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Introduction

Abstraction and simplification within models
stochastic, differential, discrete, hybrid frameworks
abstraction ≡ essence of modelling activity (to grasp the key elements
and their roles)
pragmatical fact : combinatoric explosion

Thomas’ modelling frameworks
If parameters are all known

Naldi’s method for computing reduced networks
Preservation of dynamical properties

Reversing the problem
Is it possible to infer parameters
from the parameters of the simplified one ?

⇒ define symbolic reductions
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Gene network specifications

CI CrobCI bCro

Set of Variables
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Gene network specifications

CI CrobCI bCro ¬(Cro ≥ 2)

¬(Cro ≥ 1)

¬(CI ≥ 1)

Set of Variables
Set of multiplexes : each multiplex is equiped with a formula
Regulations : which variable does act on which one ?

m1

m2

m3
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Gene network specifications

CI CrobCI bCro ¬(Cro ≥ 2)

¬(Cro ≥ 1)

¬(CI ≥ 1)

Set of Variables
Set of multiplexes : each multiplex is equiped with a formula
Regulations : which variable does act on which one ?
Set of parameters : towards which value is attracted a variable ?

X1 ...X2 Ya

+ environment parameters
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Gene network specifications

CI CrobCI bCro ¬(Cro ≥ 2)

¬(Cro ≥ 1)

¬(CI ≥ 1)

Set of Variables
Set of multiplexes : each multiplex is equiped with a formula
Regulations : which variable does act on which one ?
Set of parameters : towards which value is attracted a variable ?

X1 Axioms...X2 Ya

+ environment parameters
Axioms : memorize the relationships between original model and derived models

m1

m2

m3

KCI,∅
KCI,m1

KCro,∅
KCro,m2
KCro,m3
KCro,m2m3
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Giving a value to each parameter : a realization

A realization ≡ substitution σ : X → N s.t.
σ(Kv ,ω) ≤ bv for all v ∈ V and ω ∈ S−(v)
σ(ψ) is satisfied in N for all ψ ∈ Axioms
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Gene network dynamics : as usual...

The transition graph (ζ,Tσ) :
the nodes are the states : η : V → N
the resources ρσ(v , η) ≡ the set of predecessors whose formulas are
evaluated to true
transitions depend on substitution σ

v

u

v

u

v

u

η(u) = σ(Ku,ρσ(u,η))
{
η(v) = σ(Kv,ρσ(v,η))

η(u) > σ(Ku,ρσ(u,η)) η(u) < σ(Ku,ρσ(u,η))

η(v) < σ(Kv,ρσ(v,η))η(v) > σ(Kv,ρσ(v,η))
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Gene network dynamics : 3 useful formulas

1 The set of resources of v is ω :

Φω
v ≡ (

∧
m ∈ ω

ϕm) ∧ (
∧

m ∈ S−(v)rω
¬ϕm)

2 The variable v can increase :

Φ+
v ≡

∧
ω⊂S−(v)

(Φω
v =⇒ Kv ,ω > v)

3 The variable v can decrease :

Φ−v ≡
∧

ω⊂S−(v)
(Φω

v =⇒ Kv ,ω < v)
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Intuitions
Reduced network
Some results

Naldi’s reductions of network specifications (intuition)

if v is no auto-regulated :
v is supposed to go immediately to its focal value
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Intuitions
Reduced network
Some results

Suppressing a variable in specif. S = (V , X , M, E , Ax)

1 RS
v (V) = V r {v}

2 RS
v (X) = (X r {Kv ,ω|ω ⊂ S−(v)}) ∪ {KS

v ,ω|ω ⊂ S−(v)}
3 µS

v : X → RS
v (X) (renames Kv ,ω into KS

v ,ω)
RS

v (φ) ≡ ∧
ω⊂S−(V )

µS
v (Φω

v ⇒ φ[v ← Kv,ω])

RS
v (m) where m is a multiplex : the formula is reduced via R(()).

multiplexes which have as unique target v , are suppressed.
4 RS

v (E) : the same except the edges towards v
5 RS

v (Ax) = µS
v (Ax)

A gene network N = (S, σ) being given, the v-reduction of N is the
gene network RS

v (S, σ) = ( RS
v (S) , σ ◦ (µS

v )−1 ).
Transition Graph : RS

v (η) is the restriction of η to RS
v (V)
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Intuitions
Reduced network
Some results

Lemma 1 (Preservation of formulas’ evaluation)
Let η, σ s.t. η(v) = σ(Kv ,ρ(v ,η)), then

(η |= σ(ϕ)) ⇔ RS
v (η) |= σ′(RS

v (ϕ)).

