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Abstract

We settle the theoretical ground for the study of automata networks under block-
parallel update schedules, which are somehow dual to the block-sequential ones,
but allow for repetitions of automaton updates. This gain in expressivity brings
new challenges, and we analyse natural equivalence classes of update schedules:
those leading to the same dynamics, and to the same limit dynamics, for any au-
tomata network. Countings and enumeration algorithms are provided, for their
numerical study. We also prove computational complexity bounds for many classi-
cal problems, involving fixed points, limit cycles, the recognition of subdynamics,
reachability, etc. The PSPACE-completeness of computing the image of a single
configuration lifts the complexity of most problems, but the landscape keeps some
relief, in particular for reversible computations.

Keywords: Automata networks, block-parallel, update modes, equivalence
classes, counting, enumeration, computational, complexity.

1. Introduction

Since the seminal work of McCulloch and Pitts on neural networks [35], dis-
tributed models of computation, where individual entities collectively perform a
global computation through local interactions, received a great amount of atten-
tion. Automata networks are such a model, which have successfully been em-
ployed for the modelling of gene regulation mechanisms [32, 45]. In particular,
the biological interpretation of the limit dynamics of automata networks matches
experimental results [36, 5, 24, 46].

One can readily observe that distributed models of computation are highly sen-
sitive to variations in the update schedule among its entities. Regarding Boolean
automata networks, despite the fact that fixed points obtained under the paral-
lel update mode are also fixed points for any other update schedule [25], specific
update modes may generate additional fixed points [18, 39]. Limit cycles are also
known to greatly depend on the update mode [17, 28, 10, 27, 11].

In this work, we propose to address a new family of update schedules, namely
the block-parallel update modes, which are motivated by the discovery of the
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importance of chromatin dynamics in regulatory networks [18]. Indeed, it fits our
current understanding of the temporality of mRNA transcriptional machinery [29,
12, 30, 21]. Block-parallel update modes permit local update repetitions, opening
new doors towards the phenomenological modelling in systems biology. Their novel
features challenge intuitions erected upon classical block-sequential ones, and our
objective is to build solid theoretical foundations for their study.

On the one hand, we study the combinatorics of block-parallel modes, and
provide countings and enumeration algorithms for various meaningful equivalence
relations. This is the grounding necessary to perform efficient numerical simula-
tions. On the other hand, we analyse the computational cost of standard decision
problems one may be willing to answer on the dynamics of Boolean automata
networks with these new update schedules (related ot fixed points, limit cycles,
reachability, etc). While block-parallel update modes seem to be more expressive,
in particular regarding the limit dynamics, this gain of expressivity comes at a high
cost in terms of simulation. Indeed, most problems traditionally NP-complete be-
come PSPACE-complete, however there are notable exceptions.

In Section 2, we present the main definitions and notations. This paper is
divided in two main sections, the first one focused on the counting and enumeration
of block-parallel update modes and the second on complexity issues. The first
part, Section 3, is split into five subsections. Subsection 3.1 serves as a sort of
introduction, by dealing with the intersection between block-sequential and block-
parallel update modes. The three following subsections each present a subset of
block-parallel update modes, by giving a formula for counting the elements of this
subset, and an algorithm to enumerate them. Subsection 3.2 deals with the whole
set of block-parallel update modes, Subsection 3.3 with the updates schedules
up to dynamical equality, and Subsection 3.4 with the update schedules up to
dynamical isomorphism on the limit set, which is the one we focused more on.
The last subsection of this part presents the results from our implementations of
the aforementioned algorithms. Section 4 exposes our results regarding complexity
problems involving block-parallel update schedules. In Subsection 4.2, we first
characterize classical problems on computing images, preimages, fixed points and
limit cycles : they all jump from NP (under block-sequential update modes) to
PSPACE (under block-parallel update modes). In Subsection 4.3, we then prove
a general bound on the recognition of functional subdynamics. Regarding global
properties, recognizing bijective dynamics remains coNP-complete, and recognizing
constant dynamics becomes PSPACE-complete. The case of identity recognition is
much subtler, and we provide three incomparable bounds: a trivial coNP-hardness
one, a tough ModP-hardness, and a FPPSPACE-completeness result derived from the
recent literature. Finally, we summarize our results and expose some perspectives
in Section 5.
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2. Definitions and state of the art

We denote the set of integers by JnK = {0, . . . , n − 1}, the Booleans by B =
{0, 1}, the i-th component of a vector x ∈ Bn by xi ∈ B, and the restriction of x
to domain I ⊂ JnK by xI ∈ B|I|. Let ei be the i-th base vector, and ∀x, y ∈ Bn, let
x + y denote the bitwise addition modulo two. Let σi denote the circular-shift of
order i ∈ Z on sequences (shifting the element at position 0 towards position i).
For two graphs G = (V (G), A(G)) and H = (V (H), A(H)), we denote by G ∼ H
when they are isomorphic, i.e., when there is a bijection π : V (G) → V (H) such
that (x, y) ∈ A(G) ⇐⇒ (π(x), π(y)) ∈ A(H). We denote by G ⊏ H when G is a
subgraph of H, i.e., when G′ such that G′ ∼ G can be obtained from H by vertex
and arc deletions.
Boolean automata network A Boolean automata network (BAN) is a discrete
dynamical system on Bn. A configuration x ∈ Bn associates to each of the n
automata among JnK a Boolean state among B. The individual dynamics of a
each automaton i ∈ JnK is described by a local function fi : Bn → B giving its new
state according to the current configuration. To get a dynamics, one needs to settle
the order in which the automata update their state by application of their local
function. That is, an update schedule must be given. The most basic is the parallel
update schedule, where all automata update their state synchronously at each step,
formally as f : Bn → Bn defined by ∀x ∈ Bn : f(x) = (f0(x), f1(x), . . . , fn−1(x)).
In this work, we concentrate on the block-parallel update schedule, motivated by
the biological context of gene regulatory networks, where each automaton is a gene
and the dynamics give clues on cell phenotypes. Not all automata will be update
simultaneously as in the parallel update mode. They will instead be grouped by
subsets. For simplicity in defining the local functions of a BAN, we extend the
fi : Bn → B notation to subsets I ⊆ JnK as fI : Bn → B|I|. We also denote
f(I) : Bn → Bn the update of automata from subset I, defined as:

∀i ∈ JnK : f(I)(x)i =

{
fi(x) if i ∈ I

xi otherwise.

Block-sequential update schedule A block-sequential update schedule is an
ordered partition of JnK, given as a sequence of subsets (Wi)i∈JℓK where Wi ⊆ JnK
is a block. The automata within a block are updated simultaneously, and the
blocks are updated sequentially. During one iteration (step) of the network, the
state of each automaton is updated exactly once. The update of each block is
called a substep. This update mode received great attention on many aspects.
The concept of the update digraph is introduced in [8] and characterized in [7]
to capture equivalence classes of block-sequential update schedules (leading to
the same dynamics). Conversions between block-sequential and parallel update
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schedules are investigated in [41] (how to parallelize a block-sequential update
schedule), [27] (the preservation of cycles throughout the parallelization process),
and [14] (the cost of sequentialization of a parallel update schedule).

Block-parallel update schedule A block-parallel update schedule is a parti-
tioned order of JnK, given as a set of subsets µ = {Sk}k∈JsK where Sk = (ik0, . . . , i

k
nk−1)

is a sequence of nk > 0 elements of JnK for all k ∈ JsK, called an o-block (shortcut
for ordered-block). Each automaton appears in exactly one o-block. It follows an
idea dual to the block-sequential update mode: the automata within an o-block are
updated sequentially, and the o-blocks are updated simultaneously. The o-block
sequences are taken circularly at each substep, until we reach the end of each
o-block simultaneously (which happens after the least common multiple (lcm) of
their sizes). The set of block-parallel update modes of size n is denoted BPn. For-
mally, the update of f under µ ∈ BPn is given by f{µ} : Bn → Bn defined, with
ℓ = lcm(n1, . . . , ns), as f{µ}(x) = f(Wℓ−1) ◦ · · · ◦f(W1) ◦f(W0)(x), where for all i ∈ JℓK
we define Wi = {iki mod nk

| k ∈ [s]}. In order to compute the set of automata
updated at each substep, it is possible to convert a block-parallel update schedule
into a sequence of blocks of length ℓ (which is usually not a block-sequential update
schedule, because repetitions of automaton update may appear). We defined this
map as φ:

φ({Sk}k∈JsK) = (Wi)i∈JℓK with Wi = {iki mod nk
| k ∈ [s]}.

An example is given on Figure 1. The parallel update schedule corresponds to the
block-parallel update schedule µpar = {(i) | i ∈ JnK} ∈ BPn, with φ(µpar) = (JnK),
i.e., a single block containing all automata is updated at each step (there is only
one substep).

Block-parallel update schedules have been introduced in [18], motivated by
applications to gene regulatory networks, and their ability to generate new stable
configurations (compared to block-sequential update schedules).

Fixed point and limit cycle A BAN f of size n under block-parallel update
schedule µ ∈ BPn defines a deterministic discrete dynamical system f{µ} on con-
figuration space Bn. Since the space is finite, the orbit of any configuration is
ultimately periodic. For p ≥ 1, a sequence of configurations x0, . . . , xp−1 is a limit
cycle of length p when ∀i ∈ JpK : f{µ}(x

i) = xi+1 mod p. For p = 1 we call x ∈ Bn

such that f{µ}(x) = x a fixed point.

Complexity To be given as input to a decision problem, a BAN is encoded as
a tuple of n Boolean circuits, one for each local function fi : BN → B for i ∈ JnK.
This encoding can be seen as Boolean formulas for each automaton, and easily
implements high-level descriptions with if-then-else statements (used intensively
in our constructions).
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f(x) :





f0(x) = x0 ∧ x1

f1(x) = ¬x0 ∨ (x1 ∧ ¬x2)
f2(x) = ¬x1 ∨ x2

µ = {(0), (1, 2)}
φ(µ) = ({0, 1}, {0, 2})

000

001

010

011

100

101

110

111

Figure 1: Example of an automata network of size n = 3 with a block-parallel update mode
µ ∈ BPn. Local functions (upper left), conversion of µ to a sequence of blocks (lower left),
and dynamics of f{µ} on configuration space B3 (right). One step is composed of two substeps:
the first substep updates the block {0, 1}, the second substep updates the block {0, 2}. As an
example, in computing the image of configuration 111, the first substep (update of automata 0
and 1) gives 101, and the second substep (update of automata 0 and 2) gives 001.

The computational complexity of finite discrete dynamical systems has been
explored on the related models of finite cellular automata [43] and reaction net-
works [19]. Regarding automata networks, fixed points received early attention
in [6] and [22], with existence problems complete for NP. Because of the fixed
point invariance for block-sequential update schedules [42], the focus switched to
limit cycles [11, 13], with problems reaching the second level of the polynomial hi-
erarchy. The interplay of different update schedules has been investigated in [11].
Finaly, let us mention the general complexity lower bounds, established for any
first-order question on the dynamics, under the parallel update schedule [23].

