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Motivation of Boolean networks in biology

A gene regulatory network consists of a set of genes, proteins, small molecules, and their

mutual interactions. Elements:

Vertex = A gene or a gene product.

States = 1 (activated), 0 (inactivated).

Interaction Graph = Interaction of genes and genes products each other.

Activation function = Regulation function.

Updating = parallel (in the most cases).

Fixed points = Cellular phenotypes.

(Aracena J. et al. Journal of Theoretical Biology, 2006.)
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Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables {xi}i,
which evolve, in a discrete time, according to a predefined rule.

Definition

A Boolean network N = (G,F ) is defined by:

G = (V,A) is a directed graph (interaction graph) where |V | = n.

F = (fv)v2V : {0, 1}n ! {0, 1}n, is a global transition function (dynamics),

fv : {0, 1}n ! {0, 1} is a local activation function, where
8v 2 V, 8x 2 {0, 1}n, fv(x) = F (x)v.

fv depends on variable xu if and only if (u, v) 2 A, i.e.
fv(x) = fv(xu : (u, v) 2 A).
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Example of Boolean network

F : {0, 1}4 ! {0, 1}4

f1(x) := x3 ^ x4

f2(x) := x1 ^ x3

f3(x) := (x1 ^ x2) _ x4

f4(x) := x2

F (x) = (f1(x), f2(x), f3(x), f4(x))

G: Interaction graph

1

23

4
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Dynamical behavior of Boolean networks

Given N = (G,F ) a Boolean network, the value of each variable xv of N on time
t+ 1 is given by:

xv(t+ 1) = fv(x(t)).

Thus, the dynamical behavior of N is given by:

8x(t) 2 {0, 1}n, x(t+ 1) = F (x(t)).

A vector x 2 {0, 1}n is said to be a fixed point of N if F (x) = x.
The set of fixed points of (G,F ) is denoted by FP(G,F ).
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Example. n = 3 and F = (f1, f2, f3) defined by

8
<

:

f1(x) = x2 _ x3

f2(x) = x1 ^ x3

f3(x) = x3 ^ (x1 � x2)

x F (x)

000 000

001 110

010 101

011 110

100 001

101 100

110 100

111 100

Dynamics:

000 001

010 011

100

101

110

111
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Many applications

- Neural networks [McCulloch & Pitts 1943]

- Gene networks [Kau↵man 1969, Tomas 1973]

- Epidemic di↵usion, social network, Network Coding, etc

Natural question: - What can be said on the fixed points of a network
- according to its interaction graph ?
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Boolean networks with signed interaction digraphs

(regulatory Boolean networks)
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Regulatory Boolean networks

Let (G,F ) be a Boolean network, then:

fv is monotonically increasing on input u if
fv(x1, . . . , xu = 0, . . . , xn)  fv(x1, . . . , xu = 1, . . . , xn).

fv is monotonically decreasing on input u if
fv(x1, . . . , xu = 0, . . . , xn) � fv(x1, . . . , xu = 1, . . . , xn).

Example. fv(x1, x2, x3) = (x̄1 _ x̄3) ^ (x1 _ x2) is non monotonically increasing
nor monotonically decreasing on x1 .

Definition

(G,F ) is said to be a regulatory Boolean network (RBN) if each fv is either
monotonically increasing or monotonically decreasing on each input (unate
function).

Examples of RBNs: threshold Boolean networks, monotone networks,
AND-OR-NOT networks, etc.
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Signed interaction graph

Let (G = (V,A), F ) be a regulatory Boolean network, then

we can define a sign function � : A ! {+1,�1} by

�(i, j) =

(
+1 if fj is monotonically increasing on input i

�1 otherwise.

(G,�) is called a signed digraph.

The sign of a cycle c of (G,�), denoted by �(c), is equal to the product of
the signs of the arcs of c.

