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Abstract

One of the first popular applications of Boolean networks for gene regulatory net-
works corresponds to the Mendoza & Alvarez-Buylla network of flower development.
In this paper, we consider this model and a reduced version to reconstruct synthetic
threshold Boolean networks that have the same asymptotic behavior as these base
models. For this, we employ an evolution strategy to search for neighboring solutions.
We were able to find solutions with fewer edges as well as networks with more bal-
anced distributions of basins of attractions. Overall, our results show the effectiveness
of using evolutionary computation in this application to explore alternative solutions
with desired properties.

1 Introduction

Boolean networks are relatively high-level models for gene regulatory networks (GRNs).
They were introduced by Stuart Kauffman [3] in the late ’60s. Under this model, nodes
can be either switched on (value 1) or off (value 0), and the edges represent direct relations
between nodes. The dynamics of the network (how the node values change through time)
is given by a set of updating rules (Boolean functions, one for each node) and an updating
scheme. Typically, the synchronous or parallel updating scheme is used due to its simplic-
ity: all the nodes are updated, in each time step, at the same time. Although, there are
many deterministic and non-deterministic updating schemes (like the fully asynchronous:
in each time step a randomly selected node is updated) that can be used. For more details
on different updating schemes, please refer to [1].

Since Boolean networks only consider two states for each node, then for a network
with n nodes there are 2n possible configurations from where the network can start from.
Given the deterministic nature of this model, all the possible configurations will end up
eventually after successive updates in two types of steady states, known as attractors. One
of them is called a fixed point which is an invariant state that remains fixed regardless of
the updating scheme used. The other type of attractors are known as limit cycles, these
are a set of states that are revisited with a certain periodicity. In the context of GRN,
the attractors (most commonly the fixed points) are associated with different cell types.
We can define the basin of attraction, which consists in the set of states that converge
to a respective attractor. Usually one refers to the size of the basin of attraction, of an
attractor, as the number of states that converge to that particular attractor.
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Well known techniques to reconstruct Boolean network models from binary gene
expression data include REVEAL [5] and the Best-Fit extension algorithm [4]. Also,
metaheuristics have been considered such as simulated annealing [8], swarm intelligence
[10, 13, 9], genetic algorithms [14], differential evolution [7], and evolution strategy
[11, 12, 15], amongst others.

One of the first biological applications of Boolean networks that caught the attention of
GRN modelers was the work by Mendoza & Alvarez-Buylla [6] which proposed a Boolean
network model to represent the dynamical behavior of the flower development process in
Arabidopsis thaliana plants. Their model belongs to a particular class of Boolean networks
called threshold Boolean networks. In this Boolean model, the edges have weights to
represent the strength of the relation (positive or negative) between nodes. Also, each
node has a threshold value. Then, nodes update their values using a Boolean Heaviside
function that depends linearly on its inputs.

The Mendoza & Alvarez-Buylla network, if updated in parallel, has thirteen attractors,
composed of seven limit cycles of length two each, with no biological meaning, i.e., they
do not represent any cell types. The remaining six attractors are fixed points, each one
representing different cell types, in particular, four of them represent tissues of the flower:
sepals, petals, carpels and stamens. Whereas for the remaining two fixed points, one
represents inflorescence meristematic cells, and the other, unobserved cells in nature (but
could be potentially experimentally induced) called mutant in [6]. For other updating
schemes, the limit cycles in this model, tend to disappear, and only remain the six fixed
points (fixed points are invariant with respect to changes in the updating scheme).

In [2] a reduced version (fewer edges) of the Mendoza & Alvarez-Buylla network was
constructed, that preserves the same asymptotic behavior (attractors) of the original net-
work. Nevertheless, it is not clear if this reduced network is a minimal network, i.e., no
more edges can be removed without affecting the asymptotic behavior.

In this paper, we propose a method to reconstruct synthetic gene regulatory networks
of flower development in Arabidopsis thaliana under the threshold Boolean network for-
malism, using as a starting point the Mendoza & Alvarez-Buylla network and the reduced
model, employing an evolutionary strategy to find the different network parameters (weight
matrix and threshold vector) that yield synthetic networks with the same attractors as
the original model. We will analyze topological (wiring) and dynamical characteristics of
the resulting networks. Also, we are interested to see if networks with fewer edges than
the reduced model can be found. Overall, the possibility to explore neighboring solutions
around the original and reduced model will allow us to shed light on how robust, in the
sense of the network structure, are these models.

