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Dynamical systems

Historical motivation
Modeling the evolution of a set of components A of a system over time over a
domain T.
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SECTION	A	:	EXTENDED	SYNOPSIS		
	
	

MOTIVATION	AND	STATE	OF	THE	ART	
	

The	dynamical	systems	(DS)	theory	is	used	for	modeling	the	evolution	of	a	set	of	components	!	of	a	system	over	
time	 over	 a	 domain	!.	 The	 phase	 state	!	contains	 all	 possible	 states	 of	 the	 system,	 that	 is,	 quantities	 of	 each	
component.	The	time-change	of	a	DS	is	described	by	a	rule	!: !×! → !	that	specifies	the	immediate	future	of	all	
states,	given	only	their	current	values.	When	both	time	!	and	phase	state !	take	continuous	numerical	values,	the	
mathematical	rule	is	given	by	a	set	of	ordinary	differential	equations	!" !" = !(!, !)[Tes2012].	When	the	time	!	
takes	symbolic	or	discrete	values,	the	rule	of	the	discrete	DS	becomes	a	function	! → !(!)	that	is	composed	with	
itself	over	and	over	again	[Hol2012].	When	the	phase	space	!	is	also	discrete,	the	DS	is	a	discrete-event	DS	and	the	
rule !	is	described	by	automata	networks	or	discrete-event	networks	[Cas2008].		
	

Historically,	DSs	have	been	introduced	to	validate	or	refute	
hypotheses	 about	 mechanisms	 of	 interactions	 between	
physical	 components.	 The	 reality	 that	 is	 modeled	 is	 so	
complex	 that	we	only	have	a	 fragmented	and	 incomplete	
understanding	 of	 it.	 Hypotheses	 were	 modeled	 as	 non-
parameterized	 laws.	 Then,	 specific	 parameters	 were	
introduced	in	order	to	reproduce	observation	data	at	hand	
and	 finally	 predict	 the	 system	 change	 in	 response	 to	new	
initial	conditions.	The	task	of	characterizing	the	parameters	
of	 a	 law	 in	order	 to	 reproduce	 the	 result	 of	 experimental	
perturbations	is	called	DS	identification	[Lju1998,VTK2004].	
	

More	generally,	DSs	science	 is	 intrinsically	a	data	science.	
Since	 the	 18th	 century,	 the	 evolution	 of	 technological	
devices	(measurement	and	computational	capabilities)	has	
consistently	 produced	 new	 classes	 of	 experimental	 data	
about	 the	 effect	 of	 interactions	within	 a	 system.	 This	 has	
been	accompanied	by	the	invention	of	new	DS	formalisms	
associated	 with	 new	 research	 fields	 in	 mathematics	 and	
computer	 science	 (differential	 geometry,	 symbolic	
dynamics,	 control	 theory,	 model-checking,	 etc.)	
[Mit2009,AD2002].	 However,	 over	 the	 last	 decade,	
experimental	 data	 science	 has	 undergone	 a	 technological	
revolution	 with	 respect	 to	 the	 measurement	 of	
components.	 This	 (big)-data	 revolution	 of	 component	
observations	increases	the	uncertainty	of	DSs	identification.	By	multiplying	sensors	and	storage,	breakthroughs	in	
computer	 science,	 electronics	 and	 signal	 analysis,	 makes	 it	 possible	 to	 report	 the	 change	 in	 thousands	 of	
interdependent	components	over	time.	This	number	(thousands)	may	seem	relatively	small	 in	contrast	with	the	
number	 of	 system	 components	 that	 are	 integrated	 in	 some	 complex	 systems	 technologies.	 However,	 from	 an	
experimental	 sciences	 standpoint,	 integrating	 thousands	 of	 components	 in	 a	 single	 DS	 framework	 is	 a	 critical	
challenge	[BHS2009].	Each	new	component	added	to	the	model	 is	generally	associated	with	several	parameters	
whose	values	must	be	identified	according	to	observations	at	hand.	This	results	in	exponential	growth	of	the	search	
space	of	parameterized	DS	candidates	with	respect	to	the	number	of	parameters.		
	

The	search	space	of	parameterized	(numerical	or	discrete)	DSs	 for	experimental	systems	explodes	with	new	
observation	technologies.	Exploration	methods	of	this	search	space	do	not	face	this	scalability	issue.				

	

The	 strategies	 to	 solve	uncertainties	of	DS	 identification	highly	depend	on	 the	application	 field.	Astronomy	has	
recently	provided	an	example	of	highly	successful	 interactions	between	data	science	and	DS	science:	 the	 large-
scale	measurements	of	physical	component	sensors	has	 led	to	very	precise	and	successful	tuning	of	 large-scale	
parameterized	 numerical	models	 [JM2015,Ade2014].	 The	 keys	 to	 this	 success	 stemmed	 from	 innovative	data-
driven	techniques	combined	with	an	acute	understanding	of	physical	processes	that	regulate	interactions	between	
components,	and	experimental	capabilities	to	measure	the	system	response	for	a	large	set	of	initial	perturbations	
[CG2013].	These	are	some	characteristics	of	physical	science	data.	
	

