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Dynamical systems

Historical motivation

Modeling the evolution of a set of components A of a system over time over a
domain T.
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Identification

Model identification? Find the most suitable function F which explains and
depicts the observed responses of a system



Identification

Model identification? Find the most suitable function F which explains and
depicts the observed responses of a system

What makes easier the model identification task?
@ A priori knowledge — predetermined "shapes” for the function F.
@ A very limited number of components — reduce the search space.
@ A wide panel of perturbations and sensors — discriminate the models.

Where is the complexity?
The search space exponentially grows with the number of measured
components



Experimental omics data
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Patti et al. (2012). Metabolomics: the apogee of the omics trilogy. Nature

— Large-scale
— Knowledge incompleteness
— Noise

— Most biomolecular systems are not uniquely identifiable from
large-scale datasets



How to analyse biomolecular networks in the complex of omics data?

Strategy: develop methods to reason over a complete family of feasible
models instead of selecting one model

@ Discrete Dynamical Systems — Reduce the space of feasible models.
@ Knowledge reasoning — Precisely describe the search space.

@ Solve combinatorial problem — Extract robust information common to
all models in the search space.



Signaling networks

They dictate the cell response to diverse signals in its environment

Highlights
@ Lack of kinetic information
@ Fast and slow reactions can often be discriminated
@ ON/OFF switch-like behavior at the protein level



Modeling signaling networks

i i
a\A/ \A/
( ( }
Logical signaling networks w J J
@ Boolean networks

. . . d b e f
@ species — discrete variables \ y / \Y,
@ interactions — logic formulas or gates L c g

@ state — updated over time steps

(o] 02
a + -d d « ¢ g « f
¢ = b «+ ani e <+ —hAb 01 <+ ¢C
c « bve f « evg 02 +— g



Updating scheme

synchronous [Kauffman’sg] ~ aSynchronous [Thomas'73]

Updates all at the same time one at atime
Time-scales  similar various
Simulation Tractable Demanding
Training Demanding -

Assumption: synchronous updates are rough but reasonable models
of the (early) response in signaling networks



Phospho-proteomics data ... in theory

Experimental assay
@ Green nodes can be forced to be activated.
@ Red nodes can be forced to be inhibited
@ Blue nodes can be measured after a lapse-time.

Response to perturbations
@ Measure the system response after a certain number of perturbations.

Several hundreds of different perturbations can be tested on a same sample.



(Exact) learning issue

Inputs
@ An interaction graph based on prior knowledge
@ The results of several combinations of activators and inhibitors over readout

Search space
All logical models compatible with the interaction graph
— for the previous example, the search space contains 2'3 models.

Output
One or several logical models

@ Compatible with the interaction graph
@ Whose logical response is compatible with experimentations
@ With minimal size (parsimony assumption)

Identify the most simple models that can explain the observed responses.



Example of the learning procedure
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Example of the learning procedure
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Example of the learning procedure
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Example of the learning procedure

Readouts| Experiments
# [ c|d _#L#
1]0j1)0]1 N tol
sT1lol1To o tolerance
c d 3/0[0]O0]O
4]1|1|1]|0
(c=a)A(d=b)
Figures (c=a A (d=-a)
Experiments
#1, #2, #3 Experiments c
#1, #2, #3, #4
No tolerance
c d No tolerance
d
(c=aA(d=b) (c=a)A(d=(bA—a)

When a and b are activated, an additional effect over d emerges.

The output of the learning problem is not monotone
Increasing the set of observed responses drastically changes
the family of models which are solution to the identification problem.

] = -




Phospho-proteomics data ... in practice
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Phosphorylation activity is an average-value.

— Introduce a fithess score between boolean values and numerical

experimental measurements

Residual score = (0.2 — 0)2 + (1 — 0.7)2 =0.13




Learning as an optimization problem

Combinatorial issue. Find logical signaling networks which satisfy the
following conditions:

@ Structural condition : networks supported by interaction graph.
@ Parsimonious assumption: minimize model complexity.

