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By comparing RNA rings or hairpins to reference or random ring sequences, circular versions 
of distances and distributions like Hamming and Gumbel one's are needed. We define these 
circular versions and we apply these new tools to the comparison of RNA relics like micro-
RNAs and tRNAs, to viral genomes having co-evolved with them. Then we show how robust 
are the regulation networks incorporating in their boundary micro-RNAs as gardens of Eden 
or in new feed-back loops involving ubiquitous proteins like p53 or oligopeptids regulating 
traduction. Eventually, we propose a new co-evolution game between viral and host genomes. 
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1. Introduction 

 
A challenge 40 years ago was to give an objective score summarizing the genetic distance 
between a host (e.g. human) and an infectious agent (e.g. Haemophilus influenzae) in order to 
predict its pathogenicity or virulence. In the classical Gatlin diagram (Gatlin 1968), whose 
variables were DNA redundancy R and GC % of genomes, the quadratic distance between 2 
genomes was a way to compare them, based on their global content in puric and pyrimidic 
bases distribution (Figure 1). Now comparing genomes coming from infectious agents, hosts 
and vectors is always pertinent, and more sophisticated tools using entropy or circular 
distances based on distribution of nucleic bases along DNA (Vinga & Almeida 2004) when 
all the sequences of their genomes can be used, even when these genomes have a complex 
architecture (in their information organization or in their topology): it is for example the case 
of the circular DNA of the 4600755 bp length chromosome Yersinia pestis 
(http://cmr.tigr.org/tigr-scripts/CMR/shared/CircularGenomeDisplay.cgi) or of the Hepatitis 
D circular RNA (http://pathmicro.med.sc.edu/virol/hepatitis-virus.htm) also known as Delta 
agent, more similar to a plant viroid than to a complete virus (Figure 2). The main difference 
with the historical approach done in the sixties is that now we can compare chain or ring 
sequences of RNA or DNA to reference sequences or to random rings (Figure 1 right), with 
appropriate distances and distribution functions expressing the variability of these distances 
among a population of given chains or rings.  
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Figure 1. Genomes representation in the 2D Gatlin diagram, with redundancy R (y axis), GC % content in 
sequences (left), and histograms of GC % content of these genomes (right) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Circular Yersina pestis chromosome (left), circular Hepatitis D RNA (right) and various forms of RNA 
chains, rings and hairpins 

 
   In Figure 1, the redundancy R (that is the ability of the genome to repeat pairs of bases) is 
defined as follows, if p denotes GC %:  
R=1+p[PAU/AULog2PAU/AU)+(1-PAU/AU)Log2(1-PAU/AU)]+(1-p)[PGC/AULog2PGC/AU)+(1-PGC/AU)Log2(1-PGC/AU)], 
where PAU/AU (resp. PGC/AU) is the probability to have a base A or U after a base A or U (resp. 
G or C). 
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   In this paper we give the essential of the mathematical properties of these distances in the 
case of rings (Demongeot & Moreira 2007), the work for chains being extensively already 
published (cf. for example (Comet et al. 1999; Bacro & Comet 2000)) and after do the 
comparison between genomes of some co-evolving triplets (host, vector and infectious agent) 
in virology. For example, with data coming from recent studies (Jopling et al. 2005), we will 
show how some human (host) or mosquito (vector) micro-RNAs coming from their UTR 
(UnTRanslated) genomes fit with the genomes of some viruses (infectious agent), and we 
argument about a possible co-evolution giving this fit as resulting from a global game 
favoring the survival of the three interacting species, each winning (a "win/win/win game"). 
 

2. Distances between rings and chains 
 
If we would like to compare chains of dinucleotides, we could use classical distances between 
integer vectors, as that defined by Hamming, but in the case of rings the vectors are 
considered as the same if one is a rotation of the other (Moreira, 2003). Let us consider a 
finite alphabet A and a fixed integer n denoting the length of the rings, described from vectors 
in An. We introduce first a notation for the rotation: given x ∈ An, σ(x) = (x1,..., xn-1, x0) is the 
circular permutation. It is evident that following properties hold: σ is invertible, 
σi(σj(x))=σi+j(x) and σi(x)=σi (mod n)(x). We define the notion of equivalence under rotation, 
denoted “≡”, for two vectors x, y ∈ An, by:  
                                                       x ≡ y ⇔ ∃ k : x = σk(y) 
It is easy to see that this is an equivalence relation. Our space of rings will hence be An/≡, the 
quotient composed of the equivalence classes of the vectors, and a ring will be described as 
[x] ∈ An/≡. 
 
