
CENTERS OF TRIANGULATED GRAPHS 

V. D. Chepoi 

Let G = (X, U) be an ordinary graph with arbitrarily (not necessarily finitely) many 
vertexes, any two of which are joined by some finite chain. We endow G with a standard metric 
d(x, y) equal to the number of edges in the chain of shortest length joining vertexes x, y. 
The eccentricity e(z) of a vertex z is defined as {d(z, v): v e X}. The radius r(G) is the 
least eccentricity of the vertexes, and the diameter d(G) is the largest eccentricity. The 
center C(G) of G is the subgraph generated by the set of vertexes with minimal eccentricity. 

It is well known [I, 2] that any graph G, even if it is not connected, is the center of 
some graph G', i.e., G = C(G'). At the same time, if one confines attention to special 
classes of graphs, their centers may have rather specific features. Thus, a well-known re- 
sult of Jordan [3] states that the center of any finite tree consists of one vertex or two 
adjacent vertexes; that is to say, the only two possibilities are the graphs K l and K 2 (where 
K n denotes the complete subgraph on n vertexes). The centers of maximal outerplanar graphs 
and 2-trees were described in [4, 5]. In this paper we characterize the centers of triangu- 
lated graphs. In this connection, we note that metric properties, including in particular 
properties of the centers, of triangulated graphs have been studied by various authors [6-9]. 
Our Theorems 1 and 2 were proved in [8], but they are established here in a more general form 
and the proofs are simpler. 

Recall [i0] that a graph G is said to be triangulated if, in any simple cycle F of 
length more than 3, there are two vertexes not adjacent in r but joined by an edge in G. 

Recall moreover that a clique of a graph G is any maximal complete subgraph (with re- 
spect to inclusion). The density of a graph G is the cardinality of the largest clique in 
G (if such a clique exists). 

Throughout this paper, the term triangulated graph will mean a triangulated graph of 
finite diameter without infinite complete subgraphs. 

Let CT denote the family of graphs which are centers of triangulated graphs. 

We shall need a number of additional concepts and definitions. 

Given sets M c X in a graph G and any number r ~ 0, we put 

where 

Z ~ ( M ) = ( z ~ X :  d(z, M ) < r } ,  

Ur (M) = {z ~ X :  d(z, M) = r}, 

Let 

d (z, M) = min {d (z, y): u ~ M}. 

N .  (M) = {z ~ M: d (x, z) = d (x, M))  

denote the metric projection of the vertex x onto M. 

A set B c X in a graph G is said to be dominant (and the subgraph that it generates is 
called a dominant subgraph) if, for any vertex x ~ X \ B, there is a vertex in B adjacent to 
x (i.e., if El(B) = X). 

A simple chain (x = x 0, x l, .... Xn. l, x n = y) in a graph G with its ends at vertexes 
x and y is said to be nonchordal if vertexes x-, x. are adjacent in G only when ii - Jl = 1 _ _ - -  1 J 
For example, any shortest chain is nonchordal (the converse is not always true). A set A c 
X is said to be m-convex [6] if it contains all the nonchordal chains with ends at vertexes 
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of A. A metri c segment with ends at vertexes x, y of G is defined as the set 

<x,y> = { z ~  X : d ( x , z )  @ d ( z , y )  = d(x,  y)}. 

LEMMA 1 [6]. Any ball Zr(X) in a triangulated graph G is an m-convex set. In particu- 
lar, the center 

C (G) = N {2,(o) (x): x ~ X} 

of G is m-convex. 

The following two properties of m-convex sets follow innediately from the definition. 

LEMMA 2. The metric projection Nx(M) of any vertex x on an m-convex set M in a graph 
G generates a complete subgraph. 

LEMMA 3. For any m-convex set M and vertexes x ~ X, y �9 M in G, 

<x, Y> N N~ (M) ~ |  

The next lemma follows from the definition of a triangulated graph (see also [9]). 