3. Counting and enumerating block-parallel update modes

For the rest of this section, let p(n) denote the number of integer partitions
of n (multisets of integers summing to n), let d(i) be the maximal part size in
the i-th partition of n, let m(i, j) be the multiplicity of the part of size j in the
i-th partition of n. As an example, let n = 31 and assume the i-th partition is
(2, 2, 3, 3, 3, 3, 5, 5, 5), we have d(i) = 5 and m(i, 1) = 0, m(i, 2) = 2, m(i, 3) = 4,
m(i, 4) = 0, m(i, 5) = 3. A partition will be the support of a partitioned order,
where each part is an o-block. In our example, we can have:

{(0, 1), (2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15),
(16, 17, 18, 19, 20), (21, 22, 23, 24, 25), (26, 27, 28, 29, 30)},
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and we picture it as the following matrix-representation:

(
0 1
2 3

)



4 5 6
7 8 9
10 11 12
13 14 15






16 17 18 19 20
21 22 23 24 25
26 27 28 29 30


 .

We call matrices the elements of size j · m(i, j) and denote them M1, . . . ,Md(i),
where Mj has m(i, j) rows and j columns (Mj is empty when m(i, j) = 0). The
partition defines the matrices’ dimensions, and each row is an o-block.

For the comparison, the block-sequential update modes (ordered partitions of
JnK) are given by the ordered Bell numbers, sequence A000670 of OEIS [2, 38]. A
closed formula for it is:

|BSn| =
p(n)∑

i=1

n!
∏d(i)

j=1(j!)
m(i,j)

·

(∑d(i)
j=1m(i, j)

)
!

∏d(i)
j=1m(i, j)!

.

Intuitively, an ordered partition of n gives a support to construct a block-sequential
update mode: place the elements of JnK up to permutation within the blocks. This
is the left fraction: n! divided by j! for each block of size j, taking into account
multiplicities. The right fraction corrects the count because we sum on p(n) the
(unordered) partitions of n: each partition of n can give rise to different ordered
partitions of n, by ordering all blocks (numerator, where the sum of multiplicities
is the number of blocks) up to permutation within blocks of the same size which
have no effect (denominator). The first ten terms are (n = 1 onward):

1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563.

3.1. Intersection of block-sequential and block-parallel modes
In order to be able to compare block-sequential with block-parallel update

modes, both of them will be written here under their sequence of blocks form
(the classical form for block-sequential update modes and the rewritten form for
block-parallel modes).

First, we know that φ(BPn) ∩ BSn is not empty, since it contains at least

µpar = (JnK) = φ({(0), (1), . . . , (n− 1)}).

However, neither BSn ⊆ φ(BPn) nor φ(BPn) ⊆ BSn are true. Indeed, µs =
({0, 1}, {2}) ∈ BS3 but µs /∈ φ(BP3) since a block-parallel cannot have blocks
of different sizes in its sequential form. Symmetrically, µp = φ({(1, 2), (0)}) =
({0, 1}, {0, 2}) ∈ BP3 but µp /∈ BS3 since automaton 0 is updated twice. Despite
this, we can precisely define the intersection BSn ∩ φ(BPn).
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Lemma 1. Let µ be an update mode written as a sequence of blocks of elements
in JnK. Then µ ∈ (BSn ∩ φ(BPn)) if and only if µ is an ordered partition and all
of µ’s blocks are of the same size.

Proof. Let n ∈ N.
(=⇒) Let µ ∈ (BSn ∩ φ(BPn)). Since µ ∈ BSn, µ is an ordered partition.

Furthermore, µ ∈ φ(BPn) so all the µ’s blocks are of the same size.
(⇐=) Let µ = (Wi)i∈JℓK be an ordered partition of JnK with all its blocks

having the same size, denoted by s. Since µ is an ordered partition, µ ∈ BSn.
For each ℓ ∈ JpK, we can number arbitrarily the elements of Wℓ from 0 to s − 1
as Wℓ = {W 0

ℓ , . . . ,W
s−1
ℓ }. Now, let us define the set of sequences {Sk}k∈JsK the

following way: ∀k ∈ JsK, Sk = {W k
ℓ | ℓ ∈ JpK}. It is a partitioned order such that

φ({Sk}k∈JsK) = µ, which means that µ ∈ φ(BPn).

Corollary 1. If µ ∈ BPn and is composed of s o-blocks of size p, then φ(µ) ∈ BSn

and is composed of p blocks of size s.

As a consequence of Lemma 1 and Corollary 1, given n ∈ N, the set SEQn of
sequential update modes such that every automaton is updated exactly once by
step and only one automaton is updated by substep, is a subset of (BSn∩φ(BPn)).

Moreover, we can state the following proposition which counts the number of
sequences of blocks which belongs to both BSn and φ(BPn).

Proposition 1. Given n ∈ N, we have:

|BSn ∩ φ(BPn)| =
∑

d|n

n!

(n
d
!)d

.

Proof. The proof derives directly from the sequence A061095 of OEIS [3], which
counts the number of ways of dividing n labeled items into labeled boxes with an
equal number of items in each box. In our context, the “items” are the automata,
and the “labeled boxes” are the blocks of the ordered partitions.

3.2. Partitioned orders
A block-parallel update mode is given as a partitioned order, i.e. an (un-

ordered) set of (ordered) sequences. This concept is recorded as sequence A000262
of OEIS [1], described as the number of “sets of lists”. A nice closed formula for it
is:

|BPn| =
p(n)∑

i=1

n!
∏d(i)

j=1m(i, j)!
.

Intuitively, for each partition, fill all the matrices (n! ways to place the elements
of JnK) up to permutation of the rows within each matrix (matrix Mj has m(i, j)
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rows). Another closed formula is presented in Proposition 2. This formula is
particularly useful to generate all the block-parallel update modes.

Proposition 2. For any n ≥ 1 we have:

|BPn| =
p(n)∑

i=1

d(i)∏

j=1

(
n−∑j−1

k=1 k ·m(i, k)

j ·m(i, j)

)
· (j ·m(i, j))!

m(i, j)!
.

Proof. Each partition is a support to generate different partitioned orders (sum on
i), by considering all the combinations, for each matrix (product on j), of the ways
to choose the j · m(i, j) elements of JnK it contains (binomial coefficient, chosen
among the remaining elements), and all the ways to order them up to permutation
of the rows (ratio of factorials). Observe that developing the binomial coefficients
with

(
x
y

)
= x!

y!·(x−y)! gives

d(i)∏

j=1

(
n−∑k

j ·m(i, j)

)
· (j ·m(i, j))! =

d(i)∏

j=1

(n−∑k)!

(n−∑k −j ·m(i, j))!
=
n!

0!
= n!,

where
∑

k is a shorthand for
∑j−1

k=1 k · m(i, k), which leads to retrieve the OEIS
formula.

The first ten terms are (n = 1 onward):

1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091.

The formula from Proposition 2 can give us an algorithm to enumerate the
partitioned orders of size n. For each partition i of n, it enumerates all the block-
parallel update modes as a list of matrices as presented in the introduction of
this section, with the matrices being filled one-by-one (the product on j in the
formula). For each value of j, we choose a set of j ·m(i, j) elements of JnK (that
haven’t been placed in a previous matrix) to put in matrix Mj. We then enumerate
all the different ways to agence these numbers, up to permutation of the rows.

3.3. Partitioned orders up to dynamical equality
As for block-sequential update modes, given an AN f and two block-parallel

update modes µ and µ′, the dynamics of f under µ can be the same as that of f
under µ′. To go further, in the framework of block-parallel update modes, there
exist pairs of update modes µ, µ′ such that for any AN f , the dynamics f{µ} is the
exact same as f{µ′}. As a consequence, in order to perform exhaustive searches
among the possible dynamics, it is not necessary to generate all of them. We
formalize this with the following equivalence relation.
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Definition 1. For µ, µ′ ∈ BPn, we denote µ ≡0 µ
′ when φ(µ) = φ(µ′).

The following Lemma shows that this equivalence relation is necessary and
sufficient in the general case of ANs of size n.

Lemma 2. For any µ, µ′ ∈ BPn, we have µ ≡0 µ
′ ⇐⇒ ∀f : X → X, f{µ} = f{µ′}.

Proof. Let µ and µ′ be two block-parallel update modes of BPn.

(=⇒) Let us consider that µ ≡0 µ
′, and let f : X → X be an AN. Then, we have

f{µ} = f(φ(µ)) = f(φ(µ′)) = f{µ′}.

(⇐=) Let us consider that ∀f : X → X, f{µ} = f{µ′}. Let us assume for the sake
of contradiction that φ(µ) ̸= φ(µ′). For ease of reading, we will denote as tµ,i the
substep at which automaton i is updated for the first time with update mode µ.
Then, there is a pair of automata (i, j) such that tµ,i ≤ tµ,j, but tµ′,i > tµ′,j. Let
f : Bn → Bn be a Boolean AN such that f(x)i = xi ∨ xj and f(x)j = xi, and
x ∈ Bn such that xi = 0 and xj = 1. We will compare f{µ}(x)i and f{µ′}(x)i, in
order to prove a contradiction. Let us apply f{µ} to x. Before step tµ,i the value
of automaton i is still 0 and, most importantly, since tµ,i ≤ tµ,j, the value of j is
still 1. This means that right after step tµ,i, the value of automaton i is 1, and will
not change afterwards. Thus, we have f{µ}(x)i = 1. Let us now apply f{µ′} to x.
This time, tµ′,i > tµ′,j, which means that automaton j is updated first and takes
the value of automaton i at the time, which is 0 since it has not been updated
yet. Afterwards, neither automata will change value since 0 ∨ 0 is still 0. This
means that f{µ′}(x)i = 0. Thus, we have f{µ} ̸= f{µ′}, which contradicts our earlier
hypothesis.

Let BP0
n = BPn/ ≡0 denote the corresponding quotient set, i.e. the set of

block-parallel update modes to generate for computer analysis of all the possible
dynamics in the general case of ANs of size n.

Theorem 1. For any n ≥ 1, we have:

|BP0
n| =

p(n)∑

i=1

n!
∏d(i)

j=1 (m(i, j)!)j
(1)

=

p(n)∑

i=1

d(i)∏

j=1

j∏

ℓ=1

(
n−∑j−1

k=1 k ·m(i, k)− (ℓ− 1) ·m(i, j)

m(i, j)

)
(2)

=

p(n)∑

i=1

d(i)∏

j=1

((
n−∑j−1

k=1 k ·m(i, k)

j ·m(i, j)

)
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·m(i, j)

m(i, j)

))
. (3)
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Proof. |BP0
n| can be viewed as three distinct formulas. We will show here that

Formula 1 counts |BP0
n|, and the proof that these three formulas are equal will be

in Appendix A.
For any pair µ, µ′ ∈ BPn, we have µ ≡0 µ′ if and only if their matrix-

representations are the same up to a permutation of the elements within columns
(the number of equivalence classes is then counted by Formula 1). In the definition
of φ, each block is a set constructed by taking one element from each o-block. Given
that nk in the definition of φ corresponds to j in the statement of the theorem,
one matrix corresponds to all the o-blocks that have the same size nk. Hence, the
ℓ mod nk operations in the definition of φ amounts to considering the elements of
these o-blocks which are in the same column in their matrix representation. Since
blocks are unordered, the result follows.

The first ten terms of the sequence (|BP0
n|)n≥1 are:

1, 3, 13, 67, 471, 3591, 33573, 329043, 3919387, 47827093.

