DEMONGEOT2017

Folding Turing Is
hard but feasible

Nicolas Schabanel

CNRS - U. Paris Diderot (IRIF) - U. Lyon (IXXI) - France

Joint work with Cody Geary (CalTech, USA)
Pierre-Etienne Meunier (U. Aalto, Suomi - Finland)

Shinnosuke Seki (U. Electro-Communcation,

7N - Japan)

Context: Biomolecular Engineering
==~100 NM

Andersen et al, 2009 |

“m[ﬁlm

NTNTY,
//f)’ \

5 f// o7 ﬂ/,
R AR RA R
[/f /f ;f/i// TN/
SEAFIFLRATARY

(:1 /f// /7’7//'1 WY,
AP AT LIAFA A
TS IAIASTAFALINTAFY,
OMELRLIARA R LNARS
‘(FARS ST NI,
R At P R RAFARA T

Rothemund, Nature 2006

Fujibayashi et al, 2007
Han et al, Science 2011 Wei, Dai, Yin, Nature 2013

Genetic code behaves as a
program

bx, pbx

For instance, small changes in code yields big differences

Nature Is very
complicateo

B e I o T — e ——— —
si : . T 4 o

ot Tt |
- ts % < - 1
29 s -]
: j B == 1
-)
i]
| .
H -y 3 :
H - -]
. . .
» - .
» L]
» .
|4 2]
H i
i]
i Bt 1
¥ :
’ 1
B e) |
- |
1
— |
g e e — Yy 1]
.
]
- "
% ot
|
| .
: . — o ~—t e
¢ ¥ 8IS S e~
a 3 c."
. i
3! 1
;]
‘*‘..._' - - -
~ |
s &5 -

o

2

However, we might do
petter differently

Context: Biomolecular Engineering
==~100 NM »

\\\\\\\\
‘‘‘‘‘‘‘‘‘‘‘

Andersen et al, 204

Han et al, Science 2011 Wei, Dai, Yin, Nature 2013

Co-transcriptional
folding

RNA
co-transcriptional folding

0.00pm 005 010 015 020

41rm

| a5

| a0

£ B, 5
L nm
gk
T7 RNA
polymerase
protein

Geary, Rothemund, Andersen, Science 2014

RNA
co-transcriptional folding

0.00pm 005 010 015 020

 41nm

| a5

| a0

T7 RNA
polymerase
protein

Geary, Rothemund, Andersen, Science 2014

Protocol

Yo
r Transcription Lo
r — . | =
37°C, 10 min T
r P> O
_ \————

RNA Origami in Real Time

T7 RNA Polymerase

Assembly of
RNA tiles

Formation of helices Formation of Formation of
and hairpins junctions tertiary (38D) interactions

17 RNA polymerase produces RNA directionally from 5’ to 3’, at a rate much
slower than the RNA folds up (few microseconds).

The polymerase reads the DNA gene, and becomes an RNA origami production
factory, synthesizing a new RNA origami roughly every 1 second.

Slide by Cody Geary Westhof and Leontis (Science, 2014)

ArM Imaging

2H-AE (176 nucleotides

500nm square

Slide by Cody Geary Geary et al (2014) Science

Design tool: Kissing loops

HIV DIS RNA i/ii
Helix kissing loop kissing loop

5'

—

\
-

" ‘1
» - shallow

4

“I -
NS

180°

1 &1
CZ‘,!

&OZ-&

e
N

> >
o x
2 X X

xX x
x>

Geary et al (2014) Science

Strand-path diagram

4H-AE

Shows the order of synthesis from blue (5) to green (3’)

With some computer
& data mining help...

.........

Slide by Cody Geary - Artwork by Ebbe Anderson Geary et al (2014) Science

T'he modular design

RNA Modules

4H-AE

N 180° KL

NNNNG—CN—NNN

NNNN(:] [C'-]N—I\'II\'II\'I
B~ by

AT
NNN

INNNNN— —NNNNNI

NNG—CN—NNN
NNNNN— _NNNNNKNNCy ~GN—NNN
INNNNN— _NNNNENNNG—CCJ [GNNNN

120° KL

NNNNC] S I W Tetraloop
'\."\."}"}'9—% GINNNENNINN-— .
|\'||\'||§|Nt CG—CNNNKNNNN— —NNNNKNNNC, -CG—CNNNN Y
nn—ng) Lﬁwwww I A1 Marrsl W A\, Helix
NNN—NC—CNNNNNN 'NNNNNNN3 5 GGAANKNNNNNNKNN—NC—CNNNNKNNNN