LEMMA 4. If all vertexes of a complete subgraph K = {x~, ..., Xn} are equidistant from 
a vertex x in a triangulated graph G, then there exists a vertex ~ �9 N~= ! <x, xi> adjacent 
to all vertexes of K. 

LEMMA 5. If vertexes x, y, u, v of a triangulated graph G are such that x ~ <u, y>, 
y e <x, v>, and d(x, y) = I, then 

d (u, v) > d (u, z) + d (y, v). (1 )  

Equality holds in (I) only if there exists a vertex w e <u, y> N <x, v> adjacent to x and y. 

Proof. Let u o, v 0 denote the vertexes closest to x and y in the set <u, v> n <u, x>, 
<u, v> n <v, y>. Assume that d(u, v) ~ d(u, x) + d(y, v). Then u 0 # x, v 0 # y. Let F be 
the simple cycle formed by the edge (x, y) and certain shortest chains s ~2, s between the 
respective pairs {x, u0}, {y, v0}, {Uo, v0}. In F, the edge (x, y) belongs to some cycle of 
length 3, say (x, y, w). Since x �9 <u o, y>, y e <v0, x>, it follows that w e s Then 
d(u0, w) = d(u0, x), d(v0, w) = d(v0, y). It follows from the choice of u 0, v 0 and from 
Lemma 4 that (u0, w), (u0, x), (v 0, w), (v0, y) are edges of G. Thus, 

d (u, v) = d (u, w) + d (w, y) = d (u, x) + d (y, v), 

and the vertex w ~ <u, y> N <v, x> is adjacent to x and y. 

LEMMA 6. Let G be a triangulated graph and r a natural number such that d(G) < 2r. 
Then any complete subgraph K of G contains a vertex x such that Er(X) = Zr(K). 

Proof. We shall prove that any vertexes y, z �9 K satisfy one of the inclusion relations 

Assume the contrary; then the vertexes u e Zr(y)\ Zr(z), v �9 Er(Z) \ Zr(Y)satisfy the rela- 
tions y e <u, z>, z e <y, v>, d(u, y) = d(z, v) = r. By Len~na 5, 

d(u,  v ) ~  d(y ,  u) + d ( z ,  ~,) = 2r, 

c o n t r a d i c t i n g  t h e  a s s u m p t i o n  d(G) < 2r .  

Thus,  t h e  v e r t e x e s  x~, . . . ,  x n o f  t he  s e t  K may be assumed o r d e r e d  in  such  a way t h a t  

E~ (xl) ~ 2~ (x2) ~ . . .  ~ Z~ (x~). 
Consequently, 

Z r (K) = ~ i=1. t (xt) = ~r (x,) .  

I t  f o l l o w s  from Lemma 1 t h a t  C(G) i s  a c o n n e c t e d  i s o m e t r i c  s u b g r a p h  of  G. C o n s e q u e n t l y ,  
we can d e f i n e  t he  numbers r ( C ( G ) ) ,  d(C(G))  as t h e  r a d i u s  and d i a m e t e r  o f  t h e  g raph  C(G). 

THEOREM 1. I f  G i s  a t r i a n g u l a t e d  g r aph ,  t hen  d(C(G))  ~ 3, r (C(G) )  < 2. 
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Proof. We first show that d(C(G)) 5 3. Assuming the contrary, let x, y e C(G), 
d(x, y) = 4 and (x = v I, v 2, v3, v~, v 5 = y) be some shortest chain between x and y. As 
C(G) is m-convex, v3 e C(G). Hence there exists a vertex v such that d(v, v~) = r(G). It 
follows from the m-convexity of the ball Er_I(G) , where r = r(G), that d(vi, v) = r, i = 
i, ..., 5. By Lemma 4, there exist vertexes u i ~ <vi, v> N <vi+~, v>, i = i, ..., 4, adja- 
cent to v i, vi+ I. Since ul, u 2 ~ <v2, v>, u2, u 3 e <v3, v>, u3, u~ e <v~, v>, the vertexes 
in these pairs are either adjacent or coincide. By Lemma 4, there exist vertexes w i e 
<u i, v> N <ui+l, v>, i = i, 2, 3 adjacent to ui, ui+ I. The only coincidences possible in the 
cycle F = (v 2, u I, w~, w2, w3, u4, v4, v3, v 2) are w~ = w~, w 2 = w3; all other vertexes must 
be pairwise distinct. Since d(wi, v) = r - 2, i = i, 2, 3, it follows that F can contain 
only diagonals (v 3, ul), (v 3, u~), (v 2, u4), (v~, ul), (u~, u~). But the existence of any 
such edge contradicts the fact that d(v~, vs) = 4. Hence d(C(G)) S 3. 

