
Combinatorics of block-parallel automata
networks

Kévin Perrot1,2, Sylvain Sené1,2, and Léah Tapin2

1 Université publique, Marseille, France
2 Aix Marseille Univ, CNRS, LIS, Marseille, France

Abstract. Automata networks are finite collections of entities (the au-
tomata), each automaton having its own set of possible states, which
interact with each other over discrete time, interactions being defined as
local functions allowing the automata to change their state according to
the states of their neighbourhoods. Inspired by natural phenomena, the
studies on this very abstract and expressive model of computation have
underlined the very importance of the way (i.e. the schedule) according to
which the automata update their states, namely the update modes which
can be deterministic, periodic, fair, or not. Indeed, a given network may
admit numerous underlying dynamics, these latter depending highly on
the update modes under which we let the former evolve. In this paper,
we pay attention to a new kind of deterministic, periodic and fair up-
date mode family introduced recently in a modelling framework, called
the block-parallel update modes by duality with the well-known and
studied block-sequential update modes. We compare block-parallel to
block-sequential update modes, then count them: (1) in absolute terms,
(2) by keeping only representatives leading to distinct dynamics, and (3)
by keeping only representatives giving rise to non-isomorphic limit dy-
namics. Put together, this paper constitutes a first theoretical analysis of
these update modes and their impact on automata networks dynamics.

1 Introduction

Automata networks were born at the beginning of modern computer science in
the 1940s, notably through the seminal works of McCulloch and Pitts on neural
networks, and von Neumann on cellular automata, which have become since
then widely studied models of computation. The former is classically dived into
a finite and heterogeneous structure (a graph) whereas the latter is dived into
an infinite but regular structure (a lattice). Whilst there exist deep differences
between them, they both belong to the family of automata networks, which
groups together all distributed models of computation defined locally by means
of automata which interact with each other over discrete time, so that the global
computations they operate emerge from these local interactions governing them.

The end of the 1960s has underlined the prominent role of finite automata
networks on which we focus in this paper, in the context of genetic regulation
modelling [9,14]. The profiles of limit behaviours emerging from the system can

2 K. Perrot, S. Sené, and L. Tapin

represent for instance phenotypes, cellular types, or even biological paces [10,2].
The update modes have decisive effects on the dynamics of automata networks,
and acquiring a better understanding of their influence has become a hot topic
in the domain since Robert’s seminal works on discrete iterations [13], leading
to numerous further studies in the last two decades [1,11,12]. Works addressing
the role of periodic update modes focused on block-sequential update modes,
namely modes in which automata are partitioned into a list of subsets such that
the automata of a same subset update their state all at once in parallel while
the subsets are iterated sequentially.

We still do not know which “natural schedules” govern gene expression and
regulation, although chromatin dynamics seems to play a key role [8,6]. In [4]
an unexplored family, dual to the block-sequential, is introduced and motivated,
namely the block-parallel update modes. Rather than lists of sets, they are de-
fined as sets of lists, or “partitioned orders”, so that the automata of a list update
their state sequentially according to the period of the list while the lists are trig-
gered all in parallel at the initial time step. As highlighted by the authors, block-
parallel update modes allow to capture endogenous biological timers/clocks of
genetic or physiological origin, such as the aforementioned chromatin dynam-
ics. Furthermore, they allow to break the property of fixed point set invariance
(local update repetitions into a period are notably possible), letting automata
networks have a richer range of dynamics. We give a first theoretical analysis of
these modes, building a basis to further analyse their power of expressiveness.

Definitions are introduced in Section 2. Section 3 develops our main contri-
butions and is divided into five parts. Section 3.1 characterises the update modes
that are both block-sequential and block-parallel. We then address with closed
formulas the counting of block-parallel modes: in absolute terms (Section 3.2),
in terms of automata network dynamics (Section 3.3), up to isomorphic limit
dynamics (Section 3.4). Numerical experiments are exposed in Section 3.5, sug-
gesting that the search space may be drastically reduced, when one is specifically
interested in the asymptotic (limit) behaviour of dynamical systems. Perspec-
tives are discussed in Section 4. Omitted proofs can be found in Appendix A.

2 Definitions

Let JnK = {0, . . . , n − 1}, let B = {0, 1}, let xi denote the i-th component of
vector x ∈ Bn, let xI denote the projection of x onto an element of B|I| for some
subset I ⊆ JnK, let ei be the i-th base vector, and ∀x, y ∈ Bn, let x + y denote
the bitwise addition modulo two. Let ∼ denote the graph isomorphism, i.e. for
G = (V,A) and G′ = (V ′, A′) we have G ∼ G′ if and only if there is a bijection
π : V → V ′ such that (u, v) ∈ A ⇐⇒ (π(u), π(v)) ∈ A′.

Automata networks. An automata network (AN) of size n is a discrete dynamical
system composed of a set of n automata JnK, each holding a state within a finite
alphabet Xi for i ∈ JnK. A configuration is an element of X =

∏
i∈JnK Xi. An

AN is defined by a function f : X → X, decomposed into n local functions
fi : X → Xi for i ∈ JnK, where fi is the i-th component of f . To let the system

Combinatorics of block-parallel automata networks 3

evolve, one must define when the automata update their state using their local
function, which can be done in multiple ways, called update modes.

Block-sequential update modes. A sequence (Wℓ)ℓ∈JpK with Wℓ ⊆ JnK for all
ℓ ∈ JpK is an ordered partition if and only if

⋃
ℓ∈JpK Wℓ = JnK and ∀i, j ∈ JpK, i ̸=

j =⇒ Wi ∩Wj = ∅. An update mode µ = (Wℓ)ℓ∈JpK is called block-sequential
when µ is an ordered partition, and the Wℓ are called blocks. The set of block-
sequential update modes of size n is denoted BSn. The update of f under µ ∈ BSn
is given by f(µ) : X → X as follows:

f(µ)(x) = f(Wp−1) ◦ · · · ◦ f(W1) ◦ f(W0)(x),

where ∀i ∈ JnK, f(Wℓ)(x)i =

{
fi(x) if i ∈ Wℓ,

xi otherwise.