@ Fitting condition: minimize the distance between measured observations
and predictions of the logical network.

arg min (Scorerss(( V7 ¢)’ (P1 PR} Pn)), ScoreSfZe((V9 d))))
(V,d)EM(v E, o)

residual sum of squares complexity



Phospho-proteomics data ... in very practice (1)

— The search space grows exponentially



Phospho-proteomics data ... in very practice (2)

Several non-observable species (white nodes)
— uncertainty at the level of internal mechanisms



Phospho-proteomics data ... in very practice (3)

[ stimui | [Finhibitors | Readouts |
——Io 120.950.020.210. 10|
—— 0.090. 1708604307

Combinatorial Phosphorylation

perturbations activity in [0,1]
o Stimulus STAT3 Readout

@ inhibitor  @5K3) Inhibitor/Readout

Non-observable/Non-controllable

Experimental data are highly noisy
— Numerical value have to be considered up to 10% of noise
— This may have a strong impact on the residual score.
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Learning as a RELAXED optimization problem

Find logical sighaling networks such that:

argmin  (Scorerss((V, ¢), (Py, . - -, Pn)), Scoregize((V, $)))
(V. @)EM(y E o)

residual sum of squares complexity

@ Structural condition : networks supported by interaction graph
@ Parsimonious assumption: minimize model complexity.

@ Fitting condition: minimize the distance between measured observations
and predictions

@ Noise tolerance condition: Find all models whose MSE are at most
10% higher than the minimal MSE

Data-noise — new sub-optimal combinatorial problem



Answer Set Programming: what? instead of how?

@ Knowledge representation and reasoning problems
@ Logical paradigm
@ NP combinatorial problems — Constraint satisfaction, diagnosis...

Problem Solution(s)
Potassco

[Cogic Program|4:»| gringo [ _clasp _ |H—>[Answer set(s)]

Potassco: Potsdam Answer Set Solving Collection
http://potassco.sourceforge.net

Modeling langage — gringo

@ Propositional logics

Solver — clasp
@ Boolean constraints resolution technics


http://potassco.sourceforge.net

Added value

High-level modeling langage expresivity: ASP ~ Prolog

@ PROPOSITIONAL LOGICS
— ASP program can only consider a finite number of atoms

@ NEGATION : smart semantic.
— A predicate is false until any fact can predit it is true.



Added value

High-level modeling langage expresivity: ASP ~ Prolog

@ PROPOSITIONAL LOGICS

— ASP program can only consider a finite number of atoms

@ NEGATION : smart semantic.

— A predicate is false until any fact can predit it is true.

High level solving capability
ASP ~ SAT, ILP

@ Combination of SAT and deductive databases resolution techniques.
— No program rewriting
— The order of clauses has (nearly) no impact
— NO INFINITE LOOPS in the problem resoution

@ OPTIMISATION is possible with preferences.



Application to solve the learning issue

Data— Guess — Check — Solution
H \ / i
Learn

Data: PKN and phospho-proteomics dataset (facts)

node(tnfa). node(p38). edge(tnfa,p38,1). exp(1l,tnfa,1). obs(1,p38,0).
Guess: Generate candidates models (non-deterministic)

{clause(A,N)} :- hyperedge(A,N).

Check: Eliminate invalid models (integrity constraints)

:- clause(A,N), clause(B,M), A!=B, redundant(A,B).

Learn: Loop between "guess” and "check”

Optimize: Minimize cost function (weighted sum of atoms)

#minimize [mismatch(E,R,W) = W, clause(A,N) : param(P) = N*P].

ASP (answer set programming) methodologies are suitable to solve
such combinatorial issues



Implementation

caspo software toolbox: http://bioasp.github.io/caspo/

Python package
pip install caspo

@ command-line interface (for
end-users)

@ python interface (for developers)
@ several dependencies
@ included in CellNOpt software.