2.1 Circular Hamming distance 
The most usual way to compare vectors with values in a finite alphabet is through the 
Hamming distance. Given two vectors x, y ∈ An, the Hamming distance between them is: 
                                         dH(x, y) = # {i ∈ {0, . . . , n - 1}: xi ≠ yi}  
In other words, it is the number of positions in which the values of the vectors differ. The 
function dH is a metric: it is non-negative, symmetric, it satisfies the triangle inequality and a 
null distance implies identity of the vectors. It is also easy to see that: 
     ∀i ∈ {0, . . . , n - 1}, dH(x, y) = dH(σi(x), σi(y)), and hence dH(x, σi(y)) = dH(σ-i(x), y) 
Using this last property, we define the circular Hamming distance between two rings [x] and 
[y] as:                                   dc

H([x], [y]) = min dH(x, σk(y)) 
                                                                  0≤k≤n-1 
In general, the minimum between two metrics is not necessarily a metric, but here it holds.  
 
Lemma 1. dc

H is a metric on An/≡. 
Proof.1. If dc

H([x], [y]) = 0, this implies that there exists k such that dH(x, σk(y)) = 0; hence:  
                                                       x = σk(y) and [x] = [y] 
2. Let us now prove the symmetry: 
      dc

H([x], [y]) = min dH(x, σk(y)) = min dH(σ-k(x), y) = min dH(y, σ-k(x)) = dc
H([y], [x]) 

                                k                            k                              k 
3. Let [x], [y], [z] ∈ An/≡. We must show that the triangular inequality is satisfied, i.e., that: 
                                         dc

H([x], [y]) ≤ dc
H([x], [z]) + dc

H([z], [y])  
Let i, j be such that: dc

H([z], [x]) = dH(z, σi(x)), dc
H([z], [y]) = dH(z, σj(y)) 

   In addition, we define: 
a = #{k: σi(x)k ≠ σj(y)k = zk}, b = #{k: σi(x)k = σj(y)k ≠ zk}, c = #{k: σj(y)k ≠ σi(x)k = zk},  



d = #{k: σi(x)k ≠ σj(y)k, σi(x)k ≠ zk, σj(y)k ≠ zk} 
Then: dH(σi(x), σj(y)) = a+c+d ≤ (a+b +d) + (b+c+d) = dH(σi(x), z) + dH(z, σj(y)), and hence: 
dc

H([x], [y]) ≤ dH(σi(x), σj(y)) ≤ dH(σi(x), z) + dH(z, σj(y)) = dc
H([x], [z]) + dc

H([z], [y])  
 
2.2 Maxsubstrings distance 
We define now another distance measure, denoted by ds, which evaluates the existence of 
substrings shared by the rings; more precisely, we define ds([x], [y]) as the diffence between n 
and the longest length of the substrings present in both rings: 

ds([x], [y]) = n – maxi,j {m ∈ {0, . . . , n}:  σi(x)k = σj(y)k  for 0 ≤ k ≤ m} 
 

   It is easy to see that ds is a semi-metric in An/ ≡. It is not a metric, since the triangle 
inequality may fail when substrings shared by [z] with [x] and [y] have as intersection two 
disconnected subchains, i.e. when taken together, the shared substrings cover z, and intersect 
each other in both of their extremities. For example, triangle inequality may fail for ds if:  
[x] = [abcd], ds([x], [y]) = 3 
[y] = [cbdd], ds([y], [z]) = 1 
[z] = [cbcd], ds([z], [x]) = 1 
and ds([x], [y]) > ds([x], [z]) + ds([z], [y])  

 
Lemma 2. We have: dc

H  ≤  ds. 
Proof. Since dH(x, y) = #{i: xi ≠ yi}, we have also n - dH(x, y) = #{i: xi = yi}, and hence we 
can write dc

H as:  
                      dc

H([x], [y]) = mink [n - #{i: xi = σk(y)i}] = n - maxk #{i: xi = σk(y)i}.  
If the longest substring shared by [x] and [y] is of length m, then we have: 

maxk #{i: xi = σk(y)i} ≥ m, and thus: 
dc

H([x], [y]) = n – maxk #{i: xi = σk(y)i} ≤ n - m = ds([x], [y])  
 

2.3 Shuffle distance 
Until now, the two "distances" we have defined can measure some form of similarity between 
rings, but each of them has advantages as well as disadvantages. Circular Hamming distance 
dc

H measures similarities between rings, but ignores their order. If we apply a permutation to 
both rings, the distance would not change. Hence, in a scenario of rings cut into pieces, which 
are shuffled and then come together to build new rings, dc

H will not capture much of what 
happens with those substrings. On the other hand, n-ds measures the size of the longest 
common substrings between rings, but does not tell us anything about the other sequences. 
 
   Hence, in order to capture another aspect of the idea of similarity in which we are interested, 
we introduce a third function, dt. This function will be finite only for pairs of rings [x], [y] 
which use the same amount of each kind of letter in A, i.e. such that dH(x, α...α) = dH(y, 
α...α), for all α in A, where α...α is the sequence of An made of the concatenation of n α; it 
will be ∞ otherwise. In a finite case, we define dt([x], [y]) as the minimum number of cuts to 
be made in [x] so that, after reordering the resulting pieces, we may obtain [y]. 
 
