Introduction to Homology and Holes

Yann-Situ Gazull

November 2023

1. Topology joke, by Henry Segerman.
2. Wikipedia.

Algebraic Topology

Topology

- spaces
- simplicial complexes
- shapes
- . . .

Subfields

Homotopy, homology, cohomology, knot theory...

Algebraic Topology

Figure - Illustration of homotopy on a torus.
homeomorphic \Longrightarrow homotopic \Longrightarrow homologuous

Algebraic Topology

Decidability in Algebraic Topology

- Are two groups isomorphic given their representations? Undecidable ${ }^{1}$.
- Are two triangulations homeomorphic? Undecidable.
- Are two triangulations homotopic? Undecidable.
- Are two triangulations homologuous? Decidable!

1. P. S. Novikov, "Unsolvability of the conjugacy problem in the theory of groups"(1954)

Why computing topology?

A

Figure - Topological data analysis.

1. Camara, Pablo \& Levine, Arnold \& Rabadan, Raul. (2015). Inference of Ancestral Recombination Graphs through Topological Data Analysis.

Why computing topology?

Figure - Holes measure, mainly useful for shape analysis or classification.

Why computing topology?

Figure - Computer aided design and topological optimization.

1. wiki.freecad.org
2. 3DPrint.com
(1) Simplicial and Chain Complexes

(2) Cycles and Boundaries

(3) Holes and Homology

Holes and Dimension

- 0-holes: connected components

- 0-holes: connected components
- 1-holes : tunnels or handles

- 0-holes : connected components
- 1-holes : tunnels or handles
- 2-holes: cavities

Simplicial complexes

Simplices

Simplicial complexes

Simplices

-

Boundary of simplices

Simplicial complex - Definition

A simplicial complex K is a set of simplices satisfying the two following properties:

- the boundary of every simplex in K is also included in K.
- the intersection of two simplices of K is either empty, either exactly one common subface.

Examples of simplicial complexes

Counter examples of simplicial complexes

Examples of practical simplicial complexes

a. Game of Thrones Relationship Graph, by Kumar, Martinez, Wong, Zhao.

Chain complex

$$
K: \quad C_{n} \xrightarrow{\partial_{n}} \ldots \xrightarrow{\partial_{q+1}} C_{q} \xrightarrow{\partial_{q}} C_{q-1} \xrightarrow{\partial_{q-1}} \ldots \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0
$$

Chain complex

$$
K: \quad C_{n} \xrightarrow{\partial_{n}} \ldots \xrightarrow{\partial_{q+1}} C_{q} \xrightarrow{\partial_{q}} C_{q-1} \xrightarrow{\partial_{q-1}} \ldots \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0
$$

C_{q} : q-chains

C_{q} is a vector space called the q-chains.

∂_{q} : boundary operator

∂_{q} is a linear map from C_{q} to C_{q-1} that satisfies $\partial_{q+1} \circ \partial_{q}=0$. It is called the q-boundary operator.

Chain complex of a simplicial complex

$$
K: \quad C_{n} \xrightarrow{\partial_{n}} \ldots \xrightarrow{\partial_{q+1}} C_{q} \xrightarrow{\partial_{q}} C_{q-1} \xrightarrow{\partial_{q-1}} \ldots \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0
$$

C_{q} : q-chains

C_{q} is a vector space called the q-chains.
C_{q} is the $\mathbb{Z} / 2 \mathbb{Z}$ vector space generated by the q-simplices.

∂_{q} : boundary operator

∂_{q} is a linear map from C_{q} to C_{q-1} that satisfies $\partial_{q+1} \circ \partial_{q}=0$. It is called the q-boundary operator.
∂_{q} is the map generated by the boundary of the q-simplices.

Concrete example

$K: \mathbb{Z} / 2 \mathbb{Z}$-chain complex

- $C_{0}=\operatorname{span}(A, B, C, D)$
- $C_{1}=\operatorname{span}(f, g, h, i, j)$
- $C_{2}=\operatorname{span}(\Phi)$

Concrete example

$K: \mathbb{Z} / 2 \mathbb{Z}$-chain complex

- $C_{0}=\operatorname{span}(A, B, C, D)$
- $C_{1}=\operatorname{span}(f, g, h, i, j)$
- $C_{2}=\operatorname{span}(\Phi)$

$$
\partial_{0}=\left(\begin{array}{cccc}
A & B & C & D \\
0 & 0 & 0 & 0
\end{array}\right) \quad \partial_{2}=\left(\begin{array}{c}
\Phi \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \begin{gathered}
f \\
g \\
h \\
i
\end{gathered}
$$

$$
\partial_{1}=\left(\begin{array}{ccccc}
f & g & h & i & j \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \begin{gathered}
A \\
B \\
C \\
D
\end{gathered}
$$

