Initiation à la Fouille de Données et à l'Apprentissage

Troisième séance Apprentissage d'arbres de décision (1/2)

> M2 I2A 2011-2012

Valentin Emiya

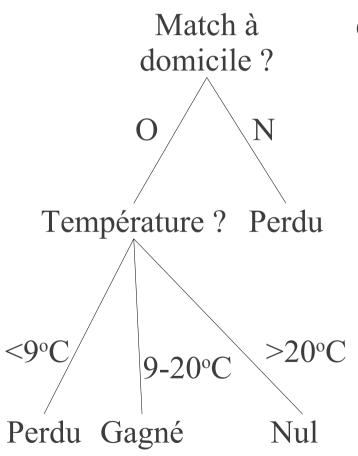
Plan

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision

Plan

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision

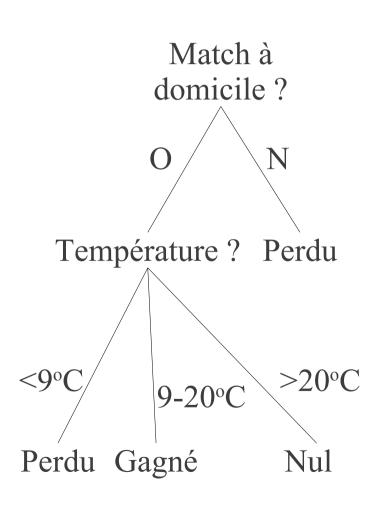
Description d'un arbre de décision



Un arbre de décision est un arbre orienté dont :

- Les nœuds internes sont étiquetés par un test applicable généralement sur un attribut de description.
- Les arcs contiennent les résultats du test.
- ► Chaque **feuille** est étiquetée par une classe (une classe peut apparaître plusieurs fois).
- ► Chaque feuille ou nœud est repérable par sa **position** : la liste (unique) des valeurs des arcs qui permettent d'y accéder.

Classification par arbre de décision

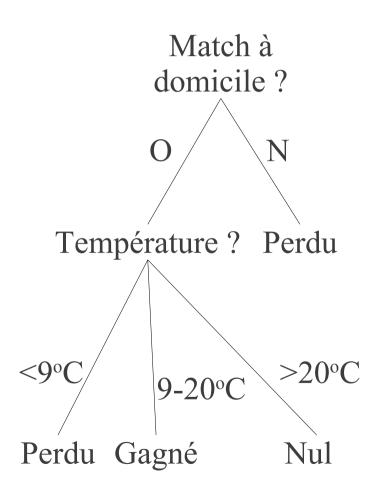


- Un arbre de décision est un classifieur organisé de manière arborescente.
- On parcourt l'arbre depuis la racine en testant successivement les attributs.

Ex: x=(match à domicile, T<9), h(x)=Perdu

• Ce classifieur a une traduction immédiate en terme de règles de décision, mutuellement exclusives et ordonnées (si ... alors ... sinon ...).

Intérêt des arbres de décision



- Facilement interprétables
- Classification rapide:
 - ► Tests peu coûteux
 - Descente rapide

Utile si grand nombre d'attributs

• Attributs continus utilisables dans les tests binaires/n-aires.

Ex.: température

• Classification aisée de C classes

Plan

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision

Apprentissage d'arbre : premiers pas

- **Problème :** Construire un arbre de décision à partir d'un échantillon de données
- Caractéristiques des données :
 - Apprentissage supervisé : nécessite un expert
 - Attributs à valeurs discrètes (vs continus)
- Question: quel attribut choisir en premier? En second? ...

Exemple: scénario

- Objectif: évaluation du risque cardiaque à partir d'une table Individu contenant les attributs:
 - Age (entier positif)
 - Fumeur (O ou N)
 - Taille (entier positif)
 - Poids (entier positif)
 - Sexe (H ou F)
- On demande à un cardiologue d'étiqueter une partie de la base (disons 5%) en 2 classes : individu à risque ou non.

Exemple : discrétisation des attributs

- Ces attributs doivent être discrétisés :
 - Age (entier positif)
 - Taille (entier positif)
 - Poids (entier positif)
- Proposition :
 - Age en trois catégories : jeune (<20 ans), actif (entre 21 et 50), senior (>50)
 - On applique une formule liant âge et poids et on obtient un attribut Corpulence prenant trois valeurs : faible, moyenne, forte.