Lemma 3. dt is a metric on An/ ≡. 
Proof. If ds([x], [y]) = 0, then no cut is necessary, and the rings must be identical. Symmetry 
is easy to see, since the pieces used to go in opposite directions are the same. Finally, for the 
triangle inequality, dt([x], [y]) ≤ dt([x], [z]) + dt([z], [y]), we cut [x] in the optimal way to 
build [z], and then we do in addition the cuts needed to build [y] out of [z]. In this way, we 
pass from [x] to [y] with dt([x], [z]) + dt([z], [y]) cuts; it may not be the optimal way of going 



from [x] to [y], but it provides an upper bound for dt([x], [y]), proving the inequality. The 
previous argument holds for the case where all values are finite; if the left hand side of the 
inequality is infinite, then letter usage is different in [x] and [y], and since they cannot share 
both the letter usage of [z], the right side will be infinite too  
 
2.4 The semi-metric d*t 
For speeding computation, the "distance" we eventually propose will be an approximation of 
dt. Given two rings [x] and [y], we remove from both of them one of the longest substrings 
they share, leaving two words x' and y'. With them we initialize 2 lists of words; let us denote 
x(k) the set of (1 or 2) subwords leaved in the words of x(k-1) by removing one of the longest  
substrings common with the words of y(k-1); then these 2 lists are Px={x', x'', x(3),...} and 
Py={y', y'', y(3),...}. At each time step, the lists contain a family of non-overlapping substrings 
of [x] and [y], respectively. More precisely, at each iteration k, the algorithm finds the longest 
substrings between 2 words, taken from each list at the same level x(k) and y(k) (i.e. 
maximizing over all possible pairing between these words from x(k) and y(k)), removes one of 
these substrings from these words, and returns the remaining words to the respective lists. We 
define d*t as the number N of iterations of the algorithm until the words set x(N) and y(N) are 
empty. It is easy to see why we call this function d*t: it represents the same idea as dt, cutting 
the sequences in the required number of pieces in order to obtain one by reassembling the 
pieces of the other and reciprocally. d*t is a semi-metric (the triangle inequality may fail). 
 

3. Circular Hamming distribution and circular Gumbel distribution 
 
If one of the sequences to compare is a fixed chain x, the other being a random ring [y], both 
being of length n, let us denote by M the random variable equal to the number of matches 
between them; we have: M=n-mink=1,...,ndH(x, σk(y)), where σk(y) is the chain obtained by 
opening y at the letter of phase k. We will call circular Hamming distribution the probability 
law of M. The expected number of matches E(M) in the case of the comparison of a RNA 
chain with a reference RNA ring having for example each 22 bases is less than the maximum 
number of matches observed in the case of comparison with 22 independent chains of length 
22, because a change of the origin of phases on the ring does not correspond strictly to a new 
chain tossing. Then we can write: P(M<k)>P(∩i=1,...,22(Xi<k)), where the Xi's are independent 
identically distributed (i.i.d.) random variables, having as common distribution, the binomial 
law B(22,1/4), i.e. the distribution of a binomial variable X equal to the number of matches 
between the given RNA chain and a random reference RNA chain of the same length (we 
suppose that the occurrence of each base A, U, G, C has the probability ¼). By exploiting the 
binomial histogram (Figure 3), we obtain: 
 
P(M<15) > P(X≤14)22≈1 
P(M<14) > P(X≤13)22=(0.9999)22=0.998≈1-22x0.0001=0.998 
P(M<13) > P(X≤12)22=(0.9993)22=0.985≈1-22x0.0007=0.985 
P(M<12) > P(X≤11)22=(0.997)22=0.936≈1-22x0.003=0.934 
P(M<11) > P(X≤10)22=(0.99)22=0.802 
P(M<10) > P(X≤9)22=(0.97)22=0.512 
P(M<9)  > (P(X≤8))22=(0.925)22=0.180 
P(M<8) > (P(X≤7))22=(0.839)22=0.021 
P(M<7) > (P(X≤6))22=(0.699)22=4 10-4

 
 



Hence, we have: 
    E(M)=Σi=0,...,22P(M≥k)=Σi=1,...,23(1-P(M<k))=23-Σi=1,...,23P(M<k) < 23-Σi=0,...,22P(X≤k)22≈9.6 
 
Let us note that this result is in agreement with the inequality whose proof is reported by (Hill 
& Kertz 1981), which gives a majorant equal to 11. E(M) is also of course strictly larger than 
the expected number in the case of comparison with only one reference random chain, i.e. 
22/4=5.5, hence E(M) lies in the interval ]6, 10[. 

