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Abstract — The multi-scale strategy in studying biological 
regulatory networks analysis is based on two level of analysis. The first 
level is structural and consists in examining the architecture of the 
interaction graph underlying the network and the second level is 
functional and analyse the regulatory properties of the network. We 
apply this dual approach to the “immunetworks” involved in the 
control of the immune system. As a result, we show that the small 
number of attractors of these networks is due to the presence of 
intersecting circuits in their interaction graphs. We obtain an upper 
bound of the number of attractors of the whole network by multiplying 
the number of attractors of each of its strongly connected components. 
We detect first the strongly connected components in the architecture 
of the interaction digraph of the network. Secondly, we study the 
dynamical function of the attractors by looking further inside these 
components, notably when they form circuits (intersecting or not). 
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I. INTRODUCTION 

 
The theory of biological regulatory networks is born 
parallelly to that of neural networks [1-3] and is now a 
research topic of intense activity for interpreting the "omic" 
data from the bio-arrays devices. The networks are made of 
elements (genes, proteins, neurons,...) in interaction and the 
central tool used for representing these interactions is a 
directed graph (digraph), called interaction graph, whose 
signed arrows (positive or negative) are related to the 
influence (activation or inhibition) exerted by an element 
(repressor or inducer) on another. Researches have focused 
on modelling real genetic networks of size n, with about 2n 
interactions networks, for which many authors have noticed 
that the number of attractors observed experimentally (i.e., 
the number of their different possible temporal asymptotic 
behaviours such as fixed or cyclic configurations of 
expressed and/or silent genes) is relatively small, of the 
order of magnitude √n. We will see in this paper that we can 
relate this small number of empirical attractors to the 
existence of intersecting circuits inside the architecture of 
the network. The attractors number is crucial in applications 
because it is related to the number of differentiation fate 
possibilities of the cells controlled by the network [1].  
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In an arbitrary network, besides nodes belonging to circuits, 
all other nodes belong to trees that are either down-trees 
(i.e., that have no influence on the rest of the network), or 
up-trees (i.e., that undergo no influence from the rest of the 
network and only eventually act punctually on it by 
allowing or disallowing it to have its own dynamics), or 
trees that connect nontrivial strongly connected components 
and only serve as information pathways. Now the theory of 
the random networks [4, 5] enables us to predict exactly the 
number of isolated and intersecting circuits, as well as the 
number of up- and down-trees. Therefore, in order to 
estimate the number of attractors in an arbitrary network, 
one may focus on the dynamics that is induced by the 
underlying circuits of the network. In a Section 2, we will 
introduce basic concepts about random Boolean graphs and 
networks. After we will focus on the crucial problem of 
sampling these networks in order to count their attractors. In 
Section 4, we give new results about intersecting circuits 
and we apply these results to the “immunetworks”, i.e., the 
genetic regulatory networks used for creating and 
controlling the immune genome [6]. 
 

II. RANDOM GRAPHS AND RANDOM BOOLEAN NETWORKS 
 

Let us focus now on how one may build the underlying 
digraph representing the architecture of a random network. 
Assuming we want to keep the connectivity c (mean number 
of oriented interactions coming to a node) of the digraph 
constant, it is possible to choose the interaction arcs 
according to various probability distributions that respect 
this connectivity [7, 8]. For instance, focusing on d-regular 
digraphs (the number of non oriented interactions per node 
being constant equal to d), in order to obtain a digraph of 
connectivity c equal to 2d/3 [9], one may choose uniformly 
at random a d-regular digraph in the set of all d-regular 
digraphs. Using an d-regular non-oriented graph having 
m=nd/2 edges, one may also construct a digraph of 
connectivity c if d is chosen equal to 3c/2 [9]. Let Xs denote 
the random variable representing the number of (non-
oriented) cycles of length s in a random d-regular graph of 
size n. In [10-12], it is shown that Xs, for 3≤ s≤ g, is 
asymptotically distributed as independent Poisson variable 
with mean equal to (d-1)s/2s=(3c–2)s/s2s+1 (2s-1/s, if c=2), 
with d=d(n) and g=g(n) allowed to increase with n, provided 
that: (d-1)2g−1=o(n). Hence we have: g=[Log2[o(n)]+1]/2, if 
c=2, which holds for g ≤ 5, if n=22.103≈214.5 and o(n)=n2/3. 
When d=3, the graph yields on average 2s−1/ s cycles of 
length s. To construct a signed digraph from a d-regular 
non-oriented graph, each edge of the graph is replaced by 



one or two signed arcs (loops are counted twice). Hence, 
each cycle of the d-regular graph may yield at most two 
circuits in the digraph.  