However,	up	 until	 now,	modeling	 in	 non-physical	 experimental	 sciences	 has	 been	 based	 on	 small-scale	 DSs	
associated	with	 few	data	measurements.	Many	experimental	sciences	such	as	molecular	biology,	 life	sciences,	

Fig.1.	Example	of	DS	at	different	levels	of	details	
(1)	X	and	Y	have	a	
negative	impact	on	
each	other	and	
naturally	decrease.	 	

	

(2)	The	change	in	the	system	is	described	with	
numerical	or	symbolic	DS.	

	

!"
!" =  !

! + !! − !"	
!(!) ← 1 − ! 

!"
!" =  !

! + !! − !"	 !(!)  ← 1 − ! 

Parameterized	
numerical	system	

Boolean	model	with	
asynchronous	update	

scheme	
(3)	The	numerical	or	symbolic	phase	states	depict	
the	main	characteristics	of	the	system	trajectories	
(two	stable	fixed	points,	one	unstable	fixed	point,	

and	their	associated	basins	of	attractions).
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Mathematical framework

F :
T × S → S
(t , z) 7→ F (t , z)

(time , state) new state at time t



Identification

Model identification? Find the most suitable function F which explains and
depicts the observed responses of a system

What makes easier the model identification task?

A priori knowledge → predetermined ”shapes” for the function F .

A very limited number of components→ reduce the search space.

A wide panel of perturbations and sensors→ discriminate the models.

Where is the complexity?
The search space exponentially grows with the number of measured
components
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Experimental omics data

→ Large-scale

→ Knowledge incompleteness

→ Noise

→ Most biomolecular systems are not uniquely identifiable from
large-scale datasets



How to analyse biomolecular networks in the complex of omics data?

Strategy: develop methods to reason over a complete family of feasible
models instead of selecting one model

Discrete Dynamical Systems → Reduce the space of feasible models.

Knowledge reasoning→ Precisely describe the search space.

Solve combinatorial problem→ Extract robust information common to
all models in the search space.



Signaling networks

They dictate the cell response to diverse signals in its environment

Highlights

Lack of kinetic information

Fast and slow reactions can often be discriminated

ON/OFF switch-like behavior at the protein level



Modeling signaling networks

Logical signaling networks

Boolean networks

species→ discrete variables

interactions→ logic formulas or gates

state→ updated over time steps

i1 i2
a

b

c

∨
d e

∨
f

g

o1 o2

∧∧

φ =

{
a ← ¬d
b ← a ∧ i1
c ← b ∨ e

d ← c
e ← ¬i1 ∧ i2
f ← e ∨ g

g ← f
o1 ← c
o2 ← g

}



Updating scheme

synchronous [Kauffman’69] asynchronous [Thomas’73]

Updates all at the same time one at a time
Time-scales similar various
Simulation Tractable Demanding
Training Demanding –

Assumption: synchronous updates are rough but reasonable models
of the (early) response in signaling networks



Phospho-proteomics data ... in theory

Question d’apprentissage ?

Exercice: quels sont les modèles logiques de plus petite taille qui expliquent toutes
les observations?

Remarque : lorsqu’un noeud activable ou inhibable n’est pas forcé à sa valeur par
l’expérimentation, il est laissé libre et le modèle doit prédire la valeur observée.

Solution ? Pas calculable à la main, l’espace de solution est de taille 213.
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Experimental assay
Green nodes can be forced to be activated.

Red nodes can be forced to be inhibited

Blue nodes can be measured after a lapse-time.

Response to perturbations
Measure the system response after a certain number of perturbations.

Several hundreds of different perturbations can be tested on a same sample.



(Exact) learning issue

Inputs
An interaction graph based on prior knowledge

The results of several combinations of activators and inhibitors over readout

Search space
All logical models compatible with the interaction graph
→ for the previous example, the search space contains 213 models.

Output
One or several logical models

Compatible with the interaction graph

Whose logical response is compatible with experimentations

With minimal size (parsimony assumption)

Identify the most simple models that can explain the observed responses.



Example of the learning procedure

Videla et al. Supplementary Material
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Figure S1. Toy example to illustrate the learning loop. Green and red arrows refer to activations and inhibitions
respectively. Green nodes are (possible) stimuli while blue nodes are readouts or measured species. (a) A toy prior
knowledge network (PKN). (b) A gold standard BN derived from the PKN shown in (a). (c) An artificial dataset of
all possible perturbation and their corresponding responses over the gold standard shown in (b).