                                            
Figure 3.  Binomial histogram B(22,1/4): P1=Prob(X=1)=0.0131, P5=0.1933, P14=0.0001 

 
   The observed empirical mean (Figure 16) in the numerical experiments shows a value near 
9.5, i.e. about the value of the expectation of the supremum of 22 binomial variables 
B(22,1/4). This observation suggests a conjecture: the distribution of M is in general a convex 
compromise between the binomial law of X, the supi=1,...,nXi distribution and the Dirac 
distribution located on the singleton {22} (with weights to determine). The extremal 
distributions can be obtained in the following circumstances: if the length of the reference 
random ring is going to infinity, the length of the given RNA remaining finite equal to 22, 
E(M) tends to be equal to the binomial expectation 5.5 ; if, on the contrary, the length of the 
given RNA tends to infinity as the length of the reference random ring remains fixed to 22, 
the perfect fit is asymptotically observed and E(M) tends to 22; if both lengths remain the 
same, equal to n and if n tends to infinity, we observe the supi=1,...,nXi distribution, whose 
expectation is about 9.6, if n=22. This last case is observed in our example.  If n is small, the 
bias observed in simulations with respect to the supi=1,...,nXi distribution is due to the relatively 
weak number An of aperiodic rings (i.e. rings whose each circular permutation is different 
from the others) among the Rn possible rings (Ruskey & Sawada 2000): 
An = Σd prime number divisor of n µ(n/d)4d/n and Rn = Σd prime number divisor of n φ(n/d)4d/n, where µ and φ 
are respectively the Möbius and the Euler functions. For example, we have for rings of n 
nucleotides having only two states (puric and pyrimidic): A8=30 and R8=36, but A22=190557 
and R22=190746, which shows the reduction of the bias when n increases. 
 
We will call "circular" Gumbel distribution the probability distribution of the random variable 
defined by:  (M-E(M))/σ(M), where σ(M) is the standard deviation of M.  

 
   This quantity is random, but partially independent of the length (here 22) of the reference 
RNA ring. It could play for a "circular" Z-score the same role as the "classical" Gumbel 
distribution for the "classical" Z-score (Gumbel 1958; Comet et al. 1999). By using an upper 
bound of large deviations of this distribution given by the supremum of binomial variables, 
we can show for example the significativity (at the threshold of 2.5 %) of the fit between 
specific chains (200 siRNAs from http://www.rnainterference.org/HumanSequences.html) 



and a reference ring called AL (cf. Section 5). The circular Gumbel distribution can be 
estimated by using a von Mises-Tychonov kernel (Shmaliy 2005). 
 

4. RNA relics 
 
The RNA relics (essentially tRNA loops, si-ARNs and micro-RNAs) are made of short 
sequences (length of about 20 bases) having the same function in many realms (viral, 
bacterial, vegetal, animal) and a weak interspecific variability. It is for example the case of the 
tRNA loops, which are highly invariant between species and amino-acids, and it has been 
recently discovered that it also holds for micro-RNAs, which are small sequences of mean 
length 22 (Figure 19), present in the  non coding regions of many known genomes (specially 
of plants and animals), whose maturation (Figure 4) process allows the interaction with 
mRNAs, preventing in general their translation in ribosomes. These micro-RNAs are 
particularly useful as cancer biomarkers (Calin et al. 2004) and could be also used in 
infectious diseases for predicting the pathogenicity of the infectious agents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Micro-RNAs and mRNAs maturation (left) and RNA secondary structures of let-7 pre-micro-RNAs 
with the same final sequence (in red), in C. elegans, D. melanogaster and H. sapiens (right) 
 
During the first step of the maturation process, the micro-ARNs (miRs) have a hairpin 
structure (http://protein3d.ncifcrf.gov/shuyun/Web/talk/Talk04.pdf), and both bioinformatic 
approaches and direct cloning methods have identified many such miRs, including orthologs 
from various species: the repository miRBase (http://microrna.sanger.ac.uk) contains over 
5000 annotated miRs, including numerous human miR genes. Many miRs are ubiquitously 
expressed, whereas others are expressed in a cell-type specific manner. Because a single miR 
can target transcripts from multiple genes and, conversely, several miRs can control a single 
target (Krek et al. 2005), the miRs and their targets function as a complex regulatory network. 
We take advantage of the complete sequencing of vectors like Anopheles gambiae (Holt et al. 
2002; Hill et al. 2005) and Aedes egypti (Nene et al. 2007) and used also the 5' UnTranslated 
Region (5’UTR) part of viral RNAs, like a typical isolate mRNA of the Hepacivirus, 
Hepatitis C virus (HCV), a 341 nucleotides sequence containing an Internal Ribosome Entry 
Site (IRES) required for the translation initiation. It is fully admitted that the 5’ and 3’ UTRs 



may play a role in the initiation of negative-strand synthesis of virus RNAs released from 
entering virions, switching from negative-strand synthesis to synthesis of progeny plus strand 
RNA at late times after infection, and finally in the initiation of translation and in the 
packaging of virus plus strand RNA into particles (Markoff 2004). Until recently very little 
was known about regulation of Flavivirus RNA replication and translation, in particular via 
the RNA interference machinery (Bartenschlager et al. 2004), but in (Jopling et al. 2005) a 
human liver-specific miR (miR-122) enhances intracellular levels of HCV RNAs, and a recent 
work note that this miR was likely to facilitate replication of the viral RNA (Appel & 
Bartenschlager 2006). By searching matches between miRs and viral genomes, we discovered 
also that a dozen of miRs had a conserved coincidence in all four Dengue virus subtypes, and 
also a dozen in all five HCV subtypes, with 3 miRNAs present in both, and from them only 
one, called Anopheles gambiae miRNA-281, with a coincidence in the same UTR (5’) and in 
same sense (+) for Dengue and HCV. Its matching with Dengue virus is interesting: for the 
subtypes 1, 2 and 3, it matches exactly the end of the 5’ UTR, right before the beginning of 
the first CDS (coding sequence). It turns out that this part, in the absence of the miR, has a 
high hairpin-building potential, hybridized in chain form if the miR is added (Figure 5). 
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Figure 5. Hairpin form in zone 5' UTR of the Dengue virus (left) and hybridization with miRs 281 and 34 (right) 
 