Block-parallel update modes. In a block-sequential update mode, the automata
in a block are updated simultaneously while the blocks are updated sequentially.
A block-parallel update mode is based on the dual principle: the automata in
a block are updated sequentially while the blocks are updated simultaneously.
Instead of being defined as a sequence of unordered blocks, a block-parallel
update mode will thus be defined as a set of ordered blocks. A set {Sk}k∈JsK

with Sk = (ik0 , . . . , i
k
nk−1) a sequence of nk > 0 distinct elements of JnK for all

k ∈ JsK is a partitioned order if and only if
⋃

k∈JsK Sk = JnK and ∀i, j ∈ JsK, i ̸=
j =⇒ Si ∩Sj = ∅. An update mode µ = {Sk}k∈JsK is called block-parallel when
µ is a partitioned order, and the sequences Sk are called o-blocks (for ordered-
blocks). The set of block-parallel update modes of size n is denoted BPn. With
p = lcm(n1, . . . , ns), the update of f under µ ∈ BPn is given by f{µ} : X → X
as follows: f{µ}(x) = f(Wp−1) ◦ · · · ◦ f(W1) ◦ f(W0)(x), where for all ℓ ∈ JpK we

define Wℓ = {ikℓ mod nk
| k ∈ JsK}.

Basic considerations. There is a natural way to convert a block-parallel update
mode {Sk}k∈JsK with Sk = (ik0 , . . . , i

k
nk−1

) into a sequence of blocks of length
p = lcm(n1, . . . , ns). We define it as φ:

φ({Sk}k∈JsK) = (Wℓ)ℓ∈JpK with Wℓ = {ikℓ mod nk
| k ∈ JsK}.

In order to differentiate between sequences of blocks and sets of o-blocks, we
denote by f(µ) (resp. f{µ}) the dynamical system induced by f and µ when µ
is a sequence of blocks (resp. a set of o-blocks), and simply fµ when it is clear
from the context. Moreover, abusing notations, we denote by φ(BPn) the set of
partitioned orders of JnK as sequences of blocks.

Block-sequential and block-parallel update modes are periodic (the same up-
date procedure is repeated at each step), and fair (each automaton is updated
at least once per step). We distinguish the concepts of step and substep. A step is
the interval between x and f(µ)(x) (or f{µ}(x)), and can be divided into p = |µ|
(or p = |φ(µ)| = lcm(n1, . . . , ns)) substeps, corresponding to the elementary
intervals in which only one block of automata is updated. The most basic up-
date mode is the parallel µpar which updates simultaneously all automata at
each step. It is the element (JnK) ∈ BSn and {(i) | i ∈ JnK} ∈ BPn, with
φ({(i) | i ∈ JnK}) = (JnK).

4 K. Perrot, S. Sené, and L. Tapin

| | | | | | | | |
t

f0 f0 f0 f0 f0 f0 f0 f0 f0

f2 f2 f2 f2 f2f1 f1 f1 f1

1st step 2nd step 3rd step 4th step 5th

Fig. 1: Illustration of the execution along time of local transition functions ac-
cording to block-parallel updating mode µbp = {(0), (2, 1)}. For the odd steps,
we picture the blocks, and for the even steps, we picture the o-blocks.

Remark 1. Observe that in block-sequential update modes, each automaton is
updated exactly once during a step, whereas in block-parallel update modes,
some automata can be updated multiple times during a step. Update repetitions
may have many consequences on the limit dynamics. For instance, the network
of n = 3 automata such that fi(x) = xi−1 mod n under the update mode µ =
({1, 2}, {0, 2}, {0, 1}), where each automaton is updated twice during a step, has
4 fixed points, among which 2, namely 010 and 101, cannot be obtained with
block-sequential update modes (in this example, µ /∈ BPn).

Remark 2. Let µ = {Sk}k∈JsK be a block-parallel update mode. Each block of
φ(µ) is of the same size, namely s, and furthermore each block of φ(µ) is unique.

Fixed points, limit cycles and attractors. Let fµ be the dynamical system defined
by an AN f of size n and an update mode µ. Let p ≥ 1. A sequence of configu-
rations x0, . . . , xp−1 ∈ X is a limit cycle of fµ if and only if ∀i ∈ JpK, fµ(xi) =
xi+1 mod p. A limit cycle of length p = 1 is a fixed point. The sequence of con-
figurations x0, x1, . . . , xp−1 ∈ X is an attractor if and only if it is a limit cycle
and there exist x ∈ X and i ∈ JpK such that fµ(x) = xi but x /∈ {x0, . . . , xp−1}.

Example 1. Let f : J3K×B×B → J3K×B×B the automata network defined as:

f(x) =


f0(x) =


0 if ((x0 = 0) ∧ (x1 = x2)) ∨ (x0 = x1 = x2 = 1)

1 if x1 + x2 mod 2 = 1

2 otherwise

f1(x) = (x0 ̸= 0) ∨ x1 ∨ x2

f2(x) = ((x0 = 1) ∧ x1) ∨ (x0 = 2)

 .

Let µbs = ({1}, {0, 2}) and µbp = {(0), (2, 1)}. The update mode µbs is block-
sequential and µbp is block-parallel, with φ(µbp) = ({0, 2}, {0, 1}) as depicted
in Figure 1. Systems f(µbs) and f{µbp} have different dynamics, as depicted in
Figure 2. They both have the same two fixed points and one limit cycle, but the
similarities stop there. The limit cycle of f(µbs) is of size 4, while that of f{µbp}
is of size 2. Moreover, neither of the fixed points of f{µbp} is an attractor, while
one of f(µbs), namely 211, is. Both of these update modes’ dynamics are unique
in BP3 ∪ BS3.

Combinatorics of block-parallel automata networks 5

000 001

010 011

100 101

110 111

200 201

210 211

000 001

010 011

100 101

110 111

200 201

210 211

Fig. 2: The dynamics of f(µbs) (left) and f{µbp} (right) from 1.

3 Counting block-parallel update modes

For the rest of this section, let p(n) denote the number of integer partitions of
n (multisets of integers summing to n), let d(i) be the maximal part size in the
i-th partition of n, let m(i, j) be the multiplicity of the part of size j in the
i-th partition of n. As an example, let n = 31 and assume the i-th partition is
(2, 2, 3, 3, 3, 3, 5, 5, 5), we have d(i) = 5 and m(i, 1) = 0, m(i, 2) = 2, m(i, 3) = 4,
m(i, 4) = 0, m(i, 5) = 3. A partition will be the support of a partitioned order,
where each part is an o-block. In our example, we can have:

{(0, 1), (2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15),
(16, 17, 18, 19, 20), (21, 22, 23, 24, 25), (26, 27, 28, 29, 30)},

and we picture it as the following matrix-representation:

(
0 1
2 3

)
4 5 6
7 8 9
10 11 12
13 14 15


16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

 .

