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A boolean network (BN) is a function

£:{0,1}" = {01}
= (‘rlw"vwn) = f(x) = (fl(x)vafn(x))
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A boolean network (BN) is a function

f:{0,1}» — {0,1}"
x=(21,...,2n) = f(x)=(fi(x),..., fa(x))

The synchronous dynamics is described by the successive iterations:

o = f(ah).
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A boolean network (BN) is a function

f:{0,1}" — {0,1}"
x=(21,...,2n) = f(x)=(fi(x),..., fa(x))

The synchronous dynamics is described by the successive iterations:
o = f(ah).
The synchronous graph of f is the digraph on {0,1}™ with arc set

{z—= flx) : z€{0,1}" }.

e A limit cycle (or synchronous attractor) is a cycle in this graph.

e A synchronous periodic point is a point that belongs to a limit cycle.

e The fixed points of f are the limit cycles of length one.
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Example ¢ | f)
000 | 000

001 | 110

filr) =x2Vas 010 | 101

fo(x) =Z1NT3 011 | 110

f3(.1:) =T33 A (331 v/ 3}‘2) 100 | 001

101 | 100

110 | 101

111 | 100

Synchronous graph
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|
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l/‘ \l 2 limits cycles
5 synchronous periodic points
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The asynchronous graph of f is the digraph on {0, 1}"™ with arc-set

{z—=7" : 2e{0,1}", Vien], filz) #z; }.
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The asynchronous graph of f is the digraph on {0, 1}"™ with arc-set
{z—=7" : 2e{0,1}", Vien], filz) #z; }.
The number of arcs leaving = in the asynchronous graph is

d(z, f(x)) (instability number of x)
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The asynchronous graph of f is the digraph on {0, 1}"™ with arc-set
{z—=7" : 2e{0,1}", Vien], filz) #z; }.
The number of arcs leaving = in the asynchronous graph is

d(z, f(x)) (instability number of x)

An asynchronous attractor is a terminal strong component.

An asynchronous periodic point is a point in an asyn attractor.

e The fixed points of f are the asynchronous attractors of size one.

An asynchronous attractor of size at least two is cyclic.
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Example

z | f(z)

000 | 000

001 | 110

f1 (I) = T \Y I3 010 101
folz) =FTAT3 011 | 110
fd(x) =T3 A (xl \Vi x2) 100 | 001

101 | 100

110 | 101

Asynchronous graph 1| 100

011 — 111

v v
010 110
001 101
/ v

000 «— 100

1 asynchronous attractor
1 asynchronous periodic point
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The interaction graph of f is the signed digraph G(f) defined by:

o the vertex set is {1,...,n}
e there is a positive arc j — 1 is there exists x € {0,1}"™ such that

fi(flll, 500 ,IEj_l,O,LITj+1, 500 ,IZIn) =0
fi(!El, 500 ,xj,l, ].,(Ej+1, 500 ,xn) =1

o there is a negative arc j — 4 is there exists z € {0,1}" such that

fi(l‘l, 0oo ,xj_1,0,$j+1, 000 ,xn) =1
fl'(il,‘l, coo ,ZIIj_l, 1,ZZ,‘j+1, 0o o ,.fIIn) = 0

Workshop CIRM, 2017-01-05 6/32
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Example

z | f(=z)
000 | 000
001 | 110
filr) =z2Vas 010 | 101
folx) =ZT1NT3 011 | 110
f3(a:) =T33 A (-’151 \Vi q;2) 100 | 001
101 | 100
110 | 101
111 | 100

Interaction graph

O— =@

\V
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Synchronous graph

010

1
011 101 111

174 N
000 110 100

g NV
001

Asynchronous graph Interaction graph

O——®

\V

011 — 111

122{_9 zﬁ”l

010 110

l 001 % 101
4 '

000 «<— 100

8/32



Synchronous graph

010

1
011 101 111

174 N
000 110 100

g NV
001

[Kauffman 69]

Asynchronous graph Interaction graph

O——®

\V

011 — 111

122{_9 zﬁ”l

010 110

l 001 % 101
4 '

000 «<— 100

[Thomas 73]
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Question

What can be said on the synchronous and asynchronous attractors of f
according to the interaction graph G(f) only?