Concerning human miRs, if the virus requires something to “open up” the 5’ end, then it 
should also happen with Homo sapiens miR-518c (cf. http://microrna.sanger.ac.uk/cgi-
bin/sequences/mirna_entry.pl?acc=MI0003159 and Figure 6), in which the matching concerns 
the Watson-Crick pairing plus the G-U pairing, with two hydrogen bonds, which occurs fairly 
often in RNA (but rarely in DNA). 
 
        78                                     78 
...uuuuauuagagagcagaucucugAUGAACAA...        ...aggcgcttt... 
    | | |||||||| ||  || ||                      ||||||||| 
    gugagauuucucuucgcgaaac                      uucgcgaaa 
                                          uguuggucgauucugugacggu 
Figure 6. Matching human mir-518c (bottom) with Dengue (left) and HCV (right) sequences 
 
For each mature miR and each target sequence, we slide the Watson-Crick complement of the 
miR over the target sequence, on all possible positions. Thus, for each position, we compare a 
sequence m1m2…mL (the miR) with a segment of the target, sisi+1…si+L-1. We define vj=1, if 
mj=si+j-1, and vj=-1 otherwise. We consider the segment [start,stop] a candidate match, if: 
                • vstart = vstop = 1 and ∑start ≤ j ≤ stop vj ≥ 7  
               • it is maximal, i.e. not contained in a larger segment verifying previous conditions. 
When we analyse the mean match score (calculated for all miRs of species indicated in legend 
of Figures 7 and 8) along the viral 5' UTR, we can notice a best match for the hosts whose co-

                       81 
         uguuggucgauucugugacggu mir-34 
...uuuuauuagagagcagaucucugAUGAACAA... 
          ||||||||| ||| || 
      uauuucucucguuaagguac     mir-281 
     



evolution with the virus has been the closest (e.g. showing a better fit for Gallus gallus than 
Homo sapiens for West Nile virus and the inverse for Dengue 1 virus, the fit being identified 
as the integral of the mean match curve). If we focus on precise miRs (Figure 9), we can find 
good matches between some of them and the 5' UTR, showing a better resistance of some 
hosts, like for the human miR-122 at the beginning of the HCV 5' UTR (Jopling et al. 2005; 
Demongeot et al. 2008 b) and Dengue 5' UTR (Figures 8 & 9). 
 

 
Figure 7. % of  mean matches between miRs of various genomes (blue Gallus gallus, violine Homo sapiens and 
yellow Anopheles gambiae) and West Nile 5' UTR 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. % of mean matches between miRs of various genomes (blue Gallus gallus, violine Homo sapiens and 
brown Anopheles gambiae) and Dengue 1 virus 5' UTR 
 
 



      miR-122/HCV                      acaccattgtcacactcca 
                 acacactaggtacactcca (HCV 7-25) 

miR-122/Dengue                               acaaacacca   
            acaaacacca (Dengue 10-19) 

      miR-17_5p/Dengue                           gcactgtaagcactttg 
                                                           gcacggtaagagctatg (Dengue 73-89) 

Figure 9. Good matches of human miR-122 with HCV and Dengue (top), and of miR17_5p with Dengue 
(bottom), the fit being localized on the viral 5' UTR 
 
   It is clear that the genomic congruences shown above are more pertinent than the 
proximities in the Gatlin diagram, but they are calculated in the same spirit. Complementary 
studies, namely of modelling and simulation, should be performed in order to well understand 
the effective role of miRs in the host and the vector regulatory networks during viral 
infection. A variational principle maximizing the benefit each species (host, vector and virus) 
is getting in this 3 players game has also to be found in order to explain why the co-evolution 
has produced these fits between the three genomes. This evolutionary variational principle 
would involve only the three genomes and no exogeneous information (with respect to the 
game players set) information coming for example from ancestral genomes. However, if we 
want to introduce an external referential in order to emphasize the internal homogeneity of a 
given genome with respect to the set of all possible genomes, we need to calculate distances 
to this referential set and show that they are smaller between the given genome and the 
referential, than between the given genome and a set of randomly chosen genome. 
 