2 Background

2.1 Original Mendoza & Alvarez-Buylla network

In [6], Mendoza & Alvarez-Buylla proposed a threshold Boolean network that captured
the dynamics of the floral development in Arabidopsis thaliana. The model consists of 12
interacting chemical species, designated by EMF1, TFL1, LFY, AP1, CAL, LUG, UFO,
BFU, AG, AP3, PI, and SUP. The BFU species, is a dimer of the AP3 and PI proteins,
all the rest are proteins as well. So in this model we have n = 12, and each node xi from
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Figure 1: Original Mendoza & Alvarez-Buylla network. Activations (resp. repressions)
are represented by full arrows (resp. empty arrows). Below, the matrix W of size 12× 12
contains the interaction weights between genes and Θ is the thresholds vector.

i = 1, . . . , n will update its value using the following rule:

xi(t+ 1) = H

(
n∑

j=1

wijxj(t)− θi

)
(1)

H(z) =

{
1, if z > 0
0, if z 6 0

with wij the weight of the edge coming from node j into the node i, and θi the activation
threshold of node i. The weights and thresholds are the network’s parameters (see Fig.
1).

If we start in any of the 212 = 4096 possible configurations, and use the parallel
updating scheme, then the network will converge to one of the possible thirteen at-
tractors. As mentioned in the introduction, seven of these, are limit cycles of length
two each, which have no biological meaning. The remaining six are the following fixed
points: 1) {000100000000}, 2) {000100010110}, 3) {000000001000}, 4) {000000011110},
5) {110000000000}, 6) {110000010110}. Each one has associated a cell type: 1) sepal,
2) petal, 3) carpel, 4) stamen, 5) inflorescence, 6) mutant (unobserved cell). In [6], a
block-sequential updating scheme is proposed. A sequential updating scheme consists, in
every time step, each node is updated following a predefined order. In the case of block-
sequential, the set of nodes, for a given sequence, is partitioned into blocks. The nodes in a
same block are updated in parallel, but blocks follow each other sequentially. In this case,
the proposed block-sequential updating scheme is as follows: (EMF1, TFL1)(LFY, AP1,
CAL)(LUG, UFO, BFU)(AG, AP3, PI)(SUP). With this updating scheme, the seven limit
cycles no longer exist, and all the configurations converge to one of the six fixed points.

For simplicity we will refer to this network from now on as the original network.
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Figure 2: Reduced Mendoza & Alvarez-Buylla network.

2.2 Reduced Mendoza & Alvarez-Buylla network

In [6], a reduced version is generated that exhibits the same asymptotic behavior (attrac-
tors) as the original model. This version has 21 edges as shown in Fig. 2, instead of the
25 edges in the original network.

From now on we will refer to this network as the reduced network.

3 Methods

To reconstruct synthetic networks starting from the two A. thaliana networks described
previously we will use an evolution strategy (ES) developed in [11] and used recently in
[15]. A flow chart of the ES is shown in Fig. 3, where it can be seen that the main
variation operator is mutation. The initial candidate solutions (networks) are generated
using as a seed one of the two A. thaliana networks, depending on the simulation. Edges
are removed or added from the original (reduced) network ngh times (a user defined
parameter) to generate a candidate solution, as well as the respective threshold vector is
changed. The fitness function is the mean squared error between the dynamics (output) of
the candidate network and the dynamics of the original (reduced) network, given the same
input. Therefore, it is a minimization problem, where we want to find networks with the
least error. After the fitness value is computed for each candidate solution, these are ranked
in a descending order. Then, the top m% are selected (another user defined parameter)
to perform mutation, in a similar way as the candidate networks were generated, but now
using the top ranked networks as seeds to generate new solutions. These new solutions
plus the top m% are completed with random candidate networks, using as seed the original
(reduced) network, to generate the new population. More details of the algorithm can be
found in [12].

For all the simulations described ahead, the following parameters were used. The
ngh parameter is selected randomly between 1 and 30 for each candidate network. The
elements of the weight matrices and the threshold vectors were constrained to the following
integer range [−5,−4, . . . , 4, 5]. Also, popSize = 20, m% = 30% and max iterations =100.

In what follows, we describe the different simulations to be conducted.
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Figure 3: Evolution strategy (ES) flow chart to search for synthetic networks.

3.1 Simulation 1

Using the ES and the parameters defined previously, we will proceed to infer 1000 synthetic
networks that contain only the six fixed points of the original network. It is important
to point out that when the proposed fitness function reaches 0, we can assure that the
candidate solution will in fact have the six fixed points, but we cannot assure that these
will be the only ones existing, since there might be additional fixed points present. In
order to avoid this situation, whenever a candidate solution obtains a fitness value of 0,
we check how many fixed points the networks has. If the network has more than six, than
we penalize the solution by adding 0.1 to the fitness value. By this way, we can assure
that, when the fitness value is 0, the network will only have the desired six fixed points
and no others. We use the original network as the seed to generate candidate solutions.
For the resulting networks, we will compute the distribution of the total, positive, and
negative number of edges.

