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Abstract. We consider the problem of covering and packing subsets of
δ-hyperbolic metric spaces and graphs by balls. These spaces, defined via
a combinatorial Gromov condition, have recently become of interest in
several domains of computer science. Specifically, given a subset S of a δ-
hyperbolic graph G and a positive number R, let γ(S, R) be the minimum
number of balls of radius R covering S. It is known that computing
γ(S, R) or approximating this number within a constant factor is hard
even for 2-hyperbolic graphs. In this paper, using a primal-dual approach,
we show how to construct in polynomial time a covering of S with at most
γ(S, R) balls of (slightly larger) radius R + δ. This result is established
in the general framework of δ-hyperbolic geodesic metric spaces and is
extended to some other set families derived from balls. This covering
algorithm is used to design better than in general case approximation
algorithms for the augmentation problem of δ-hyperbolic graphs with
diameter constraints and slackness δ and for the k-center problem in
δ-hyperbolic graphs.

1 Introduction

The set cover problem is a classical question in computer science [39] and com-
binatorics [9]. In this problem, given a collection S of subsets of a domain U
with n elements, the task is to find a subcollection of S of minimum size γ(S)
whose union is U. It was one of Karp’s 21 NP-complete problems. More recently,
it has been shown that, under the assumption P 6= NP, set cover cannot be
approximated in polynomial time to within a factor of c · ln n, where c is a small
constant; see [3] and the references cited therein. On the other hand, set cover
can be approximated in polynomial time to within a factor of lnn+1 using sev-
eral algorithms [39], in particular, using the greedy algorithm. The set packing
problem asks to find a maximum number π(S) of pairwise disjoint subsets of S.
Another problem closely related to set cover is the hitting set problem. A subset
T is called a hitting set of S if T ∩ S 6= ∅ for any S ∈ S. The minimum hitting
set problem asks to find a hitting set of S of smallest cardinality τ(S).
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Numerous algorithmic and optimization problems can be formulated as set
cover or set packing problems for structured set families. For example, many
papers consider cover and packing problems with set families like intervals and
unions of intervals of a line, subtrees of a tree, or cliques, cuts, paths, and balls
of a graph. For example, in case of covering with balls, one can expect that the
specific metric properties of graphs in question yield better algorithmic results
in comparison with the general set cover. Although the set cover problem can
be viewed as a particular instance of covering with unit balls of rather special
graphs, for several graphs classes polynomial time algorithms have been designed.
These algorithms resides on the treelike structure of those graphs and on the
equality between ball covering and packing numbers of such graphs.

In this note, we consider the problem of covering and packing by balls and
union of balls of hyperbolic metric spaces and graphs. The ball B(x,R) of center
x and radius R ≥ 0 consists of all points of a metric space (X, d) at distance at
most R from x. In our paper, we will consider covering and packing problems
of the following type: given a finite subset S of points of X, a radius R, and a
slack parameter δ, find a good covering of S with balls of radius at most R + δ.
We show that if the metric space (X, d) is δ-hyperbolic, then in polynomial
time we can construct a covering of S with balls of radius R + δ and a set
of the same size of pairwise disjoint balls of radius R centered at points of S.
This type of results is obtained for arbitrary subfamilies of balls and for set-
families consisting of unions of κ balls of (X, d). We apply these results to design
better approximation algorithms for the k-center problem and the augmentation
problem with diameter constraints in δ-hyperbolic graphs.

1.1 Geodesic and δ-hyperbolic metric spaces

Let (X, d) be a metric space. A geodesic segment joining two points x and y from
X is a map ρ from the segment [a, b] of length |a − b| = d(x, y) to X such that
ρ(a) = x, ρ(b) = y, and d(ρ(s), ρ(t)) = |s − t| for all s, t ∈ [a, b]. A metric space
(X, d) is geodesic if every pair of points in X can be joined by a geodesic. We
will denote by [x, y] any geodesic segment connecting the points x and y. Every
graph G = (V,E) equipped with its standard distance dG can be transformed
into a (network-like) geodesic space (X, d) by replacing every edge e = (u, v) by
a segment [u, v] of length 1. These segments may intersect only at their commons
ends. Then (V, dG) is isometrically embedded in a natural way in (X, d).

Introduced by Gromov [29], δ-hyperbolicity measures, to some extent, the
deviation of a metric from a tree metric. Recall that a metric space (X, d) embeds
into a tree network (with positive real edge lengths), that is, d is a tree metric,
if and only if for any four points u, v, w, x the two larger ones of the distance
sums d(u, v)+d(w, x), d(u,w)+d(v, x), d(u, x)+d(v, w) are equal. Now, a metric
space (X, d) is called δ-hyperbolic if the two larger distance sums differ by at most
δ. A connected graph G = (V,E) equipped with standard graph metric dG is
δ-hyperbolic if (V, dG) is a δ-hyperbolic metric space.