Exemple : échantillon

Voici les données étiquetées par le cardiologue :

C E			1	
Sexe	Fumeur	Age	Corpulence	À risque
F	O	15 (<20)	faible	N
F	O	19 (<20)	forte	O
F	O	30 (20-50)	faible	O
F	N	45 (20-50)	forte	O
F	N	65 (>50)	moyenne	O
F	N	98 (>50)	moyenne	O
Н	O	34 (20-50)	faible	O
Н	N	22 (20-50)	moyenne	N
Н	N	45 (20-50)	forte	N
Н	N	70 (>50)	forte	O

Exercice : construire un arbre de décision

Exemple: construction d'un arbre

Constat:

- plusieurs arbres sont possibles
- dans cet exemple, ils permettent tous de classer parfaitement les données d'apprentissage : le risque empirique est nul.
- ce n'est pas toujours le cas : exemple ?

Arbre de décision de risque empirique minimal

- Il est toujours possible de trouver un arbre de décision minimisant le risque empirique sur un jeu de données. Mais cet arbre est bien souvent un mauvais classifieur. Pourquoi ?
- Le plus petit arbre de décision compatible avec les données est l'hypothèse la meilleure en généralisation. Pourquoi ?
- La théorie de l'apprentissage statistique de Vapnick permet de répondre formellement à ces questions.
- Trouver le plus petit arbre de décision compatible avec un échantillon est un problème NP-complet :-(

Stratégie

Construire *un petit arbre de décision* compatible avec le maximum de données.

Conforme à 2 principes :

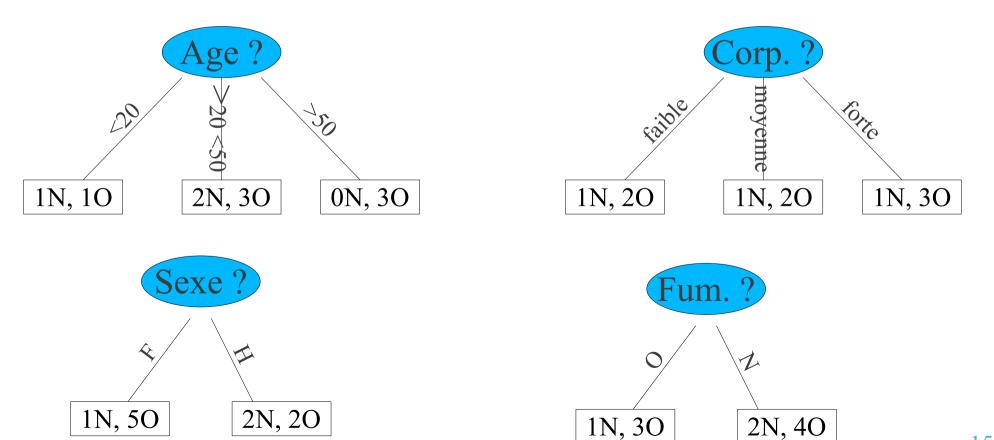
Le rasoir d'Occam (XIV siècle):

"Les multiples ne doivent pas être utilisés sans nécessité" Autrement dit : entre deux représentations **équivalentes**, il faut choisir la moins complexe.

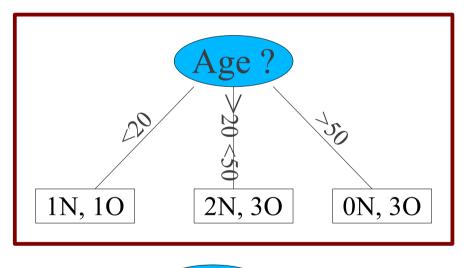
► Le principe MDL (*Minimum Description Length*) :

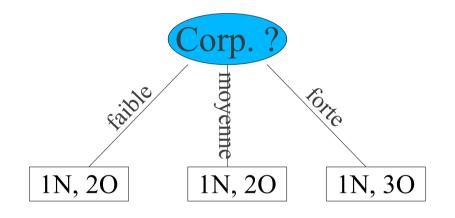
Soit S l'échantillon. Apprendre c'est trouver l'hypothèse H minimisant ||H|| + ||S|H||, c'est à dire un compromis entre la taille de l'hypothèse et celle du codage des données par cette hypothèse.