All inclusive distribution: docker container

(prototype)
docker pull svidela/caspo




Few optimal models (0% data noise)

Initial PKN
(non compressed)
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More sub-optimal models (2% data noise)
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But quite many sub-optimal models
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~ Running caspo analyze...

Searching input-output behaviors... 91 behaviors have been found
over 5306 logical networks.

Wrote out/behaviors.csv

Wrote out/behaviors-mse-len.csv
Wrote out/variances.csv

Wrote out/core.csv

Wrote out/summary.txt

caspo analytics summary

Total Boolean logic networks: 5306
Total I/0 Boolean logic behaviors: 91
Weighted MSE: 0.0500

Core predictions: 31.05%




But quite many sub-optimal models

The combinatorics of white nodes introduces a huge disorder

16 optimal models and 5306 admissible logical networks within 10% of
noise tolerance

[Guzioloswki, ..., Saez-Rodriguez et al., Bioinformatics’13]



Dependance to noise tolerance

Distribution of Boolean logic models by MSE

®0.0499 ®0.0507 ®0.051 ® 0.0519 ®0.0522 * 0.0523 ® 0.053 ® 0.0531 * 0.0534 ®0.0539 * 0.0542 * 0.0543 ~ 0.0546
100%

80%
60%

40%

Boolean logic models

Tolerance

Non-uniform distribution of logical networks among behaviors

[Guzioloswki et al, Bioinformatics'13]

@ Half of sub-optimal models were found by 1000 executions of celln-opt
@ 4% of tolerance already yields ~ 2300 different models.

An exhaustive search of models is mandatory to have a complete view
of the variability



Possible causes to variability?

@ Not enough observations.

@ Parsimony principle — loops are not learnt — how to learn more
complex models ?

@ Early steady-state assumption — use time-series data?
@ synchronous update — impact over trajectories and accessibility?

— How can we take time-series data into account?



A novel dataset: introducing time-series data

V:gsk3, DV:p38, 0V:nfkh
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Data and example from [mac namara and al; 2014]

Loops are recovered in none of the networks based on the early steady
state assumption



From static to time-series : main issues

Main issues of the early steady-state problem

Learning problem Test all possible networks in a large search space.

Interpretation problem Networks must be mapped to an information which
can be confronted to observation data.

Early steady-state interpretation Optimize according to steady states.

— loops are naturally removed by the optimization procedure (makes things
much simpler).

Additional issues for time-series data interpretation?

Time-series data interpretation?
Computing and verifying all dynamical traces is not possible !



From static to time-series learning procedure: strategy

Abstract the dynamical traces so that they reach a fixed point within a
bounded number of steps.

Leverage the effect of the over-approximation

[Paulevé et at, CMSB 2015, Biosystems 2016]



Consider a general updating scheme

vx,x' € B" x # x', x—=x eVvie{l,....,n}, x #x = x| = f(x)

(:) 1 1 0 L
eaf oy B —0)
e (0)—()

B(X) = —X V X3

Non-deterministic dynamics; possibility of loops

Verifying if x —* x’ is hard (exact model-checking; NP-complete)
= check a weaker condition first.



Over-approximating trajectories with meta-states

Meta-states
@ Each node has its value in M = {@, , }.

o lfueM", S(u)={xeB"|Vie{l,...,n},x € u}

ﬂ 0 0 0
u= n S(U) = ? ’ } ’ ?
m 0 0 1

Mixing 0 and 1 in a meta-state if necessary

_ a0



Meta-states dynamics

Ui Up.i—1
[a] = ifIx e u:f(x)£a
Uii..n Uii..n

Example
fi(x) = X2 V X3
fg(X) =Xj

f3(X) = X2 V X3

H

—*&EEH

o
—

Verifying u == v is easier than x —" y:
@ = is strictly monotonous (S(u) C S(v));
@ no cycles;
@ traces have at most n steps (until fixed point).




Handling time-series data and asynchronous processes?

We want all models (Logical Networks)
@ compatible with the prior knowledge network (topology);
@ that can reproduce the time series data.