if v /∈ var(ϕ), we have (η |= σ(ϕ)) ⇔ (RS
v (η) |= σ′(RS

v (ϕ)))

if v ∈ var(ϕ),

RS
v (η) |=σ′(RS

v (ϕ)) ⇔ η |= σ′(RS
v (ϕ)) because v /∈ RS

v (ϕ)

⇔ η |= σ′( ∧
ω⊂S−(v)

µS
v (Φω

v ⇒ ϕ[v ← Kv ,ω]))

using σ′ = σ◦(µS
v )−1 ⇔ η |= σ( ∧

ω⊂S−(v)
Φω

v ⇒ ϕ[v ← Kv ,ω])

using η(v)=σ(Kv ,ρ(v ,η)) ⇔ η |= σ( ∧
ω⊂S−(v)

Φω
v ⇒ ϕ)

⇔ η |= σ(ϕ)
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Intuitions
Reduced network
Some results

Lemma 2 (Resources Preservation)
Let η, σ, v such that η(v) = σ(Kv ,ρ(v ,η)) and let u a variable s.t. u 6= v.

ρσ(u, η) = ρσ′(u,RS
v (η))

Lemma 3 (Transition Preservation)
Let η, σ, v such that η(v) = σ(Kv ,ρ(v ,η)) and let η → η′.

if RS
v (η) 6= RS

v (η′), we have RS
v (η)→ RS

v (η′).

v

η |= φ1
η |= φ2
η 6|= φ3

η′ |= σ′(RS
v (φ1))

η′ |= σ′(RS
v (φ2))

η′ 6|= σ′(RS
v (φ3))

ρσ(u, η) = {m1,m2}
Ku,{m1,m2} > η(u)

ρ′σ(u, η
′) = {m1,m2}

Ku,{m1,m2} > η(u)
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Intuitions
Reduced network
Some results

Lemma 4 (Path preservation)
The set of paths “saturating first v” of N = (S, σ) is in canonical bijection
with the set of paths of N ′ = (RS

v (S), σ ◦ (µS
v )−1 ).

v v

v

v

v

v
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Intuitions
Reduced network
Some results

Preservation of dynamical properties

Lemma 5
Each attractor contains at least a cycle “saturating first v” (trivial)

v

complex attractors with cycle saturating first v

Theorem (preservation of dynamical properties)
preservation of stable states
preservation of stable cycles
the reduction of each complex attractor contains at least a cycle
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Extended reductions of network specifications (intuition)

if v is a self-regulation free variable, v can be viewed as a relay for the
transmission of information. v can be “replaced” by its focal value
(which depends only on the other variables).
if v is self-regulated at threshold θ, on either side of the threshold, v
can be “replaced” by its focal value (which depends only on the other
variables).
One can merge state s − 1 and s (s 6= θ), making the assumption that
inside these two values, v elvolves immediately.

θ sθ s θ s θ s
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Folding formulas
Suppression of a threshold

s−2 s−1 s+1
Original network

Reducted network

s

s−2 s−1 s

1 if η(v) < s − 1 in the reduced network,
v behaves as v in the initial network

2 if η(v) ≥ s in the reduced network,
v behaves as v + 1 in the initial network

3 if η(v) = s − 1, it depends on Φ+
v :

if Φ+
v is satisfied, v behaves as v + 1 in the initial network

if Φ+
v is not satisfied, v behaves as v in the initial network
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Folding a formula

1 if η(v) ≥ s (folded) or (η(v) = s − 1 (folded) and Φ+
v (initial)) :

init, η |= ϕ ≡ folded, η′ |= ϕ[v ← v + 1]

2 if η(v) < s − 1 (folded) or (η(v) = s − 1 (folded) and ¬Φ+
v (initial) :

init, η |= ϕ ≡ folded, η′ |= ϕ

Definition of foldS
v,s(ϕ) ≡ ψ1 ∧ ψ2 where

ψ1 = ((v ≥ s) ∨ (v = s − 1 ∧ ¬µS
v (Φ+

v ))) ⇒ µS
v (ϕ[v ← v + 1])

ψ2 = ((v < s − 1) ∨ (v = s − 1 ∧ ¬µS
v (Φ+

v ))) ⇒ µS
v (ϕ)
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Suppressing a threshold in specif. S = (V , X , M, E , Ax)
The reduced network :

1 foldS
v,s(V) = V

2 foldS
v,s(X) = X ∪ {KS

v ,ω|ω ⊂ S−(v)}
3 foldS

v,s(M) = {foldS
v,s(m) | m ∈ M}

4 foldS
v,s(E) = E (the same edges)

5 foldS
v,s(Ax) = µS

v (Ax) ∪ {foldeds(Kv ,ω, µ
S
v (Kv ,ω)) | ω ⊂ S−(v)}

where

foldeds(t ′, t) ≡ (t < s ∧ t ′ = t) ∨ (t > s ∧ t ′ = t − 1)

