DEMONGEOT2017

Folding Turing is hard but feasible

Nicolas Schabanel

CNRS - U. Paris Diderot (IRIF) - U. Lyon (IXXI) - France

Joint work with

Cody Geary (CalTech, USA)

Pierre-Étienne **Meunier** (U. Aalto, Suomi - Finland) Shinnosuke **Seki** (U. Electro-Communcation, 日本 - Japan)

Context: Biomolecular Engineering

—~100 nm

Andersen et al, 2009

Fujibayashi et al, 2007

Constantine Evans, PhD Thesis, Caltech 2014

Han et al, Science 2011

Wei, Dai, Yin, Nature 2013

Genetic code behaves as a program

For instance, small changes in code yields big differences

Nature is very complicated

However, we might do better differently

Context: Biomolecular Engineering

—~100 nm

Andersen et al, 200

Fujibayashi et al, 2007

Co-transcriptional folding

RNA co-transcriptional folding

RNA co-transcriptional folding

Protocol

RNA Origami in Real Time

T7 RNA polymerase produces RNA directionally from 5' to 3', at a rate much slower than the RNA folds up (few microseconds).

The polymerase reads the DNA gene, and becomes an RNA origami production factory, synthesizing a new RNA origami roughly every 1 second.

AFM Imaging

Design tool: Kissing loops

Strand-path diagram

4H-AE

Shows the order of synthesis from blue (5') to green (3')

With some computer & data mining help...

The modular design

Secondary structure diagrams shows the base pair and sequence constraints used in NUPACK design

Colored areas indicate conserved tertiary motifs

Completed Secondary Structure Diagram

The final sequence

Sequence Name	RNA Sequence
4H-AE-B 418 nucleotides	GGAAGUGAGUAGUCCACCGUCUACAACCAUCGUAGGCGGUGCGCUCACUUCGGUG AGGGCCAGCUACGGCUGGGACCCGAGACGUGGGUCGACGGAGGCUGAAGCGAGCACGG CCUCUGUCCCGAGCUCUGCUGAAAGGCUCACGGCAGGGCUCCGGCAGGUGGCUGAAGC CUCCACGGCCAUCUGCGACUGCUACUCGCUUCCGCGAAAUGUCAAUACGCGCAGCGAC GGUGAAGGAGCACCGCGUUGCUGGGCACUGAGGGUGAAGACCCUACGCCCUCGGUGG CGAAGCGACCUGAAGCUCGCACGGGUCGUUUCGCGCAGGGUCAGAGAACGCCUGAUCC UGCCCGAUCCUACGGGAUCCGGAACAUACGUGUUCGGACCGACC

AFM imaging of 4H-AE co-transcriptional assembly

RNA Folding

(Real time: ~1 second)

A computational model for co-transcriptional folding

A model for co-transcriptional folding

- The program: a periodic sequence of beads (the primary structure) onto the triangular grid
- The instructions: the rule a b if beads a and b attract each other
- The input: the seed, some beads placed beforehand and a starting position

A model for co-transcriptional folding

- The dynamics.
 - The sequence is produced bead by bead
 - Only the δ last beads explore the accessible positions and settle in the ones maximizing the number of bonds
 - All other beads remain in their last location

Example of such molecule

A model for co-transcriptional folding

A growing molecule to fold given as a periodic sequence of beads which attract each other according to the rule

A model for co-transcriptional folding

A growing molecule to fold given as a **periodic sequence** of **beads** which **attract** each other according to the **rule**

The beads older than δ will keep their positions

A model for co-transcriptional folding

A growing molecule to fold given as a **periodic sequence** of **beads** which **attract** each other according to the **rule**

The sequence keeps folding upon itself as it grows

A model for co-transcriptional folding

A growing molecule to fold given as a **periodic sequence** A0-A1-A2-A3-A4-A5-A6-A7-A8-A9-A10...

The Seed (δ=3)

- Environment is the memory
- Entry point in an area is the current machine state
- Depending on the entry point, different parts of the molecule will «read» the input encoded in the environment by binding to it

The first challenge: Designing the bricks

Design bricks for which a common rule exists

The first challenge: Designing the bricks

The second challenge: Designing the rule

Theorem. Designing a **rule** \heartsuit that folds a given **sequence** of length L into k prescribed conformations when folded in k prescribed environments is **NP-hard** in k.

From 3-SAT: L=1 bead, k = n+m environments, δ arbitrary

Ensures the bead binds to at most one of x_i and $\neg x_i$

The second challenge: Designing the rule

Theorem. There is a **FPT algorithm** with respect to L that designs in linear time in L (but exponential in k and δ) a **rule** \heartsuit that folds the sequence 1, ..., L of length L into k prescribed conformations when folded in k prescribed environments.

- *Proof.* Locality: each bead only sees a bounded number (exponential in δ) of other beads when folded.
 - Then, compute all valid local rules for each of these neighborhoods
 - And use dynamic programing to decide whether there is a global rule compatible with at least one of the local rule for each environment.

What is the computational power of Oritatami Systems?

Simulating any Turing computation

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary
 code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)
- Dynamics:
 - If the tape word is empty (ε) : halt
 - If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
 - If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

- A finite cyclic sequence of finite binary code words with a pointer p to one of them
- An initial binary tape word (the input)

Dynamics:

- If the tape word is empty (ε) : halt
- If the 1st letter of the tape word is 0: delete the 0 and increment the pointer p
- If the 1st letter of the tape word is 1:
 delete the 1, append to the tape
 word the code word at position p+1
 and increase p by +2

 Theorem [Neary, Woods, 2006]
 Cyclic tag systems simulate any Turing machine with only a quadratic slow down

The simulation

The block view

The shapes & functions of the blocks

The modules

Each code word is encoded into a module

The shapes & functions of the modules

How does the tag system simulation work?

The shapes & functions of the modules

The shapes & functions of the blocks

The block view

The module view

How do we implement several functions in module?

An example

Proving the correctness of the folding

First, enumerate all the bricks inside the modules and blocks

Second, describe the final conformation

Third, enumerate all the possible environments

Finally, prove the folding of each brick in each environment 12

Thank you!

Conclusions

- Better understanding on how nature might work (Geometry, hidden functions, offsets,...)
- Computational paradigms discovered for biocomputing while folding

Perspectives

- How to handle reconfigurations?
- Universal folding system? (i.e. programming language)

Thank you!

Conclusions

- Better understanding on how nature might work (Geometry, hidden functions, offsets,...)
- Computational paradigms discovered for biocomputing while folding

Perspectives

- How to handle reconfigurations?
- Universal folding system? (i.e. programming language)

16-20 Jan. **2017**: Research school BioMolecular Computing@ENS Lyon (France)!

Damien Woods, INRIA Paris

Cendrine Moskalenko, ENS Lyon

Yannick Rondelez, ESPCI