Concrete example

$$
\begin{aligned}
& \text { - } C_{0}=\operatorname{span}(A, B, C, D) \\
& \text { - } C_{1}=\operatorname{span}(f, g, h, i, j) \\
& \text { - } C_{2}=\operatorname{span}(\Phi) \\
& \partial_{0}=\left(\begin{array}{cccc}
A & B & C & D \\
0 & 0 & 0 & 0
\end{array}\right) \quad \partial_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \begin{array}{c}
f \\
h \\
i \\
j
\end{array} \\
& \partial_{1}(x)=\partial_{1}(f+h+j) \\
& =(A+B)+(B+C) \\
& +(C+D) \\
& \partial_{1}=\left(\begin{array}{ccccc}
f & g & h & i & j \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) C
\end{aligned}
$$

Concrete example

$$
\begin{aligned}
& x=f+h+j \in C_{1} \\
& \partial_{1}(x)=\partial_{1}(f+h+j) \\
& =(A+B)+(B+C) \\
& +(C+D) \\
& =A+2 B+2 C+D \\
& \text { - } C_{0}=\operatorname{span}(A, B, C, D) \\
& \text { - } C_{1}=\operatorname{span}(f, g, h, i, j) \\
& \text { - } C_{2}=\operatorname{span}(\Phi) \\
& \partial_{0}=\left(\begin{array}{cccc}
A & B & C & D \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \partial_{2}=\left(\begin{array}{l}
\Phi \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \begin{array}{c}
f \\
0 \\
h \\
i \\
j
\end{array} \\
& \partial_{1}=\left(\begin{array}{ccccc}
f & g & h & i & j \\
\\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \begin{array}{c}
B \\
D
\end{array}
\end{aligned}
$$

Concrete example

$$
\begin{aligned}
\\
\begin{aligned}
x & = \\
\partial_{1}(x)= & \partial_{1}(f+h+j) \\
= & (A+B)+(B+C) \\
& +(C+D) \\
\partial_{1}(x)= & A+D
\end{aligned}
\end{aligned}
$$

$K: \mathbb{Z} / 2 \mathbb{Z}$-chain complex

- $C_{0}=\operatorname{span}(A, B, C, D)$
- $C_{1}=\operatorname{span}(f, g, h, i, j)$
- $C_{2}=\operatorname{span}(\Phi)$

$$
\begin{gathered}
\partial_{0}=\left(\begin{array}{ccccc}
A & B & C & D & \\
0 & 0 & 0 & 0
\end{array}\right) \quad \partial_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right) \begin{array}{c}
f \\
g \\
h \\
i \\
j
\end{array} \\
\partial_{1}=\left(\begin{array}{lllll}
f & g & h & i & j \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right) \begin{array}{l}
A \\
B \\
D
\end{array}
\end{gathered}
$$

Boundary operator examples

Boundaries

Boundary - Definition

A q-boundary is a q-chain that is the boundary of a $(q+1)$-chain.

$$
q \text {-boundaries }=\operatorname{im}\left(\partial_{q+1}\right)
$$

Boundary - Definition

A q-boundary is a q-chain that is the boundary of a $(q+1)$-chain.

$$
q \text {-boundaries }=\operatorname{im}\left(\partial_{q+1}\right)
$$

Boundary - Definition

A q-boundary is a q-chain that is the boundary of a $(q+1)$-chain.

$$
q \text {-boundaries }=\operatorname{im}\left(\partial_{q+1}\right)
$$

Boundary - Definition

A q-boundary is a q-chain that is the boundary of a $(q+1)$-chain.

$$
q \text {-boundaries }=\operatorname{im}\left(\partial_{q+1}\right)
$$

Non boundaries

Cycle - Definition

A q-cycle is a q-chain whose boundary is null.

$$
q \text {-cycles }=\operatorname{ker}\left(\partial_{q}\right)
$$

Cycles

Cycle - Definition

A q-cycle is a q-chain whose boundary is null.

$$
q \text {-cycles }=\operatorname{ker}\left(\partial_{q}\right)
$$

Cycles and Boundaries

Proposition

A boundary is a cycle.

Cycles and Boundaries

Proposition

A boundary is a cycle. $\partial_{q+1} \circ \partial_{q}=0$, "a boundary has no boundary", $\operatorname{im}\left(\partial_{q+1}\right) \subseteq \operatorname{ker}\left(\partial_{q}\right)$.

Cycles and Boundaries: Summary

Holes and Homology

Hole - Intuitive definition
A q-hole is a q-cycle that is not a q-boundary.

Hole - Intuitive definition
A q-hole is a q-cycle that is not a q-boundary.