Let K be a clique in C(G)). Since d(C(G)) < 4, Lemma 6 implies the existence of a ver- 
tex x e K such that 2=(K) = 2=(x) in C(G). If r(C(G)) > 2, then d(x, ~) = 3 for some vertex 
x in C(G). Then d(~, K) = 3, and for some vertex y e K we have d(y, ~) = 3. It follows 
from Lemma 4 that there exists a vertex x 0 e ~ {<~, y>: y ~ K} adjacent to all vertexes of 
K. As the set C(G) is m-convex, x 0 e <~, x> c C(G), contradicting the fact that K is a 
clique in C(G). 

THEOREM 2. If G is a triangulated graph, then d(G) ~ 2r(G) - r(C(G)). In particular 
d(G) ~ 2r(G) - 2. 

P r o o f .  Le t  x be an a r b i t r a r y  v e r t e x  o f  t he  c e n t e r  C(G). Choose a v e r t e x  ~ such t h a t  
d(x, ~ = r(G). Let x 0 denote any vertex of N~(C(G)) ~ <x, ~> (this set is nonempty by Lemma 
3). Then <x 0, ~> ~ C(G) = {x0}. If x 0 = ~, then r(G) = r(C(G)) and there is nothing more 
to prove. Assume, therefore, that x 0 # ~. Put K = {z ~ <x 0, ~>: (x 0, z) ~ U}. The set K 
generates a complete subgraph, and so it is finite. Without loss of generality, we may as- 
sume that d(G) < 2r(G). Then K contains a vertex y for which Er(G)(y) = 2r(G)(K) (Lemma 6). 
Since y ~ C(G), it follows that d(y, ~) = r(G) + I for some ~ in G. For this vertex d(~, 
K) = r(G) + i. By Lemma 5, 

d(g, 5)~>d(g ,  Z o ) + d ( y ,  z) ~ > r ( V ) + r ( a - - r ( C ( G ) ) - - l .  

We c l a i m  t h a t  t h i s  i n e q u a l i t y  i s  a lways  s t r i c t .  I n d e e d ,  o t h e r w i s e  d(~ ,  ~) = d(~,  T 0) + 
d(~,  y ) ,  so t h a t  t h e r e  would e x i s t  a v e r t e x  w e <y, ~> fi <x0, ~> a d j a c e n t  t o  x o and y (Lemma 
5) .  Then w e K and d(~ ,  w) = d ( x o ,  ~) = r ( G ) ,  c o n t r a d i c t i n g  t h e  e q u a l i t y  d(~ ,  K) = r(G) + 1. 
Thus d(~, ~) > 2r(G) - r(C(G)) - i, i.e., d(G) ~ 2r(G) - r(C(G)). This completes the proof. 

Note that a weaker relationship between the radius and diameter of a triangulated graph 
was obtained in [7]. 

LEMMA 7. If G is a triangulated graph of radius r = r(G), the center C(G) is not a com- 
plete subgraph and Ur_I(C(G)) = 6, then there exist vertexes x l, x 2 e Ur_I(C(G)) , such that 

,u (c (c)) n ~v~, (c (G)) = fS. 