They match the sequence A182666 of OEIS [4], and the next lemma proves that
they are indeed the same sequence (defined by its exponential generating function
on OEIS). The exponential generating function of a sequence (an)n∈N is f(x) =∑

n≥0 an
xn

n!
.

Lemma 3. The exponential generating function of (|BP0
n|)n∈N is

∏
j≥1
∑

k≥0

(
xk

k!

)j
.

The proof of this lemma can be found in Appendix A.
As with the previous enumerating formula, we can also extrapolate an enu-

meration algorithm from this one. It starts out similar to the previous one, but
differs once the contents of Mj are chosen. In the previous algorithm, we needed
to enumerate every matrix up to permutation of the rows. This time, we need to
enumerate every matrix up to permutation within the columns. This means that,
for each column of the matrix, we just choose the content separately, similarly to
how we chose the content of each matrix.

3.4. Partitioned orders up to dynamical isomorphism on the limit set
The following equivalence relation defined over block-parallel update modes

turns out to capture exactly the notion of having isomorphic limit dynamics. It
is analogous to ≡0, except that a circular shift of order i may be applied on the
sequences of blocks.

Definition 2. For µ, µ′ ∈ BPn, we denote µ ≡⋆ µ
′ when φ(µ) = σi(φ(µ′)) for

some i ∈ J|φ(µ′)|K called the shift.
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Remark 1. Note that µ ≡0 µ
′ corresponds to the particular case i = 0 of ≡⋆.

Thus, µ ≡0 µ
′ =⇒ µ ≡⋆ µ

′.

Notation 1. Given f{µ} : X → X, let Ωf{µ} =
⋂

t∈N f{µ}(X) denote its limit set
(abusing the notation of f{µ} to sets of configurations), and fΩ

{µ} : Ωf{µ} → Ωf{µ}

its restriction to its limit set. Observe that, since the dynamics is deterministic,
fΩ
{µ} is bijective.

The following Lemma shows that, if one is generally interested in the limit
behavior of ANs under block-parallel updates, then studying a representative from
each equivalence class of the relation ≡⋆ is necessary and sufficient to get the full
spectrum of possible limit dynamics.

Lemma 4. For any µ, µ′ ∈ BPn, we have µ ≡⋆ µ
′ ⇐⇒ ∀f : X → X, fΩ

{µ} ∼ fΩ
{µ′}.

Proof. Let µ and µ′ be two block-parallel update modes of BPn.

(=⇒) Let µ, µ′ be such that µ ≡⋆ µ′ of shift ı̂ ∈ JpK, with φ(µ) = (Wi)i∈JℓK,
φ(µ′) = (W ′

ℓ)ℓ∈JpK and p = |φ(µ)| = |φ(µ′)|. It means that ∀i ∈ JpK, we have
W ′

i = Wi+ı̂ mod p, and for any AN f , we deduce that π = f(W0,...,Wı̂−1) is the desired
isomorphism from Ωf{µ} to Ωf{µ′}

. Indeed, we have f{µ}(x) = y if and only if
f{µ′}(π(x)) = π(y) because

f{µ′} ◦ π = f(W0,...,Wı̂−1,W
′
0,...,W

′
p) = f(W ′

p−ı̂,...,W
′
p) ◦ f{µ} = π ◦ f{µ}.

Note that π−1 = f
(q−1)
{µ′} ◦ f(W ′

ı̂ ...W
′
p−1)

with q the least common multiple of the limit
cycle lengths, and π−1 ◦ π (resp. π ◦ π−1) is the identity on Ωf{µ} (resp. Ωf{µ′}

).

(⇐=) We prove the contrapositive, from µ ̸≡⋆ µ
′, by case disjunction.

(1) If in φ(µ) and φ(µ′), there is an automaton ı̂ which is not updated the same
number of times α and α′ in µ and µ′ respectively, then we assume without
loss of generality that α > α′ and consider the AN f such that:

• Xı̂ = JαK and Xi = {0} for all i ̸= ı̂; and
• fı̂(x) = (xı̂ + 1) mod α and fi(x) = xi for all i ̸= ı̂.

It follows that fΩ
{µ} has only fixed points since +1 mod α is applied α times,

whereas fΩ
{µ′} has no fixed point because α′ < α. We conclude that fΩ

{µ} ̸∼
fΩ
{µ′}.

(2) If in φ(µ) and φ(µ′), all the automata are updated the same number of times,
then the transformation from µ to µ′ is a permutation on JnK which preserves
the matrices of their matrix representations (meaning that any i ∈ JnK is in
an o-block of the same size in µ and µ′, which also implies that µ and µ′ are
constructed from the same partition of n). Then we consider subcases.
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(2.1) If one matrix of µ′ is not obtained by a permutation of the columns
from µ, then there is a pair of automata ı̂, ȷ̂ that appears in the k-th
block of φ(µ) for some k, and does not appear in any block of φ(µ′).
Indeed, one can take ı̂, ȷ̂ to be in the same column in µ but in different
columns in µ′. Let S be the o-block of ı̂ and S ′ be the o-block of ȷ̂. Let
p denote the least common multiple of o-blocks sizes in both µ and µ′.
In this case we consider the AN f such that:

• Xı̂ = B × J p
|S|K, Xȷ̂ = B × J p

|S′|K, and Xi = {0} for all i /∈ {ı̂, ȷ̂}.
Given x ∈ X, we denote xı̂ = (xbı̂ , x

ℓ
ı̂) the state of ı̂ (and analogously

for ȷ̂); and

• fı̂(x) =

{
(xbȷ̂, x

ℓ
ı̂ + 1 mod p

|S|) if xℓı̂ = 0

(xbı̂ , x
ℓ
ı̂ + 1 mod p

|S|) otherwise
,

fȷ̂(x) =

{
(xbı̂ , x

ℓ
ȷ̂ + 1 mod p

|S′|) if xℓȷ̂ = 0

(xbȷ̂, x
ℓ
ȷ̂ + 1 mod p

|S′|) otherwise
, and

fi(x) = xi for all i /∈ {ı̂, ȷ̂}.
Note that ı̂ (resp. ȷ̂) is updated p

|S| (resp. p
|S′|) times during a step in

both µ and µ′. Therefore for any x ∈ X, its two images under µ and
µ′ verify f{µ}(x)ℓı̂ = f{µ′}(x)

ℓ
ı̂ = xℓı̂ (and analogously for ȷ̂). Thus for the

evolution of the states of ı̂ and ȷ̂ during a step, the second element is
fixed and only the first element (in B) may change. We split X into
X= = {x ∈ X | xbı̂ = xbȷ̂} and X ̸= = {x ∈ X | xbı̂ ̸= xbȷ̂}, and observe the
following facts by the definition of fı̂ and fȷ̂:

• Under µ and µ′, all the elements of X= are fixed points (indeed,
only xbı̂ and xbȷ̂ may evolve by copying the other).

• Under µ, let m,m′ be the respective number of times ı̂, ȷ̂ have
been updated prior to the k-th block of φ(µ) in which they are
updated synchronously. Consider the configurations x, y ∈ X ̸=

with xı̂ = (0,−m mod p
|S|), xȷ̂ = (1,−m′ mod p

|S′|), yı̂ = (1,−m
mod p

|S|) and yȷ̂ = (0,−m′ mod p
|S′|). It holds that f{µ}(x) = y and

f{µ}(y) = x, because xbı̂ and xbȷ̂ are exchanged synchronously when
xℓı̂ = xℓȷ̂ = 0 during the k-th block of φ(µ), and are not exchanged
again during that step by the choice of the modulo. Hence, fΩ

{µ}
has a limit cycle of length two.

• Under µ′, for any x ∈ X ̸=, there is a substep with xℓı̂ = 0 and
there is a substep with xℓȷ̂ = 0, but they are not the same substep
(because ı̂ and ȷ̂ are never synchronized in µ′). As a consequence,
xbı̂ and xbȷ̂ will end up having the same value (the first to be updated
copies the bit from the second, then the second copies its own bit),

12



i.e. f{µ′}(x) ∈ X=, and therefore fΩ
{µ′} has only fixed points.

We conclude in this case that fΩ
{µ} ̸∼ fΩ

{µ′}, because one has a limit cycle
of length two, whereas the other has only fixed points.

(2.2) If the permutation preserves the columns within the matrices (meaning
that the automata within the same column in µ are also in the same
column in µ′), then we consider two last subcases:

(2.2.1) Moreover, if the permutation of some matrix is not circular (mean-
ing that there are three columns which are not in the same relative
order in µ and µ′), then there are three automata ı̂, ȷ̂ and k̂ in the
same matrix such that in µ, automaton ı̂ is updated first, then ȷ̂,
then k̂; whereas in µ′, automaton ı̂ is updated first, then k̂, then ȷ̂.
Let us consider the automata network f such that:

• X = Bn;
• fı̂(x) = xk̂, fȷ̂(x) = xı̂ and fk̂(x) = xȷ̂; and
• fi(x) = xi if i /∈ {ı̂, ȷ̂, k̂}.

If the three automata are updated in the order ı̂ then ȷ̂ then k̂, as
it is the case with µ, then after any update, they will all have taken
the same value. It implies that f{µ} has only fixed points, precisely
the set P = {x ∈ Bn | xı̂ = xȷ̂ = xk̂}.
If they are updated in the order ı̂ then k̂ then ȷ̂, as with µ′, how-
ever, the situation is a bit more complex. We consider two cases,
according to the number of times they are updated during a period
(recall that since they belong to the same matrix, they are updated
repeatedly in the same order during the substeps):

• If they are updated an odd number of times each, then au-
tomata ı̂ and ȷ̂ will take the initial value of automaton k̂, and
automaton k̂ will take the initial value of automaton ȷ̂. In this
case, fΩ

{µ′} has the fixed points P and limit cycles of length two.
• If they are updated an even number of times each, then the

reverse will occur: automata ı̂ and ȷ̂ will take the initial value
of automaton ȷ̂, and automaton k̂ will keep its initial value. In
this case, fΩ

{µ′} has the fixed points Q = {x ∈ Bn | xı̂ = xȷ̂}
which strictly contains P (i.e. P ⊆ Q and Q \ P ̸= ∅).

In both cases fΩ
{µ′} has more than the fixed points P in its limit set,

hence we conclude that fΩ
{µ} ̸∼ fΩ

{µ′}.
(2.2.2) Moreover, if the permutation of all matrices is circular, then we

first observe that when φ(µ) and φ(µ′) have one block in common,
they have all blocks in common (because of the circular nature of
permutations), i.e. µ ≡⋆ µ

′. Thus, under our hypothesis, we deduce

13



that φ(µ) and φ(µ′) have no block in common. As a consequence,
there exist automata ı̂, ȷ̂ with the property from case (2.1), namely
synchronized in a block of φ(µ) but never synchronized in any block
of φ(µ′), and the same construction terminates this proof.

Let BP⋆
n = BPn/ ≡⋆ denote the corresponding quotient set.

Theorem 2. Let lcm(i) = lcm({j ∈ J1, d(i)K | m(i, j) ≥ 1}). For any n ≥ 1, we
have:

|BP⋆
n| =

p(n)∑

i=1

n!
∏d(i)

j=1 (m(i, j)!)j
· 1

lcm(i)
.