In case of geodesic metric spaces, there exist several equivalent definitions of
δ-hyperbolic metric spaces involving different but comparable values of δ [5, 28,



29]. In this paper, we will use the definition employing δ-thin geodesic triangles.
A geodesic triangle ∆(x, y, z) with vertices x, y, z ∈ X is a union [x, y] ∪ [x, z] ∪
[y, z] of three geodesic segments connecting these vertices. Let mx be the point
of the geodesic segment [y, z] located at distance αy := (d(y, x) + d(y, z) −
d(x, z))/2 from y. Then mx is located at distance αz := (d(z, y) + d(z, x) −
d(y, x))/2 from z because αy + αz = d(y, z). Analogously, define the points
my ∈ [x, z] and mz ∈ [x, y] both located at distance αx := (d(x, y) + d(x, z) −
d(y, z))/2 from x; see Fig. 1 for a construction. There exists a unique isometry
ϕ which maps the geodesic triangle ∆(x, y, z) to a star Υ (x′, y′, z′) consisting
of three solid segments [x′,m′], [y′,m′], and [z′,m′] of lengths αx, αy, and αz,
respectively. This isometry maps the vertices x, y, z of ∆(x, y, z) to the respective
leaves x′, y′, z′ of Υ (x′, y′, z′) and the points mx,my, and mz to the center m of
this tripod. Any other point of Υ (x′, y′, z′) is the image of exactly two points
of ∆(x, y, z). A geodesic triangle ∆(x, y, z) is called δ-thin [5] if for all points
u, v ∈ ∆(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. A geodesic metric space (X, d)
is called δ-hyperbolic if all geodesic triangles of X are δ-thin. Note that our δ-
hyperbolic metric spaces will be 2δ-hyperbolic if we will use the first definition
of δ-hyperbolicity; see the proof of Proposition 2.1 of [5].

Throughout this paper, we will suppose that all metric spaces are either
geodesic or graphic with δ-thin geodesic triangles. Additionally, in case of geodesic
spaces (X, d), we will assume the following computational assumption: there ex-
ists an oracle which, given two points x, y ∈ X, it returns a geodesic segment
[x, y]. In case of graph-distance dG or of geodesic spaces derived from graphs,
the role of this oracle is played by any shortest path algorithm.

1.2 r-Domination and r-packing

Now, we will formulate the r-domination and r-packing problems, which corre-
spond to covering and packing by balls. Let S be a subset of not necessarily
distinct points of a metric space (X, d) and let r : S → R+ be a map asso-
ciating to each point s ∈ S a positive number r(s). We say that a subset C
of X r-dominates S if for each point s ∈ S there exists a point c ∈ C such
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Fig. 1. A geodesic triangle ∆(x, y, z), the points mx, my, mz, and the tripod Υ (x′, y′, z′)



that d(s, c) ≤ r(s). In other words, C is a hitting set for the family of balls
BS,r = {B(s, r(s)) : s ∈ S}. A subset P of S is called an r-packing of S, if for
each pair x, x′ of points of P we have r(x)+ r(x′) < d(x, x′) (in other words, the
family B(x, r(x)), x ∈ P, consists of pairwise disjoint balls). The r-domination
problem is to find an r-dominating set with minimum size γ(S, r) and the r-
packing problem is to find an r-packing set with maximum size π(S, r). Then
γ(S, r) = τ(BS,r) and π(S, r) are called the r-domination and the r-packing
numbers of (X, d) (these numbers are well-defined when S is finite). If S is a
subset of vertices of a graph G = (V, E) and the r-dominating set C is also con-
tained in V, then we denote the respective r-domination and r-packing numbers
by γG(S, r) and πG(S, r). If r(s) ≡ R for all s ∈ S, then we obtain the problem
of covering S with a minimum number of balls of radius R; in the particular case
r(s) ≡ 1 and S ⊆ V, we obtain the well-known domination problem of a graph.

The r-domination problem is closely related with the k-center clustering
problem [10, 30, 31, 39]. In the k-center problem, given a set S of n points in
a metric space (X, d), the goal is to find the smallest R∗ and the position of k
centers, such that any point of S is at distance of at most R∗ from one of those
centers (in other words, R∗ is the least radius such that S can be covered with
at most k balls of radius R∗).

A κ-ball κB of a metric space (X, d) is the union of κ balls B(x1, r1), . . . ,
B(xκ, rκ), i.e., κB =

⋃κ
j=1

κB(xj , rj). It extends the notions of d-intervals of [1,
7]; these are unions of d closed intervals of R. Indeed, each interval [a, b] can be
viewed as a closed ball of R of radius (b− a)/2 centered at the point (a + b)/2.
As in the case of r-domination, any finite family κBS,r of κ-balls can be defined
via the set S of centers of all balls and a multi-valued map r : S → R+ which
associates to each point s ∈ S the list of radii of the balls from

⋃
κBS,r centered

at s. Thus two κ-balls may have two balls centered at the same point. The (κ, r)-
domination problem consists in finding a hitting set C for a family κBS,r of κ-balls
of minimum cardinality γ(S, r). Analogously, the (κ, r)-packing problem is to find
a maximum number π(S, r) of pairwise disjoint κ-balls of κBS,r.