We call matrices the elements of size j ·m(i, j) and denote them M1, . . . ,Md(i),
where Mj has m(i, j) rows and j columns (Mj is empty when m(i, j) = 0). The
partition defines the dimensions of the matrices, and each row is an o-block.

For the comparison, the block-sequential update modes (ordered partitions
of JnK) are given by the ordered Bell numbers, sequence OEIS A000670. A closed
formula for it is:

|BSn| =
p(n)∑
i=1

n!∏d(i)
j=1(j!)

m(i,j)
·

(∑d(i)
j=1 m(i, j)

)
!∏d(i)

j=1 m(i, j)!
.

Intuitively, an ordered partition of n gives a support to construct a block-
sequential update mode: place the elements of JnK up to permutation within

https://oeis.org/A000670

6 K. Perrot, S. Sené, and L. Tapin

the blocks. This is the left fraction: n! divided by j! for each block of size j,
taking into account multiplicities. The right fraction corrects the count because
we sum on p(n) the (unordered) partitions of n: each partition of n can give rise
to different ordered partitions of n, by ordering all blocks (numerator, where the
sum of multiplicities is the number of blocks) up to permutation within blocks of
the same size which have no effect (denominator). The first ten terms are (n = 1
onward): 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563.

3.1 Intersection of block-sequential and block-parallel modes

In order to be able to compare block-sequential with block-parallel update modes,
both of them will be written here under their sequence of blocks form (the usual
form of block-sequential update modes and the rewritten form of block-parallel
modes). First, φ(BPn) ∩ BSn ̸= ∅, since it contains at least µpar = (JnK) =
φ({(0), (1), . . . , (n − 1)}). However, neither BSn ⊆ φ(BPn) nor φ(BPn) ⊆ BSn
are true. Indeed, µs = ({0, 1}, {2}) ∈ BS3 but µs /∈ φ(BP3) since a block-
parallel cannot have blocks of different sizes in its sequential form. Symmetrically,
µp = φ({(1, 2), (0)}) = ({0, 1}, {0, 2}) ∈ BP3 but µp /∈ BS3 since automaton 0 is
updated twice. Nonetheless, we can precisely define their intersection.

Lemma 1. µ ∈ (BSn ∩ φ(BPn)), if and only if µ is an ordered partition with p
blocks of the same size s, if and only if there exists a partitioned order µ′ with s
o-blocks of the same size p such that φ(µ′) = µ.

Proof. Let n ∈ N. We prove the first equivalence, the second follows directly.
(=⇒) Let µ ∈ (BSn ∩ φ(BPn)). Since µ ∈ BSn, µ is an ordered partition.

Furthermore, µ ∈ φ(BPn) so all the µ’s blocks are of the same size (Remark 2).
(⇐=) Let µ = (Wℓ)ℓ∈JpK be an ordered partition of JnK with all its blocks

having the same size, denoted by s. Since µ is an ordered partition, µ ∈ BSn.
For each ℓ ∈ JpK, we can number arbitrarily the elements of Wℓ from 0 to s− 1
as Wℓ = {W 0

ℓ , . . . ,W
s−1
ℓ }. Now, let us define the set of sequences {Sk}k∈JsK the

following way: ∀k ∈ JsK, Sk = {W k
ℓ | ℓ ∈ JpK}. It is a partitioned order such that

φ({Sk}k∈JsK) = µ, which means that µ ∈ φ(BPn). ⊓⊔

As a consequence of Lemma 1, given n ∈ N, the set SEQn of sequential update
modes such that every automaton is updated exactly once by step and only one
automaton is updated by substep, is a subset of (BSn ∩ φ(BPn)). Moreover, we
can count the number of sequences of blocks in the intersection.

Proposition 1. Given n ∈ N, we have |BSn ∩ φ(BPn)| =
∑
d|n

n!
(n
d !)d

.

Proof. The proof derives directly from the sequence OEIS A061095, which counts
the number of ways of dividing n labeled items into labeled boxes with an equal
number of items in each box. In our context, the “items” are the automata, and
the “labeled boxes” are the blocks of the ordered partitions. ⊓⊔

https://oeis.org/A061095

Combinatorics of block-parallel automata networks 7

3.2 Partitioned orders

A block-parallel update mode is given as a partitioned order, i.e. an (unordered)
set of (ordered) sequences. This concept is recorded as sequence OEIS A000262,
described as the number of “sets of lists”. A nice closed formula for it is:

|BPn| =
p(n)∑
i=1

n!∏d(i)
j=1 m(i, j)!

.

Intuitively, for each partition, fill all matrices (n! ways to place the elements of
JnK) up to permutation of the rows within each matrix (matrix Mj has m(i, j)
rows). Another closed formula is presented in Proposition 2, which is used as the
basis of implementations in Section 3.5. The first ten terms are (n = 1 onward):
1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091.

Proposition 2. For any n ≥ 1 we have:

|BPn| =
p(n)∑
i=1

d(i)∏
j=1

(
n−

∑j−1
k=1 k ·m(i, k)

j ·m(i, j)

)
· (j ·m(i, j))!

m(i, j)!
.

Proof. Each partition is a support to generate different partitioned orders (sum
on i), by considering all the combinations, for each matrix (product on j), of
the ways to choose the j · m(i, j) elements of JnK it contains (binomial coeffi-
cient, chosen among the remaining elements), and all the ways to order them
up to permutation of the rows (ratio of factorials). Observe that developing the
binomial coefficients with

(
x
y

)
= x!

y!·(x−y)! gives

d(i)∏
j=1

(
n−

∑
k

j ·m(i, j)

)
· (j ·m(i, j))! =

d(i)∏
j=1

(n−
∑

k)!

(n−
∑

k −j ·m(i, j))!
=

n!