Proof. Let x I ~ Ur_I(C(G)). By Lemma 5, any vertex in C(G)) \ NxI(C(G)) is adjacent 
to some vertex in NxI(C(G)). Consider a vertex 

z ~ n {<z, x~>: x ~ N~, (C (a))}, 

adjacent to all vertexes of N x (C(G)). Since ~ ~ C(G), it follows that d(~, x 2) = r + I for 
i 

some vertex x 2 in G. Then for any x ~ N x (C(G)) we have d(x, x 2) = r. As C(G) is not com- 
plete, d(x2, C(G)) < r, i.e., NxI(C(G)) n~x~(C(G)) = 6. Any vertex in Nx2(C(G)) is adjacent 

to some vertex in NxI(C(G)), and-so d(x=, C(G)) = r - i. 

LEMMA 8. If G e CT, then any clique in C(G) is a dominant set in G. 

Proof. Let R = {x I ..... Xn} be some clique in C(G), and assume that d(x, R) = 2 for 
some x in G. Then r(G) = 2 and Nx(R) = R (Theorem i). Put 

K = {z ~ N ~  <~, x~>: (x, z) ~ U}. 

By Lemma 4, this set is not empty, hence it generates a complete subgraph. In K, choose a 
vertex z for which 22(K) = E2(z) (this is possible by Lemma 6 and Theorem I). Since R is a 
clique in C(G), z ~ C(G), i.e., d(z, v) = 3 for some vertex v. Thus z e <x, xi>, x i ~ <z, v>, 
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i.e., d(x, v) = 3 (Lemma 5). Let (x, u I, u 2, v) be some shortest chain between x, v. Let 
n w denote some vertex in ni=l<v, xi> adjacent to x!, .... Xn, v. Consider the cycle F i = (x, 

z, x i, w, v, u2, ul, x). It is easy to see that F i contains diagonals (x, ul), (z, ul). 
Now, in the cycle F~ = (z, x i, w, v, u2, u, z), the edge (z, u l) belongs to some cycle of 
length 3. Since d(z, v) = 3, the third vertex of this triangle must be x i. Thus u I is ad- 
jacent to all vertexes in R and to x, i.e., u I e K. But d(u l, v) = 2, contradicting the 
fact that v ~ E2(z) = ~2(K). Consequently, R is a dominant set in G. 

L EMMA 9. If G is a triangulated graph with r(C(G)) = r(G), then G e CT. 

Proof. We shall show that G = C(G') for some triangulated graph G' = (X', U'). This 
is certainly true if G consists of a single vertex. We may therefore assume that r(G) > 0. 
Attach to every vertex x in C(G) a chain (x, x', x") of length 2, where x' is adjacent only 
to x and x", and x" is an end vertex. This gives a triangulated graph G' . The m-convexitv 
of C(G) and the equality r(G) = r(C(G)) imply that max {d(x, z): x e C(G)} = r(G) for any z 
in G and d(G) ~ r(G) + 2. Consequently, the eccentricity in G' of any vertex of G is equal 
to r(G) + 2. It is readily seen that the eccentricities of x', x" are respectively r(G) + 
3, r(G) + 4. Thus, x', x" ~ C(G'), i.e., C(G') = G. 

LEMMA i0. If G is a triangulated graph with r(C(G)) < r(G), then G e CT if and only 
if G contains nonintersecting dominant complete subgraphs RI, R 2. 

Proof. Let R I, R 2 be nonintersecting dominant sets generating complete subgraphs. 
Then {d(x, Rl), d(x, R2) } = i for any x in G. Define a triangulated graph G' = (X', U') as 
follows: X' = X U {ul, u2, vl, v2}, where v I is adjacent to u 2 and all vertexes of R 2. The 
vertexes u I and u= will be end vertexes of G'. Then in G' it is true that e(v l) = e(v 2) = 
4, e(u l) = e(u2) = 5 and e(x) = 3 for any vertex x in G. Thus G is the center of G'. 