Secondary structure diagrams shows the base pair and
sequence constraints used in NUPACK design

Seam

Colored areas indicate conserved tertiary motifs

Geary et al (2014) Science

Completed Secondary
Structure Diagram

4H-AE-B

[CGCAAGA—

CGGAGG
AA

—AACCAUCJ

Geary et al (2014) Science

The final sequence

Sequence
Name

RNA Sequence

4H-AE-B

418
nucleotides

GGAAGUGAGUAGUAGUCCACCGUCUACAACCAUCGUAGGCGGUGCGCUCACUUCGGUG
AGGGCCAGCUACGGCUGGGACCCGAGACGUGGGUCGACGGAGGCUGAAGCGAGCACGG
CCUCUGUCCCGAGCUCUGCUGAAAGGCUCACGGCAGGGCUCCGGCAGGUGGCUGAAGC
CUCCACGGCCAUCUGCGACUGCUACUCGCUUCCGCGAAAUGUCAAUACGCGCAGCGAC
GGUGAAGGAGGCACGCCGUUGCUGGGCACUGAGGGUGAAGAGCCUACGCCCUCGGUGG
CGAAGCGACCUGAAGCUCGCACGGGUCGUUUCGCGCAGGGUCAGAGAACGCCUGAUCC
UGCCCGAUCCUACGGGAUCCGGAACAUACGUGUUCGGACCGACCACGACGGUCCCGUA

UUGGCAUUUCGC

Geary et al (2014) Science

AFM imaging of 4H-AE
co-transcriptional assembly

[} 1 Bnm
3.0
A 5
2 L
period = 33.0 nm *
Note that the mo%eled spacing was 33.5nm
3 = 10
= | —— Profile 1 B0
—— Profile 2 SR
2 3 0F
>
0 3 05
_1 IIIIIIIII I IIIIIII I IIIIIIIII H 1
0.00 0.05 x [pm] 0.10 0.15

Geary et al (2014) Science

RNA Folding

(Real time: ~1 second)

Video: Geary

A computational model for
co-transcriptional folding

Oritatami
A model for co-transcriptional folding

e The program: a periodic sequence of beads (the
primary structure) onto the triangular grid

e The instructions: the rule a¥b if beadsaand b
attract each other

* The input: the seed, some beads placed betorehand
and a starting position

Geary, Meunier, Schabanel, Seki MFCS 2016

Oritatami
A model for co-transcriptional folding

e The dynamics.

* [he sequence is produced bead by bead

e Only the & last beads explore the accessible positions

and settle in the ones maximizing the number of
bonds

e All other beads remain in their last location

Geary, Meunier, Schabanel, Seki MFCS 2016

Example of such molecule

// // ,/;/‘ ./‘/ //
£ ffff 7

Oritatami
A model for co-transcriptional folding

A growing molecule to fold given as a periodic sequence
of beads which attract each other according to the rule @

Starts from a seed

27 W28 W29 N30 39 W40 W 41 W44 W45 W50 W51 se 57w 0 9 10 08 11 38 14 I8 15 JN 20 BN 21 N 26 JN 27 JN 30 N 39 IN40W 41 0 0 0

The 3 last beads explore to adopt the configurations] \
maximizing the number of new bonds \> 53) (s@ms7
O

Geary, Meunier, Schabanel, Seki MFCS 2016

Oritatami
A model for co-transcriptional folding

A growing molecule to fold given as a periodic sequence
of beads which attract each other according to the rule @

Binds according to

Starts from a seed attraction rule ¥

27 W28 W29 N30 39 W40 W 41 W44 W45 W50 W51 se 57w 0 9 1008 11 3N 14 I8 15 JN 20 BN 21 N 26 J¥ 27 JN 30 ¥ 39 IN40 N 0 0
.- N
0

The & last beads explore to adopt the configurations _,, - (2} @mle) (o

maximizing the number of new bonds o ®@@058057

The beads older than & will keep their positions

Geary, Meunier, Schabanel, Seki MFCS 2016

Oritatami
A model for co-transcriptional folding

A growing molecule to fold given as a periodic sequence
of beads which attract each other according to the rule @