2 TOY EXAMPLE ILLUSTRATION FOR THE EXPERIMENTAL DESIGN LOOP

An important result from our work is the fact that we need to introduce tolerances in the learning loop
because when learning only strictly optimal models with respect to a partial experimental dataset, we may
miss (global) optimal models with respect to the complete experimental dataset. Let us illustrate this with
the following toy example.

We consider a PKN (Figure S1a) in which a and b are stimuli while c and d, are readouts. From this
PKN we derived a gold standard Boolean network shown in Figure S1b. Then, for the given experimental
setup, all possible perturbations and their corresponding responses over the gold standard are shown in
Figure S1c. Next, we start the learning loop with the PKN (Figure S1a) and using experiments #1 and
#2 (Figure S1c). The optimal BNs learned (without tolerance) will be a family of two BNs (Iteration 0
in Figure S2), which has 2 input-output behaviors. If we compute the optimal signaling perturbations
to discriminate such behaviors, the experiment proposed is #3 in Figure S1c (a = 0, b = 0). Once
the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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Figure S2. Toy example to illustrate the learning loop as new experiments are added to the used dataset. At
each iteration BNs are learned from the PKN and artificial experimental data shown in Figure S1c. Iteration 0 uses
experiments #1 and #2 without tolerance. Iteration 1 uses experiments #1, #2, and #3 with (bottom) and without
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Frontiers 5

Videla et al. Supplementary Material

a

c d

b

a

. c

d

b

a

c d

a

c

b

d

a

. c

d

b

#1, #2

#1, #2, #3

No tolerance

#1, #2, #3

Size tolerance

No tolerance

#1, #2, #3, #4

No tolerance

Le
ar

ni
ng

 (n
ea

rly
) o

pt
im

al
 B

Ns

2 optimal BNs
2 I/O behaviors

1 optimal BN
1 I/O behavior

2 optimal BNs
2 I/O behaviors

1 optimal BN
1 I/O behavior

Ite
ra

tio
n 

0
Ite

ra
tio

n 
1

Ite
ra

tio
n 

2

PKN
Experiments

Experiments

Experiments

Experiments

a

c

b

d

a

c

b

d

Figure S2. Toy example to illustrate the learning loop as new experiments are added to the used dataset. At
each iteration BNs are learned from the PKN and artificial experimental data shown in Figure S1c. Iteration 0 uses
experiments #1 and #2 without tolerance. Iteration 1 uses experiments #1, #2, and #3 with (bottom) and without
(top) tolerance. Iteration 2 uses experiments #1, #2, #3, and #4 without tolerance which yields the gold standard
BN used to generate the dataset.

Frontiers 5

(c ≡ a) ∧ (d ≡ b)
(c ≡ a) ∧ (d ≡ ¬a)

Videla et al. Supplementary Material

a

c d

b

a

. c

d

b

a

c d

a

c

b

d

a

. c

d

b

#1, #2

#1, #2, #3

No tolerance

#1, #2, #3

Size tolerance

No tolerance

#1, #2, #3, #4

No tolerance

Le
ar

ni
ng

 (n
ea

rly
) o

pt
im

al
 B

Ns

2 optimal BNs
2 I/O behaviors

1 optimal BN
1 I/O behavior

2 optimal BNs
2 I/O behaviors

1 optimal BN
1 I/O behavior

Ite
ra

tio
n 

0
Ite

ra
tio

n 
1

Ite
ra

tio
n 

2

PKN
Experiments

Experiments

Experiments

Experiments

a

c

b

d

a

c

b

d

Figure S2. Toy example to illustrate the learning loop as new experiments are added to the used dataset. At
each iteration BNs are learned from the PKN and artificial experimental data shown in Figure S1c. Iteration 0 uses
experiments #1 and #2 without tolerance. Iteration 1 uses experiments #1, #2, and #3 with (bottom) and without
(top) tolerance. Iteration 2 uses experiments #1, #2, #3, and #4 without tolerance which yields the gold standard
BN used to generate the dataset.

Frontiers 5

(c ≡ a) ∧ (d ≡ b)

Videla et al. Supplementary Material

a

c d

b

a

. c

d

b

a

c d

a

c

b

d

a

. c

d

b

#1, #2

#1, #2, #3

No tolerance

#1, #2, #3

Size tolerance

No tolerance

#1, #2, #3, #4

No tolerance

Le
ar

ni
ng

 (n
ea

rly
) o

pt
im

al
 B

Ns

2 optimal BNs
2 I/O behaviors

1 optimal BN
1 I/O behavior

2 optimal BNs
2 I/O behaviors

1 optimal BN
1 I/O behavior

Ite
ra

tio
n 

0
Ite

ra
tio

n 
1

Ite
ra

tio
n 

2

PKN
Experiments

Experiments

Experiments

Experiments

a

c

b

d

a

c

b

d

Figure S2. Toy example to illustrate the learning loop as new experiments are added to the used dataset. At
each iteration BNs are learned from the PKN and artificial experimental data shown in Figure S1c. Iteration 0 uses
experiments #1 and #2 without tolerance. Iteration 1 uses experiments #1, #2, and #3 with (bottom) and without
(top) tolerance. Iteration 2 uses experiments #1, #2, #3, and #4 without tolerance which yields the gold standard
BN used to generate the dataset.
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2 TOY EXAMPLE ILLUSTRATION FOR THE EXPERIMENTAL DESIGN LOOP