Necessary conditions for reproducing time series data
@ Quickly invalidate models with the over-approximation criteria.
@ False positives can be filtered out: a posteriori use of model-checking.

Distance between Logical Networks and time series data
@ When no valid models exist, find close ones (optimization of MSE).
@ "On-The-Fly” linear-like computation the mse
@ Several options wrt parsimony: minimal size, subset-minimal, complete
enumeration.
Implementation using Answer-Set Programming (ASP)
@ Declarative approach.
@ Efficient solver for solution enumeration and optimization.

work with Paulevé, M. Ostrowski, T. Schaub and C. Guziolowski [CMSB 2015]



Implementation: caspo time-series

Python package
git clone https://github.com/pauleve/caspots

@ (€) © @ con oc. 05 hpstuboompaie | €

Fp— b cen oross PR
] [T TR core o donrion - |
158 pauleve add --networks option to dentiy to force domain Latest commit 842¢17e 15 hours ago
cais o

s

@ .gitignore

@ Dockerfile

B MANIFEST.in

[ README.md

B clipy

B results2csv g

& setup.py setup.py: dependencies 23 hours ago

E3README.md

Caspots - Boolean network inference from time series data
with perturbations

All inclusive distribution: docker container (prototype)

docker pull pauleve/caspots
docker run --volume "$PWD":/wd --workdir /wd pauleve/caspots



Toy example: cardinal minimality
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Toy example: subset minimality
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Performance and accuracy
Tests on synthetic time-series data.

cardinal-minimal

subset-minimal

Model Space | First Total TP | First Total TP
Case-Study A <ls 8 (1s) | 100% | <1s 54 (25) | 100%
TNFa-EGF [5] 2% 1s 12 (5s) | 100% 1s 64 (3s) | 100%
13 nodes, 16 edges <ls 4 (1s) | 100% <ls 36 (3s) | 100%
Case-Study B.1 1s 18 (5s) | 100% 1s | 5,544 (3min) | 100%
TCR signaling [20] 237 1s 2 (5s) | 100% 1s 2,901 (90s) | 100%
14 nodes, 22 edges 1s 8 (5s) | 100% 1s | 6,510 (4min) | 100%
Case-Study B.2 25 4(12s) | 100% 1s | 73,962 (1h40) | 100%
TCR signaling [20] 249 3s 4 (25s) 0% 1s | 68,338 (1h30) 78%
16 nodes, 25 edges 3s | 20(23s) | 90% 1s | 74,757 (1h40) | 96%
Case-Study B.3 s 8 (90s) - 55 >100,000 -
TCR signaling*[20] 2106 6s 8 (90s) 5s >100,000

40 nodes, 58 edges 15 8 (60s) - 55 >100,000

Case-Study C 7s | 19 (7min) | 42% 6s >100,000 -
ERBB [21] 2174 3s | 2 (2min) | 100% 5s >100,000

19 nodes, 50 edges 55 | 69 (6min) | 19% 55 >100,000

@ Performance Cardinal minimality is very efficient

[faster by several orders of magnitude than MILP implementation]
@ Enumeration mode Subset minimality explodes in terms of solutions
@ Accuracy Model-checking reported that most over-approximated networks are

correct.

Nearly all inferred BN verifying the over-approximated constraint also

[Paulevé et al, Biosystems (in revision)]

satisfied the “real” time-series constraint




Partial summary

Time-series: 2,901 model with minimal mse and
subset minimality property

Early response: 3,506 models with minimal size
when adding 10% noise to the optimal mse.

— Still too many models !!
@ Not enough observations.

@ Variability within single-cells ?

— Too many uncertainties to choose a single model within the family.



Towards discriminations of data?

