Transient Dynamics of Automata Networks; Towards Cell Reprogramming

Loïc Paulevé

CNRS/LRI, Univ. Paris-Sud, Univ. Paris-Saclay — BioInfo team loic.pauleve@lri.fr http://loicpauleve.name

CIRM - 4 January 2017

Cell state of interest

Initial state(s)/Goal state(s)

Initial state(s)/Goal state(s)

• Trajectory existence

Initial state(s)/Goal state(s)

• Trajectory existence

Initial state(s)/Goal state(s)

- Trajectory existence
- Reasoning on all trajectories

Outline

1 Automata Networks

2 Approximations of transient dynamics

Abstraction of traces Reachability: cut sets, bifurcations Model reduction preserving transient properties Software Pint

3 Starting project: cell reprogramming

Transient Dynamics of Automata Networks; Towards Cell Reprogramming: Automata Networks

Outline

- 1 Automata Networks
- 2 Approximations of transient dynamics
 - Abstraction of traces

 Peachability out sets bifurcations
 - Model reduction preserving transient properties
 - Software Pint

3 Starting project: cell reprogramming

Asynchronous semantics (one transition at a time):

Asynchronous semantics (one transition at a time):

 $\langle a_0, b_0, c_0 \rangle$

Asynchronous semantics (one transition at a time):

$$\langle a_2, b_0, c_0 \rangle$$
 \nearrow
 $\langle a_0, b_0, c_0 \rangle$
 \searrow
 $\langle a_1, b_0, c_0 \rangle$

Asynchronous semantics (one transition at a time):

$$\langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle$$

$$\langle a_0, b_0, c_0 \rangle$$

$$\langle a_1, b_0, c_0 \rangle$$

Asynchronous semantics (one transition at a time):

$$\langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle$$

$$\langle a_0, b_0, c_0 \rangle$$

$$\langle a_1, b_0, c_0 \rangle$$

Asynchronous semantics (one transition at a time):

$$\langle a_2, b_0, c_0 \rangle \longrightarrow \langle a_2, b_0, c_1 \rangle \longrightarrow \langle a_2, b_1, c_1 \rangle \longrightarrow \langle a_1, b_1, c_1 \rangle$$

$$\langle a_0, b_0, c_0 \rangle$$

$$\langle a_1, b_0, c_0 \rangle \longrightarrow \cdots$$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Loïc Paulevé

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1. $f^a(x) = x[b] \land x[c]$ transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

1.
$$f^a(x) = x[b] \land x[c]$$
 transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \wedge c_1$
 $a_1 \rightarrow a_0$: $b_0 \vee c_0$

2. Non-deterministic f^a transitions:

$$a_0 \rightarrow a_1$$
: $b_1 \lor c_1$
 $a_1 \rightarrow a_0$: $b_0 \lor c_0$

Outline

- 1 Automata Networks
- 2 Approximations of transient dynamics

Abstraction of traces
Reachability: cut sets, bifurcations
Model reduction preserving transient properties
Software Pint

3 Starting project: cell reprogramming

Cell state of interest

Initial state(s)/Goal state(s)

Initial state(s)/Goal state(s)

• Trajectory existence

Initial state(s)/Goal state(s)

Trajectory existence

Initial state(s)/Goal state(s)

- Trajectory existence
- Reasoning on all trajectories

State Transition Graph

⇒ avoid building it! (even symbolically): abstractions (reachability is PSPACE-complete)

Summary

Abstractions for transient dynamics of Automata Networks

Intuition: exploit the low scope of transitions

- Static analysis by abstract interpretation [Cousot and Cousot 77]
- Intermediate representation (Local Causality Graph) to reason on necessary/sufficient conditions for transitions
- Implementation mixes algorithms on graphs and SAT (ASP).

Basically:

Approx. of PSPACE problems with $P.e^{|a|-1}$ or $NP.e^{|a|-1}$ problems where |a| is the number of local states within a single automaton (typically 2-4)

Local Causality

Objective: pair of local states of a same automaton E.g., $c_0 \rightsquigarrow c_2$, $c_0 \rightsquigarrow c_0$, $d_0 \rightsquigarrow d_1$, ...