1.3 Augmentation under diameter constraints

In Section 4, we apply our results on covering δ-hyperbolic graphs with balls to
the following augmentation problem under diameter constraints (problem ADC):
Given a graph G = (V, E) with n vertices and a positive integer D, add a
minimum number OPT(D) of new edges E′ such that the augmented graph
G′ = (V, E ∪ E′) has diameter at most D. ADC can be viewed as a network
improvement problem where G is the initial communication network and a min-
imum number of additional communication links must be added so that the
upgraded network G′ ensures a low communication delay.

1.4 Our results

Using the notation established in previous subsections, the main algorithmic
results of our paper can be formulated in the following way: for geodesic δ-



hyperbolic spaces and δ-hyperbolic graphs, γ(S, r + δ) ≤ π(S, r) and γ(S, r +
2δ) ≤ 2κ2π(S, r) hold. Moreover, it is possible to construct in polynomial time
an (r + δ)-dominating set C and an r-packing P such that |C| = |P |, and a
(κ, r+2δ)-dominating set C and a (κ, r)-packing P such that |C| ≤ 2κ2|P |. Using
these results, we show that one can augment in polynomial time a δ-hyperbolic
graph G = (V, E) to a graph of diameter 2R + 2δ using at most 2OPT(2R)
new edges. These results also show that for δ-hyperbolic graphs, the well-known
2-approximation algorithm [31] for the k-center problem returns a solution of
radius at most OPT + δ. Notice also that the problem of approximating γ(S, r)
within a constant is hard already for 2-hyperbolic graphs and r(s) ≡ 1 for all
s ∈ S, because the split graphs, which encode the general set cover problem (the
elements x of the domain U form a clique and the sets S of S form a stable set
so that the vertices x and S are adjacent if and only if x ∈ S), are chordal, and
therefore, 2-hyperbolic.

1.5 Related work

We briefly review the known results related with the subject of our paper. The
inequality γ(S, r) ≥ π(S, r) holds in any metric space (X, d), because two points
of an r-packing cannot be r-dominated by the same point. On the other hand, the
equality γG(S, r) = πG(S, r) holds for trees [13, 14], strongly chordal graphs [15,
25], dually chordal graphs [11], and it is at the heart of linear-time algorithms for
r-covering and r-packing problems for these graphs. The paper [21] proposes an
exact fixed-parameter algorithm for the (NP -hard) problem of covering planar
graphs with a minimum number of balls of radius R. Finally, [17] shows that
every planar graph of diameter 2R can be covered with a fixed number of balls
of radius R. Covering and packing problems for special families of subtrees of a
tree have been considered in [8]. Alon [1, 2] established that if κI is a family of κ-
intervals of the line (or a family consisting of unions of κ subtrees of a tree), then
τ(κI) ≤ 2κ2π(κI). In case of κ-intervals, Bar-Yehuda et al. [7] presented a factor
2κ algorithm for approximating π(κI). Their algorithm is based on rounding a
fractional solution of the linear relaxation of the problem and construction of a
respective packing using the local ratio technique.

The k-center problem is a well-studied k-clustering and facility location prob-
lem [10, 30, 39]. The general problem is NP-hard to approximate with a fac-
tor smaller than 2 (see Theorem 5.7 of [39]). The analogous problem in Eu-
clidean spaces is NP-hard to approximate with a factor smaller than 1.822 [26].
Hochbaum and Shmoys [31] present a (best possible) factor 2 approximation
algorithm for the general k-center problem.

The augmentation problem of graphs with diameter constraints has been
introduced in [20]. It is already non-trivial when the input graph is a path [4, 24].
Approximation algorithms for this augmentation problem has been designed in
[18, 19, 22, 32]. In particular, [18, 19] propose factor 2 approximation algorithms
for the augmentation problem of trees and dually chordal graphs with even and
odd diameters 2R and 2R + 1 based on particular coverings of trees with balls
of radius R− 1 and R.



δ-Hyperbolic metric spaces play an important role in geometric group theory
and in geometry of negatively curved spaces [5, 28, 29]. δ-Hyperbolicity captures
the basic common features of “negatively curved” spaces like the hyperbolic
space Hk, Riemannian manifolds of strictly negative sectional curvature, and of
discrete spaces like trees and the Caley graphs of word-hyperbolic groups. It is
remarkable that a strikingly simple concept leads to such a rich general theory [5,
28, 29]. More recently, the concept of δ-hyperbolicity emerged in discrete mathe-
matics, algorithms, and networking. For example, it has been shown empirically
in [38] that the internet topology embeds with better accuracy into a hyperbolic
space than into a Euclidean space of comparable dimension. A few algorith-
mic problems in hyperbolic spaces and hyperbolic graphs have been considered
in recent papers [23, 27, 33, 35]. 0-Hyperbolic metric spaces are exactly the tree
metrics. On the other hand, the Poincaré half space in Rk with the hyperbolic
metric is δ-hyperbolic with δ = log 3. A full characterization of 1-hyperbolic
graphs has been given in [6]; see also [34] for a partial characterization. Chordal
graphs (graphs in which all induced cycles have length 3) are 2-hyperbolic [34].
For chordal graphs as well as dually chordal and strongly chordal graphs one can
construct trees approximating the graph-distances within a constant 2 or 3 [12],
from which follows that those graphs have low δ-hyperbolicity (this result has
been extended in [16] to all graphs in which the largest induced cycle is bounded
by some constant δ; this result implies that those graphs are δ-hyperbolic). In
general, the distance of a δ-hyperbolic space on n points can be approximated
within a factor of 2δ log n by a tree metric [29, 28] and this approximation is
sharp.