A cycle c of G is said to be positive if �(c) = +1 and negative if �(c) = �1.
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Example of positive and negative cycles

1

23

4

�!: �(i, j) = �1

�!: �(i, j) = 1

�(c1 : 1, 3, 1) = �1 (c1 is a negative cycle) and �(c2 : 4, 3, 2, 4) = 1 (c2 is a
positive cycle).
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The roles of positive and negative cycles in gene regulatory
networks

Thomas’ conjectures (Thomas 1981)

The presence of a positive (resp. negative) circuit is a necessary condition for the
presence of multiple stable states (resp. a cyclic attractor).

These conjectures have been proved for di↵erential systems (Plathe et al. 1995; Snoussi 1998; Gouzé 1998;

Cinquin and Demongeot 2002; Soulé 2003, 2006) and discrete systems (Aracena et al. 2004; Remy and Ruet

2006; Richard and Comet 2007; Aracena 2008; Remy et al. 2008; Richard 2010).
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Positive and negative cycles and fixed points in Boolean
networks

Problem: Given a signed digraph (G,�) with |V (G)| = n, to determine

�(G,�) = max{card(FP(G,F )) |F : {0, 1}n ! {0, 1}n a function}.

Example.

(P4,� ⌘ +1) :

1 2 3 4

OR OR OR OR =) 2 fixed points

AND AND OR OR =) 3 fixed points

¿�(P4,� ⌘ +1) =? R: �(P4,� ⌘ +1) = 3

¿�(Pn,� ⌘ +1)?
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Positive feedback vertex set

Positive transversal number

⌧+(G,�) :=minimum size of a set of vertices meeting
every positive cycle

Remark 1. ⌧

+  ⌧

Remark 2. ⌧

+ is invariant under subdivisions of arcs preserving signs

Julio Aracena Negative cycle and fixed points in BNs Marseille 2017 14 / 40



Positive feedback vertex set

Positive transversal number

⌧+(G,�) :=minimum size of a set of vertices meeting
every positive cycle

Remark 1. ⌧

+  ⌧

Remark 2. ⌧

+ is invariant under subdivisions of arcs preserving signs

Julio Aracena Negative cycle and fixed points in BNs Marseille 2017 14 / 40



Example of positive feedback vertex set

Example.

1

1

⌧

+
= 1

⌧ = 1

2

3

4 5

6

1

2

3

2

3

⌧

+
= 2

⌧ = 3

1

4
22

⌧

+
= 1

⌧ = 2

1

3

4
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Positive feedback vertex set

Theorem (Aracena, Goles, Demongeot, 2004; Aracena, 2008)

�(G,�)  2

⌧+(G,�) fixed points

Remark 1. (G,�) has only negative cycles ) ⌧

+
= 0 ) �(G,�)  1.

Remark 2. If (G,�) has only negative cycles and G is strongly connected, then
�(G,�) = 0.

Remark 3. (G,�) has no cycles ) �(G,�) = 1 (F. Robert, 1986).
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Example.

1

2

3

�(K3,�1) = 3; ⌧

+
= 2

1

2

3

�(K3,�2) = 2; ⌧

+
= 2

Question: Which is the role of the negative cycles regarding the number of fixed
points in a RBN?

Example.

(P4,� ⌘ +1) :

1 2 3 4

�(P4,� ⌘ +1) = 3

(P4,�) : 1 2 3 4

�(P4,�) = 2!
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Monotone Boolean networks
(Boolean networks without negative cycles)

(J. Aracena, A. Richard, L. Salinas. Number of fixed points and disjoint cycles

in monotone Boolean networks, SIAM Journal of Discrete Mathematics, 2016. Accepted.)
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Boolean networks without negative cycles

Definition

Given a signe digraph (G,�) and I a subset of vertices of G, the I-switch of
(G,�) is the signed digraph (G,�

I
) where �

I is defined by

8uv 2 A(G), �

I
(uv) =

⇢
�(uv) if u, v 2 I or u, v 62 I,

��(uv) otherwise.

Example.