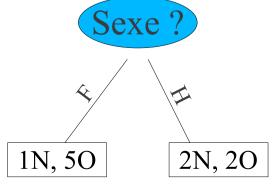
• Choix de la racine de l'arbre : le pivot qui "disperse" le mieux les 2 classes

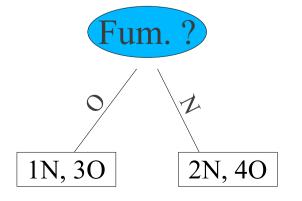


• Choix de la racine de l'arbre : le pivot qui "disperse" le mieux les 2 classes







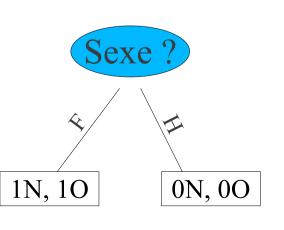


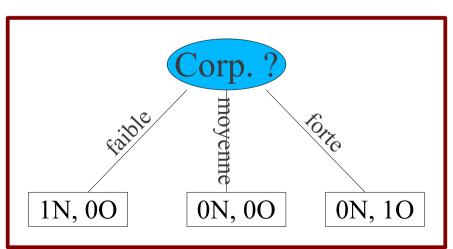
• On continue récursivement sur chacune des branches à

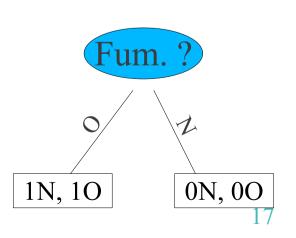
Age?

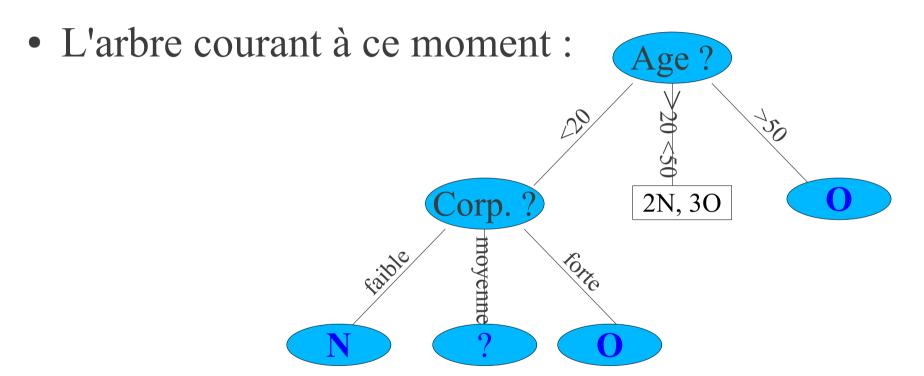
partir de:

On a (première branche à gauche):