An important result from our work is the fact that we need to introduce tolerances in the learning loop
because when learning only strictly optimal models with respect to a partial experimental dataset, we may
miss (global) optimal models with respect to the complete experimental dataset. Let us illustrate this with
the following toy example.

We consider a PKN (Figure S1a) in which a and b are stimuli while c and d, are readouts. From this
PKN we derived a gold standard Boolean network shown in Figure S1b. Then, for the given experimental
setup, all possible perturbations and their corresponding responses over the gold standard are shown in
Figure S1c. Next, we start the learning loop with the PKN (Figure S1a) and using experiments #1 and
#2 (Figure S1c). The optimal BNs learned (without tolerance) will be a family of two BNs (Iteration 0
in Figure S2), which has 2 input-output behaviors. If we compute the optimal signaling perturbations
to discriminate such behaviors, the experiment proposed is #3 in Figure S1c (a = 0, b = 0). Once
the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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2 TOY EXAMPLE ILLUSTRATION FOR THE EXPERIMENTAL DESIGN LOOP

An important result from our work is the fact that we need to introduce tolerances in the learning loop
because when learning only strictly optimal models with respect to a partial experimental dataset, we may
miss (global) optimal models with respect to the complete experimental dataset. Let us illustrate this with
the following toy example.

We consider a PKN (Figure S1a) in which a and b are stimuli while c and d, are readouts. From this
PKN we derived a gold standard Boolean network shown in Figure S1b. Then, for the given experimental
setup, all possible perturbations and their corresponding responses over the gold standard are shown in
Figure S1c. Next, we start the learning loop with the PKN (Figure S1a) and using experiments #1 and
#2 (Figure S1c). The optimal BNs learned (without tolerance) will be a family of two BNs (Iteration 0
in Figure S2), which has 2 input-output behaviors. If we compute the optimal signaling perturbations
to discriminate such behaviors, the experiment proposed is #3 in Figure S1c (a = 0, b = 0). Once
the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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2 TOY EXAMPLE ILLUSTRATION FOR THE EXPERIMENTAL DESIGN LOOP

An important result from our work is the fact that we need to introduce tolerances in the learning loop
because when learning only strictly optimal models with respect to a partial experimental dataset, we may
miss (global) optimal models with respect to the complete experimental dataset. Let us illustrate this with
the following toy example.

We consider a PKN (Figure S1a) in which a and b are stimuli while c and d, are readouts. From this
PKN we derived a gold standard Boolean network shown in Figure S1b. Then, for the given experimental
setup, all possible perturbations and their corresponding responses over the gold standard are shown in
Figure S1c. Next, we start the learning loop with the PKN (Figure S1a) and using experiments #1 and
#2 (Figure S1c). The optimal BNs learned (without tolerance) will be a family of two BNs (Iteration 0
in Figure S2), which has 2 input-output behaviors. If we compute the optimal signaling perturbations
to discriminate such behaviors, the experiment proposed is #3 in Figure S1c (a = 0, b = 0). Once
the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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(c ≡ a) ∧ (d ≡ (b ∧ ¬a)

When a and b are activated, an additional effect over d emerges.

The output of the learning problem is not monotone
Increasing the set of observed responses drastically changes

the family of models which are solution to the identification problem.



Phospho-proteomics data ... in practice

Question d’apprentissage ?

Exercice: quels sont les modèles logiques de plus petite taille qui expliquent toutes
les observations?

Remarque : lorsqu’un noeud activable ou inhibable n’est pas forcé à sa valeur par
l’expérimentation, il est laissé libre et le modèle doit prédire la valeur observée.

Solution ? Pas calculable à la main, l’espace de solution est de taille 213.

Phosphorylation activity is an average-value.

→ Introduce a fitness score between boolean values and numerical
experimental measurements

Residual score = (0.2− 0)2 + (1− 0.7)2 =0.13



Learning as an optimization problem

Combinatorial issue. Find logical signaling networks which satisfy the
following conditions:

Structural condition : networks supported by interaction graph.

Parsimonious assumption: minimize model complexity.