5. Primitive genome and comparison with RNA relics 
 
It has been shown in (Demongeot & Besson 1996; Moreira 2003; Demongeot & Moreira 
2007) that specific RNA rings (e.g. the ring shown on Figure 10, called AL for Archetypal 
Loop) could be selected as solutions of a variational principle: to be of minimal length 
favouring RNA naturation or renaturation after denaturation, as well as RNA replication 
processes (Figure 10 top) and to offer at least one reasonable affinity site for each amino-acid 
(in the sense of the stereo-chemical theory of the genetic code, i.e. with electro-static and/or 
van der Waals interactions). AL is represented in the Gatlin diagram (Figure 1) and lies 
between the Archae Bacteria and the human mitochondrial genome. All selected rings under 
this variational principle, denoted alRNAs, are 29520, have all a length of 22, can present a 
hairpin secondary structure (Figure 10 bottom), and are narrow for the distances of Section 1 
to all known tRNA relics essentially made of succession of tRNA loops (Moreira 2003; 
Demongeot & Moreira 2007). Explaining the proximity or identity in the case of some 
tRNAs, like Oenothera lamarckiana Gly-tRNA, comes from the fact that rings sub-solutions 
of the variational problem present a tRNA-like structure (Figure 11), creating stems as for the 
O. lamarckiana Gly-tRNA clover leaf.  
 
The ring AL fits with a high significativity (less than 2.5 % in Figure 12) with siRNAs and 
miRs involved in many important cell functions. The mean and standard deviation of the 
mean matching score (for the 22-circular Hamming distance) between all alRNAs and all 
known miRs are µ=9.634 and σ=0.088 (blue curve on Figure 13). If we compare all known 
miRs to randomized samples from the set of all RNA rings having a length of 22 bases (there 
are about 16 1012 such rings) and presenting the same base composition as the 29520 alRNAs, 
these values become µ'=9.558 and σ'=0.11 (yellow curve on Figure 13). 
  
 
 



 
 
 
 
  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Selection of a ring called AL satisfying a variational principle for amino acids affinity and for 
renaturation and replication processes optimization (top left), made of the succession of overlapped codons of all 
amino-acids (like the archetypal Lewin's tRNA, top right); best fit of the AL ring with a specific tRNA, the 
Oenothera lamarckiana Gly-tRNA (bottom left), and hairpin inside the ring form of AL (bottom right) 

Figure 11. Clover leaf structure fitting the loops of the Oenothera lamarckiana Gly-tRNA (top) from a ring of 
length 75 containing all the 64 triplets (bottom) 

ψ  



 
NM_005572  Hs.491359  LMNA  Lamin A/C   
5'- ACTGGACTTCCAGAAGAAC -3' 
AL    UGCCAUUCAAGAUGAAUGGUAC    nb of AL matches: 13/19     p-value=.002 
 
NM_001904.2  Hs.476018  CTNNB1  Catenin (cadherin-associated protein), beta 1, 88kDa 
    5'-CUAUCAGGAUGACGCGG-3' 
UGCCAUUCAAGAUGAAUGGUAC   10/17 .05 
 
NM_033360.2  Hs.505033  KRAS2  V-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homolog 
           5'-TTCAAGAGACTACGCCA-3' 
 UGCCAUUCAAGAUGAAUGGUAC   11/17 .001 
 
NM_001641.2  Hs.73722  APEX1  APEX nuclease (multifunctional DNA repair enzyme) 1 
5'-AACCTGCCACACTCAAGATC-3' 
                    UGCCAUUCAAGAUGAAUGGUAC   12/20  .02 
 
NM_006839.1  Hs.148559  IMMT  Inner membrane protein, mitochondrial (mitofilin) 
5'-AAUUGCUGGAGCUGGCCUUTT-3' 
                                      UGCCAUUCAAGAUGAAUGGUAC   12/21   0.035 
 
NM_016485.3  Hs.431367  C6ORF55  Chromosome 6 open reading frame 55 
    5'-GAATGAAGATCGATAGTAA-3' 
UGCCAUUCAAGAUGAAUGGUAC   13/19  0.001 
 
NM_016485.3  Hs.431367  C6ORF55  Chromosome 6 open reading frame 55 
5'-GCAGTGCTTTGCAGTATGA-3' 
              UGCCAUUCAAGAUGAAUGGUAC   12/19  0.01 
  
NM_016410.2  Hs.415534  SNF7DC2  SNF7 domain containing 2 
5'-GAGAGGGTCCTGCAAAGAA-3' 
                                UGCCAUUCAAGAUGAAUGGUAC   11/19   0.043 
 
NM_004827.1  Hs.480218  ABCG2  ATP-binding cassette, sub-family G (WHITE), member 2 
                    5'-AAGATGATTGTTCGTCCCTGCT-3'                                              
 UGCCAUUCAAGAUGAAUGGUAC   13/22     0.015 
 
NM_212535.1  Hs.460355  PRKCB1  Protein kinase C, beta 1 
5'-AAGCGCTGCGTCATGAATGTT-3' 
      UGCCAUUCAAGAUGAAUGGUAC       12/21    0.035 
 