Local path: set of acyclic seq of local transitions

local-paths
$$(c_0 \leadsto c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{a_1.b_0} c_2,$$

$$c_0 \xrightarrow{d_1} c_2\}$$

nb local paths: poly(nb local trs),exp(nb levels)

Local Causality

Objective: pair of local states of a same automaton E.g., $c_0 \rightsquigarrow c_2$, $c_0 \rightsquigarrow c_0$, $d_0 \rightsquigarrow d_1$, ...

Local path: set of acyclic seq of local transitions

local-paths
$$(c_0 \leadsto c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{a_1,b_0} c_2,$$
$$c_0 \xrightarrow{d_1} c_2\}$$

nb local paths: poly(nb local trs),exp(nb levels)

For any trace π starting at some global state s with $c_0 \in s$ and reaching c_2 :

- either $c_0 \xrightarrow{a_1} c_1 \xrightarrow{a_1,b_0} c_2$ or $c_0 \xrightarrow{d_1} c_2$ is a sub-trace of π ;
- either a_1 and b_0 , or d_1 are reached before c_2 in π .

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

Nb of objectives: poly(automata size) x nb automata
Nb of local paths: exp(automata size), poly(local transitions)
Usually, automata size is very small (2 for Boolean networks)
⇒ highly tractable for large networks of small automata

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

 $UA(\varsigma \rightarrow^* c_2) \equiv \exists$ particular acyclic sub-LCG with saturated ς .

NP formulation (find the right combination of local paths).

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

• Initial context $\varsigma = \{a \mapsto \{0, 1\}; b \mapsto \{0\}; c \mapsto \{0\}; d \mapsto \{0\}\}.$

Approximations of reachability $UA(s \rightarrow^* c_2) \Rightarrow s \rightarrow^* c_2 \Rightarrow OA(s \rightarrow^* c_2)$

Cut sets for (transient) reachability

Global state graph

Cut sets for (transient) reachability Experiments

Under-approximation of N-cut sets (cardinality at most N)

Alternative implementations:

- Computation on Local Causality Graph
- Set of local states *Is* such that $OA(s \rightarrow^* g)$ is wrong in $A \setminus Is$ (NP formulation)

```
$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1
"GP130"=1
"STAT3"=1
"CD28"=1,"IL6R"=1
...
"IL6RA"=1,"TCR"=1
```

	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)

[Paulevé et al at CAV 2013]

Cut sets for (transient) reachability

Cut sets for (transient) reachability Experiments

 $\label{eq:normalized-loss} \mbox{Under-approximation of N-cut sets (cardinality at most N)}$

Alternative implementations:

- Computation on Local Causality Graph
- Set of local states *Is* such that $OA(s \rightarrow^* g)$ is wrong in $A \setminus Is$ (NP formulation)

```
$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1
"GP130"=1
"STAT3"=1
"CD28"=1,"IL6R"=1
...
"IL6RA"=1,"TCR"=1
```

	TCell-d (101)	RBE2F (370)	MAPK-Schoeberl (309)	PID (21,000)
4-cut sets	0.03s (27)	0.06s (57)	0.1s (34)	39s (37)
6-cut sets	0.03s (27)	0.76s (334)	0.5s (43)	2.6h (1257)

[Paulevé et al at CAV 2013]

Bifurcation transitions for reachability Identify when and how a system loses a capability Global state graph

Bifurcation transitions for reachability

Under-approximation with NP formulation: find transition t, s_b such that

$$\mathsf{UA}(s_0 \to^* s_b) \land \mathsf{UA}(s_b \to^* g) \land \neg \mathsf{OA}(s_b \cdot t \to^* g)$$

ASP (SAT) implementation Joint work with L. F. Fitime, C. Guziolowski, O. Roux [WCB'16; journal submitted]

Bifurcations for reachability Experiments

```
$ pint-reach --bifurcations -i th_pluri.an FOXP3=1
```

Automata Network	states	Goal	MC (NuSMV)		Pint	
Automata Network			$ t_b $	Time	$ t_b $	Time
Lambda phage	14	CI_2	10	0.1 <i>s</i>	0	0.2 <i>s</i>
$ \Sigma = 4 T = 11$	14	Cro ₂	3	0.1 <i>s</i>	2	0.3 <i>s</i>
Th_th1	≈ 3.10 ¹¹	BCL6 ₁	8	13 <i>s</i>	5	23 <i>s</i>
$ \Sigma = 101 T = 381$	≈ 3.10	$TBET_1$	11	14 <i>s</i>	4	24 <i>s</i>
	> 5.10 ¹⁴	BCL6 ₁			2	32 <i>s</i>
Th_pluri		$IL21_1$	l out	out-of-time		26 <i>s</i>
$ \Sigma = 101 T = 381 > 5.10$		FOXP3 ₁	Out	-oi-time	4	56 <i>s</i>
		$TGFB_1$			5	96 <i>s</i>