Proof. Let µ, µ′ ∈ BPn two update modes such that µ ≡ µ′. Then their sequential
forms are of the same length, and each automaton appears the same number of
times in both of them. This means that, if an automaton is in an o-block of size k
in µ’s partitioned order form, then it is also in an o-block of the same size in µ′’s.
We deduce that two update modes of size n can only be equivalent as defined in
Definition 2 if they are generated from the same partition of n.

Let µ ∈ BP0
n, generated from partition i of n. Then φ(µ) is of length lcm(i).

Since no two elements of BP0
n have the same block-sequential form, the equivalence

class of µ in BP0
n contains exactly lcm(i) elements, all generated from the same

partition i (all the blocks of φ(µ) are different). Thus, the number of elements of
BP⋆

n generated from a partition i is the number of elements of BP0
n generated from

partition i, divided by the number of elements in its equivalence class for BP⋆
n,

namely lcm(i).

Remark 2. The formula for |BP⋆
n| can actually be obtained from any formula in

Theorem 1 by multiplying by 1
lcm(i)

inside the sum on partitions (from i = 1 to
p(n)).

While counting the elements of BP⋆
n was pretty straightforward, enumerating

them by ensuring that no two partitioned orders are the same up to circular permu-
tation of their block-sequential rewritings (Definition 2) is more challenging. This
is performed by Algorithm 1. It works much like the one enumareting the elements
of BP0

n, except for the following differences. In the first function, EnumBPiso: right
after choosing the partition, a list of coefficients a[j] is determined, in a modi-
fied algorithm that computes lcm(i) inductively (lines 3-10). These coefficients
are used in the second auxiliary function EnumBlockIsoAux, where the minimum
minj of the matrix Mj is forced to be in the first a[j] columns of said matrix (lines
35-37, the condition is fulfilled when minj has not been chosen within the a[j]− 1

14



Algorithm 1: Enumeration of BP⋆
n

1 Function EnumBPiso(n):
2 foreach i ∈ partitions(n) do
3 a is a list of size d(i)
4 b← 1
5 for j ← d(i) to 1 do
6 if m(i, j) > 0 then
7 a[j]← gcd(b, j)
8 b← lcm(b, j)

9 else
10 a[j]← j

11 EnumBPisoAux(n, i, 1, a)

12 Function EnumBPisoAux(n, i, j, a, M1, . . . , Mj−1):
13 if d(i) < j then
14 enumerate(M)
15 return

16 if m(i, j) > 0 then
17 foreach combination A of size j ·m(i, j) among JnK \

⋃j−1
k=1 Mk do

18 minj ← min(A)
19 foreach Mj enumerated by EnumBlockIso(A, j, m(i, j), minj , a[j]) do
20 EnumBPisoAux(n, i, j + 1, a, M1, . . . , Mj−1, Mj)

21 else
22 EnumBPisoAux(n, i, j + 1, a, M1, . . . , Mj−1, ∅)

23 Function EnumBlockIso(A, j, m, minj , aj):
24 foreach C enumerated by EnumBlockIsoAux(A, m, minj , aj) do
25 for k ← 1 to m do
26 for ℓ← 1 to j do
27 Mj [k][ℓ] = Cℓ[k]

28 enumerate(Mj)
29 return

30 Function EnumBlockIsoAux(A, j, m, minj , aj , C1, ..., Cℓ):
31 if A = ∅ then
32 enumerate(C)
33 return

34 else
35 if |A| = m · (j − aj + 1) and minj ∈ A then
36 foreach combination B of size m− 1 among A \ {minj} do
37 EnumBlockIsoAux(A \ (B ∪ {minj}), m, minj , aj , C1, . . . , Cℓ, (B ∪ {minj}))

38 else
39 foreach combination B of size m among A do
40 EnumBlockIsoAux(A \B, m, minj , aj , C1, . . . , Cℓ, B)

first columns, then it is placed in that column so only m(i, j) − 1 elements are
chosen).
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The proof of correction of Algorithm 1 can be found in Appendix A.

3.5. Implementations
Proof-of-concept Python implementations of the three enumeration algorithms

mentioned are available on the following repository:

https://framagit.org/leah.tapin/blockpargen.

It is archived by Software Heritage at the following permalink:

https://archive.softwareheritage.org/browse/directory/
f1b4d83c854a4d042db5018de86b7f41ef312a07/?origin_url=

https://framagit.org/leah.tapin/blockpargen.

We have conducted numerical experiments on a standard laptop, presented on
Figure 2.

4. Computational complexity under block-parallel updates

Computational complexity is important to anyone willing to use algorithmic
tools in order to study discrete dynamical systems. Lower bounds inform on the
best worst case time or space one can expect with an algorithm solving some
problem. The n local functions of a BAN are encoded as Boolean circuits, which
is a convenient formalism corresponding to the high level descriptions one usually
employs. The update mode is given as a list of lists of integers, each of them being
encoded either in unary or binary (this makes no difference, because the encoding
of local functions already has a size greater than n).

In this section we characterize the computational complexity of typical prob-
lems arising in the framework of automata networks. We will see that almost
all problems reach PSPACE-completeness. The intuition behind this fact is that
the description of a block-parallel update mode may expend (through φ) to an
exponential number of substeps, during which a linear bounded Turing machine
may be simulated via iterations of a circuit. We first recall this folklore building
block and present a general outline of our constructions (Subsection 4.1). Then we
start with results on computing images, preimages, fixed points and limit cycles
(Subsection 4.2), before studying reachability and global properties of the function
f{µ} computed by an automata network f under block-parallel update schedule µ
(Subsection 4.3).
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n BPn BP0
n BP⋆

n

1 1 1 1
- - -

2 3 3 2
- - -

3 13 13 6
- - -

4 73 67 24
- - -

5 501 471 120
- - -

6 4051 3591 795
- - -

7 37633 33573 5565
- 0.103s -

8 394353 329043 46060
0.523s 0.996s 0.161s

9 4596553 3919387 454860
6.17s 12.2s 1.51s

10 58941091 47827093 4727835
1min24s 2min40s 16.3s

11 824073141 663429603 54223785
21min12s 38min31s 3min13s

12 12470162233 9764977399 734932121
5h27min38s 9h49min26s 45min09s
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Figure 2: Numerical experiments of our Python implementation of the three algorithms on a
standard laptop (processor Intel-CoreTM i7 @ 2.80 GHz). For n from 1 to 12, the table (left)
presents the size of BPn, BP0

n and BP∗
n and running time to enumerate their elements (one

representative of each equivalence class; a dash represents a time smaller than 0.1 second), and
the graphics (right) depicts their respective sizes on a logarithmic scale. Observe that the sizes
of BPn and BP0

n are comparable, whereas an order of magnitude is gained with BP∗
n, which may

be significant for advanced numerical experiments regarding limit dynamics under block-parallel
udpate modes.
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4.1. Outline of the PSPACE-hardness constructions
We will design polynomial time many-one reductions from the following PSPACE-

complete decision problem, which appears for example in [26].

Iterated Circuit Value Problem (Iter-CVP)
Input: a Boolean circuit C : Bn → Bn, a configuration x ∈ Bn, and i ∈ JnK.
Question: does ∃t ∈ N : Ct(x)i = 1?

Theorem 3 (folklore). Iter-CVP is PSPACE-complete.

Before presenting the general outline of our constructions, we need a technical
lemma related to the generation of primes (proof in Appendix A).

Lemma 5. For all n ≥ 2, a list of distinct prime integers p1, p2, . . . , pkn such
that 2 ≤ pi < n2 and 2n <

∏kn
i=1 pi < 22n

2 can be computed in time O(n2), with
kn = ⌊ n2

2 ln(n)
⌋.

Our constructions of automata netwoks and block-parallel update schedules for
the computational complexity lower bounds are based on the following.

Definition 3. For any n ≥ 2, let p1, p2, . . . , pkn be the kn primes given by Lemma 5,
and denote qj =

∑j
i=1 pi their cumulative series for j from 0 to kn. Define

the automata network gn on qkn automata JqknK with constant 0 local functions,
where the components are grouped in o-blocks of length pi, that is with µn =⋃

i∈JknK{(qi, qi + 1, . . . , qi+1 − 1)}.
Lemma 6. For any n ≥ 2, one can compute gn and µn in time O(n4), and
|φ(µn)| > 2n.

Proof. The time bound comes from Lemma 5 and the fact that qkn is in O(n4).
The number of blocks in φ(µn) is the least common multiple of its o-block sizes,
which is the product

∏kn
i=1 pi, hence from Lemma 5 we conclude that it is greater

than 2n.

The general idea is now to add some automata to gn and place them within
singletons in µn, i.e., each of them in a new o-block of length 1. We propose an
example implementing a binary counter on n bits.

Example 1. Given n ≥ 2, consider gn and µn given by Lemma 6. Construct f
from gn by adding n Boolean components {qkn , . . . , qkn+n}, whose local functions
increment a binary counter on those n bits, until it freezes to 2n − 1 (all bits in
state 1). Construct µ′ from µn as µ′ = µn ∪

⋃
i∈JnK{(qkn + i)}, so that the counter

components are updated at each substep. Observe that the pair f, µ′ can be still be
computed from n in time O(n4). Figure 3 illustrates an example of orbit for n = 3,
and one can notice that f{µ′} is a constant function sending any x ∈ Bn to 0qkn1n.
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Substep 1: {0, 2, 5, 10, 17, 18, 19}

Substep 2: {1, 3, 6, 11, 17, 18, 19}

...

Figure 3: Substeps leading to the image of configuration 0qkn010 in f{µ′} from Example 1 for
n = 3 (kn = 4 and qkn

= 2+3+5+7 = 17). The last 3 bits implement a binary counter, freezing
at 7 (111). Above each substep the block of updated automata is given.

Remark that we will prove complexity lower bounds by reduction from Iter-
CVP, where n will be the number of inputs and outputs of the circuit to be
iterated, hence the integer n itself will be encoded in unary. As a consequence, the
construction of Example 1 is computed in polynomial time.

4.2. Images, preimages, fixed points and limit cycles
We start the study of the computational complexity of automata networks un-

der block-parallel update schedules with the most basic problem of computing the
image f{µ}(x) of some configuration x through f{µ} (i.e., one step of the evolution),
which is already PSPACE-hard. We conduct this study as decision problems. It is
actually hard to compute even a single bit of f{µ}(x). The fixed point verification
problem is a particular case of computing an image, which is still PSPACE-hard
(unlike block-sequential update schedules for which this problem is in P). Recall
that the encoding of µ (with integers in unary or binary) has no decisive influence
on the input size, this latter being characterized by the circuits sizes and in par-
ticular their number of inputs, denoted n, which is encoded in unary.

Block-parallel step bit (BP-Step-Bit)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x ∈ Bn, j ∈ JnK.
Question: does f{µ}(x)j = 1?

Block-parallel step (BP-Step)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x, y ∈ Bn.
Question: does f{µ}(x) = y?

Block-parallel fixed point verification (BP-Fixed-Point-Verif)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x ∈ Bn.
Question: does f{µ}(x) = x?
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This first set of problems is related to the image of a given configuration x,
which allows the reasonings to concentrate on the dynamics of substeps for that
single configuration x, regardless of what happens for other configurations. Note
that n will be the size of the Iter-CVP instance, while the size of the automata
network will be qkn + ℓ′ + n+ 1.