Fitting condition: minimize the distance between measured observations
and predictions of the logical network.

arg min
(V ,φ)∈M(V,E,σ)

(Scorerss((V , φ), (P1, . . . ,Pn))︸ ︷︷ ︸
residual sum of squares

,Scoresize((V , φ))︸ ︷︷ ︸
complexity

)



Phospho-proteomics data ... in very practice (1)

→ The search space grows exponentially



Phospho-proteomics data ... in very practice (2)

Several non-observable species (white nodes)
→ uncertainty at the level of internal mechanisms



Phospho-proteomics data ... in very practice (3)

Experimental data are highly noisy
→ Numerical value have to be considered up to 10% of noise
→ This may have a strong impact on the residual score.



Learning as a RELAXED optimization problem

Find logical signaling networks such that:

arg min
(V,φ)∈M(V,E,σ)

(Scorerss ((V , φ), (P1, . . . , Pn))︸ ︷︷ ︸
residual sum of squares

, Scoresize ((V , φ))︸ ︷︷ ︸
complexity

)

Structural condition : networks supported by interaction graph

Parsimonious assumption: minimize model complexity.

Fitting condition: minimize the distance between measured observations
and predictions

Noise tolerance condition: Find all models whose MSE are at most
10% higher than the minimal MSE

Data-noise→ new sub-optimal combinatorial problem



Answer Set Programming: what? instead of how?

Knowledge representation and reasoning problems

Logical paradigm

NP combinatorial problems→ Constraint satisfaction, diagnosis...

Potassco: Potsdam Answer Set Solving Collection
http://potassco.sourceforge.net

Modeling langage→ gringo
Propositional logics

Solver→ clasp
Boolean constraints resolution technics

http://potassco.sourceforge.net


Added value

High-level modeling langage expresivity: ASP ' Prolog

PROPOSITIONAL LOGICS

→ ASP program can only consider a finite number of atoms

NEGATION : smart semantic.

→ A predicate is false until any fact can predit it is true.

High level solving capability
ASP ' SAT, ILP

Combination of SAT and deductive databases resolution techniques.

→ No program rewriting

→ The order of clauses has (nearly) no impact

→ NO INFINITE LOOPS in the problem resoution

OPTIMISATION is possible with preferences.
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Application to solve the learning issue

Data: PKN and phospho-proteomics dataset (facts)

node(tnfa). node(p38). edge(tnfa,p38,1). exp(1,tnfa,1). obs(1,p38,0).

Guess: Generate candidates models (non-deterministic)

{clause(A,N)} :- hyperedge(A,N).

Check: Eliminate invalid models (integrity constraints)

:- clause(A,N), clause(B,M), A!=B, redundant(A,B).

Learn: Loop between ”guess” and ”check”

Optimize: Minimize cost function (weighted sum of atoms)

#minimize[mismatch(E,R,W) = W, clause(A,N) : param(P) = N*P].

ASP (answer set programming) methodologies are suitable to solve
such combinatorial issues



Implementation

caspo software toolbox: http://bioasp.github.io/caspo/

Python package
pip install caspo

command-line interface (for
end-users)

python interface (for developers)

several dependencies

included in CellNOpt software.

All inclusive distribution: docker container
(prototype)

docker pull svidela/caspo



Few optimal models (0% data noise)



More sub-optimal models (2% data noise)



But quite many sub-optimal models



But quite many sub-optimal models

The combinatorics of white nodes introduces a huge disorder

16 optimal models and 5306 admissible logical networks within 10% of
noise tolerance

[Guzioloswki, ..., Saez-Rodriguez et al., Bioinformatics’13]



Dependance to noise tolerance

Non-uniform distribution of logical networks among behaviors
[Guzioloswki et al, Bioinformatics’13]

Half of sub-optimal models were found by 1000 executions of celln-opt

4% of tolerance already yields ' 2300 different models.

An exhaustive search of models is mandatory to have a complete view
of the variability



Possible causes to variability?

Not enough observations.

Parsimony principle→ loops are not learnt→ how to learn more
complex models ?

Early steady-state assumption→ use time-series data?

synchronous update→ impact over trajectories and accessibility?

→ How can we take time-series data into account?



A novel dataset: introducing time-series data

Data and example from [mac namara and al; 2014]

Loops are recovered in none of the networks based on the early steady
state assumption



From static to time-series : main issues

Main issues of the early steady-state problem

Learning problem Test all possible networks in a large search space.

Interpretation problem Networks must be mapped to an information which
can be confronted to observation data.

Early steady-state interpretation Optimize according to steady states.

→ loops are naturally removed by the optimization procedure (makes things
much simpler).

Additional issues for time-series data interpretation?

Time-series data interpretation?
Computing and verifying all dynamical traces is not possible !



From static to time-series learning procedure: strategy

Abstract the dynamical traces so that they reach a fixed point within a
bounded number of steps.

