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Abstract. This article aims at giving some new theoretical properties
of threshold Boolean automata networks which are good mathematical
objects to model biological regulatory networks. The objective is the em-
phasis of a necessary condition for which these networks, when they are
governed by a non-linear evolution law, are sensitive to the influence of
boundary conditions. Then, this paper opens an argued discussion about
the notion of “symmetrisability” of regulatory networks which is relevant
to understand some specific dynamical behaviours of real biological net-
works, and shows that this notion allows to explain an important feature
of the Arabidopsis thaliana floral morphogenesis model.
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1 Introduction

More and more studies have been opened since a decade about the robust-
ness of biological regulatory networks [1,2]. This is explained by the fact the
robustness against several kinds of perturbations, such as changes of updating
modes [3,4] or changes of topology [5], may bring a better understanding of
particular phenomena emerging in biology. The purpose of this paper is to show
that, sometimes, a theoretical framework allows to obtain some results which are
of great interest not only in this theoretical framework but also in applied frame-
works. Moreover, we think that studies on real biological regulatory networks,
whatever the used mathematical objects are, need a deep theoretical attention.
Indeed, if it is possible to dive a real biological network in a specific framework
with relevant theoretical tools, we can reasonably expect to obtain some results
on inherent properties of this biological network which could not be obtained
with an empirical method.

After a brief section presenting the main definitions which will be used in this
paper, Section 3 focuses on artificial stochastic regulatory networks represented
by square lattices on Z2. It extends some results already obtained [6,7] on the



impact of variations of boundary conditions on stochastic regulatory networks
whose evolution is governed by a non-linear law and presents a necessary condi-
tion for which phase transitions can emerge. These results are interesting from
both the theoretical and biological points of view. Indeed, biological regulatory
networks present in general natural boundaries such as hormones or microRNAs
in general inhibiting the expression of some genes inside the network (some cases
of activation being also described as in [8]). Section 4 gives an argued discussion
about the dynamical behaviour of the well known Mendoza genetic regulatory
network for the floral morphogenesis of the plant Arabidopsis thaliana [9] and
shows that it is a direct consequence of its underlying threshold Boolean au-
tomata network, which can be seen as a symmetric network.

2 Preliminaries

Artificial regulatory networks are widely used in systems biology and present
remarkable regularities in their architecture due to the evolution [10,11,12],
namely similar values for architectural (connectivity) or dynamic features, or
occurrence of same interaction motifs [3], i.e., oriented sub-graphs relating their
elements (here genes). These similarities cause identical dynamical behaviours,
like existence of periodic attractors, called limit cycles due for example to the
same internal motif imposing its periodicity to the global network. Biological
regulatory networks are less regular than artificial ones (see Figure 1) but they
share many common dynamical concepts that we will give first in whole gener-
ality.

(a) (b) (c) (d)

Fig. 1. Representations of oriented interaction graphs of biological (a, b) and
artificial (c, d) regulatory networks.

The interaction matrix W of a regulatory network R of n genes is the oriented
and valued incident n × n matrix of its interaction graph. W is then similar to
the synaptic weights matrix, which rules the relationships between neurons in a
neural network. The general coefficient wik of such a matrix W is positive (resp.
negative, null) if the gene k activates (resp. inhibits, does not influence) the gene
i, the state xi of i being equal to 1 (resp. 0), if it is (resp. is not) expressed. In
the sequel, we consider two different kinds of regulatory networks, called either
deterministic or stochastic. Precisely, in a deterministic regulatory network, the
change of state of a gene i between times t and t + 1 is supposed to obey the



deterministic transition rule [13,14]:

∀i ∈ R, xi(t+ 1) = H(
∑
j∈Ni

wij · xj(t)− θi)

or

x(t+ 1) = H(W · x(t)− θ)

whereH is the classical Heaviside sign-step function (H(x) = 0 if x < 0 and 1 otherwise),
Ni is the set of neighbours of i such that j ∈ Ni ⇐⇒ wij 6= 0 and θi is the
activation threshold of i. In a general way, it is of great biological interest to de-
termine interaction matrices having characteristic properties like: (i) a minimal
number of non zero coefficients for a given set of attractors or (ii) a minimal
number P (W ) of positive loops (i.e. paths on the interaction graph coming from
a gene and returning to it after an even number of negative interactions) counted
only one time, which controls the number A(W ) of attractors [15,16]. The con-

nectivity coefficient K(W ) = I(W )
n is the mean number of interactions going

to a gene, where I(W ) is the total number of interactions: K(W ) is in general
between 1.5 and 3. About the number C(W ) of strong connected components
(i.e. with a path between each pair of genes in both senses) containing positive
loops, we can conjecture (in particular for feed-forward networks) that:

2P (W ) ≥ A(W ) ≥ 2C(W ) and A(W ) ≥ O(n
1
2 )

The total number of attractors is, in the general case, of greater order of mag-
nitude, due to the presence of numerous limit cycles both in Hopfield-like (resp.
Kauffman-like) random regulatory networks in which the 43 different sets of in-
teraction signs 1, −1 or 0 (resp. the 16 possible sets of Boolean functions) are
randomly chosen for the nearest neighbours of any node in the transition rule
[42,43].

In the case of stochastic regulatory networks, the introduction of randomness
is done by a specific parameter called the temperature, denoted by T . By con-
sidering the same transition operator as above Rx = H(Wx − θ), we compute
the probability for the gene i to be in state 1 at time t+ 1 knowing the state of
its neighbours at time t:

∀i ∈ R, P (xi(t+ 1) = 1) =
eRx/T

1 + eRx/T

If T is sufficiently large, this probability is 1/2 (uniform case) and if T is suf-
ficiently small, the stochastic network has the same behaviour as the network
with the deterministic transition rule given above. When T is small, we retrieve
the deterministic rule. Nevertheless, the real link between the stochastic and
the deterministic rules is not actually well known. In this context, we give the
following proposition:

Proposition 1. If T is small and ∀i, j ∈ Zd, wii = u0 > θ,wij = u1 > 0 if
δ(i, j) = 1, and wij = 0 if δ(i, j) > 1, where δ is the L1-distance on Zd, then



the mean probability α(T ) to change from state 1 to state 0 at time t+ 1, with a
uniform initial distribution over the a = |Ni\{i}| nodes of Ni\{i}, is given by:

α(T ) = e(−u0+θ)/T · [(1 + e−u1/T )/2]a

Proof: Let us denote C = {xi(t) = 1; xj(t) = yj ; j ∈ Ni\{i}} and develop:

α(T ) =
∑

y∈Ni\{i}

P (xi(t+ 1) = 0|C)
2a

≈
a∑
k=0

(
a
k

)
e(−u0+θ)/T−ku1/T )

2a

= e(−u0+θ)/T · [(1 + e−u1/T )/2]a

Let us note that the value above gives an estimation of the ”noise” introduced
by the stochastic transition on the deterministic one where the state 0 is in this
case never reached. �

Before going further, let us give some definitions about the notion of updating
modes. An updating mode is: (i) parallel if, at each time step t, all the nodes of R
are updated synchronously, (ii) sequential if, at each time step, only one node of
R is updated, such that all the nodes are updated after n time steps, according to
a specific sequence, (iii) block-sequential if, when the network R is divided into
disjoint subsets of nodes, the nodes in a same subset execute their local transition
function synchronously and the subsets are updated sequentially. Let us remark
here that the parallel and the sequential updating modes are particular block-
sequential modes. Furthermore, in the context of artificial networks represented
by square lattices on Z2, the centre of a regulatory network is the set of minimal
eccentricity nodes (the eccentricity ε(u) of the vertex u of a connected oriented
interaction graph G = (V,E) is the maximal distance from u to any other nodes
v of G) and its boundary is simply the set of all geometric boundary nodes of
the underlying lattice.

3 Loss of linearity in stochastic networks

Some relevant studies [17,6,7] have been recently done on the influence of
boundary conditions on two-dimensional square lattices showing both theoret-
ically and by simulation a specific condition under which stochastic threshold
Boolean networks are strongly subjected to variations of their boundary con-
ditions. These studies have been based on a specific kind of networks evolu-
tion which is characterised by the linear stochastic transition function presented
above. Indeed, the networks elements update their state from the time step t to
the time step t + 1 according to two different potentials: u0, a function of the
auto-interaction weight, and u1, a function of the closest neighbours interaction
weights. Here, we propose to study two-dimensional square lattices governed by
a stochastic law taking also into account a collective potential, denoted by φ,



which is going to be detailed in the following. Let us remark that the introduc-
tion of this coalition potential is translated by a loss of linearity of the stochastic
transition function, which makes this kind of problem much more difficult.