[&]quot;STAT6" 0 \rightarrow 1 when "IL4R"=1

[&]quot;RORGT" 0 -> 1 when "BCL6"=0 and "FOXP3"=0 and "STAT3"=1 and "TGFBR"=1

[&]quot;STAT1" 0 -> 1 when "IL27R"=1

[&]quot;STAT1" 0 -> 1 when "IFNGR"=1

[Paulevé at CMSB'16]

[Paulevé at CMSB'16]

[Paulevé at CMSB'16]

⇒ identify useless transitions in Automata Network definition (no transition graph computation!)

Loïc Paulevé

Loïc Paulevé

Theorem

Goal-oriented reduction preserves all simple traces from initial state to goal.

Refining local paths

Given an initial state s, ignore local paths requiring impossible objectives:

filtered-local-paths_s
$$(a_i \leadsto a_j) \stackrel{\Delta}{=} \{ \eta \in \text{local-paths}(a_i \leadsto a_j) \mid \forall n \in \mathbb{I}^n, \forall b_k \in \text{enab}(\eta^n), \text{OA}(s \to^* b_k) \}$$

local-paths
$$(c_0 \rightsquigarrow c_2) = \{c_0 \xrightarrow{\partial_1} c_1 \xrightarrow{b_0} c_2, c_0 \xrightarrow{d_1} c_2\}$$

If
$$\neg OA(s \rightarrow^* d_1)$$
, then

filtered-local-paths_s
$$(c_0 \leadsto c_2) = \{c_0 \xrightarrow{a_1} c_1 \xrightarrow{b_0} c_2\}$$

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)
- $b_i \xrightarrow{\ell} b_k \in \operatorname{tr}(\mathcal{B}) \land b_{\star} \leadsto b_i \in \mathcal{B} \Rightarrow b_k \leadsto b_i \in \mathcal{B}$

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Smallest set of objectives \mathcal{B} satisfying:

- **1** g_0 \leadsto g_\top ∈ \mathcal{B} (main objective)

with $\operatorname{tr}(\mathcal{B}) \stackrel{\Delta}{=} \bigcup_{P \in \mathcal{B}} \operatorname{tr}(\operatorname{filtered-local-paths}_s(P))$

Transitions not in tr(B) can be removed.

Experiments

For each model: select an initial state; select a goal (activation of a node).

Goal reachability verification - equivalent in reduced model

- \$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an
- \$ pint-nusmv -i reduced.an g=1

			Verifi	cation of	goal read	chability
Model	# local trs	# states	NuSMV (EF g)		its-reach	
VPC (88)	332	KO	KO		1s	50Mb
VFC (88)	219	1.8 · 10 ⁹	236s	156Mb	0.8s	21Mb
TCell-d (101)	384	$\approx 2.7 \cdot 10^8$	3s	40Mb	0.5s	24Mb
profile 1	0	1				
TCell-d (101)	384	KO	КО		0.5s	23Mb
profile 2	161	75,947,684	474s	260Mb	0.3s	19Mb
EGF-r (104)	378	$\approx 2.7 \cdot 10^{16}$	I	KO	1.36s	60Mb
LGI-1 (104)	69	62,914,560	11s	33Mb	0.3s	17Mb
RBE2F (370)	742	KO	KO		KO	
100021 (370)	56	2,350,494	5s	377Mb	5s	170Mb

In all cases, reduction step took less than 0.1s

Experiments

Verification of cut sets (checkpoints)

- requires all the simple traces
- $\{a_1, b_1\}$ is a cut set for g_1 iff not E [$(a \neq 1 \land b \neq 1)$ U g = 1]
- equivalent in the reduced model

```
$ pint-export -i model.an --reduce-for-goal g=1 -o reduced.an
```