Leverage the effect of the over-approximation

[Paulevé et at, CMSB 2015, Biosystems 2016]



Consider a general updating scheme

∀x , x ′ ∈ Bn, x 6= x ′, x → x ′ ⇔ ∀i ∈ {1, . . . , n}, xi 6= x ′i ⇒ x ′i = fi (x)

1

23

f1(x) = ¬x2 ∨ x3

f2(x) = x1

f3(x) = ¬x2 ∨ x3

(
1
0
0

) (
1
1
0

) (
0
1
0

)
· · ·

(
1
0
1

) (
1
1
1

)

Non-deterministic dynamics; possibility of loops

Verifying if x →∗ x ′ is hard (exact model-checking; NP-complete)

⇒ check a weaker condition first.



Over-approximating trajectories with meta-states

Meta-states
Each node has its value in M = { 0 , 1 , 0 1 }.

If u ∈ Mn, S(u) = {x ∈ Bn | ∀i ∈ {1, . . . , n}, xi ∈ ui}

u =


0

0 1
1

0 1

 S(u) =


 0

0
1
0

 ,

 0
1
1
0

 ,

 0
0
1
1

 ,

 0
1
1
1




Mixing 0 and 1 in a meta-state 0 1 if necessary



Meta-states dynamics u1..i−1

a
ui+1..n

⇒

 u1..i−1

0 1
ui+1..n

 if ∃x ∈ u : fi (x) 6= a

Example

f1(x) = ¬x2 ∨ x3

f2(x) = x1

f3(x) = ¬x2 ∨ x3

 1
0
0

  1
0 1

0

  0 1
0 1

0


 1

0
0 1

  1
0 1
0 1

 · · ·

Verifying u ⇒∗ v is easier than x→∗ y:
⇒ is strictly monotonous (S(u) ( S(v ));

no cycles;

traces have at most n steps (until fixed point).



Handling time-series data and asynchronous processes?

We want all models (Logical Networks)
compatible with the prior knowledge network (topology);

that can reproduce the time series data.

Necessary conditions for reproducing time series data
Quickly invalidate models with the over-approximation criteria.

False positives can be filtered out: a posteriori use of model-checking.

Distance between Logical Networks and time series data
When no valid models exist, find close ones (optimization of MSE).

”On-The-Fly” linear-like computation the mse

Several options wrt parsimony: minimal size, subset-minimal, complete
enumeration.

Implementation using Answer-Set Programming (ASP)
Declarative approach.

Efficient solver for solution enumeration and optimization.

work with Paulevé, M. Ostrowski, T. Schaub and C. Guziolowski [CMSB 2015]



Implementation: caspo time-series

Python package
git clone https://github.com/pauleve/caspots

All inclusive distribution: docker container (prototype)

docker pull pauleve/caspots
docker run --volume "$PWD":/wd --workdir /wd pauleve/caspots



Toy example: cardinal minimality



Toy example: subset minimality



Performance and accuracy
Tests on synthetic time-series data.

[Paulevé et al, Biosystems (in revision)]

Performance Cardinal minimality is very efficient
[faster by several orders of magnitude than MILP implementation]

Enumeration mode Subset minimality explodes in terms of solutions

Accuracy Model-checking reported that most over-approximated networks are
correct.

Nearly all inferred BN verifying the over-approximated constraint also
satisfied the ”real” time-series constraint



Partial summary
TGFa

egfr

rasgap

shc

PI3K

grb2

jak1

a20

traf6

MEK12

map3k7
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cot
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map3k1

pak

mkk4 mkk7
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nik

ras

pip3

sos

STAT1

IRS1s

AKT

GSK3

mTOR

casp9

mdm2

p70S6

p53

pdk1

p90RSK

p90RSKn

cfosCREB

jak2

STAT3

STAT13

STAT33

erk12

erk12nprak

STAT11

STAT1nmsk12 elk1STAT3n

HistH3 atf1

pip2

nfkb

nfkbn

tlr4

IFNgr

JNK12

JNK12n

cJUNatf2HSP27

IL1a

il1r

traf2

ask1

mkk6mkk3

ck2

LPS

tnfr

p38

p38n

TNFa

igfr

irs1t

IFNg

IL6r

IL6

pp2a

IGF1

Early response: 3,506 models with minimal size
when adding 10% noise to the optimal mse.

Time-series: 2,901 model with minimal mse and
subset minimality property

→ Still too many models !!

Not enough observations.

Variability within single-cells ?

→ Too many uncertainties to choose a single model within the family



Towards discriminations of data?

(intermediate) take-home message

Numerous sub-optimal models

Many explanation to such a variability

Can we reduce the size of the sub-optimal family by adding experimentations?



Illustration of the discrimination process
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Figure S1. Toy example to illustrate the learning loop. Green and red arrows refer to activations and inhibitions
respectively. Green nodes are (possible) stimuli while blue nodes are readouts or measured species. (a) A toy prior
knowledge network (PKN). (b) A gold standard BN derived from the PKN shown in (a). (c) An artificial dataset of
all possible perturbation and their corresponding responses over the gold standard shown in (b).