Let us first remark that, when time t tends to infinity, the occurrence of con-
figurations is given by an invariant measure µ on the space of all configurations,
which depends on the updating mode of the network. In [17,7] has been given
a general expression of µ, for an arbitrary given feed-forward network R of n
nodes, for the general block-sequential updating mode. The notion of invariant
measure is of particular interest because it allows to define the notion of phase
transitions [18]. Indeed, being given a network R, a phase transition emerges
from the dynamics of R, when, for two different fixed boundary conditions ∂R1

and ∂R2, two different invariant measures µ∂R1 and µ∂R2 are computed, i.e. the
invariant measure is not unique.

Let us now denote by Λ = R\{O}, where O is one of the central points of
the interaction graph (R,E) and define the cylinder [A,B] as follows:

[A,B] = {σ | σi = 1, i ∈ A;σi = 0, i ∈ B]

The matricial projectivity equation between the probabilities of configurations
on Λ is defined, as in [17], by the matrix M below:

M =



1 1 0 . . . 0 . . . 0
1 0 1 . . . 0 . . . 0
1 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 . . . 1
Φ0 Φ1 Φ2 . . . ΦK . . . Φ2d


where Φ0 = Φ(Λ, ∅), Φ1 = Φ(Λ\{1}, {1}), Φ2 = Φ(Λ\{2}, {2}), ΦK = Φ(Λ\K,K),
and Φ2d = Φ(∅, Λ). In this matrix, the first equations represent the classical pro-
jectivity: ∀i ∈ Λ\K, µ([Λ\K,K]) + µ([Λ\(K ∪ {i}),K ∪ {i}]) = µ([Λ\(K ∪
{i}),K]), where µ([Λ\K,K]) is the probability to observe the configuration
[Λ\K,K], i.e. the state 1 on Λ\K and 0 on K. The last equation is just the
Bayes formula, i.e. if Φ([Λ\K,K]) denotes the probability to observe the state 1
in O knowing the configuration [Λ\K,K], we have:∑

K

Φ(Λ\K,K) · µ([Λ\K,K]) = µ([i, ∅])

By developing detM with respect to the last row, we have:

detM =
∑
K

(−1)|Λ\K| · Φ(Λ\K,K)

where (−1)|Λ\K| · Φ(Λ\K,K) + (−1)|K| · Φ(K,Λ\K) = (−1)|K|(Φ(Λ\K,K) +
Φ(K,Λ\K)), because |Λ| = 2 · d, with:

Φ(K,Λ\K) =
e(u0+

∑
i∈K u1,i+φ(K))/T

1 + e(u0+
∑
i∈K u1,i+φ(K))/T



where the potential φ is symmetrical, i.e. verifies:

φ(K) = φ(Λ)− φ(Λ\K) =
∑
i,j∈K
i6=j

u2,i,j +
∑

i,j,k∈K
i6=j 6=k

u3,i,j,k

which is the case if the u2,i,j ’s (resp. u3,i,j,k’s) are constant and equal to u2 (resp.
−u2).

Proposition 2. If the singleton potential (or external field) u0, and the pair,
triple and quadruple potentials, respectively denoted by u1,i’s, u2,i,j’s and u3,i,j,k’s,
verify:

u0 +
∑
i∈Λ

u1,i
2

+
∑
i,j∈K
i6=j

u2,i,j
2

+
∑

i,j,k∈K
i6=j 6=k

u3,i,j,k
2

= 0

then detM = 0.

Proof: In order to prove that detM = 0, it suffices to multiply in the definition
formula of Φ(K,Λ\K) the numerator and the denominator by:

1 =
e(−2u0−

∑
i∈Λ\K ui−φ(Λ))/T

e(−2u0−
∑
i∈Λ\K ui−φ(Λ))/T

Then we have:

Φ(K,Λ\K) =
e
−u0−

∑
i∈Λ\K ui+φ(K)−φ(Λ)

T

e
−2u0−

∑
i∈Λ ui−φ(Λ)

T + e
−u0−

∑
i∈Λ\K ui+φ(K)−φ(Λ)

T

=
e
−u0−

∑
i∈Λ\K ui−φ(Λ\K)

T

1 + e
−u0−

∑
i∈Λ\K ui−φ(Λ\K)

T

= 1− e
u0+

∑
i∈Λ\K ui+φ(Λ\K)

T

1 + e
u0+

∑
i∈Λ\K ui+φ(Λ\K)