 $\ pint-nusmv - i \ reduced.an --is-cutset a=1,b=1 g=1$

	Wnt (32)	TCell-r (40)	EGF-r (104)	TCell-d (101)	RBE2F (370)
NuSMV	44s 55Mb KO		КО	KO	КО
	9.1s 27Mb	2.4s 34Mb	13s 33Mb	600s 360Mb	6s 29Mb
its-ctl	105s 2.1Gb	492s 10Gb	КО	KO	КО
	16s 720Mb	11s 319Mb	21s 875Mb	ко	179s 1.8Gb

In all cases, reduction step took less than 0.1s

- Automata networks with asynchronous or general step semantics
- Goal: sub-state reachability; sequences of sub-state reachability
- Removes local transitions identified as useless for the goal
- Low complexity: poly(automata, local trs); exp(nb levels)

Properties of the reduced model

- Preserves all simple traces for goal reachability from initial state
 - ⇒ existence of a trace to the goal is preserved
 - ⇒ properties shared by all the traces to the goal are preserved
- Experiments show drastic improvement for model-checking of biological nets

On-going work

- Embed in Petri net unfolding; model identification
- Fast updating after one transition

Software: Pint

http://loicpauleve.name/pint

- Input: automata networks
 - convert SBML-qual/GINsim with LogicalModels
 - scripts for CellNetAnalyser, Biocham, etc.
- Command line tools:
 - Static analysis for reachability, cut sets, fixed points
 - · Model reduction w.r.t. reachability property
 - Inference of Interaction graph/Thomas parameters
 - Interface with model-checkers (NuSMV, ITS, mole).
- OCaml library (possible C/C++ bindings)

model.an: a [0, 1] b [0, 1, 2] c [0, 1]

a 0 -> 1 when b=0 and c=1 a 1 -> 0 when b=1

a 1 -> 0 when b=1

a 1 -> 0 when c=0

b 0 -> 1 when a=1 b 1 -> 2 when a=1

Coming soon: Pint notebook

Outline

1 Automata Networks

2 Approximations of transient dynamics

Abstraction of traces
Reachability: cut sets, bifurcations
Model reduction preserving transient proper
Software Diet

3 Starting project: cell reprogramming

Cellular Reprogramming

Cell identity cascading landscape

(source: Crespo et al. Stem cells 2013; 31:2127-2135)

Reprogramming Determinants Prediction

Reprogramming Determinants (RDs): set of nodes and perturbations

2 settings

- Permanent perturbations (mutations): function is changed to constant
- Temporary perturbations: enforced transitions

2 problems

- Existential reprogramming
 after perturbation the target attractor is reachable.
- Inevitable reprogramming
 after perturbation the target attractor is the only reachable attractor

Reprogramming Determinants Prediction Preliminary results

Relationship between the Reprogramming Determinants of Boolean Networks and their Interaction Graph

Hugues Mandon, Stefan Haar, Loïc Paulevé at HSB 2016.

For permanent perturbations:

- existential reprog: RDs are all in (particular) SCCs of the IG;
- inevitable reprog: RDs can be outside the cycles;
- in all cases, reachability checking is key.

Algorithms for RDs characterization combines Interaction Graph analysis and model-checking.

Loïc Paulevé 30/32

ANR-FNR AlgoReCell 2017-2019

Computational Models and Algorithms for the Prediction of Cell Reprogrammig Determinants with High Efficiency and High Fidelity

AlgoReCell Objectives

- Design a **generic computational framework** for predicting perturbations leading to a cellular de-differentiation or trans-differentiation.
- The **predictions** will consist of combinations of targets (notably genes), referred to **Reprogramming Determinants** (RDs).
- The predictions will be based on a computational dynamical model of the cell regulation network, and on the initial and targeted cell type.
- The resulting framework will be **evaluated experimentally** for the reprogramming of adipocyte and osteoblast cells.

ANR-FNR AlgoReCell 2017-2019

France

LRI

Loïc Paulevé (leader)

LSV

- Stefan Haar
- Thomas Chatain
- Stefan Schwoon
- Hugues Mandon (PhD student LSV-LRI)
- Juraj Kolcak (future PhD student LSV-LRI)

Institut Curie

- Andrei Zinovyev
- Laurence Calzone
- + postdoc

Luxembourg

FSTC Life

- Thomas Sauter (leader)
- Lasse Sinkkonen
- + PhD student

FSTC Computer Science

- Jun Pang
- Andrzej Mizera
- + postdoc

LCSB Centre for Systems Biomedicine

Antonio del Sol