2 TOY EXAMPLE ILLUSTRATION FOR THE EXPERIMENTAL DESIGN LOOP

An important result from our work is the fact that we need to introduce tolerances in the learning loop
because when learning only strictly optimal models with respect to a partial experimental dataset, we may
miss (global) optimal models with respect to the complete experimental dataset. Let us illustrate this with
the following toy example.

We consider a PKN (Figure S1a) in which a and b are stimuli while c and d, are readouts. From this
PKN we derived a gold standard Boolean network shown in Figure S1b. Then, for the given experimental
setup, all possible perturbations and their corresponding responses over the gold standard are shown in
Figure S1c. Next, we start the learning loop with the PKN (Figure S1a) and using experiments #1 and
#2 (Figure S1c). The optimal BNs learned (without tolerance) will be a family of two BNs (Iteration 0
in Figure S2), which has 2 input-output behaviors. If we compute the optimal signaling perturbations
to discriminate such behaviors, the experiment proposed is #3 in Figure S1c (a = 0, b = 0). Once
the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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Figure S2. Toy example to illustrate the learning loop as new experiments are added to the used dataset. At
each iteration BNs are learned from the PKN and artificial experimental data shown in Figure S1c. Iteration 0 uses
experiments #1 and #2 without tolerance. Iteration 1 uses experiments #1, #2, and #3 with (bottom) and without
(top) tolerance. Iteration 2 uses experiments #1, #2, #3, and #4 without tolerance which yields the gold standard
BN used to generate the dataset.
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2 TOY EXAMPLE ILLUSTRATION FOR THE EXPERIMENTAL DESIGN LOOP

An important result from our work is the fact that we need to introduce tolerances in the learning loop
because when learning only strictly optimal models with respect to a partial experimental dataset, we may
miss (global) optimal models with respect to the complete experimental dataset. Let us illustrate this with
the following toy example.

We consider a PKN (Figure S1a) in which a and b are stimuli while c and d, are readouts. From this
PKN we derived a gold standard Boolean network shown in Figure S1b. Then, for the given experimental
setup, all possible perturbations and their corresponding responses over the gold standard are shown in
Figure S1c. Next, we start the learning loop with the PKN (Figure S1a) and using experiments #1 and
#2 (Figure S1c). The optimal BNs learned (without tolerance) will be a family of two BNs (Iteration 0
in Figure S2), which has 2 input-output behaviors. If we compute the optimal signaling perturbations
to discriminate such behaviors, the experiment proposed is #3 in Figure S1c (a = 0, b = 0). Once
the experiment #3 is added to the dataset used for learning, the resulting optimal models is actually
a single BN (Iteration 1 (top) in Figure S2). Notably, with 1 BN there can be only one input-output
behavior. Thus, our method aims at learning nearly optimal BNs considering a range of tolerances with
respect to the optimal size and fitness. In our toy example, considering BNs with size larger than the
optimal by 1, yields a family of two BNs (Iteration 1 (bottom) in Figure S2), describing 2 input-output
behaviors. The optimal signaling perturbation proposed to discriminate these input-output behaviors is
the experiment #4 in Figure S1c (a = 1, b = 1). Finally, learning optimal BNs using experiments #1
to #4 yields the gold standard BN (Iteration 2 in Figure S2). It is worth noting that the input-output
behaviors in all the steps are not necessarily the same, since BN topologies appear and dissapear from the
set of optimal BNs compatible as the dataset changes. Importantly, without the incremental procedure of
tolerance parameters, we would have ended the learning loop at iteration 1 and without finding the gold
standard.
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A loop for experimental design requires to play with tolerances



Experimental design as combinatorial optimization

State-of-the-art [Sharan’13, see also ECCB’14]

Find an input maximizing the difference of the outputs of the rival models

Optimize Shannon entropy wrt possible experiments

find one experiment to be performed in the same time.

ILP-based sketched algorithm

Main issue: technologies perform many experimentations
at the same time!
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Extended combinatorial problem

Find a set of experimentations to be performed at the same time
to reduce the variability

Reduce the family of studied networks to
early-response truth-tables

Find the minimum number of perturbations
which can discriminate all pairs of truth-tables

Maximize the sum of pairwise differences
over all pairs

Minimize the number of active stimuli and
inhibitions

Novel problem formulation for experimental design [Videla et al, Frontiers, 2015]



Implementation: caspo design

Modeling & solving with ASP

incremental solving (on the number of experiments)

lexicographic multi-objective optimization

Python package
https://github.com/bioasp/caspo/wiki/caspo-design

All inclusive distribution: docker container

docker pull svidela/caspo
docker run -v -ti /absolute-path-to/output:/opt/out svidela/caspo