0!
= n!,

where
∑

k is a shorthand for
∑j−1

k=1 k ·m(i, k), which leads to retrieve the OEIS
formula. ⊓⊔

3.3 Partitioned orders up to dynamical equality

As for block-sequential update modes, given an AN f and two block-parallel
update modes µ and µ′, the dynamics of f under µ can be the same as that
of f under µ′. To go further, in the framework of block-parallel update modes,
there exist pairs of update modes µ, µ′ such that for any AN f , the dynamics
f{µ} is the exact same as f{µ′}. As a consequence, in order to perform exhaustive
searches among the possible dynamics, it is not necessary to generate all of them.
We formalise this with the following equivalence relation.

Definition 1. For µ, µ′ ∈ BPn, we denote µ ≡0 µ′ when φ(µ) = φ(µ′).

https://oeis.org/A000262

8 K. Perrot, S. Sené, and L. Tapin

Example 2. Let µ1 = {(0, 1), (2, 3)} and µ2 = {(2, 1), (0, 3)}. µ1 and µ2 are
different partitioned orders, but φ(µ1) = φ(µ2) = ({0, 2}, {1, 3}). Thus µ1 ≡0 µ2.

The following theorem shows that this equivalence relation is necessary and
sufficient in the general case of ANs of size n, i.e. ≡0 captures the dynamical
equivalence among block-parallel update modes.

Theorem 1. For any µ, µ′ ∈ BPn, µ ≡0 µ′ ⇐⇒ ∀f : X → X, f{µ} = f{µ′}.

Proof. Let µ and µ′ be two block-parallel update modes of BPn.
(=⇒) Let us consider that µ ≡0 µ′, and let f : X → X be an AN. Then, we

have f{µ} = f(φ(µ)) = f(φ(µ′)) = f{µ′}.
(⇐=) Let us consider that ∀f : X → X, f{µ} = f{µ′}. Let us assume for the

sake of contradiction that φ(µ) ̸= φ(µ′). For ease of reading, we will denote as tµ,i
the substep at which automaton i is updated for the first time with update mode
µ. Then, there is a pair of automata (i, j) such that tµ,i ≤ tµ,j , but tµ′,i > tµ′,j .
Let f : Bn → Bn be a Boolean AN such that f(x)i = xi∨xj and f(x)j = xi, and
x ∈ Bn such that xi = 0 and xj = 1. We will compare f{µ}(x)i and f{µ′}(x)i, in
order to prove a contradiction. Let us apply f{µ} to x. Before step tµ,i the value
of automaton i is still 0 and, most importantly, since tµ,i ≤ tµ,j , the value of j is
still 1. This means that right after step tµ,i, the value of automaton i is 1, and
will not change afterwards. Thus, we have f{µ}(x)i = 1. Let us now apply f{µ′}
to x. This time, tµ′,i > tµ′,j , which means that automaton j is updated first
and takes the value of automaton i at the time, which is 0 since it has not been
updated yet. Afterwards, neither automata will change value since 0 ∨ 0 is still
0. This means that f{µ′}(x)i = 0. Thus, we have f{µ} ̸= f{µ′}, which contradicts
our earlier hypothesis. ⊓⊔

Let BP0
n = BPn/ ≡0 denote the corresponding quotient set, i.e. the set of

block-parallel update modes to generate for exhaustive computer analysis of the
possible dynamics in the general case of ANs of size n.

Theorem 2. For any n ≥ 1, we have:

|BP0
n| =

p(n)∑
i=1

n!∏d(i)
j=1 (m(i, j)!)

j
(1)

=

p(n)∑
i=1

d(i)∏
j=1

j∏
ℓ=1

(
n−

∑j−1
k=1 k ·m(i, k)− (ℓ− 1) ·m(i, j)

m(i, j)

)
(2)

=

p(n)∑
i=1

d(i)∏
j=1

((
n−

∑j−1
k=1 k ·m(i, k)

j ·m(i, j)

)
·

j∏
ℓ=1

(
(j − ℓ+ 1) ·m(i, j)

m(i, j)

))
. (3)

Proof. Formula 1 is a sum for each partition of n (sum on i), of all the ways to
fill all matrices up to permutation within each column (m(i, j)! for each of the
j columns of Mj). Formula 2 is a sum for each partition of n (sum on i), of the
product for each column of the matrices (products on j and ℓ), of the choice of

Combinatorics of block-parallel automata networks 9

elements (among the remaining ones) to fill the column (regardless of their order
within the column). Formula 3 is a sum for each partition of n (sum on i), of the
product for each matrix (product on j), of the choice of elements (among the
remaining ones) to fill this matrix, multiplied by the number of ways to fill the
columns of the matrix (product on ℓ) with these elements (regardless of their
order within each column).

The equality of these three formulas is presented in Appendix A. To prove
that they count |BP0

n|, we now argue that for any pair µ, µ′ ∈ BPn, we have µ ≡0

µ′ if and only if their matrix-representations are the same up to a permutation of
the elements within columns (the number of equivalence classes is then counted
by Formula 1). In the definition of φ, each block is a set constructed by taking
one element from each o-block. Given that nk in the definition of φ corresponds
to j in the statement of the theorem, one matrix corresponds to all the o-blocks
having the same size nk. Hence, the ℓ mod nk operations in the definition of φ
amounts to considering the elements of these o-blocks which are in a common
column in the matrix representation. Since blocks are sets, the result follows. ⊓⊔

The first ten terms of the sequence (|BP0
n|)n≥1 are: 1, 3, 13, 67, 471, 3591,

33573, 329043, 3919387, 47827093. They match the sequence OEIS A182666
(defined by its exponential generating function), and we prove in Appendix B
that they are indeed the same sequence.

3.4 Partitioned orders up to isomorphism on the limit dynamics

The following equivalence relation defined over block-parallel update modes
turns out to capture exactly the notion of having isomorphic limit dynamics.
It is analogous to ≡0, except that a circular shift of order i may be applied on
the sequences of blocks.

Let σi denote the circular-shift of order i ∈ Z on sequences (shifting the
element at position 0 towards position i).

Definition 2. For µ, µ′ ∈ BPn, we denote µ ≡⋆ µ′ when φ(µ) = σi(φ(µ′)) for
some i ∈ J|φ(µ′)|K called the shift. Note that µ ≡0 µ′ =⇒ µ ≡⋆ µ′.