2 r-Domination and r-packing

Let (X, d) be a geodesic δ-hyperbolic space. Given an instance (S, r) of the r-
domination and r-packing problems, denote by r + δ the function defined by
setting (r + δ)(x) := r(x) + δ for all x ∈ S. For each point x ∈ S, define the set
Sx := {y ∈ S : r(x) + r(y) ≥ d(x, y)} of all points which cannot belong to the
same r-packing set as x. Next auxiliary result shows that in any compact subset
S of X one can always find a point x such that x and all points of the set Sx

can be (r + δ)-dominated by a common point c ∈ X.

Lemma 1. For any compact subset S of X, there exist two points x ∈ S and
c ∈ X such that d(c, y) ≤ r(y) + δ for any point y ∈ Sx, i.e., Sx is (r + δ)-
dominated by c.

Proof. Let x, z be a pair of points of S maximizing the value M := d(x, z)−r(x)
(such a pair exists because S is compact). If M ≤ δ, then the point z (r + δ)-
dominates all points of S and we can set c := z. Suppose now that M > δ. Pick a
geodesic segment [x, z] between x and z, and let c be the point of [x, z] located at
distance r(x) from x. Consider any point y ∈ S such that r(x) + r(y) ≥ d(x, y).
We assert that d(y, c) ≤ r(y) + δ. For this pick any two geodesic segments [x, y]
and [y, z] between the pairs x, y and y, z. Let ∆(x, y, z) := [x, y]∪ [x, z]∪ [y, z] be



the geodesic triangle formed by the three geodesic segments and let mx,my, and
mz be the three points on these geodesics as defined above. We distinguish two
cases. First suppose that c belongs to the portion of [x, z] comprised between
the points x and my. In this case, since d(x,my) = d(x, y)− αy, we obtain

d(c, my) = d(x, y)− αy − r(x) ≤ r(x) + r(y)− αy − r(x) = r(y)− αy.

Since ∆(x, y, z) is δ-thin, the triangle condition yields

d(c, y) ≤ d(c,my) + d(my,mx) + d(mx, y) ≤ d(c,my) + δ + αy ≤ r(y) + δ.

On the other hand, if c belongs to the portion of [x, z] comprised between z and
my, then the choice of the points x and z yields d(y, z)− r(y) ≤ d(x, z)− r(x).
Since d(x, z) = αx + αz and d(y, z) = αy + αz, we conclude that αy − r(y) ≤
αx − r(x). Thus d(c,my) = r(x)− αx ≤ r(y)− αy. As a result, we deduce that
d(c, y) ≤ d(c,my) + δ + αy ≤ r(y) + δ. ¤

The following result can be viewed as the variant for δ-hyperbolic spaces of
the classical Jung theorem asserting that each subset S of the Euclidean space
Em with finite diameter D is contained in a ball of radius at most

√
m

2(m+1)D.

Corollary 1. If the diameter of a compact geodesic δ-hyperbolic metric space
(X, d) is D := 2R, then X can be covered by single ball of radius R + δ, i.e., the
radius of X is at most R + δ.

Proof. Let S := X and r(x) ≡ R. Since d(x, y) ≤ 2R = r(x) + r(y) for any pair
x, y ∈ X, we conclude that Sx = X for any point x ∈ X. Since X is compact,
by Lemma 1, there exist a point x ∈ S = X and a point c ∈ X such that
X = Sx ⊆ B(c, r(x) + δ) = B(c,R + δ). ¤

The following result, generalizing Corollary 1, can be viewed as the analogy
of the classical Helly property for balls.

Corollary 2. If B(xi, ri), i ∈ I, is a collection of pairwise intersecting balls of
a geodesic δ-hyperbolic metric space (X, d) with a compact set S := {xi : i ∈ I}
of centers, then the balls B(xi, ri + δ), i ∈ I, have a nonempty intersection.

Proof. Set r(xi) := ri. Then, as in previous result, since d(xi, xj) ≤ ri + rj =
r(xi)+ r(xj), the equality Sx = S holds for any point xi of S. By Lemma 1, S is
(r + δ)-dominated by a single point c. Obviously this point belongs to all balls
B(xi, ri + δ), establishing the result. ¤

Now, we present the main result of this paper. It generalizes the equality
γ(S, r) = π(S, r) for trees to all δ-hyperbolic spaces in the following way:

Theorem 1. Let S be a finite subset of a geodesic δ-hyperbolic metric space
(X, d). Then γ(S, r + δ) ≤ π(S, r). Moreover, a set C (r + δ)-dominating the
set S and an r-packing P of S such that |C| = |P | can be constructed using a
polynomial in |S| number of calls of the oracle for computing a geodesic segment
in (X, d).