Hole - Equivalence
Two q-holes are equivalent iff their difference is a q-boundary.

$$
x \stackrel{q}{\sim} x \Longleftrightarrow x-y \in \operatorname{im}\left(\partial_{q+1}\right)
$$

Hole - Equivalence

Two q-holes are equivalent iff their difference is a q-boundary.

$$
x \stackrel{q}{\sim} x \Longleftrightarrow x-y \in \operatorname{im}\left(\partial_{q+1}\right)
$$

Hole - Equivalence

Two q-holes are equivalent iff their difference is a q-boundary.

$$
x \stackrel{q}{\sim} x \Longleftrightarrow x-y \in \operatorname{im}\left(\partial_{q+1}\right)
$$

Hole - Equivalence

Two q-holes are equivalent iff their difference is a q-boundary.

$$
x \stackrel{q}{\sim} x \Longleftrightarrow x-y \in \operatorname{im}\left(\partial_{q+1}\right)
$$

Homology group - Definition

The equivalence classes of $\stackrel{q}{\sim}$ form a group structure, called the q-homology group :

$$
\mathrm{H}_{\mathrm{q}}(\mathrm{~K})=\frac{\operatorname{ker}\left(\partial_{q}\right)}{q}
$$

Homology group - Definition

The equivalence classes of $\stackrel{q}{\sim}$ form a group structure, called the q-homology group :

$$
\mathrm{H}_{\mathrm{q}}(\mathrm{~K})=\frac{\operatorname{ker}\left(\partial_{q}\right)}{\underset{\sim}{q}} \quad=\frac{\operatorname{ker}\left(\partial_{q}\right)}{\operatorname{im}\left(\partial_{q+1}\right)}
$$

Homology group - Definition

The equivalence classes of $\stackrel{q}{\sim}$ form a group structure, called the q-homology group :

$$
\mathrm{H}_{\mathrm{q}}(\mathrm{~K})=\frac{\operatorname{ker}\left(\partial_{q}\right)}{\underset{\sim}{q}} \quad=\frac{\operatorname{ker}\left(\partial_{q}\right)}{\operatorname{im}\left(\partial_{q+1}\right)}
$$

Betti numbers - Proposition

There exist a number β_{q} such that $\mathrm{H}_{\mathrm{q}}(\mathrm{K}) \approx(\mathbb{Z} / 2 \mathbb{Z})^{\beta_{q}}$.
β_{q} is called the Betti number of dimension q and intuitively represent the number of holes of dimension q.

Clarification

$\mathrm{H}_{\mathrm{q}}(\mathrm{K}) \approx(\mathbb{Z} / 2 \mathbb{Z})^{\beta_{q}}$: there are β_{q} holes and $2^{\beta_{q}}$ equivalence classes in $\mathrm{H}_{\mathrm{q}}(\mathrm{K})$. Each equivalence class represents a subset of holes.

Holes and Homology

Clarification

$\mathrm{H}_{\mathrm{q}}(\mathrm{K}) \approx(\mathbb{Z} / 2 \mathbb{Z})^{\beta_{q}}$: there are β_{q} holes and $2^{\beta_{q}}$ equivalence classes in $\mathrm{H}_{\mathrm{q}}(\mathrm{K})$. Each equivalence class represents a subset of holes.

$$
H_{1}(K) \approx(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

Starting from a combinatorial/geometric structure (simplicial complex), we built an algebraic structure (chain complex) that allowed us to intuitively define holes and formally grasp homology groups.

To go further : Computing homology

Three approaches for computational homology :

Effective approach

Computation of reductions

$$
\begin{aligned}
& \cdots \longrightarrow C_{q+\mathbf{1}} \stackrel{\partial_{q+\mathbf{1}}}{\stackrel{h_{q}}{\rightleftarrows}} C_{q} \longrightarrow \cdots \\
& \left.\left.g_{q+1} \uparrow\right|_{f_{q+1}} \quad g_{q} \overbrace{q}\right|_{f_{q}} \\
& \longrightarrow C_{q+\mathbf{1}}^{\prime} \xrightarrow{\mathbf{0}} C_{q}^{\prime} \longrightarrow \cdots
\end{aligned}
$$

Combinatorial approach
Discrete Morse Theory

Algebraic approach

Smith Normal Form

$$
\begin{gathered}
\partial=P\left(\begin{array}{ccccc}
\alpha_{1} & 0 & 0 & \cdots & 0 \\
0 & \ddots & 0 & \cdots & 0 \\
0 & 0 & \alpha_{r} & & 0 \\
\vdots & & & 0 & \vdots \\
0 & & \cdots & & 0
\end{array}\right) Q \\
\text { where } \alpha_{i} \mid \alpha_{i+1} .
\end{gathered}
$$

To go further: Homology over a ring

Chain complex with a ring

If use \mathbb{Z} instead of $\mathbb{Z} / 2 \mathbb{Z}, C_{q}$ is not anymore a vector space but a \mathbb{Z}-module. Weird things happen...

To go further : Homology over a ring

Chain complex with a ring

If use \mathbb{Z} instead of $\mathbb{Z} / 2 \mathbb{Z}, C_{q}$ is not anymore a vector space but a \mathbb{Z}-module. Weird things happen...

Holes and torsion

$$
H_{q}(K) \approx \underbrace{\mathbb{Z}^{\beta_{q}}}_{\text {holes }} \times \underbrace{\frac{\mathbb{Z}}{\alpha_{1} \mathbb{Z}} \times \frac{\mathbb{Z}}{\alpha_{2} \mathbb{Z}} \times \cdots \times \frac{\mathbb{Z}}{\alpha_{m} \mathbb{Z}}}_{\text {torsion }}
$$

$H_{1}(K) \approx \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

The location of a hole : where intuition struggles

The location of a hole : where intuition struggles