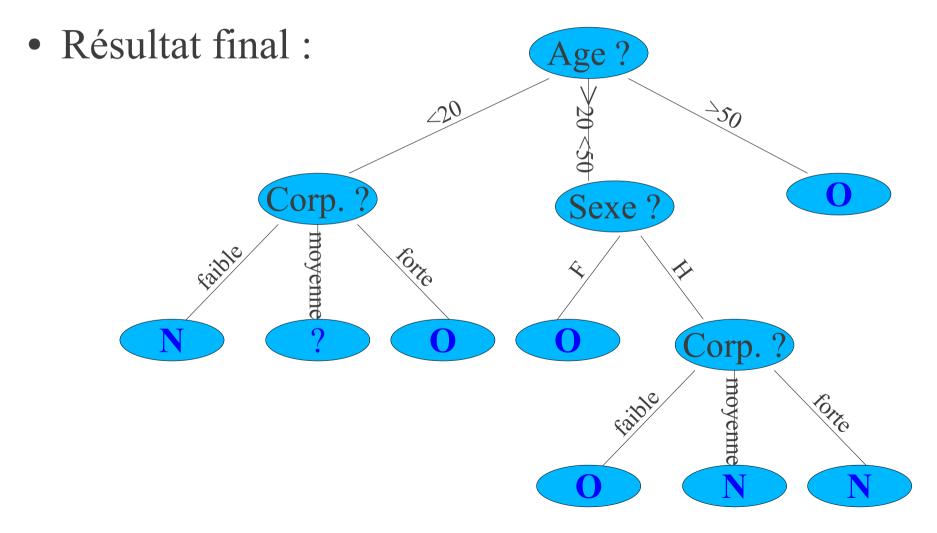








 Après calcul, en testant sur l'attribut Sexe (puis corpulence) dans la branche restant à déterminer on disperse entièrement les classes.



On peut alors classer toutes les données.

Plan

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision

Algorithmes d'apprentissage d'arbres de décision

► Plusieurs algorithmes : CART [Breiman84], C4.5[Quinlan94].

- Algorithmes en deux étapes :
 - Construction d'un petit arbre de décision compatible
 - Elagage de l'arbre pour prévenir le surapprentissage

Plan

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision
 - Étape 1 : construction d'un petit arbre
 - Étape 2 : prévenir le surapprentissage

Algorithmes d'apprentissage d'arbres de décision

Aperçu de la première étape :

- Méthodes de construction Top-Down, gloutonnes et récursives.
- Idée principale : diviser récursivement et le plus efficacement possible l'échantillon d'apprentissage par des tests définis à l'aide des attributs jusqu'à obtenir des sous-échantillons ne contenant (presque) que des exemples appartenant à une même classe.

Algorithmes d'apprentissage d'arbres de décision

• Algorithme générique :

Initialisation: arbre ← arbre vide; nœud_courant ← racine *Répéter*

Décider si le nœud courant est terminal

Si le nœud est terminal alors lui affecter une classe

Sinon sélectionner un test et créer autant de nœuds fils qu'il y a de réponses au test

Passer au nœud suivant (s'il existe)

Jusqu'à obtenir un arbre de décision consistant

- On a besoin de trois opérateurs permettant de :
 - Décider si un nœud est terminal
 - Si un nœud est terminal, lui affecter une classe
 - Si un nœud n'est pas terminal, lui associer un test

Les trois opérateurs (en général)

- Un nœud est terminal lorsque:
 - (presque) tous les exemples correspondant à ce nœud sont dans la même classe, ou
 - ▶ il n'y a plus d'attribut non utilisé dans la branche correspondante,
- On attribue à un nœud terminal la classe majoritaire (en cas de conflit, on peut choisir la classe majoritaire dans l'échantillon, ou en choisir une au hasard),
- On sélectionne le test qui fait le plus progresser la classification des données d'apprentissage. Comment mesurer cette progression ? CART utilise l'*indice de Gini* et C4.5 utilise le calcul d'*entropie*.

Indice de Gini (G) et Entropie (E)

Soit S l'échantillon et S_1 , S_2 , ... S_k sa partition suivant les classes de l'attribut du test.

On définit :

• l'indice de Gini

$$G(S) \triangleq \sum_{i} \frac{|S_i|}{|S|} \left(1 - \frac{|S_i|}{|S|} \right) = \sum_{i \neq j} \frac{|S_i|}{|S|} \frac{|S_j|}{|S|}$$

• l'entropie

$$E(S) \triangleq -\sum_{i} \frac{|S_i|}{|S|} \log \left(\frac{|S_i|}{|S|}\right)$$

Indice de Gini et Entropie : k=2

$$G(S) \triangleq \sum_{i} \frac{|S_{i}|}{|S|} \left(1 - \frac{|S_{i}|}{|S|} \right) = \sum_{i \neq j} \frac{|S_{i}|}{|S|} \frac{|S_{j}|}{|S|}$$