III. NETWORK SAMPLING FROM MINIMAL 
REPRESENTATION 

In order to avoid the over-representation of certain graphs in 
the random sampling of Boolean Hopfield-like threshold 
networks, a representation using minimal vectors made of 
the parameters (weights and thresholds) has been proposed 
[13-18]. This sampling methodology allows a non biased 
representation of the attractors in a given category of 
networks. For example, Table 1 gives the number of 
attractors for networks of size n=3,…,6 for the different 
categories: Cy (resp. Fi; Mi) networks having only limit 
cycles (resp. only points remaining fixed; both fixed points 
and cycles) as attractors for any updating modes going from 
the synchronous to the sequential ones, and Ev networks 
whose nature of attractors (cycles or fixed points) depends 
on the updating mode and therefore passing through the 
previous categories when this mode evolves.   

Figure 1 : number of attractors for networks of size 3 to 6 depending on 
their attractor class 
	
  
Let us notice that the order of magnitude of √n for the 
attractor number is respected, despite of the fact that the 
networks have been sampled in the whole set of networks of 
size n, without respecting the connectivity 2. 
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IV. ATTRACTORS OF INTERSECTING CIRCUITS 
 
4.1. Tangential circuits 
 
The attractor number of isolated circuit has been extensively 
studied in [4] and applied in [9]. 
 
4.2. Intersecting circuits 
 
The attractor number of intersecting circuit has been 
extensively studied in [5] and applied in [9]. 

 

 
 
 
 
 
Figure 1. The two coupled networks (left N1 and right N2) are each made of 
the sub-networks, whose vertices (or nodes) are denoted respectively ij and 
i0k (i=1,2; j=0,1,2,3,4,5; k=0,1,2) 

 
By looking on the networks of the Figure 1, we see that each 
is made of 4 main paths of opposite sense: two are up, A and 
C, and two down, B and D, of respective lengths A, B, C, 
D, and parity sA, sB, sC, sD, equal to 1 (resp. -1), if they have 
an even (resp. odd) number of negative arcs: sA = Πa∈A sa, 
where the sign sa of the arc a of A is equal to -1 if a is 
negative (inhibition) and 1 if a is positive (activation). For 
example, in Figure 1, the path A of N1 is such as A=3 and 
sA=-1. The main paths have in N1 two common nodes, 10 
and 13, and in N2 only one common node 23.  Finally, N1 
having only 4 paths having two common  nodes, there are 6 
combinations two by two of the 4 possible circuits (A,B), 
(B,C), (C,D) and (A,D), each circuit circuit like (A,C) 
having the parity sA,C = sA sC. As a conjecture, we can say 
that two intersecting circuits both managing to cycle 
together may not induce more attractors than would any of 
the two circuits if they were isolated. In addition, the period 
of any attractor induced by the intersection is no greater than 
the largest period of an attractor induced by a circuit of size 
that of the largest circuit encircling the two intersecting 
circuits (if it were isolated). The Propositions 4.1. to 4.3. 
below make more precise the context of the Conjecture, 
which could become: the number of attractors of N1 is less 
than the number of attractors of N2, whose two circuits 
(tangential in 23) have respectively as signs sup(sA,sB)sC and 
sup(sA,sB)sD, with x200(t) = x20(t), and the proof is then given 
in the Proposition 2.  
 
Let us now consider the Hamiltonian H of a circuit (A,C) as 
defined by: 

H(A,C)(t) = ∑i∈(A,C)(xi(t) - xi(t-1))2 = ∑i∈(A,C)(si(i-1)xi-1(t-1) - 
xi(t-1))2=∑i∈(A,C)(s(i-1)i xi-1(t-1)-xi(t-1))2 

The Hamiltonian H(A,C) is equal to twice the sum of the 
kinetic energies over all nodes of the circuit (A,C), and is 
equal to the frustration of (A,C), i.e., to the number of 
couples of successive nodes whose states are such as the 
second one is not equal to the predicted by the first one. The 
conservation of kinetic energy is for example ensured in 
continuous Hamiltonian systems like the simple pendulum, 
for which the dynamical differential equations are:  
                              dx/dt = y and dy/dt = -x               

d 

d 

d 
 

d 

    A  B  D   C      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 D 



and its Hamiltonian equals (x2+y2)/2, i.e., the kinetic energy. 
For example, for a positive circuit of size n=8, we have the 
following even values of frustration (they are odd for a 
negative circuit) and the number of frustration 
configurations (table 2), with the corresponding number and 
length of attractors (fixed state configurations or limit cycles 
of state configurations):  
 
