CENTERS OF TRIANGULATED GRAPHS

V. D. Chepoi

Let G = (X, U) be an ordinary graph with arbitrarily (not necessarily finitely) many
vertexes, any two of which are joined by some finite chain. We endow G with a standard metric
d(x, y) equal to the number of edges in the chain of shortest length joining vertexes x, y.
The eccentricity e(z) of a vertex z is defined as {d(z, v): v € X}. The radius r(G) is the
least eccentricity of the vertexes, and the diameter d(G) is the largest eccentricity. The
center C(G) of G is the subgraph generated by the set of vertexes with minimal eccentricity.

It is well known [1, 2] that any graph G, even if it is not connected, is the center of
some graph G', i.e., G = C(G'). At the same time, if one confines attention to special
classes of graphs, their centers may have rather specific features. Thus, a well-known re-
sult of Jordan [3] states that the center of any finite tree consists of one vertex or two
adjacent vertexes; that is to say, the only two possibilities are the graphs K, and K, (where
K, denotes the complete subgraph on n vertexes). The centers of maximal outerplanar graphs
and 2-trees were described in {4, 5]. In this paper we characterize the centers of triangu-
lated graphs. In this connection, we note that metric properties, including in particular
properties of the centers, of triangulated graphs have been studied by various authors [6-9].
Our Theorems 1 and 2 were proved in [8], but they are established here in a more general form
and the proofs are simpler.

Recall [10] that a graph G is said to be triangulated if, in any simple cycle T of
length more than 3, there are two vertexes not adjacent in I' but joined by an edge in G.

Recall moreover that a clique of a graph G is any maximal complete subgraph (with re-
spect to inclusion). The density of a graph G is the cardinality of the largest clique in
G (if such a clique exists).

Throughout this paper, the term triangulated graph will mean a triangulated graph of
finite diameter without infinite complete subgraphs.

Let CT denote the family of graphs which are centers of triangulated graphs.
We shall need a number of additional concepts and definitions.

Given sets M © X in a graph G and any number r > 0, we put
2, (M) ={z2= X: d(z, M) <1},
U, (M) ={z=X:d(z, M) =r},
where
d (z, M) = min {d (z, v): v &= M}.
Let
Ne(My= {2 M:d (z, 2) = d (2, M)}
denote the metric projection of the vertex x onto M.

A set B ¢ X in a graph G is said to be dominant (and the subgraph that it generates is
called a dominant subgraph) if, for any vertex x € X \ B, there is a vertex in B adjacent to
x (i.e., if 2,(B) = X).

A simple chain (X = X4, X3, ..., Xp-1s ¥ = y) in a graph G with its ends at vertexes
x and y is said to be nonchordal if vertexes xj, Xy are adjacent in G only when (i - il = 1.

For example, any shortest chain is nonchordal (the converse is not always true). A set A c
X is said to be m-convex [6] if it contains all the nonchordal chains with ends at vertexes
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of A. A metric segment with ends at vertexes X, y of G is defined as the set
oy ={z2= X1 d(z,2) +d (2, 9) = d (2, ¥)}

LEMMA 1 (6]. Any ball £,.(x) in a triangulated graph G is an m-convex set. In particu-
lar, the center

CG) = (] {Zwe (2): z = X}
of G is m-convex.
The following two properties of m-convex sets follow innediately from the definition.

LEMMA 2. The metric projection Ny(M) of any vertex x on an m-convex set M in a graph
G generates a complete subgraph.

LEMMA 3. For any m-convex set M and vertexes x € X, vy € M in G,

$z, ¥ [ Ne (M) #= 2.

The next lemma follows from the definition of a triangulated graph (see also [%9]).

LEMMA 4. If all vertexes of a complete subgraph K = {x,, cees Xn} are equidistant from
a vertex x in a trlangulated graph G, then there exists a vertex X e Dn , <%, x> adjacent
to all vertexes of K.

LEMMA 5. If vertexes x, y, u, v of a triangulated graph G are such that x € <u, y>,
y € <X, v>, and d(x, y) = 1, then

d{u,v) >d(u,z) +d(y, v). (1)

Equality holds in (1) only if there exists a vertex w € <u, y> N <x, v> adjacent to x and y.