Theorem 4. BP-Step-Bit, BP-Step and BP-Fixed-Point-Verif are PSPACE-
complete.

Proof. The problems BP-Step-Bit, BP-Step and BP-Fixed-Point-Verif are
in PSPACE, with a simple algorithm obtaining f{µ}(x) by computing the least com-
mon multiple of o-block sizes and then using a pointer for each block throughout
the computation of that number of substeps (each substep evaluates local functions
in polynomial time).

We give a single reduction for the hardness of BP-Step-Bit, BP-Step and
BP-Fixed-Point-Verif, where we only need to consider the dynamics of the
substeps starting from one configuration x. Given an instance of Iter-CVP with
a circuit C : Bn → Bn, a configuration x̃ ∈ Bn and i ∈ JnK, we apply Lemma 6
to construct gn, µn on automata set P = JqknK. Automata from P have constant
0 local functions, and the number of substeps is ℓ = |φ(µn)| > 2n thanks to the
prime’s lcm. We define a BAN f by adding:

• ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn , . . . , qkn + ℓ′− 1}, implementing
a counter that increments modulo ℓ at each substep, and remains fixed when
xB encodes an integer greater or equal to ℓ (case not considered in this proof);

• n automata numbered D = {qkn + ℓ′, . . . , qkn + ℓ′ + n − 1}, whose local
functions iterate C : Bn → Bn while the counter is smaller than ℓ − 1, and
go to state x̃ when the counter reaches ℓ− 1, i.e., with

fD(x) =

{
C(xD) if xB < ℓ− 1,
x̃ otherwise; and

• 1 automaton numbered R = {qkn + ℓ′ + n}, whose local function

fR(x) = xR ∨ xqkn+ℓ′+i

records whether a state 1 appeared at automaton in relative position i within
D.

We also add singletons to µn for each of these additional automata, by setting

µ′ = µn ∪
⋃

j∈B∪D∪R

{(j)}.

Now, consider the dynamics of substeps in computing the image of configuration
x = 0qkn0ℓ

′
x̃0. During the first ℓ− 1 substeps:
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• automata P have constant 0 local function;
• automata B increment a counter from 0 to ℓ− 1;
• automata D iterate circuit C from x̃; and
• automaton R records whether the i-th bit of D has been in state 1 during

some iteration.
During the last substep, automata B go back to 0n because of the modulo, and
automata D go back to state x̃. Since the number of substeps ℓ is greater than 2n

(Lemma 6), the iterations of C search the whole orbit of x̃, and at the end of the
step automaton R has recorded whether the Iter-CVP instance is positive (went
to state 1) or negative (still in state 0). The images are respectively y− = 0qkn0ℓ

′
x̃0

or y+ = 0qkn0ℓ
′
x̃1. This concludes the reductions, to BP-Step-Bit by asking

whether automaton R (numbered qkn + 2n) is in state 1, to BP-Step by asking
whether the image of x is y+, and to BP-Fixed-Point-Verif because y− = x
(coPSPACE-hardness).

As a corollary, the associated functional problem of computing f{µ} is com-
putable in polynomial space and is PSPACE-hard for polynomial time Turing re-
ductions (not for many-one reductions, as there is no concept of negative instance
for total functional problems). Deciding whether a given configuration y has a
preimage through f{µ} is also PSPACE-complete (see Appendix A for details).

Now, we study the computational complexity of problems related to the exis-
tence of fixed points and limit cycles in an automata network under block-parallel
update schedule. Again, we need to consider the image of all configurations, and
have no control on neither the start configuration x nor the end configuration y
during the dynamics of substeps. In particular, the counter may be initialized to
any value, and the bit R may already be set to 1. We adapt the previous reduc-
tions accordingly.

Block-parallel fixed point (BP-Fixed-Point)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does ∃x ∈ Bn : f{µ}(x) = x?

Block-parallel limit cycle of length k (BP-Limit-Cycle-k)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does ∃x ∈ Bn : fk

{µ}(x) = x?

Block-parallel limit cycle (BP-Limit-Cycle)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, k ∈ N+.
Question: does ∃x ∈ Bn : fk

{µ}(x) = x?

On limit cycles we have a family of problems (one for each integer k), and a version
where k is part of the input (encoded in binary). It makes no difference on the
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complexity.

Theorem 5. BP-Fixed-Point, BP-Limit-Cycle-k for any k ∈ N+ and BP-
Limit-Cycle are PSPACE-complete.

Proof. These problems still belong to PSPACE, because they amount to enumer-
ating configurations and computing images by f{µ}, which can be performed from
BP-Step (Theorem 4).

We start with the hardness proof for the fixed point existence problem, and
we will then adapt it to limit cycle existence problems. Given an instance C :
Bn → Bn, x̃ ∈ Bn, i ∈ JnK of Iter-CVP, we construct the same block-parallel
update schedule µ′ as in the proof of Theorem 4, and modify the local functions
of automata B and R as follows:

• automata B increment a counter modulo ℓ at each substep, and go to 0 when
the counter is greater than (or equal to) ℓ− 1; and

• automaton R records whether a state 1 appears at the i-th bit of xD, and
flips when the counter is equal to ℓ− 1, i.e.,

fR(x) =

{
xR ∨ xqkn+ℓ′+i if xB < ℓ− 1,
¬xR otherwise.

Recall that automata D iterate the circuit when xB < ℓ−1 and go to x̃ otherwise,
and that the number ℓ of substeps is larger than 2n.

If the Iter-CVP instance is positive, then configuration x = 0qkn0ℓ
′
x̃0 is a

fixed point of f{µ′}. Indeed, during the ℓ-th and last substep, the primes P are
still in state 0qkn , the counter B goes back to 0 (state 0ℓ

′), the circuit D goes back
to x̃, and automaton R has recorded the 1 which is flipped into state 0.

Conversely, if there is a fixed point configuration x, then the counter must be
at most ℓ− 1 because of the modulo ℓ increment. Furthermore, automata D will
encounter one substep during which it goes to x̃, hence the resulting configuration
on D will be in the orbit of x̃, i.e., xD is in the orbit of x̃. Finally, automaton R will
also encounter exactly one substep during which it is flipped (when xB ≥ ℓ − 1).
As a consequence, in order to go back to its initial value xR, the state of R must
be flipped during another substep, which can only happen when it is in state
0 and automaton qkn + ℓ′ + i is in state 1. We conclude that the i-th bit of a
configuration in the orbit of x̃ is in state 1 during some iteration of the circuit
C, meaning that the Iter-CVP instance is positive. Remark that in this case,
configuration 0qkn0ℓx̃0 is one of the fixed points.

For the limit cycle existence problems, we modify the construction to let the
counter go up to kℓ− 1. Precisely:

• ℓ′ = ⌈log2(kℓ)⌉ automata B implement a binary counter which is incremented
at each substep, and goes to 0 when xB ≥ kℓ− 1;
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• n automata D iterate the circuit C if xB < ℓ − 1, else go to state x̃ (no
change); and

• 1 automaton R records whether a state 1 appears in the i-th bit of xD, and
flips when the counter is equal to ℓ− 1.

The reasoning is identical to the case k = 1, except that the counter needs k times
ℓ substeps, i.e., k steps, in order to go back to its initial value. As a consequence,
there is no x and k′ < k such that fk′

{µ}(x) = x, and the dynamics has no limit cycle
of length smaller than k. Remark that when the Iter-CVP instance is positive,
configurations (0qknBix̃0)i∈JkK with Bi the ℓ′-bits encoding of iℓ form one of the
limit cycles of length k. Also remark that the encoding of k in binary within the
input has no consequence, neither on the PSPACE algorithm, nor on the polynomial
time many-one reduction.

Remark that our construction also applies to the notion of limit cycle x0, . . . , xp−1
where it is furthermore required that all configurations are different (this corre-
sponds to having the minimum length p): the problem is still PSPACE-complete.

4.3. Reachability and general complexity bounds
In this part, we settle the computational complexity of the classical reachabil-

ity problem, which is unsurprisingly still PSPACE-hard by reduction from another
model of computation (see Appendix A for details). In light of what precedes, one
may be inclined to think that any problem related to the dynamics of automata
networks under block-parallel update schedules is PSPACE-hard. We prove that
this is partly true with a general complexity bound theorem on subdynamics ex-
isting within f{µ}, based on our previous results on fixed points and limit cycles.
However, we will also prove that a Rice-like complexity lower bound analogous
to the main results of [23], i.e., which would state that any non-trivial question
on the dynamics (on the functional graph of f{µ}) expressible in first order log-
ics is PSPACE-hard, does not hold (unless a collapse of PSPACE to the first level
of the polynomial hierarchy). Indeed, we will see that deciding the bijectivity
(∀x, y ∈ Bn : f{µ}(x) = f{µ}(y) =⇒ x = y) is complete for coNP. We conclude
the section with a discussion on reversible dynamics.

From the fixed point and limit cycle theorems in Section 4.2, we now derive
that any particular subdynamics is hard to identify within f{µ} under block-parallel
update schedule. A functional graph is a directed graph of out-degree exactly one,
and we assimilate f{µ} to its functional graph. We define a family of problems,
one for each functional graph G to find as a subgraph of f{µ}, and prove that the
problem is always PSPACE-hard. Since PSPACE = coPSPACE, checking the exis-
tence of a subdynamics is as hard as checking the absence of a subdynamics, even
though the former is a local property whereas the latter is a global property at the
dynamics scale. This is understandable in regard of the fact that PSPACE scales
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everything to the global level (one can search the whole dynamics in PSPACE), be-
cause verifying that a given set of configurations (a certificate) gives the subgraph
G is difficult (Theorem 4).

Block-parallel G as subdynamics (BP-Subdynamics-G)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does G ⊏ f{µ}?

Remark that asking whether G appears as a subgraph or as an induced subgraph
makes no difference when G is functional (has out-degree exactly one), because
f{µ} is also functional: it is necessarily induced since there is no arc to delete.

Theorem 6. BP-Subdynamics-G is PSPACE-complete for any functional graph
G.

Proof. A polynomial space algorithm for BP-G-Subdynamics consists in enu-
merating all subsets S ⊆ Bn of size |S| = |V (G)|, and test for each whether the
restriction of f{µ} to S is isomorphic to G (functional graphs are planar hence
isomorphism can be decided in logarithmic space [16]).

For the PSPACE-hardness, the idea is to choose a fixed point or limit cycle in G,
and make it the decisive element whose existence or not lets G be a subgraph of the
dynamics or not. Since G is a functional graph, it is composed of fixed points and
limit cycles, with hanging trees rooted into them (the trees are pointing towards
their root). Let G(v) denote the unique out-neighbor of v ∈ V (G).

Let us first assume that G has a limit cycle of length k ≥ 2, or a fixed point
with a tree of height greater or equal to 1 hanging (the case where G has only
isolated limit cycles is treated thereafter). A fixed point is assimilated to a limit
cycle of length k = 1. Let G′ be the graph G without this limit cycle of size k, and
let U be the vertices of G′ without out-neighbor (if k = 1 then U ̸= ∅). We reduce
from Iter-CVP, and first compute the f, µ of size n obtained by the reduction
from Theorem 5 for the problem BP-Limit-Cycle-k. We have that f{µ} has a
limit cycle of length k on configurations (0qknBix̃0)i∈JkK (or configuration 0qkn0ℓx̃0
for k = 1) if and only if the Iter-CVP instance is positive.