H (frustration)     Configuration Nb        Attractor Nb         Attractor Length 
       0                           1                          2 fixed points                    1                            

       2              4 =

€ 

Cn−H +2
H −1

/2                        7                               8 
       4                                                                3                   4 (symmetrized) 

                      10 =

€ 

Cn−H +2
H −1

/2                            
       4                                                               16                              8  
        

       6              4 =

€ 

CH +2
n−H −1

/2                        7                                8 
       8                           1                                   1                                2 
Table 2: Values of Hamiltonian energy, attractor number and length (n =8) 
 
For a positive circuit of size n=6, we have the following 
even values of frustration and the number of frustration 
configurations (Table 3), with the corresponding number 
and length of attractors (fixed state configurations or limit 
cycles of state configurations):  
 
 H (frustration)        Configuration Nb       Attractor Nb       Attractor Length               
       0                                    1                    2 fixed points                  1                            

       2                       3 =

€ 

Cn−H +2
H −1

/2                  5                             6 
       4                                                                   2               3 ( symmetrized) 

                                3 =

€ 

CH +2
n−H −1

/2 
       4                                                                   4                             6 
       6                                    1                             1                             2 
Table 3: Values of Hamiltonian energy, attractor number and length (n =6) 
 
For a positive circuit of size n=4, we have the following 
even values of frustration and the number of frustration 
configurations (Table 4), with the corresponding number 
and length of attractors (fixed state configurations or limit 
cycles of state configurations):  
 
H (frustration)      Configuration Nb       Attractor Nb          Attractor Length 
       0                               1                      2 fixed points                      1                            

       2                  2 =

€ 

Cn−H +2
H −1

/2)                 3                                   4 
       4                               1                             1                                    2 
Table 4: Values of Hamiltonian energy, attractor number and length (n =4) 
 
We will try now to solve in the Propositions 4.1. to 4.3. the 
two questions: Are the attractors of the network N2, with the 
coupling x200(t) = x20(t), identical to the attractors of N1? and  
What are the constraints about the period of these attractors? 
 
Proposition 4.1. The attractors of the network N2, with the 
coupling x200(t) = x20(t), are attractors of N1. 
 
Proof. From an initial condition identical for N1 and N2, 
where x200(0) = x20(0) = x10(0), the trajectories are the same 
for all nodes, if x200(t) = x20(t), for any t ≥ 1. For the node 10 
of the network N1, we have, if the mixing rule is monotonic, 
e.g., ∨ in N1 and N2 (the reasoning would be the same, if the 

rule is ∧ or any composition of ∨ and ∧): 
x10(t) = [sB × x13(t-B)] ∨ [sD × x13(t-D)] 

x200(t) = sB × x23(t-B) and x20(t) = sD × x23(t-D) 
By imposing x200(t) = x20(t), for any t ≥ 1, then sB × x23(t-B) 
= sD × x23(t-D), and we have in the network N1: 

x10(t) = [sB × x13(t-B)] ∨ [sD × x13(t-D)] = x200(t) = x20(t) 
  
By recurrence on t, this common value for x10(t), x200(t) and 
x20(t) is equal to: 

sB × x13(0) = sB × x23(0), for any t=kB, with k ≥ 0. 
The same reasoning can be made for t ≡ 1,...,B-1 (mod B). 
Then, the trajectories being the same, the attractors of N2, 
with the coupling x200(t) = x20(t), are attractors of N1. 
 
Remark: let us note that, if D=B, that imposes, for 
observing the equality x200(t) = x20(t), the constraint sD = sB; 
if not, the attractors of N1 are not attractors of N2, with 
x200(t) = x20(t), and the converse of the Proposition 1. is then 
not available. But we have the following result: 
 
Proposition 4.2. The attractors of N1 are the attractors of 
M2, whose two circuits (tangential in 23) have respectively 
as signs sup(sA,sB)sC and sup(sA,sB)sD, with x200(t) = x20(t). 
 