Proof. Let ugy, v, denote the vertexes closest to x and y in the set <u, v> N <u, x>,
<u, v> N <v, y>. Assume that d(u, v) < d(u, x) + d(y, v). Then u, # x, v, # y. Let I be
the simple cycle formed by the edge (x, y) and certain shortest chains &, £,, %, between the
respective pairs {x, ugy}, {y, vo}, {uys, vo}. In T, the edge (x, y) belongs to some cycle of
length 3, say (x, y, w). Since x € <uy, y>, y € <v,, x>, it follows that w € ;. Then
d(uy, w) = d(u,, x), d(vy, w) = d(vy, y). It follows from the choice of u,, v, and from
Lemma 4 that (u,, w), (u,, x), (vy, w), (v,, y) are edges of G. Thus,

d(u,v) =du w +dwy =du ) +d@y ),
and the vertex w {u, y»> N <v, x> is adjacent to x and y.

LEMMA 6. Let G be a triangulated graph and r a natural number such that d(G) < 2r.
Then any complete subgraph K of G contains a vertex x such that I,.(x) = Z,.(K).

Proof. We shall prove that any vertexes y, z € K satisfy one of the inclusion relations
LWe I (2, I (0= 2, (y).

Assume the contrary; then the vertexes u € £,.(y)\ £,.(z), v € I.(z)\ I, (y)satisfy the rela-
tions y € <u, 2>, z € <y, v>, d(u, y) = d(z, v) = r. By Lemma 5,

d(u, vy > d(y, u) +d(z v) = 2r,
contradicting the assumption d{(G) < 2r.
Thus, the vertexes x;, ..., Xn of the set K may be assumed ordered in such a way that
) S (r) = S Z{(x,)
Consequently,
Z, (K)= U?zl.z'r (xg) = Z, (Zn)e

It follows from Lemma 1 that C(G) is a connected isometric subgraph of G. Consequently,
we can define the numbers r(C(G)), d(C(G)) as the radius and diameter of the graph C(G).

THEOREM 1. If G is a triangulated graph, then d(C(G)) < 3, r(C(G)) < 2
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Proof. We first show that d(C(G)) ¢ 3. Assuming the contrary, let x, y & C(G),
d(x, y) = 4 and (x = vy, v,, V3, V,, Vg = y) be some shortest chain between x and y. As

C(G) is m-convex, v, € C(G). Hence there exists a vertex v such that d(v, v,) = r(G). It
follows from the m-convexity of the ball I,_,(G), where r = r(G), that d(vj, v) = r, i =

1, ..., 5. By Lemma 4, there exist vertexes uj € <(vy, v> N <vi4,, V>, i =1, ..., 4, adja-
cent to Vi, Viy;. Since uy, u, € <v,y, v>, uy, uz € <vy, V>, us, u, € <v,, v>, the vertexes
in these pairs are either adjacent or coincide. By Lemma 4, there exist vertexes wj €

<ujs v> N <Uj4y, v>, i =1, 2, 3 adjacent to uy, uj4;. The only coincidences possible in the
cycle T = (v,, uy, Wyy Wy, Wy, Uy, V,, Vi, V,) are w, = w,, W, = W;; all other vertexes must
be pairwise distinet. Since d(wi, v) =r=-2,1i=1, 2, 3, it follows that I can contain
only diagonals (vi, u;), (vg, u,), (v,, u,), (v,, uy), (uy, u,). But the existence of any
such edge contradicts the fact that d(v,, vg) = 4. Hence d(C(G)) < 3.

Let K be a clique in C(G)). Since d(C(G)) < 4, Lemma 6 implies the existence of a ver-
tex x € K such that 2,(K) = £,(x) in C(G). If r(C(G)) > 2, then d(x, X) = 3 for some vertex
x in C(G). Then d(x, K) = 3, and for some vertex y € K we have d(y, X) = 3. It follows
from Lemma 4 that there exists a vertex x, € N {<X, y>: y € K} adjacent to all vertexes of
K. As the set C(G) is m-convex, x, € <X, x> < C(G), contradicting the fact that K is a
clique in C(G).

THEOREM 2. If G is a triangulated graph, then d(G) > 2r(G) — r(C(G)). In particular
d(G) > 2r(G) - 2.