Notation 1 Given f{µ} : X → X, let Ωf{µ} =
⋂

t∈N f t
{µ}(X) denote its limit

set (abusing the notation of f{µ} to sets of configurations), and fΩ
{µ} : Ωf{µ} →

Ωf{µ} its restriction to its limit set. Dynamics are deterministic, hence fΩ
{µ} is

bijective.

The next theorem shows that, if one is interested in the limit behaviour
of ANs under block-parallel updates, then studying a representative from each
equivalence class of the relation ≡⋆ is necessary and sufficient to get the full
spectrum of possible limit dynamics (recall that ∼ denotes graph isomorphism;
thus in terms of dynamical systems they are conjugate).

Theorem 3. For any µ, µ′ ∈ BPn, µ ≡⋆ µ′ ⇐⇒ ∀f : X → X, fΩ
{µ} ∼ fΩ

{µ′}.

https://oeis.org/A182666

10 K. Perrot, S. Sené, and L. Tapin

Proof (sketch). Let µ and µ′ be two block-parallel update modes of BPn.
(=⇒) Let µ, µ′ be such that µ ≡⋆ µ′ of shift ı̂ ∈ JpK, with φ(µ) = (Wℓ)ℓ∈JpK,
φ(µ′) = (W ′

ℓ)ℓ∈JpK and p = |φ(µ)| = |φ(µ′)|. It means that ∀i ∈ JpK, we have
W ′

i = Wi+ı̂ mod p, and for any AN f , we deduce that π = f(W0,...,Wı̂−1) is the
desired isomorphism from Ωf{µ} to Ωf{µ′} .

(⇐=) We prove the contrapositive, from µ ̸≡⋆ µ′, by case analysis. In each case
we build an AN f such that fΩ

{µ} is not isomorphic to fΩ
{µ′}. In this sketch we

detail only the simplest case.
(1) If in φ(µ) and φ(µ′), there is an automaton ı̂ which is not updated the same

number of times α and α′ in µ and µ′ respectively, then we assume without
loss of generality that α > α′ and consider the AN f such that:

• Xı̂ = JαK and Xi = {0} for all i ̸= ı̂; and
• fı̂(x) = (xı̂ + 1) mod α and fi(x) = xi for all i ̸= ı̂.

It follows that fΩ
{µ} has only fixed points since +1 mod α is applied α times,

whereas fΩ
{µ′} has no fixed point because α′ < α.

(2) If in φ(µ) and φ(µ′), all the automata are updated the same number of
times, then the transformation from µ to µ′ is a permutation on JnK which
preserves the matrices of their matrix representations. This case is harder
and we tackle it in Appendix A through three subcases, in order to get extra
hypotheses allowing to design specific ANs contradicting the isomorphism.

⊓⊔

Let BP⋆
n = BPn/ ≡⋆ denote the corresponding quotient set.

Theorem 4. Let lcm(i) = lcm({j ∈ {1, . . . , d(i)} | m(i, j) ≥ 1}). For any
n ≥ 1, we have:

|BP⋆
n| =

p(n)∑
i=1

n!∏d(i)
j=1 (m(i, j)!)

j
· 1

lcm(i)
. (4)

Proof. Let µ, µ′ ∈ BPn two update modes such that µ ≡⋆ µ′. Then their sequen-
tial forms are of the same length, and each automaton appears the same number
of times in both of them. This means that, if an automaton is in an o-block of
size k in µ’s partitioned order form, then it is also in an o-block of the same size
in µ′’s. We deduce that two update modes of size n can only be equivalent as
defined in Definition 2 if they are generated from the same partition of n.

Let µ ∈ BP0
n, generated from partition i of n. Then φ(µ) is of length lcm(i).

Since no two elements of BP0
n have the same block-sequential form, the equiv-

alence class of µ in BP0
n contains exactly lcm(i) elements, all generated from

the same partition i (all the blocks of φ(µ) are different). Thus, the number of
elements of BP⋆

n generated from a partition i is the number of elements of BP0
n

generated from partition i, divided by the number of elements in its equivalence
class for BP⋆

n, namely lcm(i). ⊓⊔

Remark 3. Formula 4 can actually be obtained from any formula in Theorem 2
by multiplying by 1

lcm(i) inside the sum on partitions (from i = 1 to p(n)).

Combinatorics of block-parallel automata networks 11

3.5 Implementations

Proof-of-concept Python implementations of three underlying enumeration algo-
rithms for BPn, BP

0
n and BP⋆

n are available on the following repository: https:
//framagit.org/leah.tapin/blockpargen. We have conducted numerical ex-
periments on a laptop, presented in Figure 3. Figure 3 shows the result of nu-
merical experiments for n from 1 to 12.

In brief, enumerating BPn, BP
0
n and BP⋆

n up to n = 8 takes less than one
second. Then we observe a significant time gain when enumerating only the
elements of BP⋆

n, as depicted below.

n BPn BP0
n BP⋆

n

1 1 1 1
- - -

2 3 3 2
- - -

3 13 13 6
- - -

4 73 67 24
- - -

5 501 471 120
- - -

6 4051 3591 795
- - -

7 37633 33573 5565
- 0.103s -

8 394353 329043 46060
0.523s 0.996s 0.161s

9 4596553 3919387 454860
6.17s 12.2s 1.51s

10 58941091 47827093 4727835
1min24s 2min40s 16.3s

11 824073141 663429603 54223785
21min12s 38min31s 3min13s

12 12470162233 9764977399 734932121
5h27min38s 9h49min26s 45min09s

2 4 6 8 10 12
n

101

103

105

107

109

Nu
m

be
r o

f e
le

m
en

ts

BPn
BPn0
BPn*

Fig. 3: Numerical experiments of our Python implementations on a standard
laptop (processor Intel-CoreTM i7 @ 2.80 GHz). For n from 1 to 12, the table
(left) presents the size of BPn, BP

0
n and BP∗

n and running time to enumerate their
elements (one representative of each equivalence class; a dash represents a time
smaller than 0.1 second), and the graphics (right) depicts their respective sizes
on a logarithmic scale. Observe that the sizes of BPn and BP0

n are comparable,
whereas an order of magnitude is gained with BP∗

n, which may be significant for
advanced numerical experiments regarding limit dynamics under block-parallel
udpate modes.

https://framagit.org/leah.tapin/blockpargen
https://framagit.org/leah.tapin/blockpargen

12 K. Perrot, S. Sené, and L. Tapin

4 Conclusion and perspectives

This article settles the theoretical foundations to the study of block-parallel up-
date modes in the AN setting. We first characterise their intersection with the
classical block-sequential modes. Then, we provide closed formulas for counting:
notably (1) a minimal set of representatives of block-parallel update modes that
allow to generate the full spectrum of possible distinct dynamics, (2) a minimal
set of representatives of block-parallel update modes that allow to generate the
full spectrum of possible distinct limit dynamics up to isomorphism (i.e. the limit
cycles lengths and distribution). Numerical experiments show that the compu-
tational gain is significant, in particular for the exhaustive study of how/when
the fixed point invariance property is broken.