We construct g on n + 1 automata, and the update schedule µ′ being the
union of µ with a singleton o-block for the new automaton. We assume that
n ≥ |V (G)| − k, otherwise we pad f, µ to that size (with identity local functions
for the new automata). The idea is that g will consist in a copy of f on the
subspace xn = 0, and a copy of G′ on the subspace xn = 1 where the images of
the configurations corresponding to the vertices of U will be configurations of the
potential limit cycle of f{µ} (in the other subspace xn = 0). Other configurations
in the subspace xn = 1 will be fixed points. Figure 4 illustrates the construction.
Recall that G is fixed, and consider a mapping α : V (G) → {0, 1}n such that
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G Subspace xn = 0 Subspace xn = 1

Figure 4: Construction of g in the proof of Theorem 6. Subspace xn = 0 contains a copy of f
with a potential limit cycle dashed. Subspace xn = 1 implements G′, and wires configurations
of U (grey area) to the potential limit cycle in the copy of f (remaining configurations are fixed
points).

vertices of the limit cycle of length k are sent to the configurations (0qknBix̃0)i∈JkK

respectively (or 0qkn0ℓx̃0 for k = 1). We define:

g(x) =





f(xJnK)0 if xn = 0,
α(G(v))0 if xn = 1 and ∃v ∈ U : α(v) = xJnK,
α(G(v))1 if xn = 1 and ∃v ∈ G′ \ U : α(v) = xJnK,
x otherwise.

The obtained dynamics g{µ′} has one copy of f{µ} (in subspace xn = 0), with a
copy of G′ (in subspace xn = 1) which becomes a copy of G if configurations
(0qknBix̃0)i∈JkK (or 0qkn0ℓx̃0 in the case k = 1) form a limit cycle of length k.
Moreover, it becomes a copy of G only if so by our assumption on the limit cycle
or fixed point of G, because the remaining configurations in subspace xn = 1 are
all isolated fixed points. This concludes the reduction.

For the case where G is made of k isolated fixed points, we reduce from BP-
Fixed-Point and construct an automata network with k copies of the dynamics
of f , by adding ⌈log2(k)⌉ automata with identity local functions.

When the property of being a functional graph is dropped, that is when the out-
degree of G is at most one (otherwise any instance is trivially negative), problem
BP-Subdynamics-G is subtler. Indeed, one can still ask for the existence of
fixed points, limit cycles and any functional subdynamics PSPACE-complete by
Theorem 6, but new problems arise, some of which are provably complete only for
coNP. The symmetry of existence versus non existence is broken. In what follows,
we settle that deciding the bijectivity of f{µ} is coNP-complete, and then discuss
the complexity of decision problems which are subsets of bijective networks, such
as the problem of deciding whether f{µ} is the identity. We conclude the section
by proving that it is nevertheless PSPACE-complete to decide whether f{µ} is a
constant map. These results hint at the subtleties behind a full characterization
of the computational complexity of BP-Subdynamics-G for all graphs of out-
degree at most one.
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Block-parallel bijectivity (BP-Bijectivity)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: is f{µ} bijective?

Remark that, because the space of configurations is finite, injectivity, surjectivity
and bijectivity are equivalent properties of f{µ}.

Lemma 7. Let f : Bn → Bn a BAN and µ ∈ BPn a block-parallel update mode.
Then f{µ} is bijective if and only if f(W ) is bijective for every block W of φ(µ).

Proof. The right to left implication is obvious since f{µ} is a composition of bijec-
tions f(W ). We prove the contrapositive of the left to right implication, assuming
the existence of a block W in φ(µ) such that f(W ) is not bijective. Let Wℓ be the
first such block in the sequence φ(µ), so there exist x, y ∈ Bn such that x ̸= y but
f(Wℓ)(x) = f(Wℓ)(y) = z. By minimality of ℓ, the composition g = f(Wℓ−1)◦· · ·◦f(W0)

is bijective, hence there also exist x′, y′ ∈ Bn with x′ ̸= y′ such that g(x′) = x and
g(y′) = y. That is, after the ℓ-th substep the two configurations x′ and y′ have the
same image z, and we conclude that f{µ}(x′) = f{µ}(y

′) = f(Wp−1) ◦ · · · ◦ f(Wℓ+1)(z)
therefore f{µ} is not bijective.

Lemma 7 shows that bijectivity can be decided at the local level of circuits
(not iterated), which can be checked in coNP and gives Theorem 7.

Theorem 7. BP-Bijectivity is coNP-complete.

Proof. A coNP algorithm can be established from Lemma 7, because it is equivalent
to check the bijectivity at all substeps. A non-deterministic algorithm can guess a
temporality t ∈ J|φ(µ)|K (in binary) within the substeps, two configurations x, y,
and then check in polynomial time that they certify the non-bijectivity of that
substep as follows. First, construct W the t-th block of φ(µ), by computing t
modulo each o-block size to get the automata from that o-block. Second, check
that f(W )(x) = f(W )(y).

The coNP-hardness is a direct consequence of that complexity lower bound for
the particular case of the parallel update schedule [40, Theorem 5.17].

We now turn our attention to the recognition of identity dynamics.

Block-parallel identity (BP-Identity)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does f{µ}(x) = x for all x ∈ Bn?

This problem is in PSPACE, and is coNP-hard by reduction from the same problem
in the parallel case [40, Theorem 5.18]. However, it is neither obvious to design
a coNP-algorithm to solve it, nor to prove PSPACE-hardness by reduction from
Iter-CVP.
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Open problem 8. BP-Identity is coNP-hard and in PSPACE. For which com-
plexity class is it complete?

A major obstacle to the design of an algorithm, or of a reduction from Iter-
CVP to BP-Identity, lies in the fact that, by Theorem 7, “hard” instances of
the latter are bijective networks (because non-bijective instances can be recognized
in our immediate lower bound coNP, and they are all negative instances of BP-
Identity). A reduction would therefore be related to the lengths of cycles in
the dynamics of substeps, and whether they divide the least common multiple of
o-block sizes (for x ∈ Bn such that f(x) = x) or not (f(x) ̸= x).

Nonetheless, we are able to prove another lower bound, related to the hardness
of computing the number of models of a given propositional formula. The canonical
ModP-complete problem takes as input a formula ψ and two integers k, i encoded
in unary, and consists in deciding whether the number of models of ψ is congruent
to k modulo the i-th prime number (which can be computed in polytime). It
generalizes classes ModkP (such as the parity case Mod2P = ⊕P), and it is notable
that #P polytime truth-table reduces to ModP [33].

Theorem 9. BP-Identity is ModP-hard (for polytime many-one reduction).

The proof of this theorem can be found in Appendix A.
Our attemps to prove PSPACE-hardness failed, for the following reasons. To

get bijective circuits one could reduce from reversible Turing machines (RTM) and
problem Reversible Linear Space Acceptance [34]. A natural strategy would
be to simulate a RTM for an exponential number of subteps, and then simulate
it backwards for that same number of substeps, while ending in the exact same
configuration (identity map) if and only if the simulation did not halt or was not
in the orbit of the given input w. The difficulty with this approach is that the
dynamics of substeps must not be the identity map when a conjunction of two
temporally separated events happens: first that the simulation has halted, and
second that the starting configuration was w. It therefore requires to remember at
least one bit of information, which is subtle in the reversible setting. Indeed, the
constructions of [34] and [37] consider only starting configurations of the Turing
machine in the initial state and with blank tapes. However, in the context of
Boolean automata networks, any configuration must be considered (hence any
configuration of the simulated Turing machine).

Regarding iterated circuits simulating reversible cellular automata (for which
the whole configuration space is usualy considered), the literature focuses on de-
cidability issues [31, 44], but a recent contribution fits our setting and we derive
the following. FPPSPACE is the class of functions computable in polynomial time
with an oracle in PSPACE.
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Theorem 10 ([20, Theorem 5.7]). There is a one-dimensional reversible cellu-
lar automaton for which simulating any given number of iterations, with periodic
boundary conditions, is complete for FPPSPACE

Corollary 2. Given (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn such that f{µ} is
bijective, x ∈ Bn and t ∈ J|φ(µ)|K in binary, computing the configuration at the
t-th substep is complete for FPPSPACE.

The proof of this corollary can be found in Appendix A.
Intuitively, the dynamics of substeps embeds complexity. The relationship to

the complexity of computing the configuration after the whole step composed of
|φ(µ)| substeps, i.e. the image through f{µ}, is not obvious.

Being a constant map is another global property of the dynamics, which turns
out to be PSPACE-complete to recognize for BANs under block-parallel update
schedules.

Block-parallel constant (BP-Constant)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn.
Question: does there exist y ∈ Bn such that f{µ}(x) = y for all x ∈ Bn?

Theorem 11. BP-Constant is PSPACE-complete.

Proof. To decide BP-Constant, one can simply enumerate all configurations and
compute their image (Theorem 4) while checking that it always gives the same
result.

For the PSPACE-hardness proof, we reduce from Iter-CVP. Given a circuit
C : Bn → Bn, a configuration x̃ and i ∈ JnK, we apply Lemma 6 to construct gn, µn

on automata set P = JqknK. Automata from P have constant 0 local functions,
and the number of substeps is ℓ = |φ(µn)| > 2n. We add (Figure 5 illustrates the
obtained dynamics):

• ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn , . . . , qkn+ℓ′−1}, implementing a
ℓ′-bits binary counter that increments at each substep, and sets all automata
from B in state 1 when the counter is greater or equal to ℓ− 1;

• n automata numbered D = {qkn + ℓ′, . . . , qkn + ℓ′ + n − 1}, whose local
functions are given below; and

• 1 automaton numbered R = {qkn + ℓ′ + n}, whose local function is given
below.

fD(x) =





C(x̃) if xB = 0

C(xD) if 0 < xB < ℓ− 1

0n otherwise
fR(x) =





x̃i if xB = 0

xR ∨ xqkn+ℓ′+i if 0 < xB < ℓ

1 otherwise

We also add singletons to µn for these additional automata, via µ′ = µn∪
⋃

j∈B∪D∪R{(j)}.
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0qkn1ℓ
′
0n1

Positive instance

0qkn1ℓ
′
0n1 0qkn1ℓ

′
0n0

xB = 0
Negative instance

Figure 5: Illustration of the dynamics obtained for the reduction to BP-Constant in the proof
of Theorem 11. Configurations x with the counter automata B initialized to xB = 0 either go
to 0qkn1ℓ

′
0n1 (left, positive instance), or to 0qkn1ℓ

′
0n0 (right, negative instance). Only the bit

of automata R changes.

For any configuration x with a counter not initialized to 0, i.e., with xB ̸= 0, the
counter will reach and remain in the all 1 state before the last substep, therefore
automata from D will be updated to 0n and automaton R will be updated to
1. We conclude that f{µ′}(x) = 0qkn1ℓ

′
0n1. For configurations x with xB = 0,

substeps proceed as follows:
• automata B count until ℓ − 1 at the penultimate substep (recall that ℓ =
|φ(µn)| = |φ(µ′n)|), which finally brings them all in state 1 during the last
substep;

• automataD iterate the circuit C, starting from C(x̃) during the first substep;
and

• automaton R records whether a 1 appears or not in the whole orbit of x̃
(recall that ℓ = |φ(µ′n)| > 2n), starting from x̃ itself during the first substep
(even though xD ̸= x̃) and without encountering the “1 otherwise” case.