1

23

4

(G,�)

⌧+ = 1

1

23

4

(G,�I1 )

I1 = {3}, ⌧+ = 1

1

23

4

(G,�I2 )

I2 = {1, 3}, ⌧+ = 1
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Proposition

�(G,�) = �(G,�

I
) and ⌧

+
(G,�) = ⌧

+
(G,�

I
)

Example.

12

3

4 5

6

(G,�)

⌧+ = 3

12

3

4 5

6

(G,�I)

I = {1, 3, 5}; ⌧+ = 3
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Monotone networks

Definition

A Boolean network (G,F ) is said to be monotone if

8x, y 2 {0, 1}n, x  y ) F (x)  F (y),

where x  y () xi  yi for all i.

Remark. (G,F ) is monotone () 8v 2 V (G), fv is monotonically increasing
() (G,�) has only positive arcs (i.e., � ⌘ +1)

Proposition

If G is a strongly connected digraph and (G,�) has no negative cycles, then
�(G,�) = �(G,� ⌘ +1) and ⌧

+
(G,�) = ⌧(G)
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Vertex disjoint cycles

Packing number

⌫(G) := maximum number of vertex-disjoint cycles of G.

Remark. ⌫  ⌧

Example.

11

⌧ = ⌫ = 1

2

3

4 5

6

2

3

4 5

2

3

4 5

⌫ = 2, ⌧ = 4

1

3

4

3

4

⌫ = 1, ⌧ = 2

1

2
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Theorem (Knaster-Tarski, 1928)

If f is monotone then FP(f) is a non-empty lattice

Theorem (Aracena-Salinas-Richard, 2016)

If (G,F ) is a monotone Boolean network, then FP(G,F ) is isomorphic to a
subset L ✓ {0, 1}⌧ s.t.

1
L is a non-empty lattice

2
L has no chains of size ⌫ + 2
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Proof of Theorem part 2

If FP(G,F ) has a chain of size k then ⌫ � k � 1

x

1
=

x

2
=

x

3
=

x

4
=

x

5
=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�(x1
, x

2) �(x2
, x

3) �(x3
, x

4) �(x4
, x

5)

C1 C2 C3 C4

Thus FP(G,F ) has no chains of length ⌫ + 2 and so L
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Theorem (Erdős, 1945)

If X ✓ {0, 1}n has no chains of size `+ 1 then

|X|  the sum of the ` largest binomial coe�cients
�n
k

�

Corollary

If F is monotone then

|FP(G,F )|  the sum of the ⌫ � 1 largest
�⌧
k

�
+ 2

Remark 1. The upper bound is good if ⌫ is small relative to ⌧ .

Corollary

�(G,� ⌘ +1) = 2

⌧(G)
=) ⌫(G) = ⌧(G)
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If X ✓ {0, 1}n has no chains of size `+ 1 then

|X|  the sum of the ` largest binomial coe�cients
�n
k

�

Corollary

If F is monotone then

|FP(G,F )|  the sum of the ⌫ � 1 largest
�⌧
k

�
+ 2

Remark 1. The upper bound is good if ⌫ is small relative to ⌧ .

Corollary

�(G,� ⌘ +1) = 2

⌧(G)
=) ⌫(G) = ⌧(G)

Julio Aracena Negative cycle and fixed points in BNs Marseille 2017 25 / 40



Remark 1. If ⌫(G) = ⌧(G), then it could be that �(G,� ⌘ +1) < 2

⌫ .
Example.

(P4,� ⌘ +1) :

1 2 3 4

⌫(P4) = ⌧(P4) = 2

�(P4,� ⌘ +1) = 3 < 2

⌫(P4)
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Special packing and ⌫⇤

Definition
A special packing of size k is a collection C1, . . . , Ck of disjoints cycles such that
for every principal path P from Cp to Cq, p 6= q, there exists a principal path P

0

from Cq to the last vertex of P

•

•

•

We denote ⌫⇤(G) the size of a maximum special packing of a digraph G.
Remark. ⌫

⇤  ⌫  ⌧
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Example.