A major feature of block-parallel update modes is that they allow local up-
date repetitions during a period. This is indeed the case for all block-parallel up-
date modes which are not block-sequential (i.e. modes with at least two blocks
of distinct sizes when defined as a partitioned order, cf. Lemma 1). Since we
know that local update repetitions can break the fixed point invariance property
which holds in block-sequential ANs (cf. the example given in Remark 1), it
would be interesting to characterise the conditions relating these repetitions to
the architecture of interactions (so called interaction graph) giving rise to the
existence of new fixed points. More generally, as a complement to the results of
Section 3.4, the following problem can be studied: given an AN f , to which extent
is f block-parallel sensitive/robust? In [1], the authors addressed this question
on block-sequential Boolean ANs by developing the concept of update digraphs
which allows to capture conditions of dynamical equivalence at the syntactical
level. However, this concept does not apply as soon as local update repetitions
are at stake. Hence, creating a new concept of update digraphs in the general
context of periodic update modes would be an essential step forward to explain
and understand updating sensitivity/robustness of ANs.

Another track of research would be to understand how basic interaction cycles
of automata evolve under block-parallel updates. For instance, the authors of [7]
have shown that such cycles in the Boolean setting are somehow very robust
to block-sequential update modes variations: the number of their limit cycles of
length p is the same as that of a smaller cycle (of same sign) evolving in parallel.
Together with the combinatorial analysis of [3], this provides a complete analysis
of the asymptotic dynamics of Boolean interaction cycles. This gives rise to the
following question: do interaction cycles behave similarly under block-parallel
update modes variations? The local update repetitions should again play an
essential role. In this respect, the present work sets the foundations for theoretical
developments and computer experiments (Theorems 3 and 4). Such a study could
constitute a first approach of the more general problem raised above, since it is
well known that cycles are the behavioural complexity engines of ANs [13].

Eventually, since block-parallel schedules form a new family of update modes
of which the field of investigation is still largely open today, we think that a
promising perspective of our work would consist in dealing with the computa-
tional complexity of classical decision problems for ANs, in the lines of [5] about

Combinatorics of block-parallel automata networks 13

reaction systems. The general question to be addressed here is: do local update
repetitions induced by block-parallel update modes make such decision problems
take place at a higher level in the polynomial hierarchy, or even reach polynomial
space completeness? We have early evidence of the latter.

Acknowledgments. The authors were funded mainly by their salaries as French
State agents. This work has been secondarily supported by ANR-18-CE40-0002
FANs project (KP & SS), ECOS-Sud C19E02 SyDySy project (SS), and STIC
AmSud 22-STIC-02 CAMA project (KP, LT & SS), and the MSCA-SE-101131549
ACANCOS (KP, LT & SS).

References

1. J. Aracena, E. Goles, A. Moreira, and L. Salinas. On the robustness of update
schedules in Boolean networks. Biosystems, 97:1–8, 2009.

2. M. I. Davidich and S. Bornholdt. Boolean network model predicts cell cycle se-
quence of fission yeast. PLoS One, 3:e1672, 2008.

3. J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata circuits
dynamics. Discrete Applied Mathematics, 160(4–5):398–415, 2012.

4. J. Demongeot and S. Sené. About block-parallel Boolean networks: a position
paper. Natural Computing, 19:5–13, 2020.

5. A. Dennunzio, E. Formenti, L. Manzoni, and A. E. Porreca. Complexity of the
dynamics of reaction systems. Information and Computation, 267:96–109, 2019.

6. B. Fierz and M. G. Poirier. Biophysics of chromatin dynamics. Annual Review of
Biophysics, 48:321–345, 2019.

7. E. Goles and M. Noual. Block-sequential update schedules and Boolean automata
circuits. In Proceedings of AUTOMATA’2010, pages 41–50. DMTCS, 2010.

8. M. R. Hübner and D. L. Spector. Chromatin dynamics. Annual Review of Bio-
physics, 39:471–489, 2010.

9. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology, 22:437–467, 1969.

10. L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network
for Arabidopsis thaliana flower morphogenesis. Journal of Theoretical Biology,
193:307–319, 1998.

11. M. Noual. Updating automata networks. PhD thesis, École normale supérieure de
Lyon, 2012.

12. L. Paulevé and S. Sené. Systems biology modelling and analysis: formal bioin-
formatics methods and tools, chapter Boolean networks and their dynamics: the
impact of updates, pages 173–250. Wiley, 2022.

13. F. Robert. Discrete iterations: a metric study, volume 6 of Springer Series in
Computational Mathematics. Springer, 1986.

14. R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical
Biology, 42:563–585, 1973.

14 K. Perrot, S. Sené, and L. Tapin

A Full proofs

Proof (Proof of Theorem 2 for the equality between Formulas 1, 2 and 3). The
equality between Formulas 1 and 2 is obtained by developing the binomial coef-
ficients as follows:

(
x
y

)
= x!

y!·(x−y)! , and by observing that the products of x!
(x−y)!

telescope. Indeed, denoting a(j, ℓ) = (n−
∑j−1

k=1 k ·m(i, k)− ℓ ·m(i, j))!, we have

d(i)∏
j=1

j∏
ℓ=1

(n−
∑j−1

k=1 k ·m(i, k)− (ℓ− 1) ·m(i, j))!

(n−
∑j−1

k=1 k ·m(i, k)− ℓ ·m(i, j))!
=

d(i)∏
j=1

j∏
ℓ=1

a(j, ℓ− 1)

a(j, ℓ)
=

n!

0!
= n!

because a(1, 0) = n!, then a(1, j) = a(2, 0), a(2, j) = a(3, 0), ..., until a(d(i), j) =
0!.