(intermediate) take-home message
@ Numerous sub-optimal models
@ Many explanation to such a variability

generic prior knowledge signaling network

‘ Literature Databases Experiments

gl

e > o> R
—~Logic-based modeling
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LEARN

cell-type specific response

— —

+
—

DISCRIMINATE

Can we reduce the size of the sub-optimal family by adding experimentations?



lllustration of the discrimination process
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lllustration of the discrimination process

Readouts|
# cld Experiments
1/0|1]0]1 #1 #2
2]1]0]1)0 No tolera nce
3/0]|0]0]O0 c d
4]11|1|1]|0

The models can be discriminated either by exp. 3 or by exp. 4

Experiments )
Experiments
#1, #2, #3 #1, #2, #3 ??
No tolerance Size tolerance €
c d
d

Experiments
#1, #2, #3, #4

No tolerance

A loop for experimental design requires to play with tolerances
=} = = E =




Experimental design as combinatorial optimization

State-of-the-art [Sharan’13, see also ECCB’14]
Find an input maximizing the difference of the outputs of the rival models
@ Optimize Shannon entropy wrt possible experiments

@ find one experiment to be performed in the same time.
@ |LP-based sketched algorithm



Experimental design as combinatorial optimization

State-of-the-art [Sharan’13, see also ECCB’14]

Find an input maximizing the difference of the outputs of the rival models

@ Optimize Shannon entropy wrt possible experiments
@ find one experiment to be performed in the same time.
@ |LP-based sketched algorithm

Cell-type specific experimental data

. stimuli  Winkibitors Readouts

0000100 [ONGNGNGNGIONGY 0.23 0.84 0.15 0.450.98
0000000 [BNENEBIBN0N 0.12 0.78 0.01 0.320.02
0100000 [GNGNONGNONNGN 0.98 0.340.290.130.75

Combinatorial Cellular
perturbations  response

Main issue: technologies perform many experimentations
at the same time!



Extended combinatorial problem

Find a set of experimentations to be performed at the same time
to reduce the variability

(v8,8" € B (3pe D= B(p) # B'(p))) -
. . Let us denote with D ;) the set of all D C P with |D| =k
@ Reduce the family of studied networks to

early-response truth-tables Oy (B,D) = MZ 2 HEEFE TR
B P
@ Find the minimum number of perturbations where H denotes the Hamming distance over Boolean vectors,

which can discriminate all pairs of truth-tables
D(k i) = arg max Oy (B, D) .

@ Maximize the sum of pairwise differences D(x,s,i)
over all pairs
e . 0 q VD* € D?k,s,i)’ @U = Z Z p]
@ Minimize the number of active stimuli and pED* wEU
inhibitions

Doyt = argmin (Ov; (D), Oy, (D*))

Novel problem formulation for experimental design videla et al, Frontiers, 2015]



Implementation: caspo design

Modeling & solving with ASP
@ incremental solving (on the number of experiments)
@ lexicographic multi-objective optimization

Python package
https://github.com/bioasp/caspo/wiki/caspo-design

All inclusive distribution: docker container

docker pull svidela/caspo
docker run -v -ti /absolute-path-to/output:/opt/out svidela/caspo



Example of application

(caspo-env)alycastre:ECHTS asiegels mkdir Exp_Design

(casno-env)alycastre:Exp Desian asieqels mkdir outout

1Exp_Design asiegels cp dataset.csv output/
(caspo-env)alycastre:Exp_Design asiegels cp networks.csv output/
(caspo-env)alycastre:Exp_Design asiegels cp pkn.sif output

(uspo-uw)l\y:us(re,EXLD!uqn l!l!}ﬂ‘ docker ru!\ ~v /Users/asiegel/Desktop/ECMTB/
Exp_Design/output:/opt/gut =t < ASR0 —

FoOReIsITICIng7a: /0 Easpo e opt/eut/pin: 511 “pt/aut/datoset.csv 30
Running caspo tearn.s

fit 0.02

Wrote out/networks. csv

rootacdsd9LcibeTa: /8 iz —-out opt/out_analyls X-netvorks opt/aut/netvarks. csv —n
Lous optravt/dataset.cou 30
Running caspo analyze...