Proof. The proof of this result is algorithmic: we construct the r-packing P
and the (r + δ)-dominating set C step by step taking care that the following
properties hold: (i) each time when a new point is inserted in C, then a new
point is also inserted in P, and (ii) at the end, the set P is an r-packing and C
is an (r + δ)-dominating set for S.

The algorithm starts with S′ := S, C := ∅, and P := ∅. While the set S′

is nonempty, the algorithm applies Lemma 1 to the current set S′ in order to
obtain a point x ∈ S′ and a point c ∈ X which (r+δ)-dominates the set S′x. The
algorithm adds the point x to P and the point c to C, and then it updates the
set S′ by removing from S′ all points which are (r + δ)-dominated by c, and so
on. The algorithm terminates in at most |S| rounds. Notice also that |P | = |C|,
because when the point x is inserted in P, then at the same step x is removed
from S′ because x is (r + δ)-dominated by the point c which is included at that
step in C.

We assert that at the end, P is an r-packing of S and C is an (r + δ)-
dominating set for S. Indeed, C (r + δ)-dominates S because S′ is empty when
the algorithm halts and that each point s ∈ S is (r + δ)-dominated by the point
which is inserted in C at the iteration when s is removed from S′. To show that
P is an r-packing it suffices to show that after each iteration the updated set P
is an r-packing. So, suppose that at the current iteration the point y has been
inserted in the set P, which before this insertion was an r-packing. We must
show that P ∪{y} is an r-packing as well. Suppose by way of contradiction that
d(x, y) ≤ r(x) + r(y) for some point x ∈ P. Consider the iteration at which the
point x was inserted in P and suppose that at this iteration the point c was
inserted in C. Since y ∈ S′x and all points of S′x are (r + δ)-dominated by c, the
algorithm will remove at this iteration y from S′, thus y cannot be inserted in P
at a later stage, contrary to our assumption. This ensures that P is an r-packing
during all execution of the algorithm. ¤

Consider now the case of r-domination and r-packing for graphs G = (V, E)
such that the underlying geodesic metric space (X, d) is δ-hyperbolic. More pre-
cisely, let S be a subset of vertices of G, let r be a map from S to N+, and we
are searching for a subset of vertices C ⊆ V which (r + δ)-dominates S. Now, if
we will run in (X, d) the algorithm described in Theorem 1 with S and r as an
input, then the r-dominating set C returned by this algorithm must be a subset
of V. For this, it suffices to notice that each vertex c ∈ C is defined according
to the choice of Lemma 1. The point c in this lemma is located at distance
r(x) from x on a geodesic segment [x, z]. Since r(x) and d(x, z) are integers, we
conclude that c is a vertex of G. In case of graphs, we can specify the oracle
computing geodesic segments: it suffices to use any shortest-path algorithm in
G. Finally, notice that if r(x) := R for all x ∈ S, then an (r + δ)-dominating set
C corresponds to the set of centers of balls of radius R + δ covering the set S.
Summarizing, we obtain the following observation.

Corollary 3. Let S be a subset of vertices of a finite δ-hyperbolic graph G =
(V, E). Then γG(S, r + δ) ≤ πG(S, r). Moreover a set C ⊆ V (r + δ)-dominating



the set S and an r-packing P of S such that |C| = |P | can be constructed in
polynomial time.

3 (κ, r)-Domination and (κ, r)-packing

Let κBS,r be a finite family of κ-balls of a δ-hyperbolic geodesic metric space.
For ε > 0, denote by κBS,r+ε the family of balls obtained by “inflating” each ball
B(s, r(s)) of

⋃
κBS,r until its radius becomes r(s)+ε, i.e., obtained by replacing

r by the function r + ε. We call the κ-balls of κBS,r+ε ε-inflated κ-balls. This
section is devoted to the proof of the following result:

Theorem 2. Let κBS,r = {κB1, . . . ,
κBm} be a family of κ-balls of a δ-hyperbolic

geodesic metric space. Then γ(S, r + 2δ) ≤ 2κ2π(S, r). Moreover a hitting set C
for κBS,r+2δ and a packing P of κBS,r such that |C| ≤ 2κ2|P | can be constructed
with a polynomial in |S| number of calls of the oracle for computing geodesic
segments in (X, d).

For each κ-ball κBi, denote by Si the set of centers of the balls constitut-
ing κBi. For each s ∈ Si, let ri(s) be the radius of the ball of κBi centered
at s. Clearly, S =

⋃m
i=1 Si. For a point v ∈ X, let N [v] := {i : d(v, s) ≤

ri(s) for some s ∈ Si} be the set of indices of all κ-balls κBi covering v. For any
i = 1, . . . , m, let N [i] be the set of indices of all κ-balls which cannot be included
in a common (κ, r)-packing with κBi, i.e., N [i] =

⋃{N [v] : v ∈ κBi}. Clearly, if
j ∈ N [i], then i ∈ N [j]. Notice also that i ∈ N [i].