Example of application

2 perturbations are required to discriminate the 144 models
There are 2 different relevant pairs of perturbations



Scalability?
Search perturbations with up to 3 stimuli and 2 inhibitors (572 exps)

tolerance behaviors experiments texp topt

2% 4 2 0.061s 0.061s
4% 31 5 5.297s 146.5s
6% 38 5 9.329s 152.5s
8% 66 7 70.52s ∼ 5h

10% 91 7 160.1s ∼ 18h

Highlights

7 experiments needed to discriminate all behaviors pairwise(
572

7

)
= 3.8× 1015 possible experimental designs

Highly computationally demanding but handled by ASP



How to test the soundness of the algorithm?

Prerequisite: Database DB of experimentations:
family of perturbations coupled with their impact on readouts

Init Select a set of experimentations Elearn to train Boolean Networks.

Learn a family BN(Elearn) optimizing the MSE according to Elearn.

Discriminate BN(Elearn) with the best perturbations P in DB.

Increment the family of experimentations
Elearn ← Elearn ∪ {result of the discriminative perturbations in P}

Iterate Learn a new family BN(Elearn) (...)

When there is a single BN, extend the search space of BNs to suboptimals.

Iterative workflow to test
the impact of the
discrimination procedure

α = β =



Soundness?

Do we recover the best BN?

The learning procedure may be too restrictive enough to select the good
BNs.

Behavior of the minimal score of BN(Elearn)
with respect to the complete database of perturbations DB ?



Artificial case-study
Exhaustive DB: all possible 214 experiments simulated from a golden network.
Init: 64 exp. with 0 or 1 stimuli and inhibitors & more complex exp. (from 10 to 16).
Discrimination criteria: at most 5 experiments at each run
Ending criteria 80 perturbations in Elearn.

Average score wrt to the exhaustive perturbation database, procedure applied 100 times

The best MSE wrt to the full database is non monotonous.
Optimal BNs are nearly always identified
Much better results than random procedure.

Good convergence to the best MSE wrt to the full database after 10
experimentations.
[Videla et al, Frontiers, 2015]
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Real case-study
Network: PKN from [Melas et al, 2012] (12 stimuli, 3 inhibitors, 16 readouts)

Partial DB: 120 combinatorial experimentations (real data)

Init: 12 screening perturbations (only 1 stimuli/inhibitor in each experiment).

Discrimination criteria: at most 5 experiments at each run

Ending criteria 50 perturbations in Elearn.

Average score wrt to the 120 perturbation database, procedure applied 100 times

The Best MSE slowly decreases but does not reach the optimal one
[Videla et al, Frontiers, 2015]



What did happen?
Init The initial set Elearn used to learn BN consisted of 12 different perturbations of
a single node.

→ not enough combinatorial process to constrain the search

Database of perturbations There were only 120 different perturbations to select.
→ not enough variability to discriminate

Average score wrt to the ongoing learnt perturbations Elearn

At first step (screening data), very good MSE.
When adding the readouts of new perturbations, the best score becomes ugly.

The discrimination procedure highly depends on the initial perturbation
datasets and experimental possibilties

[Videla et al, Frontiers, 2015]
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Application to the complete 120 perturbation datasets

The best follow-up set of perturbations to 120 existing perturbations can be computed

σ =

σ =

... Although the process is far from being ended



Conclusion

Revisiting the loop relying on Answer Set Programming allows gaining
robustness

uniformity

completeness

performance

... Although there are still many issues
to solve...

Experimental design: Impact of loop and asynchronous dynamics?

Biology: Test experimental design on real experimentations?
→ Core-reason of variability: single-cell studies?

→ Impact of the parsimony assumption



A more generic question...

The main trick that we used: early steady state, causal abstraction, three value
abstraction... allow us to highly simplify the dynamics by reasoning on a single attractor.

Morality: We reason over input/output behaviors rather than on the dynamics. ‘

One logical network→ one truth table at (pseudo)-steady state

Question 1: can we define an extended truth table by mapping an initial state to
several attractors ?

Question 2: can we reason over such an extended truth table?
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Coming back to dynamical systems
Historical motivation
Modeling the evolution of a set of components A of a system over time over a domain
T.
Mathematical framework

F :
T × S → S
(t , z) 7→ F (t, z)

(time , state) new state at time t

Physics-inspired hypotheses
Physical laws are precisely set up.

Sensors enable the measurements of high-level number of components.

Components are independent.

Biological hypotheses?
Biological laws are empirical.

Sensors are rather limited.

Components are not independent : we often recover the same compound
under several shapes (gene, complex, protein...) within the same network.

Meta-question: how the hidden dependencies impact the analyses that we are
currently performing?

Which novel paradigms are required to handle dependencies?
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