Binds according .to

Starts from a seed attraction rule- ¥

27 W28 W29 N30 39 W40 W 41 W44 W45 W50 W51 se 57w 0 9 10 B8 11 BN 14 I8 15 B0 20 B8 21 BN 26 I8 27 I 30 I 39 40" 41 0 0

Primary structure

The sequence keeps folding upon itself as it grows

Geary, Meunier, Schabanel, Seki MFCS 2016

Oritatami
A model for co-transcriptional folding

A growing molecule to fold given as a periodic sequence
AO-A1-A2-A3-A4-A5-A6-A7-A8-A9-A10...

The growing
I I
The Seed mc(:ae=c;|)1 ©
\ &p

(4 (@) (3
(4) (am(ag

HOW JOES
computation work"

- Environment is the memory

- Entry point in an area is the current machine state

* Depending on the entry point, different parts of the
molecule will «read» the input encoded In the
environment by binding to it

How does computation work”

3) Beads 38-41 <« 2) Beads 34-37 <« 1) Beads 30-33
O(AO)

ewm@
o @@@@
- HHe

- @O=2) Carry=1

LES GENS SONT CONFUS ET
CROIENT QU’ON FAIT 4 PAR 4

1 (A1)

}@(

° @@@@
o o (@1) (28)-
© o o (@=) Carry=1

How does computation work”

3) Beads 38-41 <« 2) Beads 34-37 <« 1) Beads 30-33

O(AO)
HToD GO Tk emm@
°o o @@@@@ o o @@@@
@@@ y o o o @@
o o @@@ o o o o o o @@ Carry:l
1 (A1)

}@(}@(

° @@@@
o o (@1) (28)-
© o o (@=) Carry=1

How does computation work”

3) Beads 38-41 <« 2) Beads 34-37

1) Beads 30-33

O(AO)
5 Toe) Gromimn o $TE) @Rt Tt emm@
Carry=0 ° @@@@@@ oo o (amEmER) @EUm)y o o @@@@
- @) @) By e O DIDRDYE M DRDEE
- D@ e oo @) (com)y - @)= Carry=1
1 (A1)
DR 010,000, CRT.{ }@(}@(
c o Q) e C @@@@
O IIRDIDRDYE ° @) Ga)-2
© o o (@=) Carry=1

Carry=1 - o (@) o) (0m9)

How does computation work”

3) Beads 38-41 <« 2) Beads 34-37 <« 1) Beads 30-33

O(AO)
5 Toe) RO o HTE) Gt T emm@
Carry=0 ° @@@@@@ oo o (amEmER) @EUm)y o o @@@@
L @@@@@ e o (D) G-l R DRORE
- D@ e OOOOOO‘Carry=1
0 (AO)
°- Carry=0
o-2
o (33we) (27
o 3
1 (A1)
}@(

Carry=0

1 (A1)
HT) Ele) Tomay-Tomy }@(}@(
c e eGan(RmE) Em) o o @@@@
L @) @6 e ° - @ -
Carry=1 - - - (4) @omy)) ° o o (=) Carry=1

How does computation work”

3) Beads 38-41 <« 2) Beads 34-37 <« 1) Beads 30-33
O(AO)
Yl Gt ol STl GOEHHE 3 GO
Carry=O° @@@@@@ o @Q@@® o o @@@@
- @) @) By e O OIDRDRE RDRORE
- =)) o o (37) (somze)y > (0= Carry=1
0 (AO)
Carry=0
o 3
1 (A1)
}H }@(
Carry=0
1 (A1)
DR 010,000, CRT.{ }E@(}Eﬁi
RN O OO DI O :

Carry=1 - o (@) o) (0m9)

° @@@@
o o (@1) (28)-
© o o (@=) Carry=1

How does computation work”

3) Beads 38-41 <« 2) Beads 34-37 <« 1) Beads 30-33
O(AO)
a2 o]0l 0, 20, IERCIOROS0LD, R0 ewm@
Carry=O° @@@@@@ o @Q@@® o o @@@@
@@@@ O, DIDRDEE o (@) (@8-
- @) GO o o (@) (som(e)y > (0= Carry=1
0 (AO)
Carry=0 o - ' Carry=0
o @@ - -2
o (39m3em(zmE2) (27) =R
o o o o ° ¢ o .3@)@@] ¢
1 (A1)
H-Tomo) (o) Tomla-lomt >@(>@(
Carry=0 @@@ Carry=0
(40) (3)maaym(3s) (28)-(2
(3)m(ze)m(E7m(36) -(27)
1 (A1)
-Tomle) ule) Tomid-Timh }@(}@(