Searching input-output behaviors... 4 behaviors have been found over 144 logical net

Wrote opt/out/behaviors.csv
Wrote opt/out/behaviors-nse-len.csv
Wrote opt/out/
Wrote opt/out/cor
Wrate opt/out/summary. txt

caspo analytics summary

Yon\ Boolean logic networks:

10 Bootean loglc behaviors: 4
weigntes
Core pradictions: 8647
rootecasdsicibera: /€ aspo —out 09t/out/ desigimt/out/behaviors.csv opt/out/datas
etocsy
Runitg cospo desion
{Hrate opt/out/opt-des ign
Wrote 0pt/out/opt=des ion

2 perturbations are required to dlscrlmlnale“the 144 models
There are 2 different relevant pairs of perturbations
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Scalability?

Search perturbations with up to 3 stimuli and 2 inhibitors (572 exps)

Optimal experimental design
IGF1 IL6 ILla TGFa TNFa

tolerance behaviors experiments  fexp topt

4

2% 4 2 0.061s 0.061s

4% 31 5 5.297s 146.5s

6% 38 5 9.329s 152.5s

8% 66 7 70.52s ~ 5h

10% 91 7 160.1s ~ 18h
Highlights

@ 7 experiments needed to discriminate all behaviors pairwise
o (°7?) = 3.8 x 10'° possible experimental designs

Highly computationally demanding but handled by ASP



How to test the soundness of the algorithm?

Prerequisite: Database DB of experimentations:
family of perturbations coupled with their impact on readouts

Init Select a set of experimentations E/e,,p, to train Boolean Networks.

°
@ Learn a family BN(E,.) optimizing the MSE according to Ejgz/p.
@ Discriminate BN(Eg4,,) with the best perturbations P in DB.

°

Increment the family of experimentations
Ejearn < Ejearn U {result of the discriminative perturbations in P}

lterate Learn a new family BN(Eezrn) (--.)
When there is a single BN, extend the search space of BNs to suboptimals.

Iterative workflow to test
the impact of the
discrimination procedure




Soundness?

Do we recover the best BN?
@ The learning procedure may be too restrictive enough to select the good
BNs.

Behavior of the minimal score of BN(EEezrn)
with respect to the complete database of perturbations DB ?

ENITIINIPE™




Artificial case-study
@ Exhaustive DB: all possible 21 experiments simulated from a golden network.
@ Init: 64 exp. with 0 or 1 stimuli and inhibitors & more complex exp. (from 10 to 16).
@ Discrimination criteria: at most 5 experiments at each run
@ Ending criteria 80 perturbations in Ejeg/n.



Artificial case-study
@ Exhaustive DB: all possible 21 experiments simulated from a golden network.
@ Init: 64 exp. with 0 or 1 stimuli and inhibitors & more complex exp. (from 10 to 16).
@ Discrimination criteria: at most 5 experiments at each run
@ Ending criteria 80 perturbations in Ejeg/n.

A Testing MSE for in-silico data

ia» 000 0 ©

MSE
0.04 0.06 0.08 0.10 0.12

64 66 68 70 72 74 76 78 80
Number of experiments used for learning

Average score wrt to the exhaustive perturbation database, procedure applied 100 times

@ The best MSE wrt to the full database is non monotonous.
@ Optimal BNs are nearly always identified
@ Much better results than random procedure.

Good convergence to the best MSE wrt to the full database after 10
experimentations.
[Videla et al, Frontiers, 2015]



Real case-study

Network: PKN from [Melas et al, 2012] (12 stimuli, 3 inhibitors, 16 readouts)
Partial DB: 120 combinatorial experimentations (real data)

Init: 12 screening perturbations (only 1 stimuli/inhibitor in each experiment).
Discrimination criteria: at most 5 experiments at each run

Ending criteria 50 perturbations in Ejgz/p.