Transition Graph :
foldS

v,s(η) ...
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Lemma 6 (Preservation of formulas’ evaluation, bv > 1)
Let η0, σ be a state and a realization, and let η be defined by

η = η0

v ←
 η0(v) + 1 if η0(v) = s − 1 ∧ σ(Kv ,ρ(v ,η)) ≥ s

η0(v)− 1 if η0(v) = s ∧ σ(Kv ,ρ(v ,η)) ≤ s − 1
η0(v) otherwise


We have : (η |= σ(ϕ)) ⇔ foldS

v,s(η) |= σ′(foldS
v,s(ϕ)).

if v /∈ var(ϕ), we have (η |= σ(ϕ)) ⇔ (foldS
v,s(η) |= σ′(foldS

v,s(ϕ)))

if v ∈ var(ϕ), two cases...
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Case A and B :
s − 1 s

A B

ψ1 is trivially true, then

foldS
v,s(η) |= σ′(foldS

v,s(ϕ)) ⇔ η |= σ′(µS
v (ϕ))

Using Axioms, we deduce KS
v ,ω = Kv ,ω

foldS
v,s(η) |= σ(foldS

v,s(ϕ)) ⇔ η |= σ(ϕ)

Case C and D :
s − 1 s

DC

ψ2 is trivially true, then

foldS
v,s(η) |= σ′(foldS

v,s(ϕ)) ⇔ η |= σ′(µS
v (ϕ[v ← v + 1]))

Using Axioms, we deduce KS
v ,ω = Kv ,ω + 1

foldS
v,s(η) |= σ′(foldS

v,s(ϕ)) ⇔ η |= σ(ϕ)
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Lemma 7 (Resources Preservation, bv > 1)
Let η0, σ, v and η defined as previously. Let u a variable.
ρσ(u, η) = ρσ′(u, foldS

v,s(η))

Lemma 8 (Transition Preservation, bv > 1)
Let η0, σ, v and η defined as previously. Let η → η′.
If foldS

v,s(η) 6= foldS
v,s(η′), we have foldS

v,s(η)→ foldS
v,s(η′).

v

η |= φ1
η |= φ2
η 6|= φ3

η′ |= σ′(foldS
v,s(φ1))

η′ |= σ′(foldS
v,s(φ2))

η′ 6|= σ′(foldS
v,s(φ3))

ρσ(u, η) = {m1,m2}
Ku,{m1,m2} > η(u)

ρ′σ(u, η
′) = {m1,m2}

Ku,{m1,m2} > η(u)
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Lemma 9 (Paths’ preservation, bv > 1)
The set of paths “saturating first v” of N = (S, σ) is in canonical bijection
with the set of paths of N ′ = (foldS

v,s(S), σ′).

v v

v

v

b

c d

a

v

v

vv

η′ η′′

η
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Proof of lemma 9 :
With each path “saturating first v”, one associates a path in N ′ (trivial)
With each path in N ′, one associates the unique path “saturating first
v” in N : Let be η → η′ → η′′

∃a, b, c, d ∈ RS−1

v (η)× RS−1

v (η′)× RS−1

v (η′)× RS−1

v (η′′)

s.t.
{

a→ b
c → d and c(v) = b(v) + 1 if σ(Kv ,...) > b(v)...

in RS−1

v (η′), because the resources do not change, there exists a unique
path from b to c
there exists a unique path from a ∈ RS−1

v (η) towards d .

�
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Preservation of dynamical properties

Lemma 10
Each attractor contains at least a cycle “saturating first v” (trivial)

Theorem (preservation of dynamical properties)
preservation of stable states
preservation of stable cycles
the folding of each complex attractor contains at least a cycle
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Global approach
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   admissible 
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complexification of multiplex formulas
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Global approach
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realizations
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network
specification

first reduced
network

specification
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realizations
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symbolic reductions
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complexification of multiplex formulas

− mutiplex formulas
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Global approach

initial
network

specification

simplified
network

specification

admissible
realizations

enumeration 

realizations

   admissible 

network
specification

first reduced
network

specification

constraints

realizations

on admissible 

symbolic reductions

External

selection 

of parameters

parameter

identification

accumulations of axioms

possible thanks to

− axioms

complexification of multiplex formulas

− mutiplex formulas

solver

constraints

of

nth reduced
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Conclusion

Multiplex formulas code the situations where a regulation takes place
even if the direct regulator has been abstracted

⇒ Non proliferation of parameters
Axioms allow the parameterization of the environment

they memorize the different foldings of parameters
during threshold suppression.

Use of constraints solver
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