Conversely, let r(C(G)) < r(G) and G = C(G') for some triangulated graph G' = (X', U'). 
Put r ~ = r(G'). It follows from Theorems i, 2 that r(C(G)) S i, i.e., there exists a vertex 
x 0 e C(G) adjacent to all vertexes of C(G). Let d(x0, r) = r'; we shall prove that d(y, 
X) = r' - i, where X is the set of vertexes of G. Since G is not complete and r(G) ~ 2, it 
follows from Lemmas 2 and 3 that r' - 2 5 d(y, X) < r'. If d(y, X) = r' - 2, then by Lemma 
3, X & Z2(Nv(X)). By Lemma 6, N~(X) contains a vertex x for which X ~ Z2(x). Since d(x0, 
y) = r', we-have d(x0, Ny(X)) = z, i.e., d(x 0, x) ~ 2 and r(G) = 2. This implies that x 
C(G), contrary to the assumption that x 0 is adjacent to all vertexes of C(G)o 

Thus, d(y, X) = r' - i, i.e., Ur,_I(X) # ~. By Lemma 7, there exist vertexes xl, x= e 

G,Ur'-l(X)d(xl, x)SUch= d(x2,that N xx~ (X) r= ~ _N x ~ (X)that = th @-e setsIt follOWSNx1(X),frOmNx2(x)Lemmaare3 dominantand the relationshipsin G. C(G') = 

THEOREM 3. A triangulated graph G is a member of the family CT if and only if it con- 
n rains a finite system S = {Rl, ..., Rn} of dominant complete subgraphs such that Ni= IR i = 

and Rj ! U~_ I R i for any Rj If r(G) = r(C(G)), then G e CT (i.e., such a system always 
i~j 

exists). If r(C(G)) < r(G), then G e CT only if G contains two nonintersecting dominant com- 
plete subgraphs RI, R 2. If G is of finite density ~, the system S may be assumed to contain 
at most~ complete subgraphs. 

Proof. In view of Lemmas 9 and I0, it will suffice to show that if r(G) = r(C(G)) then 
G contains a system S of complete subgraphs satisfying the conditions of the theorem. If 
r(G) = i, then C(G) contains at least two distinct vertexes x I, x~. Then S = {x I, x2}. Sup- 
pose now that r(G) = 2. Then for any x in C(G) there exists a clique R(X) in C(G) that does 
not contain x; we need only define R(x) as any clique in C(G) containing a vertex ~ e C(G) 
with d(x, ~) = 2. 

For an arbitrary fixed vertex x 0 e C(G), let R(x 0) = {x I ..... Xk}. By Lemma 8, the 
cliques R(x0) , R(x I) ..... R(x k) are dominant in G. Moreover, they satisfy the condition 

N~=0R(x i) = @. Now select from the family R(x0), R(xl) , ..., R(x k) a system S = {R l ..... 

Rn}, where R I = R(xil) ..... R n = R(Xin), consisting of the minimal number of elements such 

that N n-1 i=i Ri # @" We claim that no subgraph S is covered by the others. Assuming the con- 
n-i n-i 

trary, suppose that R n c Ui= IR i. By the choice of S, hi= iR i ~ ~. If z e N n-li=IRi, then 

z ~ R n. Since z is adjacent to all vertexes of Rn, this contradicts the fact that R n is a 
clique in C(G). If G is of finite density ~, then the system S just constructed is such that 
n ! (f. This follows from the fact that the Helly number for m-convexity in G is q [ii]. 
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Remark l~ F~r any integer ~ > Z, there exists a graph G e C~ ~f density ~ ie~ which the 
smallest system S satisfying the conditions of Theorem 3 ~ of cardinality ~ 

Remark 2. This result can be used as a general scheme for characterizing the centers 
of different classes of triangulated graphs. For example, using Theorems 1 and 3 one easily 
enumerstes the centers of trees, 2-trees, and maximal oiterplanar graphs. 
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