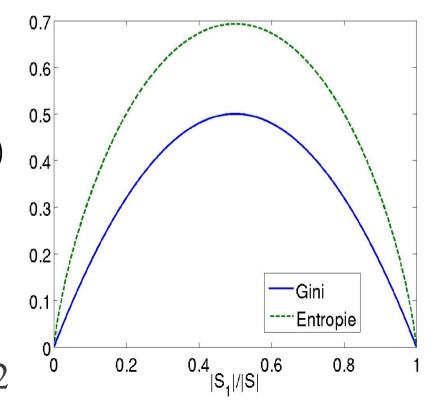
$$E(S) \triangleq -\sum_{i} \frac{|S_{i}|}{|S|} \log \left(\frac{|S_{i}|}{|S|} \right)$$
Cas binaire: $k = 2, x \triangleq \frac{|S_{1}|}{|S|}$

$$G(x) = 2x(1-x)$$

$$E(x) = -x \log(x) - (1 - x) \log(1 - x)$$

Ces fonctions:

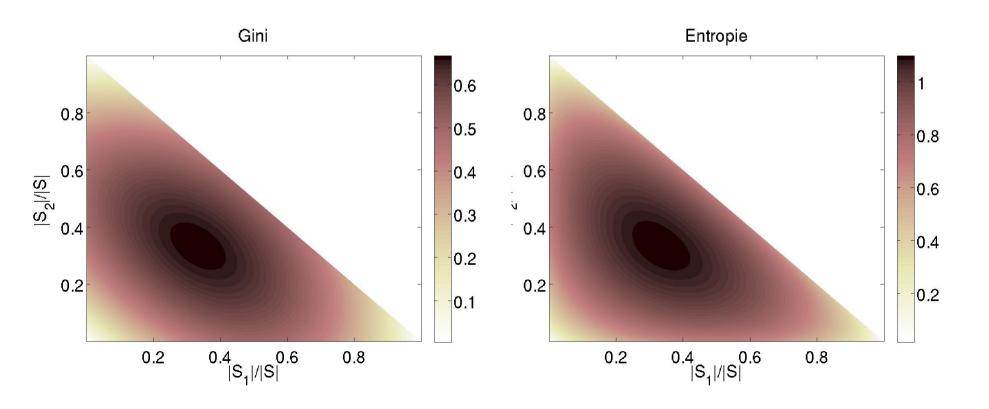
- ► Ont des valeurs dans >0
- S'annulent pour x = 0 et x = 1
- ► Sont maximales pour x=1/k=1/2



Indice de Gini et Entropie : k=3

$$G(S) \triangleq \sum_{i=1}^{3} \frac{|S_i|}{|S|} \left(1 - \frac{|S_i|}{|S|} \right)$$

$$E(S) \triangleq -\sum_{i=1}^{3} \frac{|S_i|}{|S|} \log \left(\frac{|S_i|}{|S|}\right)$$



Gain et sélection du test

• Soit p la position courante de l'arbre en construction et T un test. On définit (avec f=E ou f=Gini) :

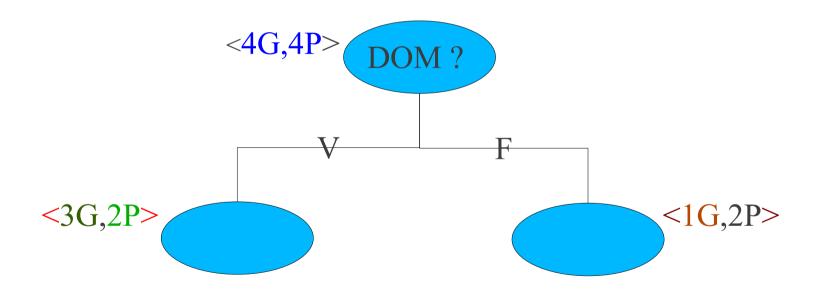
$$\operatorname{Gain}_{f}(p,T) \triangleq f(S_{p}) - \sum_{j} P_{j} \times f(S_{p_{j}})$$

où S_p est l'échantillon associé à p et P_j est la proportion des éléments de S_p qui satisfont la j-ème branche de T.