Now we can formulate a pair of dual linear programs whose optimal solutions
πf (S, r) and γf (S, r) are an optimal fractional packing and an optimal fractional
covering for κBS,r, respectively. For this, we introduce a variable xi for each κ-
ball κBi and a dual variable yv for each point v ∈ X.





max
∑m

i=1 xi

s.t.
∑

i∈N [v] xi ≤ 1 ∀ v ∈ X

xi ≥ 0 ∀ i = 1, . . . , m
Π(S, r)





min
∫

v∈X
yv

s.t.
∫

v∈κBi
yv ≥ 1 ∀ i = 1, . . . , m

yv ≥ 0 ∀ v ∈ X.

Γ (S, r)

Notice that the first linear program contains as many constraints as points in
the space X, while the second linear program assumes that we can integrate over
the balls of X. In fact, one can easily rewrite Π(S, r) using only a finite number
of constraints: since there exists only a finite number of patterns of intersections
of balls in

⋃
κBS,r, we can pick a point v in each type of intersection and write

the constraints
∑

i∈N [v] xi ≤ 1 only for such v. Denote the resulting finite set by
V ∗. We can also rewrite Γ (S, r) by replacing the integration by a sum over all
points v ∈ V ∗ belonging to κBi. The resulting linear programs have respectively
m variables, |V ∗| constraints and, vice-versa, |V ∗| variables and m constraints.



Now, we will construct in polynomial time a set V of size κ ·m and formulate
the linear programs on V instead of X or V ∗. Then we relate the admissible and
optimal solutions of resulting linear programs with those of Π(S, r) and Γ (S, r).

Let B denote the set of all balls participating in κ-balls of the family κBS,r.
Denote the radius function of these balls by r and by S =

⋃m
i Si the multi-set

of centers of the balls from B. The set V is constructed iteratively, starting with
V := ∅, S′ = S, and B′ := B. At each iteration, given the current set of balls
B′ and the set S′ of their centers, we apply Lemma 1 to find a point s ∈ S′, a
ball B ∈ B′ centered at s, and a point cs ∈ X such that the set S′s is (r + δ)-
dominated by cs. Then the point cs is inserted in V and the ball B is removed
from B′. The algorithm halts when B′ becomes empty. Clearly, the returned set
V has cardinality κ ·m. Denote by π′f (S, r) and γ′f (S, r) the optimal solutions
of the following linear programs:





max
∑m

i=1 xi

s.t.
∑

i∈N [v] xi ≤ 1 ∀ v ∈ V

xi ≥ 0 ∀ i = 1, . . . ,m
Π ′(S, r)





min
∑

v∈C yv

s.t.
∑

v∈κBi
yv ≥ 1 ∀ i = 1, . . . , m

yv ≥ 0 ∀ v ∈ V.
Γ ′(S, r)

Lemma 2. Any admissible solution {xi : i = 1, . . . ,m} of Π ′(S, r + δ) is also
an admissible solution of Π(S, r). Moreover, γ′f (S, r + δ) ≤ γf (S, r).

Proof. Notice that it suffices to check the inequality
∑

i∈N [v] xi ≤ 1 only for
points v ∈ X for which the set N [v] is nonempty. Then v belongs to at least one
ball from the set B. Among such balls, let B be the first ball considered by the
algorithm constructing the set V. Let s be the center of B and cs be the point
included in V when the ball B is removed from B′. Notice that the set S(v) of
centers of all balls of B containing v belongs to S′s. The definition of cs yields
that S(v), as a part of S′s, is (r+δ)-dominated by the point cs of V. Writing down
the constraint of Π ′(S, r + δ) defined by the point cs, we conclude that the sum
of xi’s over all δ-inflated κ-balls containing cs is at most 1. Since the δ-inflations
of all κ-balls containing v all contain cs, we conclude that

∑
i∈N [v] xi ≤ 1 holds

in Π(S, r). ¤

Lemma 3. If x = {xi : i = 1, . . . , m} is an admissible solution of Π ′(S, r + δ),
then there exists a κ-ball κBi such that

∑
j∈N [i] xj ≤ 2κ.

Proof. The proof of this result is inspired by the averaging argument used in the
proof of Lemma 4.1 of [7]. Define a graph N with 1, . . . , m as the set of vertices
and in which ij is an edge if and only if j ∈ N [i] (and consequently i ∈ N [j]).
For each edge ij of N, set z(i, j) = xi · xj . Since i ∈ N [i], define z(i, i) = x2

i . In
the sum

∑m
i=1

∑
j∈N [i] z(i, j) every z(i, j) is counted twice. On the other hand,

an upper bound on this sum can be obtained in the following way. For a point
s ∈ S, let N δ[cs] be the set of indices of all δ-inflated κ-balls which contain the



point cs. Now, for each κ-ball κBi consider its set of centers Si, and for each
s ∈ Si, add up z(i, j) for all j ∈ N δ[cs], and then multiply the total sum by 2.
This way we computed the sum 2

∑m
i=1

∑
s∈Si

∑
j∈Nδ[cs] z(i, j). We assert that

this suffices. Indeed, pick any z(i, j) for an edge ij of the graph N. Thus the
κ-balls κBi and κBj contain two intersecting balls B and B′, say B is centered
at s ∈ Si. Suppose without loss of generality that the algorithm for constructing
the set V considers B before B′. Then necessarily j ∈ N δ[cs], because cs hits
the δ-inflation of the ball B′. Hence the term z(i, j) will appear at least once in
the triple sum, establishing the required inequality

m∑

i=1

∑

j∈N [i]

z(i, j) ≤ 2
m∑

i=1

∑

s∈Si

∑

j∈Nδ[cs]

z(i, j).