Synchronous graph

010
1
011 101 111
174 N
000 110 100
(@) N ¢
001

[Kauffman 69]

Asynchronous graph Interaction graph

O——®

\V

011 — 111

//‘% //‘J

010 110

J 001 % 101
4 '

000 «<— 100

[Thomas 73]
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The importance of feedback cycles
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Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other
synchronous or asynchronous attractor.
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Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other
synchronous or asynchronous attractor.
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Adrien RICHARD Limit cyc

Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other
synchronous or asynchronous attractor.

\/\/
M\

“Feedback cycles are the engines of the complexity”

stabilization
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According to René Thomas, there are two kings of cycles:
e positive cycles : even number of negative arcs.

e negative cycles : odd number of negative arcs.

Thomas’ rules:
e Positive cycles are necessary for multistationarity.

e Negative cycles are necessary for sustained oscillations.

Adrien RICHARD Limit cycles in non-expansi

vorks

11/32



According to René Thomas, there are two kings of cycles:
e positive cycles : even number of negative arcs.

e negative cycles : odd number of negative arcs.

Thomas’ rules:
e Positive cycles are necessary for multistationarity.

e Negative cycles are necessary for sustained oscillations.

Theorem [Aracena 2008]
If G(f) has no positive cycle, then f has at most one fixed point.

Adrien RICHARD Limit cycles in non-expansiv

lean networks Workshop CIRM, 2017-01-05 11/32



According to René Thomas, there are two kings of cycles:
e positive cycles : even number of negative arcs.

e negative cycles : odd number of negative arcs.

Thomas’ rules:
e Positive cycles are necessary for multistationarity.

e Negative cycles are necessary for sustained oscillations.

Theorem [Aracena 2008]

If G(f) has no positive cycle, then f has at most one fixed point. J
Theorem

If G(f) has no negative cycle, then f has no cyclic asynchronous att. J
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The dynamics of isolated cycles

12/32



Some basic facts about isolated cycles:
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Some basic facts about isolated cycles:

e Given a cycle C, there is a unique network f with G(f) = C.

©)

fi(z) =5

@/ \@ fo(z) = 11
fs(z) =73

\ / fa(z) = x5
@ @ fs(x) =74
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Some basic facts about isolated cycles:
e Given a cycle C, there is a unique network f with G(f) = C.

o Networks associated with positive cycles are pairwise isomorphic
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Some basic facts about isolated cycles:
e Given a cycle C, there is a unique network f with G(f) = C.

o Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

A A

Q [ ®
\o Ty
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Some basic facts about isolated cycles:
e Given a cycle C, there is a unique network f with G(f) = C.

o Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

o Networks associated with negative cycles are pairwise isomorphic
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Some basic facts about isolated cycles:
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o Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

o Networks associated with negative cycles are pairwise isomorphic

O

N

.\O O/ R

|

13/32



Some basic facts about isolated cycles:
e Given a cycle C, there is a unique network f with G(f) = C.

o Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

o Networks associated with negative cycles are pairwise isomorphic

O

N

O
\ / t=10
O O

|

13/32



Some basic facts about isolated cycles:
e Given a cycle C, there is a unique network f with G(f) = C.

o Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

o Networks associated with negative cycles are pairwise isomorphic
and have no fixed point.

©) _

fi(x) =75

@/ \@ fa(z) =21
f3(x) = @9

\ / fa(x) = 23
@ @ f5($) = T4
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Some basic facts about isolated cycles:
e Given a cycle C, there is a unique network f with G(f) = C.

o Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

o Networks associated with negative cycles are pairwise isomorphic
and have no fixed point.

