) ∈ SX(t)}

= {t ∈ {±1, 0}X | t|X−X(t) /∈ (S∗)X(t)},

where S∗ = {±1}X − S and X(t) = {x ∈ X| − 1 < t(x) < +1} = t−1({0}) for t ∈ {±1, 0}
were defined previously.

The set Circ(S) of circuits of S is defined to be the set Cocirc(S∗) of cocircuits of S∗.

Clearly, t ∈ {±1, 0}X is contained in Cocirc(S∗) if and only if t|X−X(t) /∈ SX(t) holds, that is,

if and only if, for every s ∈ S, there exists some x ∈ X with t(x) · s(x) = −1 or – equivalently

– if and only if s ∈ {±1}X and t ≺ s implies s /∈ S. So, Circ (S) consists of the minimal

elements in {±1, 0}X with that property. It is also easy to see that S coincides with the set of

all sign maps s ∈ {±1}X with t ≺ s for some t ∈ Cocirc(S) as well as with the set of all sign

maps s ∈ {±1}X with t ⊁ s for all t ∈ Circ(S). We then obtain our final result essentially as

a corollary to the preceding theorem:

Theorem 5. The following statements are equivalent for a set S ⊆ {±1}X :

(i) S is lopsided;

(ii) Baryc(|S|) satisfies (SCA);

(iii) Cocirc(S) satisfies (SCA);

(iv) Baryc(|S∗|) satisfies (SCA);

(v) Circ(S) satisfies (SCA);

Proof. Given a set S ⊆ {±1}X , the associated subset T := Baryc(|S|) is upward closed, i.e.,

↑T = T , and yields S back as T ∩ {±1}X . In particular, [T ] = |S| holds by definition of the

two cubihedra. Therefore, if S is lopsided, then condition (v) of Theorem 4 is satisfied. This

establishes (i)⇒(ii) (or (iii), respectively). Trivially, ↑Cocirc(S) = T , whence (ii)⇐⇒(iii)

immediately follows from the equivalence of (iii) and (ii) in Theorem 4. If T satisfies (SCA),

then S is lopsided by the implication from (ii) to (v) in Theorem 4. Summarizing, we have

shown that the first three statements (i),(ii),(iii) are equivalent. Since Circ(S) = Cocirc(S∗)

and S is lopsided exactly when its complement S∗ is (cf. [3, Theorem 2]), statements (iv) and

(v) are also equivalent to (i). □

Remark. It follows that r ∈ Circ(S) for some lopsided subset S of {±1}X implies S|Y =

{±1}Y for every proper subset Y of X −X(r) and hence

X (SX(r)) = P(X −X(r))− {X −X(r)}.

In other words, for every circuit r ∈ Circ(S), the support X −X(r) is a “circuit” of X (S),
that is, a minimal subset of X not contained in X (S), while r|X−X(r) is the unique element
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in {±1}X−X(r) not contained in SX(r). In particular, we have #Circ(S) = #Circ(X (S)) with

Circ(X (S)) := {Y ∈ P(X)−X (S)| Z ∈ X (S) for all Z ⫋ Y }

for every lopsided subset S of {±1}X .
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