° @@@@
o o (@1) (28)-
© o o (@=) Carry=1

The first challenge:
Designing the bricks

» Design bricks for whlch a common rule ¥ exists

Module G: Rea deyL F ed copying 0

eeeeeeeeeeeeeeee

m-_<v// /Z/A Torm

MdIGRdeyL -Feed feeding line
A:l

Module G: Read Copy Line-Feed copying 1
Length = 6h-1

J\ﬂswj

The first challenge:
Designing the bricks

G - Read Copy Line Feed: Copy 0 (Zig)

G - Read Copy Line Feed: Read O

I I S I I I A I S S S S I S I T T TS G - Read Copy Line Feed: Line Feed

ATSIST ST TSI S S ST ST SIS ST T IS¢ 23 e
< QOO OO
clc cXelelcre

TR TR i R
f SIS ST 0000

@
9]
G)
@
®
9]
]
@
©
Q

&
6
<}
%
@
5}
20
@)
oA
&
© MCT,
ot

Eerererer

Q
[©)
Q
@,
@
[
@
[6)
@
Q
[
Q,
[©)
&,

G - Read Copy Line Feed: Copy 1 (Zig)

ad 1

G - Read Copy Line Feed: Read 1

i
g
i,
T
[eteletonne]

[etexezezexe)
B6660

I'he second challenge:
Designing the rule @

Theorem. Designing a rule ¥ that folds a given sequence

of length L into k prescribed conformations when folded
N k prescribed environments is NP-hard in k.

From 3-SAT: L=1 bead, kK = n+m environments, 6 arbitrary
o o Q o o o o @ %o 0
o o @ f 0 o @ o ‘ o
- @) 0o o NN
o o @ o o 6 o Q Q o o

Ensures the bead binds to Ensures the bead binds to
at least one literal in ;A [in Ik at most one of z; and —x;

O

I'he second challenge:
Designing the rule @

Theorem. There is a FPT algorithm with respectto L
that designs in linear time in L (but exponential in k and)
a rule ¥ that folds the sequence 1,...,L of length L into k

prescribed conformations when folded in k prescribed
environments.

Proof. ® Locality: each bead only sees a bounded number (exponential in 0)
of other beads when folded.

e [hen, compute all valid local rules for each of these neighbborhoods

e And use dynamic programing to decide whether there is a global rule
compatible with at least one of the local rule for each environment.

What is the
computational power of
Oritatami Systems?

Simulating any
Turing computation

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 010
Dynamics: t
* [fthe tape word is empty (€): halt 3
100

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 10
Dynamics: t
* [fthe tape word is empty (€): halt 3
100

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 10
Dynamics:
* [f the tape word is empty (€): halt Ll@@
o [fthe 1st letter of the tape word is O: é
delete the O and increment the
3

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 10
Dynamics:
* [fthe tape word is empty (€): halt Ll
0

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 01
Dynamics:
* [fthe tape word is empty (€): halt Ll
0

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 01
Dynamics:
* [f the tape word is empty (€): halt L@
o [fthe 1st letter of the tape word is O: ZELQQ
delete the O and increment the |
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 1
Dynamics:
* [f the tape word is empty (€): halt L@
o [fthe 1st letter of the tape word is O: ZELQQ
delete the O and increment the |
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 1
Dynamics:
* [fthe tape word is empty (€): halt Li o0
o [fthe 1st letter of the tape word is O: 1
delete the O and increment the 0

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 1
Dynamics:
* [f the tape word is empty (€): halt t\l@@
o [fthe 1st letter of the tape word is O: é
delete the O and increment the
3

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
. 100
Dynamics:
* [f the tape word is empty (€): halt t\l@@
o [fthe 1st letter of the tape word is O: é
delete the O and increment the
3

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
: 100
Dynamics:
* [fthe tape word is empty (€): halt Ll
0

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
. 100
Dynamics: t
* [fthe tape word is empty (€): halt 0
3
o [fthe 1st letter of the tape word is O: 100
delete the O and increment the 1
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
. 000
Dynamics: t
* [fthe tape word is empty (€): halt 0
3
o [fthe 1st letter of the tape word is O: 100
delete the O and increment the 1
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.