3.2 Simulation 2

The same as Simulation 1, but now using the reduced network as the seed.

3.3 Simulation 3

The same as Simulation 1, but now we will reconstruct synthetic networks that have
the first four fixed points of the original Mendoza & Alvarez-Buylla network, that are
associated to specific cell types of the flower: sepal, petal, carpel, and stamen.
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Figure 4: Edge distributions of the resulting synthetic networks found by the ES that
contained only the six fixed points using the original network as the starting point.

3.4 Simulation 4

The same as Simulation 3, but now using the reduced Mendoza & Alvarez-Buylla network
as the wildtype network.

4 Results and discussion

4.1 Results from simulation 1

Histograms showing the distributions of the total number of edges, number of positive
edges, and number of negative edges, are shown in Fig. 4.

We can see that the resulting synthetic networks have a total number of edges that
ranges from 23 to 43, with the mode at 26. The original network has 25 edges. The
number of positive edges ranges from 13 to 24 (15 in the original network) with the mode
at 15. Finally, the number of negative edges ranges from 8 to 20 (10 in the original model),
with the mode at 11. It is interesting to point out, that we were not able to find networks
with a total number of edges of 21 like the reduced network. This provides an insight on
the fact that the reduced network developed in [2], is not found in an easy way, and it
could be a minimal network.

4.2 Results from simulation 2

The distributions of the number of edges (total, positive, and negative) are shown in Fig.
5.
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Figure 5: Edge distributions of the resulting synthetic networks found by the ES that
contained only the six fixed points using the reduced network as the starting point.

Table 1: Basin of attraction for the six fixed points
Attractors Parallel original Parallel reduced Parallel net18 BS original BS reduced BS net18 Cell types

Fixed point 1 168 168 540 1344 1344 1344 Sep
Fixed point 2 248 248 124 192 192 192 Pet
Fixed point 3 24 24 36 448 448 448 Car
Fixed point 4 8 8 4 64 64 64 Sta
Fixed point 5 384 384 960 1792 1792 1792 Inf
Fixed point 6 384 384 192 256 256 256 Mut

What first caught our attention is that a network with 18 edges was found. This is
3 edges fewer than the reduced network. This means that the reduced network is not
minimal, in the sense that we have found a synthetic network with the same asymptotic
behavior, with fewer edges. Fig. 5 shows the resulting network with 18 edges. By compar-
ing with the reduced network (Fig. 2) we noticed that the 3 edges that have been omitted
are: the incoming edge from LFY to CAL, the incoming edge from LFY to AP3, and the
incoming edge from UFO to PI.

Overall, the mode for the total number of edges is 22, the mode for positive edges is
13, and the mode for negative edges is 9.

Additionally, we compared the basin of attraction of the six fixed points for the original,
reduced, and the network with 18 edges (named net18 from now on), using the parallel and
the block-sequential (BS) updating scheme, described previously. The results are shown
in Table 1.

We notice that for the parallel updating scheme, the original and the reduced network
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Figure 6: Synthetic network found with 18 edges (net18).

have the same size of basin of attraction for each fixed points. For these two networks,
almost 30% of the total 4096 states are part of the basin of attraction of the fixed points.
The remaining 70% form part of the basin of attractions of the limit cycles. For net18
updated in parallel we can appreciate that size of the basin of attraction for each fixed
point is different from the original (and reduced) network. Nevertheless, there are some
similarities. In the three networks, fixed point 4 has the smallest basin of attraction,
whereas fixed point 5 has the largest basin of attraction. In the case of net18, 45% of
the configurations are part of the basin of attractions of the fixed points, the remaining
converge to the limit cycles. The size of the basin of attraction plays an interesting
and important role in GRN modeling, since attractors (cell types) with small basin of
attractions, means that the network has little chances to converge to that attractor. On
the other hand, large basin of attractions means that the network converges most of
the time to the attractor with the largest basin of attraction associated to it. Here we
notice that the original and reduced models do not perform well when we use the parallel
updating scheme, net18 improves a bit, but still does not pass the 50% barrier. When we
use the block-sequential updating scheme (more biologically meaningful) the limit cycles
disappear, thus, obtaining 100% of the possible configurations converging to one of the
possible 6 fixed points. An interesting fact is that the basin of attraction sizes are the
same for each fixed points, for the three models. But we can evidence another problem,
the largest basin of attraction is for fixed point 5 which is not a tissue of the flower. The
next simulation explores a solution for this issue.

4.3 Results from simulation 3

By using the original network as the seed, the ES was capable of finding solutions that
contained only the first four fixed points and no other. The resulting topology distributions
are shown in Fig. 7.