Proof. Let us consider an attractor of N1, for which x10(t) = 
[sB × x13(t-B)] ∨ [sD × x13(t-D)]. If we identify x10(t) and 
x20(t), then, if x13(0) = x23(0), this attractor is an attractor of 
M2, where the 2 circuits (tangential in 23) have respectively 
as signs sup(sA,sB)sC and sup(sA,sB)sD and x200(t) = x20(t).  
 
Proposition 4.3. The attractors of N2, with the coupling 
x200(t) = x20(t), are characterized by the property (P) on 
their length (or period) p: 
- if sB × sD = 1 (resp. sA × sC  = 1), we have:  
p divides (sup(B,D) - inf(B,D)) ⇔ p⎥(sup(B,D) - 
inf(B,D)) (resp. p divides (sup(A,C) - inf(A,C))⇔ 
p⎥(sup(A,C) - inf(A,C)) 
- if sB × sD = -1 (resp. sA × sC  = -1), p does not divide 
(sup(B,D) - inf(B,D)) and p divides 2(sup(B,D) - 
inf(B,D))   ⇔ ¬[p⎥(sup(B,D) - inf(B,D))]∧ p⎥2(sup(B,D) 
- inf(B,D)) (resp. p does not divide (sup(A,C) - inf(A,C)) 
and p divides 2(sup(A,C) - inf(A,C))   ⇔ ¬[p⎥(sup(A,C) - 
inf(A,C))]∧ p⎥2(sup(A,C) - inf(A,C))) 
 
Proof. If p denotes the length (or period) of an attractor of 
N2, with the coupling x200(t) = x20(t),  then we have: 
∀ t ≥ 1, x200(t)=x20(t)⇔∀ t ≥ 1, sB × x23(t-B) = sD × x23(t-D) 

⇔ ∀ t ≥ 1, x23(t) = sB sD x23(t+B -D), and 
∀ t ≥ 1, x200(t)=x20(t)⇔∀ t ≥ 1, sA × x23(t-A) = sC × x23(t-C) 

⇔ ∀ t ≥ 1, x23(t) = sA sC x23(t+A -C) 
Hence, we have, if sB × sD=1: x200(t) = x20(t) ⇔ ∀ t ≥ 1,  

x23(t) = x23(t+ sup(B,D) - inf(B,D))  
⇔ ∀ t ≥ 1, p⎥(sup(B,D) - inf(B,D)). 

The proof in the case sB × sD = -1 is similar.   



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Immunetworks (from [19]) ruling RAG-1, a Recombination Activating protein G responsible in human and mouse for the regulation of the 
rearrangements V(D)J creating the genes of the lymphocyte T receptors TCRα [20-25]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5: Top: Number of attractors for intersecting negative circuits of respective size r and l.  Number of attractors of length p for isolated circuits of size n 



V. APPLICATION TO IMMUNETWORKS 
 

The previous results can be applied to real biological genetic 
networks like the “immunetworks” controlling the building 
of the immune genome in mammals (made of the genes of 
the TCR-α and -β and of the chains CD3-δ, -ε and -γ). The 
creation of the immune genes come from rearrangements of 
the chromosome 14 ruled by an enzyme, the RAG-1 
(Recombination Activating protein G), controlled by a 
specific network having two negative circuits (of sign -1, i.e. 
having an odd number of inhibitions), one of length 6 (in 
blue on Figure 2) and the other of length 2 (in red on Figure 
2). By calculating the number of attractors brought by these 
circuits intersecting on gene PU.1, we see that this number 
is reduced from 6 (blue on Table 5 bottom) if the circuits 
were isolated, or 16 (green on Table 5 bottom) if the circuits 
are added to form an unique circuit, to only 1 (green on 
Table 5 top). The prediction by the model is then in this case 
that the only attractor brought by the network controlling the 
RAG-1 expression has been possibly selected during the 
evolution for having only two behaviours: i) the RAG-1 is 
expressed and ii) the RAG-1 is inhibited by micro-RNAs, 
notably has-miR 30 in human.  
 
 
 
 

 
 

 
 
 

 
 
 
 

Figure 3: Regulation of intersecting circuits with chromatine-dependent 
non-homogeneous updating 
 

VI. CONCLUSION 
 

We given in this paper mathematical results necessary to 
understand the asymptotic (attractor) behaviour of genetic 
networks. Some behaviours induce difficult mathematical 
problems, e.g., because the expression of RAG-1 authorizes 
the updating or not of the up-tree controlling the genes 
TCR-α (in red in Figure 2), its implies a state-dependent 
updating (Figure 3) constituting a real mathematical 
challenge as perspective of the present work. 
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