The equality between Formulas 2 and 3 is obtained by repeated uses of the
identity

(
x
z

)(
x−z
y

)
=
(

x
z+y

)(
z+y
y

)
, which gives by induction on j:

j∏
ℓ=1

(
x− (ℓ− 1) · y

y

)
=

(
x

j · y

)
·

j∏
ℓ=1

(
(j − ℓ+ 1) · y

y

)
. (5)

Indeed, j = 1 is trivial and, using the induction hypothesis on j then the identity
we get:

j+1∏
ℓ=1

(
x− (ℓ− 1) · y

y

)
=

(
x− j · y

y

)
·

j∏
ℓ=1

(
x− (ℓ− 1) · y

y

)

=

(
x− j · y

y

)
·
(

x

j · y

)
·

j∏
ℓ=1

(
(j − ℓ+ 1) · y

y

)

=

(
x

(j + 1) · y

)
·
(
(j + 1) · y

y

)
·

j∏
ℓ=1

(
(j − ℓ+ 1) · y

y

)

=

(
x

(j + 1) · y

)
·

j∏
ℓ=0

(
(j − ℓ+ 1) · y

y

)

=

(
x

(j + 1) · y

)
·
j+1∏
ℓ=1

(
(j + 1− ℓ+ 1) · y

y

)
.

As a result, Formula 3 is obtained from Formula 2 by applying Equation 5 for
each j with x = n−

∑j−1
k=1 k ·m(i, k) and y = m(i, j). ⊓⊔

Proof (Proof of Theorem 3). Let µ and µ′ be two block-parallel update modes
of BPn.

(=⇒) Let µ, µ′ be such that µ ≡⋆ µ′ of shift ı̂ ∈ JpK, with φ(µ) = (Wℓ)ℓ∈JpK,
φ(µ′) = (W ′

ℓ)ℓ∈JpK and p = |φ(µ)| = |φ(µ′)|. It means that ∀i ∈ JpK, we have
W ′

i = Wi+ı̂ mod p, and for any AN f , we deduce that π = f(W0,...,Wı̂−1) is the

Combinatorics of block-parallel automata networks 15

desired isomorphism from Ωf{µ} to Ωf{µ′} . Indeed, we have f{µ}(x) = y if and

only if f{µ′}(π(x)) = π(y) because

f{µ′} ◦ π = f(W0,...,Wı̂−1,W ′
0,...,W

′
p)

= f(W ′
p−ı̂,...,W

′
p)

◦ f{µ} = π ◦ f{µ}.

Note that π−1 = f
(q−1)
{µ′} ◦ f(W ′

ı̂ ...W
′
p−1)

with q the least common multiple of the

limit cycle lengths, and π−1 ◦ π (resp. π ◦ π−1) is the identity on Ωf{µ} (resp.
Ωf{µ′}).

(⇐=) We prove the contrapositive, from µ ̸≡⋆ µ′, by case analysis.

(1) If in φ(µ) and φ(µ′), there is an automaton ı̂ which is not updated the same
number of times α and α′ in µ and µ′ respectively, then we assume without
loss of generality that α > α′ and consider the AN f such that:
• Xı̂ = JαK and Xi = {0} for all i ̸= ı̂; and
• fı̂(x) = (xı̂ + 1) mod α and fi(x) = xi for all i ̸= ı̂.

It follows that fΩ
{µ} has only fixed points since +1 mod α is applied α times,

whereas fΩ
{µ′} has no fixed point because α′ < α. We conclude that fΩ

{µ} ̸∼
fΩ
{µ′}.

(2) If in φ(µ) and φ(µ′), all the automata are updated the same number of
times, then the transformation from µ to µ′ is a permutation on JnK which
preserves the matrices of their matrix representations (meaning that any
i ∈ JnK is in an o-block of the same size in µ and µ′, which also implies that
µ and µ′ are constructed from the same partition of n). Then we consider
subcases.

(2.1) If one matrix of µ′ is not obtained by a permutation of the columns
from µ, then there is a pair of automata ı̂, ȷ̂ that appears in the k-th
block of φ(µ) for some k, and does not appear in any block of φ(µ′).
Indeed, one can take ı̂, ȷ̂ to be in the same column in µ but in different
columns in µ′. Let S be the o-block of ı̂ and S′ be the o-block of ȷ̂. Let
p denote the least common multiple of o-blocks sizes in both µ and µ′.
In this case we consider the AN f such that:
• Xı̂ = B×J p

|S|K, Xȷ̂ = B×J p
|S′|K, and Xi = {0} for all i /∈ {ı̂, ȷ̂}. Given

x ∈ X, we denote xı̂ = (xb
ı̂ , x

ℓ
ı̂) the state of ı̂ (and analogously for ȷ̂);

and

• fı̂(x) =

{
(xb

ȷ̂ , x
ℓ
ı̂ + 1 mod p

|S|) if xℓ
ı̂ = 0

(xb
ı̂ , x

ℓ
ı̂ + 1 mod p

|S|) otherwise
,

fȷ̂(x) =

{
(xb

ı̂ , x
ℓ
ȷ̂ + 1 mod p

|S′|) if xℓ
ȷ̂ = 0

(xb
ȷ̂ , x

ℓ
ȷ̂ + 1 mod p

|S′|) otherwise
, and

fi(x) = xi for all i /∈ {ı̂, ȷ̂}.
Note that ı̂ (resp. ȷ̂) is updated p

|S| (resp. p
|S′|) times during a step in

both µ and µ′. Therefore for any x ∈ X, its two images under µ and
µ′ verify f{µ}(x)

ℓ
ı̂ = f{µ′}(x)

ℓ
ı̂ = xℓ

ı̂ (and analogously for ȷ̂). Thus for
the evolution of the states of ı̂ and ȷ̂ during a step, the second element

16 K. Perrot, S. Sené, and L. Tapin

is fixed and only the first element (in B) may change. We split X into
X= = {x ∈ X | xb

ı̂ = xb
ȷ̂} and X ̸= = {x ∈ X | xb

ı̂ ̸= xb
ȷ̂}, and observe the

following facts by the definition of fı̂ and fȷ̂:
• Under µ and µ′, all the elements of X= are fixed points (indeed, only

xb
ı̂ and xb

ȷ̂ may evolve by copying the other).
• Under µ, let m,m′ be the respective number of times ı̂, ȷ̂ have been
updated prior to the k-th block of φ(µ) in which they are updated
synchronously. Consider the configurations x, y ∈ X ̸= with xı̂ =
(0,−m mod p

|S|), xȷ̂ = (1,−m′ mod p
|S′|), yı̂ = (1,−m mod p

|S|)

and yȷ̂ = (0,−m′ mod p
|S′|). It holds that f{µ}(x) = y and f{µ}(y) =

x, because xb
ı̂ and xb

ȷ̂ are exchanged synchronously when xℓ
ı̂ = xℓ

ȷ̂ = 0
during the k-th block of φ(µ), and are not exchanged again during
that step by the choice of the modulo. Hence, fΩ

{µ} has a limit cycle
of length two.