Taking into account that z(i, j) = xi·xj = z(j, i), this inequality can be rewritten
in the following way:

m∑

i=1

xi

∑

j∈N [i]

xj ≤ 2
m∑

i=1

xi

∑

s∈Si

∑

j∈Nδ[cs]

xj .

Now, since cs hits all δ-inflated κ-balls from N δ[cs] and x is an admissible solution
of Π ′(S, r + δ), we conclude that

∑
j∈Nδ[cs] xj ≤ 1. Thus

∑
s∈Si

∑
j∈Nδ[cs] xj ≤

|Si|. Since |Si| ≤ κ, we deduce that
∑m

i=1 xi

∑
j∈N [i] xj ≤ 2κ

∑m
i=1 xi. Hence,

there exists κBi such that xi

∑
j∈N [i] xj ≤ 2κxi, yielding

∑
j∈N [i] xj ≤ 2κ.¤

Lemma 4. It is possible to construct in polynomial time an integer admissible
solution x∗ of the linear program Π(S, r) of size at least π′f (S, r + δ)/(2κ).

Proof. Let x = {x1, . . . , xm} be an optimal (fractional) solution of the linear
program Π ′(S, r + δ) (it can be found in polynomial time). We will iteratively
use Lemma 3 to x to derive an integer solution x∗ = {x∗1, . . . , x∗m} for the linear
program Π(S, r). The algorithm starts with the set κB′ := κBS,r of m κ-balls.
By Lemma 3 there exists a κ-ball κBi ∈ κB′ such that

∑
j∈N [i] xj ≤ 2κ. We

set x∗i := 1 and x∗j := 0 for all j ∈ N [i] \ {i}, then we remove all κ-balls κBj

with j ∈ N [i] from κB′. The algorithm continues with the current set κB′ of
κ-balls until it becomes empty. Notice that at all iterations of the algorithm the
restriction of x on the κ-balls of κB′ remains an admissible solution of the linear
program Π ′(S′, r + δ) defined by κB′. This justifies the use of Lemma 3 at all
iterations of the algorithm.

To show that x∗ is an admissible solution of Π(S, r), suppose by way of
contradiction that there exist two intersecting κ-balls κBi and κBj with x∗i =
1 = x∗j . Suppose that the algorithm selects κBi before κBj . Consider the iteration
when x∗i becomes 1. Since j ∈ N [i], at this iteration x∗j becomes 0 and κBj is
removed from κB′. Thus x∗j cannot become 1 at a later stage. This shows that
the κ-balls κBi with x∗i = 1 indeed constitute a packing for κBS,r.

It remains to compare the costs of the solutions x and x∗. For this, notice
that according to the algorithm, for each κ-ball κBi with x∗i = 1 we can define



a subset N ′[i] of N [i] such that i ∈ N ′[i], x∗j = 0 for all j ∈ N ′[i] \ {i}, and∑
j∈N ′[i]∪{i} xj ≤ 2κ. Hence, the κ-balls of κBS,r can be partitioned into groups,

such that each group contains a single κ-ball selected in the integer solution and
the total cost of the fractional solutions of the balls from each group is at most
2κ. This shows that

∑m
i=1 x∗i ≥ (

∑m
i=1 xi)/(2κ). ¤

Lemma 5. It is possible to construct in polynomial time an integer solution y∗

of the linear program Γ (S, r + δ) of size at most κγ′f (S, r).

Proof. Let y = {yv : v ∈ V } be an optimal (fractional) solution of the linear
program Γ ′(S, r). Since

∑
v∈κBi

yv ≥ 1 for all i = 1, . . . ,m, each κ-ball κBi

contains a ball Bi such that κ
∑

v∈Bi
yv ≥ 1. Let si be the center of the ball

Bi and let r(si) be its radius. Set S = {s1, . . . , sm}. Notice that y′ = {y′v : v ∈
V } defined by setting y′v = κ · yv if v ∈ ⋃m

i=1 Bi and y′v = 0 otherwise, is a
fractional covering for the family of balls B1, . . . , Bm. Thus the cost of y′ is at
least γf (S, r) = πf (S, r). Notice also that the cost of y′ is at most κ times the
cost of y. By Theorem 1, we can construct in polynomial time a set C of size
at most π(S, r) which (r + δ)-dominates the set S. Let y∗ = {yv : v ∈ V } be
defined by setting y∗v = 1 if v ∈ C and y∗v = 0 otherwise. Since π(S, r) ≤ πf (S, r),
putting all things together, we obtain:
∑