Proof. Let x be an arbitrary vertex of the center C(G). Choose a vertex X such that
d(x, x) = r(G). Let x, denote any vertex of Nz(C(G)) N <x, x> (this set is nonempty by Lemma
3). Then <x4, %> N C(G) = {x,}. If x, = X, then r(G) = r(C(G)) and there is nothing more
to prove. Assume, therefore, that x, # Xx. Put K = {z € <x,, x>: (x,, z) € U}. The set K
generates a complete subgraph, and so it is finite. Without loss of generality, we may as-
sume that d(G) < 2r(G). Then K contains a vertex y for which I(g)(y) = Iy(g)(K) (Lemma 6).
Since y ¢ C(G), it follows that d(y, ¥) = r(G) + 1 for some y in G. For this vertex d(Yy,
K) = r(G) + 1. By Lemma 5,

d@, 1) >d (g, z) +d(y. 2) >rG) +r(G—r(C(6G)—1.

We claim that this inequality is always strict. Indeed, otherwise d(y, %) = d(y, X,) +

d(x, y), so that there would exist a vertex w € <y, y> N <xX,, x> adjacent to x, and y (Lemma
5). Then w € K and d(y, w) = d(x,, y) = r(G), contradicting the equality d(y, K) = r(G) + 1.
Thus d(y, x) > 2r(G) — r(C(G)) — 1, i.e., d(G) > 2r(G) — r(C(G)). This completes the proof.

Note that a weaker relationship between the radius and diameter of a triangulated graph
was obtained in [7].

LEMMA 7. If G is a triangulated graph of radius r = r(G), the center C(G) is not a com-
plete subgraph and U,-;(C(G)) = @, then there exist vertexes x,, x, € Up_,(C(G)), such that

N (C(@) NN, (C(G) = 2.
Proof. Let x, € U,_,(C(G)). By Lemma 5, any vertex in C(G)) \ Ng,(C(G)) is adjacent
to some vertex in Ny (C(G)). Consider a vertex
7= {{a, 2 2 & Ny, (C(G))],
adjacent to all vertexes of le(C(G)). Since X ¢ C(G), it follows that d(X, x,) = r + 1 for
some vertex x, in G. Then for any x & Ny (C(G)) we have d(x, x,) = r. As C(G) is not com-

plete, d(x,, C(G)) < r, i.e., le(C(G)) ﬂlez(C(G)) = . Any vertex in Nxz(C(G)) is adjacent
to some vertex in le(C(G))’ and so d(x,, C(G)) = r — 1.

LEMMA 8. If G e CT, then any clique in C(G) is a dominant set in G.
Proof. Let R = {X,, ..., X,} be some clique in C(G), and assume that d(x, R) = 2 for
some X in G. Then r(G) = 2 and Ng(R) = R (Theorem 1). Put
K={z&= N, <z > (1, 5) = U).

By Lemma 4, this set is not empty, hence it generates a complete subgraph. In K, choose a
vertex z for which I,(K) = %,(z) (this is possible by Lemma 6 and Theorem 1). Since R is a
clique in C(G), z ¢ C(G), i.e., d(z, v) = 3 for some vertex v. Thus z & <x, Xi>, Xi € <2, V),
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i.e., d(x, v) = 3 (Lemma 5). Let (x, u,, u,, v) be some shortest chain between x, v. Let
w denote some vertex in ﬂ?=1<v, xi> adjacent to X,, ..., X, V. Consider the cycle I'{ = (x,
Z, Xi, W, V, Uy, U;, X). It is easy to see that I'; contains diagonals (x, u;), (z, u;).
Now, in the cycle Ti = (z, %y, W, v, u,, u, z), the edge (2, u;) belongs to some cycle of
length 3. 8Since d{z, v) = 3, the third vertex of this triangle must be xi. Thus u; is ad-
jacent to all vertexes in R and to x, i.e., u; € K. But d(u,, v) = 2, contradicting the
fact that v ¢ ¥,(z) = £,(K). Consequently, R is a dominant set in G.

LEMMA 9. If G is a triangulated graph with r(C(G)) = r(G), then G e CT.

Proof. We shall show that G = C(G') for some triangulated graph G' = (X', U'). This

is certainly true if G consists of a single vertex. We may therefore assume that r(G) > 0.
Attach to every vertex x in C(G) a chain (x, x', x") of length 2, where x' is adjacent only
to x and x", and x" is an end vertex. This gives a triangulated graph G'. The m-convexity
of C(G) and the equality r(G) = r(C(G)) imply that max {d(x, z): x € C(G)} = r(G) for any z
in G and d(G) < r(G) + 2. Consequently, the eccentricity in G' of any vertex of G is equal
to r{G) + 2. It is readily seen that the eccentricities of x', x'" are respectively r(G) +
3, r{(G) + 4. Thus, x', x" ¢ C(G'), i.e., C(G') = G.