©)

/ \ filz) =75 =z
@ @ Jo(z) =21 = 19
f3(z) = 22 = 23

\ / fa(x) = x3 =24
@ @ f5(x)=ac4—x5
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Theorem (Synchronous isolated cycle) [Demongeot-Sené-Noual 2012]
o If G(f) is a positive cycle then the nb of limit cycles of length p is

{c;,“ ifpln

0 otherwise

o If G(f) is a negative cycle then the nb of limit cycles of length p is

{c; if p|2n and ptn

0 otherwise

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 14/32



Theorem (Synchronous isolated cycle) [Demongeot-Sené-Noual 2012]
o If G(f) is a positive cycle then the nb of limit cycles of length p is

{ cf ::%Zdlpu(g)Zd ifp|n

0 otherwise

o If G(f) is a negative cycle then the nb of limit cycles of length p is

{ cp = %Zodd d2 w(d)2%i  ifp|2nand ptn

0 otherwise

Here, 1 is the Mobius function:

0 if n is not square-free,
u(n) = 1 if n is square-free and has an even number prime factors,
—1 if n is square-free and has an odd number prime factors.
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Corollary

If G(f) is a disjoint union of cycles, then the number of limit cycles of a

each length is known.

Adrien RICHARD

o) o F
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Workshop CIRM, 2017-01-05

Limit cycles in non-expansive Boolean networks
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Proposition (Asynchronous isolated cycles) [Remy et al 2003]

o If G(f) is a positive cycle, then f has two asynchronous attractors,
which are both fixed points.

011 — 111

/ /
® 010 % 110 I
@</_\@ l 001 % 101
v e
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Proposition (Asynchronous isolated cycles) [Remy et al 2003]

o If G(f) is a positive cycle, then f has two asynchronous attractors,

which are both fixed points.

o If G(f) is a negative cycle, then f has a unique asynchronous att,
which is cyclic attractor A of size 2n such that

Vre A

d(x, f(x)) = 1.

011 — 111

/ /!
® 010 % 110 [
@{_\*@ l 001 % 101
N4 N4

000 «<— 100

o\

®O—0O

011 ¢— 111

/ 7 [
010 % 110
l 001 % 101
4 e

000 =—> 100
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Corollary
If G(f) is a disjoint union of cycles, with k™ positive and k&~ negative,
e f has exactly k™ asynchronous attractors, pairwise isomorphic,

e the instability of every asynchronous periodic point is exactly k.

o1
S \O/ o °\

1 | | Vi

Adrien RICHARD Limit cycles in non-expansive Boolea

tworks Workshop CIRM, 2017-01-05
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Given some synchronous/asynchronous attractors, is-it possible to
identify some positive / negative cycles in G(f) that could “explain” the
presence of these attractors?
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Given some synchronous/asynchronous attractors, is-it possible to
identify some positive / negative cycles in G(f) that could “explain” the
presence of these attractors?

Given two fixed points, is-it possible to identify some positive cycles in
G(f) that could “explain” the presence of these two fixed points?

Workshop CIRM, 2017-0
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Given some synchronous/asynchronous attractors, is-it possible to
identify some positive / negative cycles in G(f) that could “explain” the
presence of these attractors?

Given two fixed points, is-it possible to identify some positive cycles in
G(f) that could “explain” the presence of these two fixed points?

— Notions of “functional cycles”. Very few formal results...

Workshop CIRM, 2017-0
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Given some synchronous/asynchronous attractors, is-it possible to
identify some positive / negative cycles in G(f) that could “explain” the
presence of these attractors?

Given two fixed points, is-it possible to identify some positive cycles in
G(f) that could “explain” the presence of these two fixed points?

— Notions of “functional cycles”. Very few formal results...