An example of a resulting network with 23 edges (net23) in shown in Fig. 8.
The basin of attraction of each fixed point using the parallel and the block-sequential

updating scheme appears in Table 2.
We observed that fixed point 1 and 2 had significantly larger basin of attractions than
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Figure 7: Edge distributions of the resulting synthetic networks found by the ES that
contained only the first four fixed points using the original network as the starting point.
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Figure 8: An example of a resulting network obtained with 23 edges (net23) that contains
only the first four fixed points of the original network.
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Table 2: Basin of attraction for the four fixed points using net23 and net34
Attractors Parallel net23 BS net23 BS net34 Cell types

Fixed point 1 504 3136 1184 Sep
Fixed point 2 616 448 864 Pet
Fixed point 3 24 448 1184 Car
Fixed point 4 8 64 864 Sta
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W =




EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 3 0 0 0 0 0
LFY −2 −1 0 2 1 0 0 0 0 0 0 0
AP1 −1 0 0 0 0 0 0 0 −1 0 0 0
CAL 0 1 0 −3 −4 0 0 0 −3 0 −3 0
LUG 3 0 0 0 0 0 0 −5 0 0 0 0
UFO 0 0 0 0 0 0 0 0 2 0 −4 0
BFU 0 3 0 0 0 0 0 0 0 1 1 0
AG 0 0 1 −4 0 −1 0 0 0 0 0 0
AP3 0 1 3 0 0 0 2 1 0 0 0 −2
PI 0 0 0 0 0 −1 0 1 0 0 0 −1
SUP 0 0 0 0 2 0 0 0 0 0 0 0
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Figure 9: A resulting network obtained with 34 edges (net34) with more evenly distributed
basin of attraction per fixed point.

the other two fixed points. When changing to the block-sequential updating scheme, this
issue did not improve. The ideal case is that each cell type (fixed point) should have more
or less the same chance of developing, this means that the basin of attraction should be
approximately evenly distributed per fixed point. Within the 1000 networks we searched
for a network that had the most evenly distributed basin of attraction per fixed points.
The network that best satisfied this restriction is shown in Fig. 9 which has 34 edges
(net34).

We see from Table 2 that basin of attractions for this network are more evenly spread
in the four fixed points.

4.4 Results from simulation 4

If we consider the reduced network to search for synthetic networks with only the first four
fixed points, then the distribution of the total, positive, and negative number of edges of
the solutions found are shown in Fig. 10.

We see that in this case, we can find a network with 17 edges (net17) (see Fig. 11).
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Figure 10: Edge distributions of the resulting synthetic networks found by the ES that
contained only the first four fixed points using the reduced network as the starting point.
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Figure 11: An example of a resulting network obtained with 17 edges (net17) that contains
only the first four fixed points of the reduced network.
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Table 3: Basin of attraction for the four fixed points using net17 and net27
Attractors Parallel net17 BS net17 BS net27 Cell types

Fixed point 1 1260 2688 1024 Sep
Fixed point 2 140 384 1024 Pet
Fixed point 3 108 896 1024 Car
Fixed point 4 12 128 1024 Sta
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LFY 0 0 0 0 0 0 0 0 0 −1 0 0
AP1 −2 0 0 0 −3 −1 0 0 −2 0 0 0
CAL 0 0 2 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 −5
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 0 0 0 0 −1 0 0 5 0 0 0
AP3 0 0 3 0 −1 0 2 0 0 5 0 −2
PI 0 0 4 0 −2 0 1 1 0 3 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 12: A resulting network obtained with 27 edges (net27) with evenly distributed
basin of attraction per fixed point.

This network omits the following edges from the reduced network: the incoming edge
from UFO to PI, the incoming edge from LFY to AG, the incoming edge from LFY to PI,
and the loop of EMF1.

The basin of attraction per fixed point using the parallel and block-sequential updating
scheme for net17 is shown in Table 3.

Here we noticed that fixed point 1 had the largest basin of attraction when using the
parallel and the block-sequential. Similar to before, we searched within the 1000 solutions
for a network that had the most evenly spread basin of attraction per fixed point. The
resulting network that best satisfied this restriction is shown in Fig. 12 that has 27 edges
(net27).

Table 3 shows that this network when updated using the block-sequential updating
scheme, partitions the state space evenly in four, i.e., the size of the basin of attraction of
each fixed point is 1024.

5 Conclusion

We have shown that an evolutionary computation approach can effectively reconstruct
alternative solutions based on existing gene regulatory models under the threshold Boolean
network paradigm. For the particular application presented in this work, we were able
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to find interesting solutions, such as networks with fewer edges than the existing models.
Also, it was found that in order to change the distribution of the sizes of the basin of
attractions, so that each fixed point had more or less the same basin of attraction size,
this was achieved by increasing the complexity (number of edges) of the base models used.
Future research will consider more recent gene regulatory models as base models such as
the one developed in [16].
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