NM_004068.2  Hs.518460  AP2M1  Adaptor-related protein complex 2, mu 1 subunit 
5'-AAGGUCCAGU-CAUUCCAAAUG-3' 
                          UGCCAUUCAAGAUGAAUGGUAC       12/21   0.035 
 
NM_002940.1  Hs.12013  ABCE1  ATP-binding cassette, sub-family E (OABP), member 1 
5'-AGAGTTGTCCTGTAGTTCG-3' 
                               UGCCAUUCAAGAUGAAUGGUAC       11/19  0.043 
 
3'-UGUUGGUCGAUUCUGUGACGGU-5':hsa-miR-34a 
          GUUCUACUUACCAUGACGGUAA           11/23 anti-AL + 3 GA or UC matches    3 10-4  
 
3'-UGAUGGACGUGACAUUCGUGAAA-5':hsa-miR-17_5p  
       GUUCUACUUACCAUGACGGUAA  11/23 anti-AL + 1 GA or UC matches    5 10-4 

 

Figure 12. Matches between human small RNAs and AL showing a mean p-value less than 2.5% between AL 
and 12 siRNAs randomly chosen in the data base http://www.rnainterference.org/HumanSequences.html (p-
value majored by using the supremum of binomial variables instead of the circular Gumbel law) and between 
antiAL and two human miRs 
 
The comparison between all known miRs with AL gives a mean matching score µ''=9.78 
(σ"=0.09) over µ+1.645σ with respect to the distribution of this score among alRNAs, and 
slightly over µ'+2σ' with respect to randomized rings with same base composition as alRNAs. 
In the same way, all known miRs have a mean of the maximal length L of consecutive 
matches with AL ν"=4.32 (σ"=0.06) over ν+1.645σ with respect to the distribution of L 
among alRNAsrings (ν=4.22; σ=0.06) and over ν'+2σ' with respect to randomized rings 
(ν'=4.1; σ'=0.09) (Figure 14). Then the mean of the matching score and of L are significantly 
(p=0.05) higher between AL and all known miRs than for a set of miRs obtained by chance. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. The distribution of the mean matching score (22-circular Hamming distance) between all known miRs 
and the 29520 solutions of the variational problem (blue), and with a sample of the same size from the 16 1012  
randomized RNA rings of length 22, having the same base composition as the solutions (yellow). The position of 
AL is indicated with a black arrow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 14. Distributions like in Figure 13, but for the maxsubstrings length L 
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   We can generalize the Gatlin diagram (Figure 1) in a proximity diagram between the set of 
all known tRNA loops, the set of the ancestral rings solutions of the variational problem and 
the set of all known miRs based on calculations using the distances introduced in Section 2 
(Demongeot et al. 2008 a & b). An explanation of this proximity could lie in the fact that 
these structures with a low interspecific variability (tRNAs loops and miRs, as well as 
siRNAs) are coming from the same primitive reservoir of RNA rings satisfying the variational 
principle, and that the fitness to their function (protein building for tRNAs and translation 
control for miRs) has been from the beginning sufficiently high to ensure their survival. In the 
future, we hope to find the same type of variational principle explaining the fitness between 
host, vector and virus genomes. 
 
6. Beyond a common fitness function between RNA relics, viral genome and 

primitive genome 
 
6.1 A first equilibrium between a primitive and an evolutive genome 
Let us suppose that a primitive RNA genome G1 appeared, well protected against denaturation 
by amino acids AAi having with it a great affinity. For evolving, G1 needs a second RNA 
genome G2 with which it has the following relationship, summarized in Figure 15: 
 
- G1 favors the formation of peptides P (by confining amino acids, these ones giving peptides 
because of their proximity and ability to create covalent peptidic bonds), and exports P as 
"capsid" peptides to contribute to the protection of G2 (which presents affinity only for some 
amino acids of P like AA1) 
- G2 is able to duplicate and growth (by using the classical operators of mutation, insertion,...) 
and can export small RNA fragments able to be inserted in G1. 
 
Finally the co-evolution of G1 and G2 allows a first equilibrium between 2 genomes, G1 able to 
capitalise the evolution memory and G2 able to evolve and ensure possibilities of evolution to 
G1. The game with 2 players, G1 and G2, leads to an equilibrium with 2 winners, each of them 
transmitting to the other its main survival feature, i.e. peptide protection for G1 and 
evolutility/adaptability for G2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Coexistence of a primitive genome G1 and of an evolutive genome G2 
 
6.2 A second equilibrium between 3 genomes, a host, a virus and a vector 
We can consider that after a first stage of evolution with 2 genomes as described in 6.1, an 
other game appeared and went to equilibrium (Figure 16). This game consists in exchanging 
proteins and RNA (or DNA) between 3 players, a host, which like the primitive genome G1 
capitalises the evolution memory and is able, if infected by the RNA (or DNA) of a virus, to 
replicate it and to build the proteins necessary to its protective capsid. The virus plays the 
same role than G2 by being able to evolve and adapt rapidly in a given environment. It  