Dynamics: 900

-

* [fthe tape word is empty (€): halt

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

ST

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.

00
Dynamics:

-

* [fthe tape word is empty (€): halt

o [fthe 1st letter of the tape word is O:
delete the O and increment the
pointer p

ST

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
00
Dynamics:
* [f the tape word is empty (€): halt Ll@@
o [fthe 1st letter of the tape word is O: é
delete the O and increment the
3

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
0
Dynamics:
* [f the tape word is empty (€): halt Ll@@
o [fthe 1st letter of the tape word is O: é
delete the O and increment the
3

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
0
Dynamics:
* fthe tape word is empty (g): halt Ll
o [fthe 1st letter of the tape word is O: 0
delete the 0 and increment the i@@

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
Dynamics:
* fthe tape word is empty (g): halt Ll
o [fthe 1st letter of the tape word is O: 0
delete the 0 and increment the i@@

pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input) Example.
. Halt
Dynamics:
* [f the tape word is empty (€): halt L@
o [fthe 1st letter of the tape word is O: Fi@@
delete the O and increment the
pointer p 1

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

Skipping Cyclic Tag Systems

A finite cyclic sequence of finite binary
code words with a pointer p to one of them

An initial binary tape word (the input)

Dynamics:
e Theorem [Neary, Woods, 2006]
* Ifthe tape word is empty (g): halt Cyclic tag systems simulate any
« Ifthe 1st letter of the tape word is O: Turing machine with only a
delete the 0 and increment the quadratic slow down
pointer p

* [fthe 1st letter of the tape word is 1:
delete the 1, append to the tape
word the code word at position p+1
and increase p by +2

The simulation

\
\
\
\
\\

N AR AN

4 \ \ //
x \ \ N/
/ \ \ \\ //
\ \ \ /
\ \ y //
\/

The block view

THE SEED WITH INPUT WORD 010
SEEDIO) SEED{ SEED]O)

READ ' READ 1
@ [11:100

APPEND PRODUCTION [2]:1

<=

APPEND PRODUCTION [5]:100

WRITE1 ~ \WRITE[OF = \WRITEE(O
. _/ _/

COPY/1 COPY/(0) COPY(0
ZAG) ZAG)

CORY/O) CORY/0]
APPEND PRODUCTION [7]:0

A \WRITE|O)

ZIG,
710

COPY{0) COPY/0 COPY/0)
LINE ZAG, ZAG)
[OFE

The shapes & functions
of the blocks

READ COPY
read O read 1 forward — backward «
READ 1 COPY 1
ﬁ v/

LINE FEED

EXPANDED & CARRIAGE RETURN

APPEND PRODUCTION [g]:p,

The modules

e Fach code word Is encoded Into a module

B: Empty-tape-word

D: The CW letters
detector Z

E: Padding &
Carriage return
/

F: Terminal scaffold

/

G: Read-Copy
Line Feed

Ex: Module for CW=100

C: End-of-Tape
detector

A: Initial scaffold blofofes /

The shapes & functions
of the modules

READ COPY

LINE FEED
/, <XPANDED & CARRIAGE RETURN

& /

HOow does the tag system
simulation work?

0 Code words

‘§mum&{ CWO ¢

AD 1 YCOPY O APPEND 1 CW1 100
"

\\\‘ Wit cw2 1
Cw3 O

COPY 0 COPY 1

.CARRIAGE
RETURN

The shapes & functions
of the modules

READ COPY

LINE FEED
/, <XPANDED & CARRIAGE RETURN

& /

The shapes & functions
of the blocks

READ COPY
read O read 1 forward — backward «
READ 1 COPY 1
ﬁ v/

LINE FEED

EXPANDED & CARRIAGE RETURN

APPEND PRODUCTION [g]:p,

The block view

THE SEED WITH INPUT WORD 010
SEEDIO) SEED{ SEED]O)

READ ' READ 1
@ [11:100

APPEND PRODUCTION [2]:1

<=

APPEND PRODUCTION [5]:100

WRITE1 ~ \WRITE[OF = \WRITEE(O
. _/ _/

COPY/1 COPY/(0) COPY(0
ZAG) ZAG)