LEMMA 10. If G is a triangulated graph with r{(C(G)) < r(G), then G € CT if and only
if G contains nonintersecting dominant complete subgraphs R,, R,.

Proof. Let R;, R, be nonintersecting dominant sets generating complete subgraphs.
Then {d(x, Ry}, d(x, R,)} = 1 for any x in G. Define a trianguilated graph G' = (X', U') as
follows: X' =X U {u,, u,, vy, v,}, where v; is adjacent to u, and all vertexes of R,. The
vertexes u,; and u, will be end vertexes of G'. Then in G' it is true that e(v,) = e(v,) =
4, e(u;) = e(u,) =5 and e(x) = 3 for any vertex x in G. Thus G is the center of G'.

Conversely, let r(C(G)) < r(G) and G = C(G') for some triangulated graph G' = (X', U').
Put r' = r(G'). It follows from Theorems 1, 2 that r(C(G)) < 1, i.e., there exists a vertex
x, € C(G) adjacent to all vertexes of C(G). Let d(x,, r) = r'; we shall prove that d(y,
X) = r' = 1, where X is the set of vertexes of G. Since G is not complete and r{(G) < 2, it
follows from Lemmas 2 and 3 that r' — 2 < d(y, X) < r'. If d(y, X) = r' - 2, then by Lemma
3, X ¢ ZZ(NV(X)). By Lemma 6, Ny (X) contains a vertex x for which X ¢ Z,(x). Since d(x,,
y) = r', we have d(x,, Ny(X)) = 5, i.e., d(x,, x) > 2 and r(G) = 2. This implies that x €
C(G), contrary to the assumption that x, is adjacent to all vertexes of C(G).

Thus, d(y, X) = r' — 1, i.e., Upt_1(X) # 6. By Lemma 7, there exist vertexes x,, X, €
Upt-1(X) such that Ny (X) n Ny (X) = ¢. It follows from Lemma 3 and the relationships C(G') =
G, dlx,, X) = d(x,, X) = r' - ! that the sets le(X)’ NXZ(X) are dominant in G.

THEOREM 3. A triangulated graph G is a member of the family CT if and only if it con-
tains a finite system S = {R;, ..., Ry} of dominant complete subgraphs such that n?=1Ri =0
and Ry ¢ ul., Ry for any Ry. If r(G) = r(C(G)), then G & CT (i.e., such a system always

. 7]
exists). If r(C(G)) < r(G), then G € CT only if G contains two nonintersecting dominant com-
plete subgraphs R,, R,. If G is of finite density ¢, the system S may be assumed to contain
at most ¢ complete subgraphs.

Proof. In view of Lemmas 9 and 10, it will suffice to show that if r(G) = r(C(G)) then
G contains a system S of complete subgraphs satisfying the conditions of the theorem. If
r(G) = 1, then C(G) contains at least two distinct vertexes X,, X,. Then S = {x,, %,}. Sup-
pose now that r(G) = 2. Then for any x in C(G) there exists a clique R(X) in C{G) that does
not contain x; we need only define R(x) as any clique in C(G) containing a vertex x € C(G)
with d(x, x) = 2.

For an arbitrary fixed vertex x, € C(G), let R(xy) = {Xy, ..., Xx}. By Lemma 8, the
céiques R(x,), R(xy), ..., R(xg) are dominant in G. Moreover, they satisfy the condition
ﬂi=°R(xi) = @¢. Now select from the family R(x,), R(x;), ..., R(xg) a system S = {R,, ...,
Rp}, where R, = R(Xil)’ «evs Ry = R(xin), consisting of the minimal number of elements such
that ﬂ?;iRi # . We claim that no subgraph S is covered by the others. Assuming the con-
trary, suppose that R, ¢ UJZIR;. By the choice of S, ﬂg;iRi #@. If z e nJ_1Ry, then
z # Ry. Since z is adjacent to all vertexes of Ry, this contradicts the fact that R, is a
clique in C(G). If G is of finite density ¢, then the system S just constructed is such that
n £ ¢. This follows from the fact that the Helly number for m-convexity in G is ¢ [11].
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Remark 1. TFor any integer @ > 1, there exists a graph G € CT of density ¢ in which the

smallest system S satisfying the conditions of Theorem 3 is of cardinality .

Remark 2. This result can be used as a general scheme for characterizing the centers

of different classes of triangulated graphs. For example, using Thecrems ! and 3 one easily
enumerates the centers of trees, 2-trees, and maximal outerplanar graphs.

10.

11.
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