We conclude that the image of x on automata P is 0qkn , on B is 1ℓ
′ , on D is 0n,

and on R it depends whether the Iter-CVP instance is positive (automaton R in
state 1) or negative (automaton R in state 0). This completes the reduction: the
image is always 0qkn1ℓ′0n1 if and only if the Iter-CVP instance is positive.

5. Conclusion and perspectives

This article presents a theoretical study of block-parallel update modes under
two different angles.

The first part of this article focused on combinatorial aspects, in particular
counting and enumerating not only the general set of block-parallel update mode,
but also the classes for two equivalence relations. These relations weren’t chosen
arbitrarily, since the first one gives us the minimal number of update modes re-
quired to generate every possible distinct underlying dynamical system, and the
second one generates dynamical systems that all have different sets of limit cycles
(limit dynamics). Regarding the enumeration algorithms we presented, one of the
first questions that comes to mind would be about their complexity. The three
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algorithms we mentioned seem to belong to EnumP [15], but this requires a formal
analysis. In particular, the question of which subclasses of EnumP they belong to
still needs to be addressed.

The second half of this article didn’t answer this question, rather focusing
on the computational complexity of classical decision problems involving Boolean
automata networks. While an automaton cannot be updated twice in a block-
sequential update mode, hence limiting the number of substeps, update repetitions
are allowed in block-parallel update modes, which leads to a much higher ceiling
for the number of substeps. This provides a greater expressiveness, but also higher
complexity costs. Mainly, computing a single transition goes from being feasi-
ble in polynomial time with all block-sequential schedules [41] to PSPACE-hard
in this context (Theorem 4). This raises the complexity of classical problems re-
lated to the existence of preimages, fixed points, limit cycles, and the recognition
of constant dynamics from NP-complete (existence problems) or coNP-complete
(global dynamical properties) for block-sequential schedules to PSPACE-complete
for block-parallel schedules.

One might be tempted to draw the following conjecture from these results.

Conjecture 1 (false). If a problem is NP-hard or coNP-hard and in PSPACE
for block-sequential update schedules then it is PSPACE-complete for block-parallel
update schedules.

This conjecture is however disproven by the recognition of bijective dynamics.
Since a single substep is enough to identify the absence of bijectivity, the increase
in the number of substeps did not affect the complexity of the problem, and it
stays coNP-complete for block-parallel schedules. The complexity of recognizing
identity dynamics under block-parallel schedules is still an open problem.

After determining the complexity of recognizing preimages, image points or
fixed points, the next logical step would be the complexity of counting them.

An important remark is that, while these proofs were written for Boolean
automata networks, they also apply to multi-valued automata networks.

As mentioned earlier, the possibility of updating the same automaton multiple
times in one step allows for a greater variety of possible dynamics. Especially, they
can break the fixed point invariance property that holds for every block-sequential
update mode, but may fail for block-parallel update mode with such repetitions.
It would thus be pertinent to characterize what in these repetitions triggers the
creation of new fixed points. More generally, it would be interesting to study the
following problem: given an AN f , to which extent is f block-parallel sensible
or robust? In [10, 9, 11], the authors addressed this question on block-sequential
Boolean ANs by developing the concept of update digraphs, capturing conditions
of dynamical equivalence at the syntactical level. This concept is however un-
applicable to update schedules where automata repetitions appear. Creating an
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equivalent of update digraphs that allows for update repetitions would be an im-
portant step in the understanding of updating sensitivity and robustness of ANs.
Another approach would be to study specifically how interaction cycles behave
when paired with block-parallel update modes.
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Appendix A. Omitted proofs

Continuation of the proof of Theorem 1. Formula 1 is a sum for each partition of
n (sum on i), of all the ways to fill all the matrices (n!) up to permutation within
each column (m(i, j)! for each of the j columns of Mj).

Formula 2 is a sum for each partition of n (sum on i), of the product for each
column of the matrices (products on j and ℓ), of the choice of elements (among the
remaining ones) to fill the column (regardless of their order within the column).

Formula 3 is a sum for each partition of n (sum on i), of the product for each
matrix (product on j), of the choice of elements (among the remaining ones) to
fill this matrix, multiplied by the number of ways to fill the columns of the matrix
(product on ℓ) with these elements (regardless of their order within each column).

The equality between Formulas 1 and 2 is obtained by developing the binomial
coefficients as follows:

(
x
y

)
= x!

y!·(x−y)! , and by observing that the products of x!
(x−y)!

telescope. Indeed, denoting a(j, ℓ) = (n−∑j−1
k=1 k ·m(i, k)− ℓ ·m(i, j))!, we have

d(i)∏

j=1

j∏

ℓ=1

(n−∑j−1
k=1 k ·m(i, k)− (ℓ− 1) ·m(i, j))!

(n−∑j−1
k=1 k ·m(i, k)− ℓ ·m(i, j))!

=

d(i)∏

j=1

j∏

ℓ=1

a(j, ℓ− 1)

a(j, ℓ)
=

n!

0!
= n!

because a(1, 0) = n!, then a(1, j) = a(2, 0), a(2, j) = a(3, 0), ..., until a(d(i), j) =
0!.

The equality between Formulas 2 and 3 is obtained by repeated uses of the
identity

(
x
z

)(
x−z
y

)
=
(

x
z+y

)(
z+y
y

)
, which gives by induction on j:

j∏

ℓ=1

(
x− (ℓ− 1) · y

y

)
=

(
x

j · y

)
·

j∏

ℓ=1

(
(j − ℓ+ 1) · y

y

)
. (A.1)

Indeed, j = 1 is trivial and, using the induction hypothesis on j then the identity
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we get:

j+1∏

ℓ=1

(
x− (ℓ− 1) · y

y

)
=

(
x− j · y

y

)
·

j∏

ℓ=1

(
x− (ℓ− 1) · y

y

)

=

(
x− j · y

y

)
·
(

x

j · y

)
·

j∏

ℓ=1

(
(j − ℓ+ 1) · y

y

)

=

(
x

(j + 1) · y

)
·
(
(j + 1) · y

y

)
·

j∏

ℓ=1

(
(j − ℓ+ 1) · y

y

)

=

(
x

(j + 1) · y

)
·

j∏

ℓ=0

(
(j − ℓ+ 1) · y

y

)

=

(
x

(j + 1) · y

)
·
j+1∏

ℓ=1

(
(j + 1− ℓ+ 1) · y

y

)
.

As a result, Formula 3 is obtained from Formula 2 by applying Equation A.1 for
each j with x = n−∑j−1

k=1 k ·m(i, k) and y = m(i, j).

Proof of Lemma 3. We will start from the exponential generating function by find-
ing the coefficient of xn and proving that it is equal to |BP0

n|
n!

, and thus that the
associated sequence is (|BP0

n|)n∈N.

∏

j≥1

∑

k≥0

(
xk

k!

)j

=

(∑

k≥0

xk

k!

)
×
(∑

k≥0

x2k

(k!)2

)
×
(∑

k≥0

x3k

(k!)3

)
× · · ·

=

(
1 + x+

x2

2!
+ · · ·

)

︸ ︷︷ ︸
j=1

×
(
1 + x2 +

x4

(2!)2
+ · · ·

)

︸ ︷︷ ︸
j=2

×
(
1 + x3 +

x6

(2!)3
+ · · ·

)

︸ ︷︷ ︸
j=3

× · · · .

Each term of the distributed sum is obtained by associating a k ∈ N to each
j ∈ N+, and by doing the product of the 1

(k!)j
· xjk. Thus, if NN+ is the set of maps

from N+ to N, we have:

∏

j≥1

∑

k≥0

(
xk

k!

)j

=
∑

m∈NN+

(∏

j≥1

1

(m(j)!)j

)
· x

∑
j≥1 j·m(j).

From here, to get the coefficient of xn, we need to do the sum only on the maps m
such that

∑
j≥1 j ·m(j) = n, which just so happen to be the partitions of n, with
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m(j) being the multiplicity of j in the partition. Thus, the coefficient of xn is

p(n)∑

i=1

∏

j≥1

1

(m(i, j)!)j
=

p(n)∑

i=1

1
∏d(i)

j≥1(m(i, j)!)j
=

|BP0
n|

n!
.

Proof of correction of Algorithm 1. We first argue that Algorithm 1 enumerates
the correct number of block-parallel update modes, and then that any pair µ, µ′
enumerated is such that µ ̸≡⋆ µ

′.
For ease of reading in the rest of this proof, we will denote a[j] as aj and

m(i, j) as mij. From the placement of minj described above (forced to be within
the first aj columns of matrix Mj), the difference with the previous algorithm is
that, instead of having

∏j
ℓ=1

(
(j−ℓ+1)·mij

mij

)
ways of filling matrix Mj, we only have

the following number of ways (recall that Mj has j columns and mij rows):

aj∑

k=1

(
k−1∏

ℓ=1

(
(j − ℓ+ 1) ·mij − 1

mij

))
·
(
(j − k + 1) ·mij − 1

mij − 1

)
·
(

j∏

ℓ=k+1

(
(j − ℓ+ 1) ·mij

mij

))
.

Indeed, the formula above sums, for each choice of a column k from 1 to aj where
minj will be placed, the number of ways to place some elements within columns
1 to k− 1 (first product on ℓ), times the number of ways to choose some elements
that will accompany minj within column k (middle binomial coefficient), times the
number of ways to place some other elements within the remaining columns k+1 to
j (second product on ℓ). Now, we have

(
(j−k+1)·mij−1

mij−1

)
=

mij

(j−k+1)·mij
·
(
(j−k+1)·mij

mij

)
=

1
(j−k+1)

·
(
(j−k+1)·mij

mij

)
. We also have

(
(j−ℓ+1)·mij−1

mij

)
= j−l

j−(l−1) ·
(
(j−ℓ+1)·mij

mij

)
. This

means that the sum of the possible ways to choose the content of matrix Mj can
be rewritten as follows:

aj∑

k=1

(
1

(j − k + 1)
·
k−1∏

ℓ=1

j − ℓ

j − (ℓ− 1)
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·mij

mij

))

=

aj∑

k=1

(
1

(j − k + 1)
· j − k + 1

j
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·mij

mij

))

=

aj∑

k=1

(
1

j
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·mij

mij

))

=
aj
j
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·mij

mij

)
.
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Hence in total, the algorithm enumerates the following number of update modes:

p(n)∑

i=1

d(i)∏

j=1

((
n−∑j−1

k=1 k ·mik

j ·mij

)
· aj
j
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·mij

mij

))
.

In order to prove that this number is equal to |BP⋆
n|, we need to prove that∏d(i)

j=1
aj
j

= 1
lcm(i)

. Denoting L(j) = lcm({k ∈ Jj, d(i)K | mik > 0}), we prove
by induction that at the end of each step of the for loop from lines 5-10, we have:

d(i)∏

k=j

ak
k

=
1

L(j)
,

and the claim follows (when j = 1, we get L(j) = lcm(i)). At the first step,
j = d(i), and

ad(i)
d(i)

=
gcd({d(i), 1})

d(i)
=

1

L(j)
.