• Under µ′, for any x ∈ X ̸=, there is a substep with xℓ
ı̂ = 0 and

there is a substep with xℓ
ȷ̂ = 0, but they are not the same substep

(because ı̂ and ȷ̂ are never synchronised in µ′). As a consequence, xb
ı̂

and xb
ȷ̂ will end up having the same value (the first to be updated

copies the bit from the second, then the second copies its own bit),
i.e. f{µ′}(x) ∈ X=, and therefore fΩ

{µ′} has only fixed points.

We conclude in this case that fΩ
{µ} ̸∼ fΩ

{µ′}, because one has a limit cycle
of length two, whereas the other has only fixed points.

(2.2) If the permutation preserves the columns within the matrices (meaning
that the automata within the same column in µ are also in the same
column in µ′), then we consider two last subcases:
(2.2.1) Moreover, if the permutation of some matrix is not circular (mean-

ing that there are three columns which are not in the same relative
order in µ and µ′), then there are three automata ı̂, ȷ̂ and k̂ in the
same matrix such that in µ, automaton ı̂ is updated first, then ȷ̂,
then k̂; whereas in µ′, automaton ı̂ is updated first, then k̂, then ȷ̂.
Let us consider the automata network f such that:
• X = Bn;
• fı̂(x) = xk̂, fȷ̂(x) = xı̂ and fk̂(x) = xȷ̂; and

• fi(x) = xi if i /∈ {ı̂, ȷ̂, k̂}.
If the three automata are updated in the order ı̂ then ȷ̂ then k̂, as
it is the case with µ, then after any update, they will all have taken
the same value. It implies that f{µ} has only fixed points, precisely
the set P = {x ∈ Bn | xı̂ = xȷ̂ = xk̂}.
If they are updated in the order ı̂ then k̂ then ȷ̂, as with µ′, however,
the situation is a bit more complex. We consider two cases, according
to the number of times they are updated during a period (recall that
since they belong to the same matrix, they are updated repeatedly
in the same order during the substeps):
• If they are updated an odd number of times each, then automata
ı̂ and ȷ̂ will take the initial value of automaton k̂, and automaton

Combinatorics of block-parallel automata networks 17

k̂ will take the initial value of automaton ȷ̂. In this case, fΩ
{µ′}

has the fixed points P and limit cycles of length two.
• If they are updated an even number of times each, then the
reverse will occur: automata ı̂ and ȷ̂ will take the initial value of
automaton ȷ̂, and automaton k̂ will keep its initial value. In this
case, fΩ

{µ′} has the fixed points Q = {x ∈ Bn | xı̂ = xȷ̂} which

strictly contains P (i.e. P ⊆ Q and Q \ P ̸= ∅).
In both cases fΩ

{µ′} has more than the fixed points P in its limit set,

hence we conclude that fΩ
{µ} ̸∼ fΩ

{µ′}.

(2.2.2) Moreover, if the permutation of all matrices is circular, then we
first observe that when φ(µ) and φ(µ′) have one block in common,
they have all blocks in common (because of the circular nature of
permutations), i.e. µ ≡⋆ µ′. Thus, under our hypothesis, we deduce
that φ(µ) and φ(µ′) have no block in common. As a consequence,
there exist automata ı̂, ȷ̂ with the property from case (2.1), namely
synchronised in a block of φ(µ) but never synchronised in any block
of φ(µ′), and the same construction terminates this proof.

⊓⊔

B Identification of Theorem 2 with sequence OEIS
A182666

The exponential generating function of a sequence (an)n∈N is f(x) =
∑

n≥0 an
xn

n! .

Lemma 2. The exponential generating function of (|BP0
n|)n∈N is

∏
j≥1

∑
k≥0

(
xk

k!

)j
.

Proof. We will start from the exponential generating function by finding the

coefficient of xn and proving that it is equal to
|BP0

n|
n! , and thus that the associated

sequence is (|BP0
n|)n∈N.

∏
j≥1

∑
k≥0

(
xk

k!

)j

=

∑
k≥0

xk

k!

×

∑
k≥0

x2k

(k!)2

×

∑
k≥0

x3k

(k!)3

× · · ·

=

(
1 + x+

x2

2!
+ · · ·

)
︸ ︷︷ ︸

j=1

×
(
1 + x2 +

x4

(2!)2
+ · · ·

)
︸ ︷︷ ︸

j=2

×
(
1 + x3 +

x6

(2!)3
+ · · ·

)
︸ ︷︷ ︸

j=3

× · · · .

Each term of the distributed sum is obtained by associating a k ∈ N to each
j ∈ N+, and by doing the product of the 1

(k!)j · xjk. Thus, if NN+ is the set of

maps from N+ to N, we have:

∏
j≥1

∑
k≥0

(
xk

k!

)j

=
∑

m∈NN+

∏
j≥1

1

(m(j)!)j

 · x
∑

j≥1 j·m(j).

18 K. Perrot, S. Sené, and L. Tapin

From here, to get the coefficient of xn, we need to do the sum only on the maps
m such that

∑
j≥1 j ·m(j) = n, which just so happen to be the partitions of n,

with m(j) being the multiplicity of j in the partition. Thus, the coefficient of xn

is
p(n)∑
i=1

∏
j≥1

1

(m(i, j)!)j
=

p(n)∑
i=1

1∏d(i)
j≥1(m(i, j)!)j

=
|BP0

n|
n!

.

⊓⊔

	Combinatorics of block-parallel automata networks