T

= 1− Φ(Λ\K,K)

Thus, we have Φ(Λ\K,K) + Φ(K,Λ\K) = 1, and, since we have |Λ| = 2d,
we eventually get: detM =

∑
|K|=0,...,

|Λ|
2

(−1)|K| = 0. �

Let us eventually remark that, if we want to increase the non-linearity of
the collective interactions by introducing an interaction of order 4, namely a
quintuple potential denoted by u4,i,j,k,l, then, for having φ symmetrical, we need:
2φ({i, j}) = 2u2 = φ(Λ) = 6u2 + 4u3 + u4 and φ({i, j, k}) = 3u2 + u3 = φ(Λ) =
6u2 + 4u3 + u4, which involves u3 = −u2 and u4 = 0.

4 Usefulness of the notion of symmetrisation

After having focused on theoretical aspects of artificial regulatory networks,
it has seemed natural to make a step in the direction of biology and focus on
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Fig. 2. Existence of phase transitions for: (a) 11 × 11, (b) 37 × 37 and (c)
131 × 131 isotropic and translation-invariant attractive networks evolving ac-
cording to a non linear function with a triple potential (u0 = −3, 0 ≤ u1 ≤ 10)
on the line u0 + 2u1 + u2 = 0.

applications relating to real biological genetic networks. So, in this section, we
dive into the reality and, by focusing on a well known regulatory network, namely
the one of the floral morphogenesis of the plant Arabidopsis thaliana , we propose
a bridge, through the notion of symmetrisation which will be explained, allowing
to go to and from between these two different levels of abstraction.

4.1 Elements of literature

In 1998 has been published an article [9] which presents the dynamics of
the genetic regulatory network modelling the floral morphogenesis of the plant
Arabidopsis thaliana. This study has been based on the deterministic version of
the regulatory networks presented in the introduction and has emphasised that,
being given a specific block-sequential updating mode, the temporal evolution
of the network can lead its initial configurations to six different fixed points.
Among these six fixed points, four correspond to floral tissues (sepal, petal,
stamen and carpel), the fifth to an inflorescence tissue and the sixth to a mutant
tissue. It is interesting to note that this dynamics holds for all the sequential
updating modes. Furthermore, the parallel evolution of this network leads the



configurations to be attracted not only by these six fixed points but also by seven
limit cycles of period two whose biological meaning is not actually known at this
time.

This observation is of particular interest because some theoretical results,
given by Goles in [19], show that particular deterministic threshold Boolean
automata networks get these specific properties, as stated by the two following
theorems:

Theorem 1. [20] If the interaction matrix W of a threshold Boolean automata
network is symmetric, then the period of the attractors is less or equal to 2.

Theorem 2. [21] If the interaction matrix W of a threshold Boolean automata
network is symmetric and such that its diagonal contains only positive coeffi-
cients, then the period of the attractors equals 1 for a sequential dynamics.

4.2 The Mendoza network as a symmetric network

The purpose of this subsection is to show that the two theorems above can
be applied to the Mendoza network (see Figure 3). To do so, it suffices to show

that we can find a symmetric network, or more precisely a network R̃ in which
all the dynamical behaviour depends only on specific nodes which belong to
symmetric strongly connected components of the underlying interaction graph,
leading to the same attractors as the Mendoza network. We will speak thereafter
of equivalent networks.
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R =

Fig. 3. Genetic regulatory network proposed in [9] by Mendoza and Alvarez-
Buylla. The interaction weights are written on the graph and the threshold
vector is given on the right and is ordered with the following sequence of genes:
EMF1, TFL1, LFY, AP1, CAL, LUG, UFO, BFU, AG, AP3, PI et SUP.