Intuition: “key cycles are those that, in some way, behave as if isolated”.
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Non-expansive networks
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f is non-expansive if

Vo,y € {0, 1} d(f(=), f(y)) < d(z,y)

Remark f is non-expansive if and only if

Veye{0,13"  day) =1 = d(f(@),fy) <1
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f is non-expansive if
va,y € {0,117 d(f(@), f)) < d(,y) J

Remark f is non-expansive if and only if

Veye{0,13"  day) =1 = d(f(@),fy) <1

— Introduced by Shih and Ho in 1999 to establish a boolean version of
the Markus-Yamabe conjecture in differential equations.
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f is non-expansive if

Vr,y €{0,1}"  d(f(x), f(y)) < d(z,y)

f is an isometry if

Vr,y €{0,1}"  d(f(x), f(y)) = d(z,y)
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f is an isometry if

Vr,y €{0,1}"  d(f(x), f(y)) = d(z,y)

Remark f is non-expansive if and only if

Yo,y € {0, 1} d(z,y) =1 = d(f(x), f(y)) =1
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f is non-expansive if

Vo,y € {0, 1} d(f(=), f(y)) < d(z,y)

f is an isometry if

Vr,y €{0,1}"  d(f(x), f(y)) = d(z,y)

Proposition
fis an isometry <= f is bijective and non-expansive

<= G(f) is a disjoint union of cycles
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f is non-expansive if

Vr,y € {0,1}"  d(f(2), f(y)) < d(z,y)

f is an isometry if

Vr,y €{0,1}"  d(f(x), f(y)) = d(z,y)

Proposition
fis an isometry <= f is bijective and non-expansive

<= G(f) is a disjoint union of cycles

f is a quasi-isometry if

G(f) is a disjoint union of cycles plus some isolated vertices

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05
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Theorem 1 [Formenti-Richard]

If f is non-expansive, there exists a unique quasi-isometry h such that:
e G(h) is a spanning subgraph of G(f),
e every limit cycle of f is a limit cycle of h.

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 21/32



Theorem 1 [Formenti-Richard]

If f is non-expansive, there exists a unique quasi-isometry h such that:

e G(h) is a spanning subgraph of G(f),
e every limit cycle of f is a limit cycle of h.
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Theorem 1 [Formenti-Richard]

If f is non-expansive, there exists a unique quasi-isometry h such that:

e G(h) is a spanning subgraph of G(f),

e every limit cycle of f is a limit cycle of h.
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Adrien RICHARD Limit cycles in non-e:

Theorem 1 [Formenti-Richard]

If f is non-expansive, there exists a unique quasi-isometry h such that:

e G(h) is a spanning subgraph of G(f),
e every limit cycle of f is a limit cycle of h.

4 ‘l“
G(f) /“
O\ {Oﬂoﬁo/?x 7
o\o‘)r o~ .
o Preservation of

0e—2 o every limit cycle
/’ \ \’/\ Oi/o,\
G(h) T l l .

o’ 0 e
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a,b]) = [a,b]. J
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a,b]) = [a,b]. J

Let 2 be the set of synchronous periodic points.

Lemma 2 Q,[Q] is connected. )
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a,b]) = [a,b]. J

Let 2 be the set of synchronous periodic points.

Lemma 2 Q,[Q] is connected. J

Proof Suppose that a,b € €2 are not connected in @[], with d(a,b)
minimal. Then d(a,b) > 2 and QN [a,b] = {a, b}.
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Let 2 be the set of synchronous periodic points.

Lemma 2 Q,[Q] is connected. ]

Proof Suppose that a,b € €2 are not connected in @[], with d(a,b)
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a,b]) = [a,b]. J

Let 2 be the set of synchronous periodic points.

Lemma 2 Q,[Q] is connected. ]

Proof Suppose that a,b € €2 are not connected in @[], with d(a,b)
minimal. Then d(a,b) > 2 and QN [a,b] = {a, b}.

Let p be such that f7(z) = x for all z € Q. Then, all the synchronous
periodic point of f? are fixed points, €2 is the set of fixed points of fP.
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no other fixed point in [a, b], then f([a,b]) = [a,b]. J

Let 2 be the set of synchronous periodic points.

Lemma 2 Q,[Q] is connected. J

Proof Suppose that a,b € €2 are not connected in @[], with d(a,b)
minimal. Then d(a,b) > 2 and QN [a,b] = {a, b}.