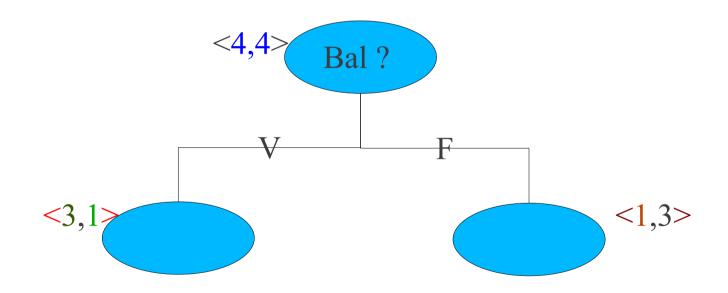
- Maximiser le gain revient à minimiser $\sum_{j} P_{j} \times f\left(S_{p_{j}}\right)$
- Gain maximal : l'attribut permet de classer correctement toutes les données
- Gain nul : données sont aussi mal classées après le test qu'avant
- Sélectionner l'attribut dont le gain est maximum correspond à une stratégie gloutonne : rechercher le test faisant le plus progresser la classification localement.

Exemple d'utilisation de l'algo de CART

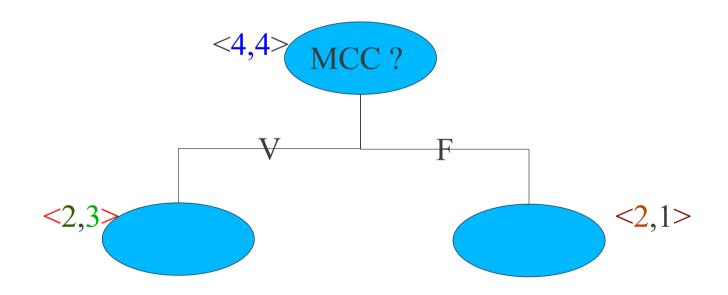
Match	Balance	Mauvaises conditions	Match précédent	Résultat
à domicile?	positive?	climatiques?	gagné ?	
V	V	F	F	G
F	F	V	V	G
V	V	V	F	G
V	V	F	V	G
F	V	V	V	P
F	F	V	F	P
V	F	F	V	P
V	F	V	F	P



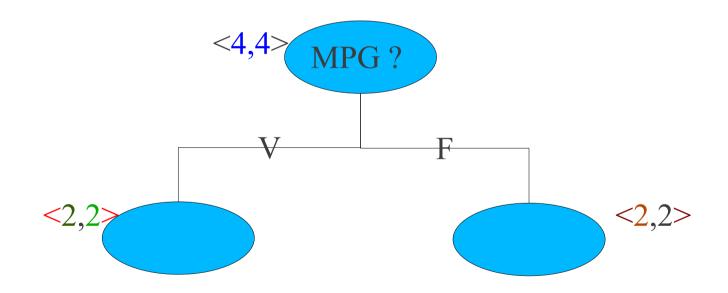
Gain(
$$\epsilon$$
,Dom) = G(S)-($\frac{5}{8}$ G(S₁) + $\frac{3}{8}$ G(S₂))
= G(S) - $\frac{2*5}{8*3}$ / $\frac{5*2}{5}$ - $\frac{2*3}{8*1}$ / $\frac{3*2}{3}$
= G(S) - $\frac{7}{15}$



Gain(
$$\epsilon$$
,Dom) = G(S)-(4/8G(S₁) + 4/8 G(S₂))
= G(S) - 2*4/8*3/4*1/4 - 2*4/8*1/4*3/4
= G(S) - 3/8



Gain(
$$\epsilon$$
,Dom) = G(S)-($\frac{5}{8}$ G(S₁) + $\frac{3}{8}$ G(S₂))
= G(S) - $\frac{2*5}{8*2}$ 5*3/5 - $\frac{2*3}{8*2}$ 3*1/3
= G(S) - $\frac{7}{15}$



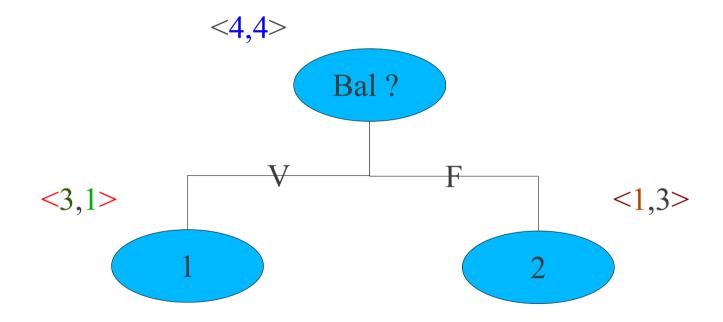
Gain(
$$\epsilon$$
,Dom) = G(S)-(4/8G(S₁) + 4/8 G(S₂))
= G(S) - 2*4/8*2/4*2/4 - 2*4/8*2/4*2/4
= G(S) - 1/2