B Testing MSE for real data

1 Hoo
|

CHIS S
i 00370 SDE?Q:OQEUQG

MSE
0.12 0.16 020 0.24

Sy ——=

TTTTT T T T T T T T T T T T T T T T T T T T I T rrrIrrrT
12 16 19 22 25 28 31 34 37 40 43 46 49
Number of experiments used for learning

Average score wrt to the 120 perturbation database, procedure applied 100 times

The Best MSE slowly decreases but does not reach the optimal one
[Videla et al, Frontiers, 2015]



What did happen?

@ Init The initial set Ej e, used to learn BN consisted of 12 different perturbations of
a single node.
— not enough combinatorial process to constrain the search

@ Database of perturbations There were only 120 different perturbations to select.
— not enough variability to discriminate



What did happen?

@ Init The initial set Ej e, used to learn BN consisted of 12 different perturbations of
a single node.
— not enough combinatorial process to constrain the search

@ Database of perturbations There were only 120 different perturbations to select.
— not enough variability to discriminate

Learning MSE for real data

0.13
1

MSE

0.07 0.09 0.11

T T T T T T T T T T T T T T T T T T T
12 16 19 22 25 28 31 34 37 40 43 46 49

Number of experiments used for learning

Average score wrt to the ongoing learnt perturbations Ejga.,

@ At first step (screening data), very good MSE.
@ When adding the readouts of new perturbations, the best score becomes ugly.

The discrimination procedure highly depends on the initial perturbation
datasets and experimental possibilties
[Videla et al, Frontiers, 2015]



Application to the complete 120 perturbation datasets

The best follow-up set of perturbations to 120 existing perturbations can be computed

A Optimal signaling perturbation
B o "
measured species with each
imental pertrbation
1600
1600
1400 4
1200 =8
1000 .
500 . s
w00 .
a0 :
200 1 ‘l—li 1—ﬁ
o . i B a TN . Cws
F R R PRI P IS IS P
- R & & & &
‘ ST LS 1

.. Although the process is far from being ended



Conclusion

Revisiting the loop relying on Answer Set Programming allows gaining
robustness

@ uniformity
@ completeness
@ performance

cell-type specific response

e —
[ ]
=

... Although there are still many issues T
to solve... EE—_————

DISCRIMINATE

Experimental design: Impact of loop and asynchronous dynamics?

Biology: Test experimental design on real experimentations?
— Core-reason of variability: single-cell studies?
— Impact of the parsimony assumption



A more generic question...

The main trick that we used: early steady state, causal abstraction, three value
abstraction... allow us to highly simplify the dynamics by reasoning on a single attractor.

Morality: We reason over input/output behaviors rather than on the dynamics.

One logical network — one truth table at (pseudo)-steady state



A more generic question...

The main trick that we used: early steady state, causal abstraction, three value
abstraction... allow us to highly simplify the dynamics by reasoning on a single attractor.

Morality: We reason over input/output behaviors rather than on the dynamics.

One logical network — one truth table at (pseudo)-steady state

Question 1: can we define an extended truth table by mapping an initial state to
several attractors ?

Question 2: can we reason over such an extended truth table?



Coming back to dynamical systems

Historical motivation
Modeling the evolution of a set of components A of a system over time over a domain
T

Mathematical framework

T X S — S
F: t , 2 —  F(t,2)
(time s state) new state at time ¢

Physics-inspired hypotheses
@ Physical laws are precisely set up.
@ Sensors enable the measurements of high-level number of components.
@ Components are independent.



Coming back to dynamical systems

Historical motivation
Modeling the evolution of a set of components A of a system over time over a domain
T

Mathematical framework

T X S - S
F: t , 2 —  F(t,2)
(time s state) new state at time ¢

Physics-inspired hypotheses
@ Physical laws are precisely set up.
@ Sensors enable the measurements of high-level number of components.
@ Components are independent.

Biological hypotheses?
@ Biological laws are empirical.
@ Sensors are rather limited.
@ Components are not independent : we often recover the same compound
under several shapes (gene, complex, protein...) within the same network.
Meta-question: how the hidden dependencies impact the analyses that we are
currently performing?
Which novel paradigms are required to handle dependencies?
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