G1 G2 
 

P 
 AA1 

AA2 
 



contributes to the evolution of G1 by incorporating a part of its RNA inside G1, whose 
molecular form became more stable and adapted to a conservative replication, by adopting the 
DNA configuration (it has also been the case for certain viruses which have adopted this more 
stable form for their genome). For being more efficient, in particular to pass through the host 
defences, viruses use a third species, a vector, which can also be an intermediary host 
susceptible to start the multiplication of the virus, well adapted to the transport of the viral 
RNA inside the host cells. The game is still leading to an equilibrium with 3 winners: the host 
and the vector are increasing their adaptability, and the virus ensures its survival and 
multiplication. Because this game corresponds to a co-evolution during a long time, it is not 
surprizing to find now common RNAs between host, vector and virus, as we have shown in 
the previous Sections, these common sequences being just the traces of past exchanges 
between the 3 species. An informatic implementation of this game is possible and will be 
presented and discussed in a further paper.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Coexistence of 3 species, host, vector and virus 
 
 

7. Robustness of the micro-RNA control 
 
MicroRNAs 17_5p or 34  (Figures 5, 8, 9, 12) are matching with viral genomes and AL ring, 
but also with mRNAs of proteins controlling important functions like those of the cell cycle 
network as boundary elements (http://microrna.sanger.ac.uk) acting on the transcription factor 
E2F which belongs to a core made of a double positive loop (Figure 17 left). By fixing the 
state of these miRs or of the p53 (transcrition factor of the miR-34) to the value 1 
(corresponding to their state of expression) and by updating parallelly all the genes of the 
network, four limit cycles occur in its dynamics, never observed when the boundary states 
were free in the parallel case (Figure 17 right).  
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Figure 17. Cell cycle network (top left) controlling the mitosis events. Attractors of the dynamics (bottom left) 
described without fixed boundary conditions in synchronous and parallel updating modes (top right), ABRS 
denoting the percentage of the initial states lying in the basin of the attractor, and with miRs in state 1 in the 
parallel updating mode (bottom right); the nodes are represented in the following order: p27, Cdk2, 
pCyCE_Cdk2, CyCE_Cdk2, miRNA 159, pCycA_Cdk2, CycA_Cdk2, Rbp-E2F, Rb-E2F, E2F, Rbp, Rb 
 
 
 
 
 
 
 
  
 
Figure 18. Percentages of observed dynamical behaviors without (top) and with (bottom) miRs at the boundary 
of all regulatory networks having 3 genes  
 
 
 
 
 
 
 
 
Figure 19. Mean diameter (for the Hamming distance) of the smallest attraction basin without (top) and with 
(bottom) miRs at the boundary of all regulatory networks having 3 genes 
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The observed dynamical behaviors of a regulatory network can be dispatched into four 
classes: those having for all updating modes only limit cycles Cy, those having only fixed 
configurations Fi, and those having at least one fixed configuration and one limit cycle Mi; 
the last class is made of behaviors presenting either only fixed configurations for certain 
updating modes or occurrence of additional limit cycles for the other updating modes (Elena 
2009). If we simulate the dynamical behavior of all regulatory neworks having 3 genes, we 
observe that the presence of additional miRs at their boundary reinforces the class Fi (Figure 
18) and also increases the stability of the attractors, by augmenting the mean diameter (for the 
Hamming distance) of their smallest attraction basin (Figure 19). 
 
The cell cycle network and particularly its 3 genes core Rbp-E2F/Rb-E2F/E2F, the 
Arabidopsis thaliana flowering network (Sené 2008), as well as statistically all the 3 genes 
regulatory networks, are very sensitive to their boundary elements, especially to the miRs 
action. Then the viral mRNAs hybridizing these miRs can play a direct role (by displacing the 
miRs hybridization with cellular mRNAs) on important cell functions like the proliferation. 

 
8. Conclusion 

 
We have shown in this paper that for some RNA relics (i.e. RNA sequences well conserved 
among species) like tRNA loops and micro-RNAs sequences we had significant similarities. 
The mean length of these sequences is low (about 22), and we used to prove the existence of 
these similarities an intermediary reference set made of RNA rings selected from a variational 
principle (minimization of their length and maximization of their amino-acids affinity, in the 
framework of the stereo-chemical theory of the genetic code), which provided only rings of 
length 22. Other small RNAs (like siRNAs) have also been tested showing the same 
similarity. In perspectives we could address the problem of the systematic detection of micro-
RNAs in non coding parts of the genomes and show that there could be a correlation between 
the low interspecific variability of these structures and their fit with the archetypal genome, as 
well as with viral genomes, due to a common co-evolution. Even if the Gilbert's hypothesis 
(Gilbert 1986) of a primordial RNA world is not yet proved (Ertem 2004; Shapiro 2007), the 
intense period of research about RNA's since 20 years is a reality. It has not been a 
"revolution", but we can say following (Mello and Conte 2004) that "considering the potential 
role of RNA as a primordial biopolymer of life, it is perhaps more apt to call it an RNA 
"revelation". RNA is not taking over the cell - it has been in control all along." 
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