• Avec le critère de Gini et en désignant les attributs descriptifs *Dom, Bal, MCC* et *MPG* nous avons :

Gain(
$$\varepsilon$$
,Dom) = G(S) – 7/15 = G(S) – 0.466...
Gain(ε ,Bal) = G(S) – 3/8 = G(S) – 0.375
Gain(ε ,MCC) = G(S) – 7/15 = G(S) – 0.466...
Gain(ε ,MPG) = G(S) – 1/2

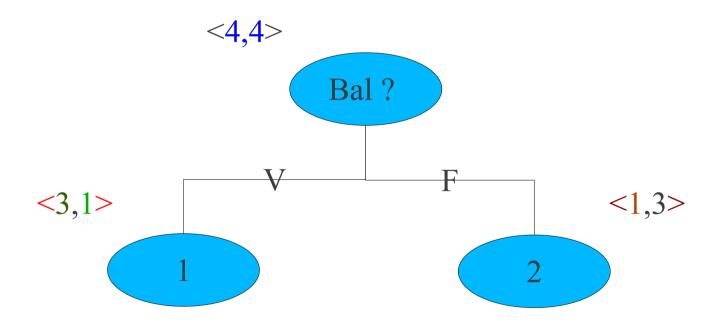
• Le gain maximal est obtenu pour le test sur l'attribut Balance positive

• L'arbre courant est alors :



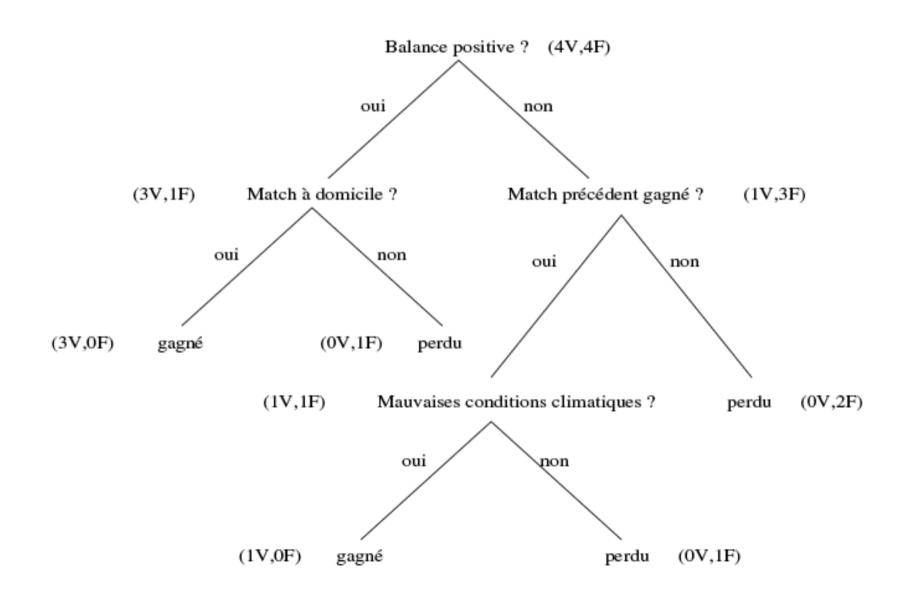
• Il faut alors recommencer récursivement (et indépendamment) le calcul du gain en position 1 et en position 2 pour choisir les tests à ces niveaux.

• L'arbre courant est :



• Exercice: continuer l'algorithme.

Sur l'exemple des matchs (résultat)



TD

Exercices 2 et 3 p. 23-25 du poly

Plan

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision
 - Étape 1 : construction d'un petit arbre
 - Étape 2 : prévenir le surapprentissage

Plan: prochain cours

- Les arbres de décision
 - description, classification, intérêts
- L'apprentissage d'arbres de décision
 - principes et enjeux
- Algorithmes d'apprentissage d'arbres de décision
 - Étape 1 : construction d'un petit arbre
 - Étape 2 : prévenir le surapprentissage