We assume as induction hypothesis that for a given j, we have
∏d(i)

k=j
ak
k

= 1
L(j)

.
There are two possible cases for j − 1:

• If mi(j−1) = 0, then

aj−1 = j − 1 and
d(i)∏

k=j−1

ak
k

=
j − 1

(j − 1) · L(j) =
1

L(j − 1)
.

• Otherwise,
d(i)∏

k=j−1

ak
k

=
gcd({j − 1, L(j)})

(j − 1) · L(j) .

And since a·b
gcd({a,b}) = lcm({a, b}), we have

d(i)∏

k=j−1

ak
k

=
1

lcm({j − 1, L(j)}) =
1

L(j − 1)
.

We conclude that at the end of the loop, we have
∏d(i)

j=1
aj
j
= 1

lcm(i)
, and thus that

the algorithm enumerates the following number of update modes (cf. Remark 2):

p(n)∑

i=1

d(i)∏

j=1

((
n−∑j−1

k=1 k ·mik

j ·mij

)
·

j∏

ℓ=1

(
(j − ℓ+ 1) ·mij

mij

))
· 1

lcm(i)
= |BP⋆

n|.
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We now need to prove that the algorithm does not enumerate two equivalent
update modes (in the sense of ≡⋆). Algorithm 1 is heavily based on the algorithm
from the previous section, in such a way that, for a given input, the output of
Algorithm 1 will be a subset of that of the aforementioned algorithm. Said al-
gorithm enumerates BP0

n, which implies that every update mode enumerated by
it has a different image by φ. This means that every block-parallel update mode
enumerated by Algorithm 1 also has a different image by φ, and that the algorithm
does not enumerate two equivalent update modes with a shift of 0.

We now prove by contradiction that the algorithm does not enumerate two
equivalent update modes with a non-zero shift. Let µ, µ′ ∈ BPn be two update
modes, both enumerated by Algorithm 1, such that µ ≡⋆ µ

′ with a non-zero shift.
Then, there is k ∈ {1, . . . , |φ(µ′)| − 1} such that φ(µ) = σk(φ(µ′)), and µ, µ′

are both generated from the same partition i, with |φ(µ)| = |φ(µ′)| = lcm(i).
Moreover, for each j ∈ Jd(i)K the matrix Mj must contain the same elements A in
both µ and µ′ (so that they are repeated every j blocks in both φ(µ) and φ(µ′)),
hence in particular minj is the same in both enumerations.

We will prove by induction that every j ∈ Jd(i)K such that m(i, j) > 0 divides
k, and therefore k = 0 (equivalently k = lcm(i)), leading to a contradiction. For
the base case j = d(i), we have ad(i) = 1 (first iteration of the for loop lines 5-
10), hence the call of EnumBlockIsoAux for any set A passes the condition of line
35 and mind(i) is immediately chosen to belong to C1 (the first column of Md(i)).
When converted to block-sequential update modes, it means that mind(i) appears
in all blocks indexed by d(i) · t with t ∈ N, hence k must be a multiple of d(i) so
that σk maps blocks containing mind(i) to blocks containing mind(i).

As induction hypothesis, assume that for a given j, every ℓ ∈ Jj, d(i)K such
that miℓ > 0 divides k. We will prove that j′, the biggest number in the partition
i (i.e. with mij′ > 0) that is smaller than j, also divides k. In the matrix Mj′ , the
minimum minj′ is forced to appear within the aj′ first columns. This means that
block indexes where it appears in both φ(µ) and φ(µ′) can be written respectively
as j′ ·t+b and j′ ·t+b′ respectively, with t ∈ N and b, b′ ∈ J1, aj′K. As a consequence,
an automaton from Mj′ that is at the position b in φ(µ) is at a position of the
form j′ · t + b′ in φ(µ′). It follows that b + k = j′ · t + b′, which can be rewritten
as k = t · j′ + b′ − b = t · j′ + d, with t ∈ N and d = b′ − b ∈ J−aj′ + 1, aj′ − 1K.
Moreover, we know by induction hypothesis that every number in the partition i
that is greater than j′ divides k, making k a common multiple of these numbers.
We deduce that their lowest common multiple also divides k. Given that aj′ is the
gcd of j′ and said lcm (lines 7-8), it means that aj′ divides both j′ and k, which
implies that it also divides d. Since d is in J−aj′ + 1, aj′ − 1K, we have d = 0 and
thus, j′ divides k. This concludes the induction.

If every number of the partition i divides k and k ∈ Jlcm(i)K, then k = 0,
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leading to a contradiction. This concludes the proof of correctness.

Proof of Lemma 5. By the prime number theorem, there are approximately N
ln(N)

primes lower than N . As a consequence, distinct prime integers p1, p2, . . . , pkn with
kn = ⌊ n2

ln(n2)
⌋ can be computed in time O(n2) using Atkin sieve algorithm. Since

2 ≤ pi < n2, we have 2kn ≤ ∏kn
i=1 pi < n2kn . It holds that 2kn = 2⌊

n2

2 ln(n)
⌋ > 2n, and

n2kn ≤ n
n2

ln(n) with

log2

(
n

n2

ln(n)

)
=

n2

ln(n)

logn(2)
=

n2

ln(2)

meaning that n2kn ≤ 2
n2

ln(2) < 22n
2 .

Block-parallel preimage (BP-Preimage)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, y ∈ Bn.
Question: does ∃x ∈ Bn : f{µ}(x) = y?

Theorem 12. BP-Preimage is PSPACE-complete.

The difficulty in this reduction is that we need to take into account the image of
every configuration x. We modify the preceding construction by setting automata
D to x̃ when the counter B encodes 0.

Proof. The algorithm for BP-Preimage computes the image of each configuration
(enumerated in polynomial space with a simple counter) using the same procedure
as BP-Step (Theorem 4), and decides whether there is some x such that f{µ}(x) =
y.

Given an instance C : Bn → Bn, x̃ ∈ Bn, i ∈ JnK of Iter-CVP, we construct
the same block-parallel update schedule µ′ as in the proof of Theorem 4, and
modify the local functions of automata D and R as follows:

fD(x) =





C(x̃) if xB = 0

C(xD) if 0 < xB < ℓ− 1

0n otherwise
fR(x) =

{
x̃i if xB = 0

xR ∨ xqkn+ℓ′+i otherwise

The purpose is that D iterates the circuit from x̃ when the counter is initialized
to 0, and that R records whether the i-th bit of D has been in state 1 (including
the initial substep). We set y = 0qkn0ℓ0n1.

If the Iter-CVP instance is positive, then we have f{µ′}(0
qkn0ℓ0n0) = y (au-

tomata B go back to 0qkn , automata D iterate circuit C from x̃ and end in state
0n, and automaton R has recorded that the i-th bit of D has been to state 1).
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Conversely, if there is a configuration x such that f{µ′}(x) = y, then the au-
tomata from the counter B must have started in state xB = 0qkn , because of the
increment modulo ℓ which is the number of substeps. We deduce that D iterate
circuit C for the whole orbit of x̃ and end in state 0n, and that automaton R
records the answer to the Iter-CVP instance. Since it it ends in state yR = 1 by
our assumption that f{µ′}(x) = y, we conclude that it is positive.

Block-parallel reachability (BP-Reachability)
Input: (fi : Bn → B)i∈JnK as circuits, µ ∈ BPn, x, y ∈ Bn.
Question: does ∃t ∈ N : f t

{µ}(x) = y?

Theorem 13. BP-Reachability is PSPACE-complete.

Proof. The problem belongs to PSPACE, because is can naively be solved by sim-
ulating the dynamics of f{µ} starting from configuration x, for 2n time steps.

Reachability problems in cellular automata and related models are known to
be PSPACE-complete on finite configurations [43]. We reduce from the reachability
problem for reaction systems, which can be seen as a particular case of Boolean
automata networks, and is also known to be PSPACE-complete [19]. Given a
reaction system (S,A) where S is a finite set of entities, and A is a set of reactions
of the form (R, I, P ) whereR are the reactants, I the inhibitors and P the products,
we construct the BAN of size n = |S| with local functions:

∀i ∈ JnK : fi(x) =
∨

(R,I,P )∈A
such that i∈P

(∧

j∈R

xj ∧
∧

k∈I

¬xk
)
.

A configuration x ∈ Bn of the BAN corresponds to a state of the reaction system
with each automaton indicating the presence or absence of its corresponding en-
tity. The parallel evolution of f (under µpar) is in direct correspondance with the
evolution of the reaction system.

Proof of theorem 9. Given a formula ψ on n variables, m and i in unary, we apply
Lemma 6 to construct gn, µn on automata set P = JqknK. Automata from P have
identity local functions, and the number of substeps is ℓ = |φ(µn)| > 2n. Let pi be
the i-th prime number. We add:

• ℓ′ = ⌈log2(ℓ)⌉ automata numbered B = {qkn , . . . , qkn + ℓ′− 1}, implementing
a ℓ′ bits binary counter that increments modulo ℓ at each substep, except for
configurations with a counter greater of equal to ℓ which are left unchanged.
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• ℓ′′ = ⌈log2(pi)⌉ automata numbered R = {qkn + ℓ′, . . . , qkn + ℓ′ + ℓ′′ − 1},
whose local functions are:

fR(x) =





xR −m+ 1 mod pi if xB = 0 and xB satisfies ψ
xR −m mod pi if xB = 0 and xB does not satisfy ψ
xR + 1 mod pi if 0 < xB < 2n and xB satisfies ψ
xR otherwise.

We also add singletons to µn for each of these additional automata, with µ′ =
µn ∪

⋃
j∈B∪R{(j)}. The resulting dynamics of f{µ′} proceeds as follows.

Configurations x such that xB ≥ ℓ verify f{µ′}(x) = x, because all local func-
tions are identities in this case. For configurations x such that xB < ℓ, during
the dynamics of substeps from x to f{µ′}(x), the counter xB takes exactly once the
values from 0 to ℓ−1, with f{µ′}(x)B = xB (it goes back to its initial value). Mean-
while, at each substep with xB < 2n, the record of automata R is incremented if
and only if xB satisfies ψ, with a substraction of m when xB = 0. Since ℓ > 2n each
valuation of ψ is checked exactly once, and xR gets added the number of models
of ψ minus m, modulo pi (when 2n ≤ xB < ℓ automata R are left unchanged).
Consequently, we have f{µ′}(x)R = xR if and only if it has been incremented m
times modulo pi, i.e., f, µ′ is a positive instance of BP-Identity if and only if ψ,
m, i is a positive instance of Mod-SAT (the number of models of ψ is congruent
to k modulo pi).

Proof of corollary 2. For a fixed reversible cellular automaton (of any dimension),
given a configuration of size n and a time t, one can compute in polynomial time
a block-parallel update schedule µ and circuits for the local functions of a Boolean
automata network of large enough size (to encode the CA’s state space in binary),
such that:

• |φ(µ)| > t (by Lemma 6; these automata are left aside with identity local
functions),

• one substep of f{µ} simulates one step of the CA; and
• f{µ} is bijective (because the CA is reversible, padding with identity).

This gives a functional Turing many-one reduction from Theorem 10.
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