In order to construct such an equivalent symmetric network, we remark first
that, in the Mendoza network, the nodes LUG, UFO and SUP are sources of the
underlying interaction graph. Thus, they do not depend on themselves or other
nodes. Consequently, since their threshold equals 1, whatever their initial state
(at time t = 0) is, they are fixed to 0 for time t ≥ 1. Formally, we can note :
∀t ≥ 1, LUG(t) = UFO(t) = SUP(t) = H(−1) = 0. Then, let us consider EMF1.
Its self-activation makes its state constant, i.e. ∀t ≥ 1, EMF1(t) = EMF1(0). If
we consider now LFY, we remark that its state can be equal to 1 only at time
t = 0. Indeed, we can write LFY(t+1) = H(−2EMF1(t)−TFL1(t)+2AP1(t)+
CAL(t) − 4) = 0 since ∀t, −2EMF1(t) − TFL1(t) + 2AP1(t) + CAL(t) ≤ 3.
Concerning CAL, we have CAL(t+1) = H(2LFY(t)−2)⇒ ∀t ≥ 1, CAL(t+1) =
H(2 · 0 − 2) = H(−2) = 0. Thus, ∀t ≥ 2, CAL(t) = 0. TFL1 depends on the
state of EMF1 and LFY. We have TFL1(t + 1) = H(EMF1(t) − 2LFY − 1).
But we have seen that ∀t ≥ 1,EMF1(t) = EMF1(0) and LFY(t) = 0 and, thus,
∀t,TFL1(t) = H(EMF1(0)−1) = EMF1(0). Consequently, these seven genes do
not act directly on the dynamics of the network but are only kinds of release
mechanisms for the dynamics whose role is stopped, in every case, after time
step t = 2. We are now going to see that the role of AG, AP1, PI, AP3 and BFU
is quite more important.

Let us now consider the genes AG and AP1. A first remark is that they
depend on each others. Indeed, we have:

∀t, AG(t + 1) = H(−2TFL1(t) + LFY(t)− 2AP1(t)− LUG(t))

⇓
∀t ≥ 1, AG(t + 1) = H(−2EMF1(0)− 2AP1(t))

and

∀t, AP1(t + 1) = H(−EMF1(t) + 5LFY(t)−AG(t))

⇓
∀t ≥ 1, AP1(t + 1) = H(−EMF1(0)−AG(t))

Since ∀λ > 0, H(λu) = H(u), we can write:

∀t ≥ 1, AG(t+ 1) = H(−EMF1(0)−AP1(t))

∀t ≥ 1, AP1(t+ 1) = H(−EMF1(0)−AG(t))

which will be thus represented by a symmetrical strongly connected component
in R̃.

With the same kind of reasoning about the genes AP3, PI and BFU, we
obtain:

∀t ≥ 1, AP3(t+ 1) = H(BFU(t)− 1)

∀t ≥ 1, PI(t+ 1) = H(BFU(t)− 1)

∀t ≥ 1, BFU(t+ 1) = H(AP3(t) + PI(t)− 2)



which corresponds to another symmetrical strongly connected component of R̃.
In order to satisfy the constraints exposed above, we can construct R̃ such that
it is presented in Figure 4. Finally, the dynamics of R̃ only depends on the genes
of the two symmetric strongly connected components presented above and the
necessary and sufficient conditions to apply the theorems 1 and 2 are respected
by the Mendoza network, which explains why its sequential dynamics leads only
to fixed points and why its parallel dynamics leads to the same fixed points and
to limit cycles of period 2.
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R̃ =

Fig. 4. Genetic regulatory network with two symmetric strongly connected com-
ponents, whose dynamics has the same attractors as the Mendoza network. The
threshold vector is ordered as in Figure 3.

5 Perspectives

We have shown that non-linear artificial regulatory networks on Z2 are highly
dependent on boundary conditions under certain conditions. A further study
could concern regular networks (progressively) perturbed by removing a certain
(increasing) percentage ε of their interactions: if this architectural ”surgery” is
done at random and fixed before studying the dynamics of the resulting network,
such as in [5], we could expect that, among the simulated non regular networks,
some are similar to biological regulatory networks for which we have already
shown the presence of a high dependence on boundary states [22]. Furthermore,
it would be of interest to obtain the value of ε for which no phase transitions
can be found.

The notion of symmetrisation developed in this work would also require fur-
ther studies. First, it allows to go to and from between the theoretical framework
and the applied framework. On this point, it would be of interest to show what
already known real biological networks get this property or others and, thus, for
which it would exist a natural bridge between these different abstraction lev-
els. Moreover, on the study presented here about the Arabidopsis thaliana floral



morphogenesis regulatory network, the fact that it is symmetric is important
because for symmetric threshold Boolean automata networks, one may define an
energy function on the dynamics and, then, attractors (fixed points and limit
cycles) are energy’s local minima. This will give an enlarged regard on this floral
morphogenesis model.
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6. Demongeot, J., Sené, S.: Boundary Conditions and Phase Transitions in Neural
Networks. Simulation Results. Neural Networks 21 (2008) 962–970
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