CORY/O) CORY/0]
APPEND PRODUCTION [7]:0

A \WRITE|O)

ZIG,
710

COPY{0) COPY/0 COPY/0)
LINE ZAG, ZAG)
[OFE

HALT

q:=q+1

ZIGREAD 0/1

N\ ¢

spike
above

there is -
above :

there is

above

_ho - above

LINE
FEED

\/

APPEND PRODUCTION [¢]:p,

q:=
ZAG COPY 01
4 R
ﬁ .
thgrg isa there is a red dot
red dot s ike'above
spike
above'
there is E y,
above
there is
there is- -
above
L no E above)

HALT there is a —_
\ no - above
> >
Lhere is /N above q = (q + 1
< _Ano Aabove)
(- and
ZIGCOPY 0/1 Dg = €
thereis a
red dot

APPENDIPRODUCTIION LINE FEED

NOTHING TO APPEND, WORD IS EMPTY,
CARRIAGE RETURN AND LINE FEED

APPEND AND CARRIAGE RETURN ZIG-TO-ZAG

The block automaton

1The module view

How do we Implement
several functions In
module”

An example

Module G implements 5 functions:
- 0/1 Copy (forward & backward)

 0/1 Read
 Line Feed

I
S
SR

e

e
S
=

X

=
b
e
S

P75
F39l38 o

Fa1F£40 o
Fa3FaZios

F44
F45
FA6-~ = FagFa7

55
5%
o

,/" 5 d22 jom
7

Proving the correctness
of the folding

First, enumerate all the bricks
INside the moaules and blocks

N\77

0 1 O

1
LINE FEED
/) XPANDED & CARRIAGE RETURN
AR 7

Second, describe the final conformation

Third, enumerate all the possible environments

ZIGREAD 0/1
- q:=q+1 > N
HALT
(HALETY thereis a ‘
red dot
spike @ READIO) ~
q = 0 L no £\ above above M@m
f 1 ’ APPEND PRODUCTIONIT) SEIINE FEED)
there is .\ above there is I above q:=q+ 1
. - e NOTHING TO APPEND, WORD IS EMPTY,
ZIGCOPY 01 Pg =€ CARRIAGE RETURN AND LINE FEED
thereis a
red dot)
spike
above\./

L there is e\ :
above

APPEND AND CARRIAGE RETURN ZIG-TO-ZAG

there is s >
o
above _ APPEND PRODUCTION [¢] P,
no e~ above)
qg:=q+1
ZAG COPY 0/1
*“ there (¥
regrgclj a ‘ there is a red dot
- spike above
spike 4—% @)
above\./ \/
ZAG;

LINE L thereis A

FEED >_\ (above
ﬂ ZAG-TO-ZIG
t) . there is |
there is g above
above

L no .2 above)

#0831
G: RCLF
Bead L26

#0832
G: RCLF
Bead L27

#0833
G: RCLF
Bead L28

#0834
G: RCLF
Bead L29

#0835
G: RCLF
Bead L30

#0836
G: RCLF
Bead L31

#0837
G: RCLF
Bead L32

#0838
G: RCLF
Bead L33

#0839
G: RCLF
Bead L34

#0840
G: RCLF
Bead L35

#0841
G: RCLF
Bead L36

#0842
G: RCLF
Bead L37

#0843
G: RCLF
Bead L38

Finally, prove the folding of
each brick In each environment

Thank you!

Cenclusicns

. Better understanding on how nature might work
(Geometry, hidden functions, offsets,...)

- Computational paradigms discovered for biocomputing
while folding

Perspectives

- How to handle reconfigurations?

- Universal folding system? (i.e. programming language)

Thank you!

Cenclusiens

-« Better understanding on how:nature might work
(Geometry, hidden functions, offsets,...)

- Computational paradigms discovered for biocomputing
while folding

Perspectives

. How to handle reconfigurations?

- Universal folding system? (i.e. programming language)

16-20 Jan. 2017: Research school
BioMolecular Computing@ENS Lyon (France)!

|

" o
1 .t
T &
5\ i x ']
) L
E . .
\ | | \ 2
N, 1 .
Ly 1 [
3 3 =
’ | '. L. - =
o \

Damien Woods, INRIA Paris
Cendrine Moskalenko, ENS Lyon