v∈V

y∗v = |C| ≤ π(S, r) ≤ πf (S, r) = γf (S, r) ≤
∑

v∈V

y′v ≤ κ
∑

v∈V

yv = κγ′f (S, r).¤

Now, we are ready to complete the proof of Theorem 2. According to Lemma
4 we can construct in polynomial time an integer solution x∗ for Π(S, r) of
size at least π′f (S, r + δ)/(2κ). Let P = {κBi : x∗i = 1}. On the other hand,
applying Lemma 5 for the radius function r + δ instead of r, we can construct
in polynomial time an integer solution y∗ of the linear program Γ (S, r + 2δ)
of size at most κγ′f (S, r + δ). Let C = {v ∈ V : y∗v = 1}. Since, by duality,
γ′f (S, r + δ) = π′f (S, r + δ), we deduce that |C| ≤ 2κ2|P |, as required.

4 Augmentation under diameter constraints

Denote by OPT(D) the minimum number of edges necessary to decrease the
diameter of the input δ-hyperbolic graph G = (V, E) until D. First suppose that
the resulting diameter D is even, say D = 2R. We recall the relationship between
the augmentation problem ADC and the r-domination problem established in
[19] for trees. Let E∗ be an optimal augmentation, i.e. |E∗| = OPT(D) and the
graph G∗ = (V, E ∪E∗) has diameter D. Denote by C the set of end-vertices of
the edges of E∗ and let V ′ the set of all vertices which are located at distance
less than or equal to R − 1 from a vertex of C (in other words, V ′ is the union
of all balls or radius R− 1 centered at vertices of C). Since E∗ is a solution for
the problem ADC, it can be easily shown (see [19] for missing details) that the
diameter in G of the set Q := V \ V ′ is at most 2R. Since G is δ-hyperbolic,
from Corollary 1 and the discussion preceding Corollary 3 we infer that Q can be



covered by a single ball B(c∗, R+δ) of radius R+δ. Let Q′ be the set of vertices
of G located outside B(c,R + δ). Since Q′ ⊆ V ′ =

⋃{B(x,R − 1) : x ∈ C}
and each edge of E∗ has both ends in C, we conclude that γG(Q′, R − 1) ≤
γG(V ′, R− 1) ≤ |C| ≤ 2|E∗| = 2OPT(D).

Now, we turn this analysis of an optimal solution (which we do not know
how to construct) into a polynomial time algorithm which instead will find a
set E′ of new 2OPT(D) edges so that the resulting graph G′ = (V, E ∪ E′) will
have diameter at most D + 2δ (instead of D, as required). As for trees [19],
the algorithm will try every vertex c′ of G as a center of a ball of radius R + δ
and it covers the set V \ B(c′, R + δ) with at most πG(V \ B(c′, R + δ), R − 1)
balls of radius R− 1+ δ. This is done using the procedure described in Theorem
1. Among |V | such coverings, the algorithm selects the one with a minimum
number of balls. Let c′ be the center of the ball of radius R + δ providing this
covering C ′. Then the algorithm returns as the set E′ of new edges all pairs of
the form c′c, where c is a center of a ball of radius R−1+δ from C ′. Notice that
the graph obtained from G after adding the new edges has diameter at most
2R + 2δ. Finally notice that since the algorithm tested the vertex c∗ described
above as the center of the ball of radius R + δ, by Theorem 1 we conclude that
|C ′| ≤ πG(Q′, R − 1), showing that |C ′| ≤ 2OPT(2R). We obtain the following
result:

Proposition 1. Given a δ-hyperbolic graph G = (V, E) and R ≥ 1, one can
construct in polynomial time an admissible solution for the problem ADC with
D = 2R + 2δ which contains at most 2OPT(2R) edges.

5 k-Center problem

Let G = (V, E) be a δ-hyperbolic graph and S be a set of n input vertices of the
k-center problem. Then, as we noticed already, the k-center problem consists in
finding the smallest radius R∗ such that the set S can be covered with at most
k balls of radius R∗. The value of R∗ belongs to the list ∆ of size O(|V | · |S|)
consisting of all possible distinct values of distances from the vertices of G to
the set S. As in some other minmax problems [30, 31, 39], the approximation
algorithm tests the entries of ∆, using a parameter R, which is the “guess” of
the optimal radius. For current R ∈ ∆, instead of running the algorithm of
Hochbaum and Shmoys [31], we use the algorithm described in Theorem 1 and
Corollary 3 with r(x) = R for all x ∈ S. This algorithm either finds a covering of
S with at most k balls of radius R+δ or it returns an r-packing P of size greater
than k. In the second case, we conclude that γG(S, r) ≥ πG(S, r) > k, therefore
the tested value R is too small, yielding R < R∗. Now, if R is the least value for
which the algorithm does not return the negative answer, then R ≤ R∗, and we
obtain a solution for the k-center problem of radius R + δ ≤ R∗ + δ.

Proposition 2. Given a δ-hyperbolic graph G = (V, E), one can construct in
polynomial time an admissible solution for the k-center problem having radius
at most OPT + δ.
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