1 2 3 4

2 3

⌧ = 2⌫ = 2

⌫

⇤
= 1

⌧ = ⌫ = 2, ⌫

⇤
= 1

OR OR AND AND

Only three fixed points
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Theorem (Aracena-Richard-Salinas, 2016)

2

⌫⇤(G)  �(G,� ⌘ +1)

Corollary

�(G,� ⌘ +1) = 2

⌧(G) () ⌧(G) = ⌫

⇤
(G)

Example.

1 2 3 42 3

⌧ = 2⌫ = 2

⌫

⇤
= 2⌧ = ⌫ = ⌫

⇤
= 2

MAJ MAJ MAJ MAJ

Four fixed points
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Example.

1 2 3 4 5

2 4

⌧ = 2⌫ = 2

⌫

⇤
= 2⌧ = ⌫ = ⌫

⇤
= 2

OR OR AND AND AND

Four fixed points
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Relation between ⌫ and ⌧

The largest gap known is ⌫ log ⌫  30⌧ (Seymour, 93)

Theorem (Reed-Robertson-Seymour-Thomas, 1996)

There exists h : N ! N such that, for every digraph G,

⌧  h(⌫)

Corollary

⌫ + 1  �(G)  2

⌧  2

h(⌫)

Question: It is possible to prove directly that �(G)  2

h(⌫) without using
Theorem of Reed et al., 1996?
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AND-OR-NOT networks

J. Aracena, A. Richard, L. Salinas. Maximum number of fixed points in AND?OR?NOT networks.
Journal of Computer and System Sciences 80 (2014), 1175-1190.

J. Aracena, A. Richard, L. Salinas. Fixed points in conjunctive networks and maximal independent
sets in graph contractions. Journal of Computer and System Sciences, 2015. Submitted.
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AND-NOT networks

A BN N = (G = (V,A), F ) is an AND-NOT network if each local activation
function is a conjunction of some variables o negated variables.

That is, for all i 2 V :

fi(x) =

^

j:(j,i)2A

yj , yj 2 {xj , x̄j}.

Example:

f1(x) = x̄3 ^ x4

f2(x) = x1 ^ x3

f3(x) = x1 ^ x2 ^ x̄4

f4(x) = x̄2

1

23

4
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Observations about AND-NOT networks

AND-OR-NOT-networks are particular cases of AND-NOT networks.

Every BN can be represented by an AND-NOT network with auxiliar
variables.

An AND-NOT network is completely defined by its signed interaction graph.
Thus, we will denote by (G,�) the AND-NOT network associated.
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Maximum number of fixed points in AND-NOT networks

Theorem (Aracena-Demongeot-Goles, 2004)

The maximum number of points fixed in loop-less connected AND-NOT networks
with n vertices and without negative cycles is 2(n�1)/2 for n odd and 2

(n�2)/2
+ 1

for n even.
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Maximum number of fixed points in AND-NOT networks

Theorem (Aracena,Richard, Salinas,2014)

The maximum number of points fixed in loop-less connected AND-NOT networks
with n vertices is µ(n), where

µ(n) =

8
<

:

2 · 3s�1
+ 2

s�1 if n = 3s

3

s
+ 2

s�1 if n = 3s+ 1

4 · 3s�1
+ 3 · 2s�2 if n = 3s+ 2
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Fixed points in symmetric AND-NOT networks

s� 1 s� 1

s� 2

n = 3s n = 3s+ 1 n = 3s+ 2
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Fixed points in symmetric AND-NOT networks

Theorem (Aracena-Richard-Salinas, 2015)

Let G be a loop-less symmetric digraph without a copy induced of C4. Then,
(G,� ⌘ �1) has the maximum number of fixed points. Besides,
|FP (G,� ⌘ �1)| = |MIS(G)|.

Example.

1

2

3

�(K3,�1) = 3; ⌧

+
= 2

1

2

3

�(K3,�2) = 2; ⌧

+
= 2

Question: Given G a loop-less symmetric digraph, �(G,�)  (G,� ⌘= �1)?
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Bon Anniversaire Jacques!

Merci !
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