Let p be such that fP(z) = x for all z € Q. Then, all the synchronous
periodic point of f? are fixed points, €2 is the set of fixed points of fP.

Since QN [a, b] = {a, b}, by the first lemma, f?([a,b]) = [a, ], thus all
the points ¢ € [a,b] \ {a,b} are periodic with period > 2, a contradiction.
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The definition of h

We suppose that there is no i € [n] and ¢ € {0,1} such that x; = c for
all z € Q. This removes the case where G(h) has some isolated vertices.

o Let i € [n] and a, § € Q with a; < §; (which exists by hypothesis).
Since @, [ is connected, it has a path from a to 3, and this path
has an edge ab such that a; < b;.

Let p be the period of a and ¢ those of b.
d(a,b) > d(f(a), f(b)) = --- = d(fP(a), fP(b)) = d(a,b).

So f(a) and f(b) differs in one component j. Thus G(f) has an arc
from i to j of sign f;(b) — f;j(a), and we denote this signed arc A;.

e The arcs Ay,..., A, then form an union of disjoint cycles in G(f),
which define the isometry h.
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Let v be the max size of a set of disjoint cycles in G(f).
Let » T be the max size of a set of disjoint posititive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).
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Let v be the max size of a set of disjoint cycles in G(f).
Let » T be the max size of a set of disjoint posititive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2" fixed points. J

Proof
Let h be the quasi-isometry associated with f.

Let k™ be the number of positive cycles in G(h). Then

fix(f) < fix(h) < 28" < 2",
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Let v be the max size of a set of disjoint cycles in G(f).
Let » T be the max size of a set of disjoint posititive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2" fixed points. J

Conjecture 1 There exists ¢ : N — N such that, for every network f,

fix(f) < p(v").
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Let v be the max size of a set of disjoint cycles in G(f).
Let » T be the max size of a set of disjoint posititive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2" fixed points. J

Conjecture 1 There exists ¢ : N — N such that, for every network f,

fix(f) < p(v").

Conjecture 2 There exists a constant ¢ such that, for every network f,

ﬁX(f) < 20u+ log(u"').
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Let v be the max size of a set of disjoint cycles in G(f).
Let » T be the max size of a set of disjoint posititive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2" fixed points. J

Corollary 2 For every p there exists a smallest constant ¢, such that, for
every non-expensive f, the nb of limit cycles of f of length p is at most

{ (cp,)”" if pis odd

(cp)” if piseven
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Let v be the max size of a set of disjoint cycles in G(f).
Let » T be the max size of a set of disjoint posititive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2" fixed points. J

Corollary 2 For every p there exists a smallest constant ¢, such that, for
every non-expensive f, the nb of limit cycles of f of length p is at most

{ (cp,)”" if pis odd

(cp)” if piseven

Furthermore, ¢, < Zd|p c; works, and ¢; = 2, ¢ = 3 and ¢3 = 5.
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Theorem 2 [Formenti-Richard)]

If f is non-expansive, then every asynchronous periodic point is a
synchronous periodic point.
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Theorem 2 [Formenti-Richard)]

If fis non-expansive, then every asynchronous periodic point is a

synchronous periodic point.
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Let v be the max size of a set of disjoint cycles in G(f).
Let " be the max size of a set of disjoint positive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 3 If f is non-expensive, then
+ o 0 0 o
e f has at most 2 asynchronous attractors, pairwise isomorphic,

e the instability of every asynchronous periodic point is at most v~
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Let v be the max size of a set of disjoint cycles in G(f).
Let »T be the max size of a set of disjoint positive cycles in G(f).

Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 3 If f is non-expensive, then

+ o 0 0 o
e f has at most 2 asynchronous attractors, pairwise isomorphic,

e the instability of every asynchronous periodic point is at most v~

Proof Let h be the quasi-isometry associated with f.
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Let v be the max size of a set of disjoint cycles in G(f).
Let »T be the max size of a set of disjoint positive cycles in G(f).

Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 3 If f is non-expensive, then

+ o 0 0 o
e f has at most 2 asynchronous attractors, pairwise isomorphic,

e the instability of every asynchronous periodic point is at most v~

Proof Let h be the quasi-isometry associated with f.

e Let kT be the number of positive cycles in G(h).
Then h has 2+" asyncbronoui attractors, pairwise isomorphic,
thus f has at most 2" < 2”" asyn att, pairwise isomorphic.
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Let v be the max size of a set of disjoint cycles in G(f).
Let »T be the max size of a set of disjoint positive cycles in G(f).
Let v~ be the max size of a set of disjoint negative cycles in G(f).

Corollary 3 If f is non-expensive, then
+ o 0 0 o
e f has at most 2 asynchronous attractors, pairwise isomorphic,

e the instability of every asynchronous periodic point is at most v~

Proof Let h be the quasi-isometry associated with f.

e Let kT be the number of positive cycles in G(h).
Then h has 2+" asyncbronoui attractors, pairwise isomorphic,
thus f has at most 2" < 2”" asyn att, pairwise isomorphic.

o Let k= be the number of negative cycles in G(h).
For every asynchronous periodic point x of f,

d(z, f(z)) =d(z,h(z)) =k~ <v™.
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Discussion
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Are there many non-expansive boolean networks?

e The number of n-component BNs is
(2"
e The number of isometries with n components is
iso(n) = 2"n!
¢ Denoting ne(n) the number of non-expansive n-component BNs,

iso(n/2) -iso(n) < mne(n) < 2"(n+1)>".
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1. Take n even, and two permutations 7 and o of [n] such that, Vi € [n],

7(i) #i, o(i)#i, o2() =1, w(i)#o(i).
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1. Take n even, and two permutations 7 and o of [n] such that, Vi € [n],

7(i) #i, o(i)#i, o2() =1, w(i)#o(i).

2. Let H be the union of the graph of m and 7 o g; then H is 2-regular.
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1. Take n even, and two permutations 7 and o of [n] such that, Vi € [n],

7(i) #i, o(i)#i, o2() =1, w(i)#o(i).

2. Let H be the union of the graph of m and 7 o g; then H is 2-regular.
3. Put different signs on the two arcs that leave each vertex, to obtain G.
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1. Take n even, and two permutations 7 and o of [n] such that, Vi € [n],

7(i) #i, o(i)#i, o2() =1, w(i)#o(i).

2. Let H be the union of the graph of 7 and 7 o g; then H is 2-regular.
3. Put different signs on the two arcs that leave each vertex, to obtain G.

Proposition There are at least 22 non-expansive BNs on G. J

®
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Perspectives
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Is-it possible to quantify the missing limit cycles
according to the additional interactions?

G(h)
o—=F o
)\ \l]\ o(/o\

o BN {l Ay %\) / "
o
o(/ﬁT\ / g’.,g‘ o °
I\]){O‘)O$O(/ 4\ additional interactions
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Thomas’ logical methods

Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of
functions F(G) considered as potential models for the gene network.
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Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of
functions F(G) considered as potential models for the gene network.

Each function f € F(G) is a function

n

fiX—=Xx, X=][][X Xi={01,....d50)},

with G as interaction graph
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Thomas’ logical methods

Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of
functions F(G) considered as potential models for the gene network.

Each function f € F(G) is a function
fiX—=Xx, X=][][X Xi={01,....d50)},

with G as interaction graph, and with some properties implying

vay S Xv dMan(xvy) =1 = dHam(xvy) S 1.
( dMan 1' y Z ‘xz yz dHam IE y Zmln ]- |IE1 y1|) )
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Thomas’ logical methods
Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of

functions F(G) considered as potential models for the gene network.

Each function f € F(G) is a function
fiX—=Xx, X=][][X Xi={01,....d50)},

with G as interaction graph, and with some properties implying

Vx,y S Xv dMan(xvy) =1 = dHam(xvy) S 1.

Is it possible to establish similar results for these class of functions?
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