Introduction to Homology and Holes

Yann-Situ Gazull

November 2023

Yann-Situ Gazull

Topology

- 1. Topology joke, by Henry Segerman.
- 2. Wikipedia.

Subfields

Homotopy, homology, cohomology, knot theory...

Algebraic Topology

Figure – Illustration of homotopy on a torus.

homeomorphic \implies homotopic \implies homologuous

Decidability in Algebraic Topology

- Are two groups isomorphic given their representations? Undecidable¹.
- Are two triangulations homeomorphic? Undecidable.
- Are two triangulations homotopic? Undecidable.
- Are two triangulations homologuous? Decidable!

^{1.} P. S. Novikov, "Unsolvability of the conjugacy problem in the theory of groups"(1954)

Why computing topology?

Figure – Topological data analysis.

^{1.} Camara, Pablo & Levine, Arnold & Rabadan, Raul. (2015). Inference of Ancestral Recombination Graphs through Topological Data Analysis.

Why computing topology?

Figure – Holes measure, mainly useful for shape analysis or classification.

Why computing topology?

Figure – Computer aided design and topological optimization.

2. 3DPrint.com

Yann-Situ Gazull

^{1.} wiki.freecad.org

Introduction to Homology and Holes

Holes and Dimension

• 0-holes : connected components

Holes and Dimension

- 0-holes : connected components
- 1-holes : tunnels or handles

Holes and Dimension

- 0-holes : connected components
- 1-holes : tunnels or handles
- 2-holes : cavities

Simplicial complexes

Simplicial complex - Definition

A simplicial complex K is a set of simplices satisfying the two following properties :

- the boundary of every simplex in K is also included in K.
- the intersection of two simplices of *K* is either empty, either exactly one common subface.

Examples of simplicial complexes

Counter examples of simplicial complexes

Examples of practical simplicial complexes

a. Game of Thrones Relationship Graph, by Kumar, Martinez, Wong, Zhao.

$$K: \quad C_n \xrightarrow{\partial_n} \dots \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \dots \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

$$K: \quad C_n \xrightarrow{\partial_n} \dots \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \dots \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

C_q : q-chains

 C_q is a vector space called the *q*-chains.

∂_q : boundary operator

 ∂_q is a linear map from C_q to C_{q-1} that satisfies $\partial_{q+1} \circ \partial_q = 0$. It is called the *q*-boundary operator.

Chain complex of a simplicial complex

$$K: \quad C_n \xrightarrow{\partial_n} \dots \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \dots \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

C_q : q-chains

 C_q is a vector space called the *q*-chains.

 C_q is the $\mathbb{Z}/2\mathbb{Z}$ vector space generated by the *q*-simplices.

∂_q : boundary operator

 ∂_q is a linear map from C_q to C_{q-1} that satisfies $\partial_{q+1} \circ \partial_q = 0$. It is called the *q*-boundary operator.

 ∂_q is the map generated by the boundary of the *q*-simplices.

$K : \mathbb{Z}/2\mathbb{Z}$ -chain complex

• $C_0 = span(A, B, C, D)$

•
$$C_1 = span(f, g, h, i, j)$$

•
$$C_2 = span(\Phi)$$

$K : \mathbb{Z}/2\mathbb{Z}$ -chain complex

• $C_0 = span(A, B, C, D)$

•
$$C_1 = span(f, g, h, i, j)$$

•
$$C_2 = span(\Phi)$$

$$\partial_{0} = \begin{pmatrix} A & B & C & D \\ (0 & 0 & 0 & 0) \end{pmatrix} \qquad \partial_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} f \\ g \\ h \\ i \\ j \end{pmatrix}$$

$$\partial_1 = \begin{pmatrix} f & g & h & i & j \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix}$$

17/31

 $\mathbf{x} = f + h + i \in C_1$

= (A+B) + (B+C)

 $\partial_1(x) = \partial_1(f+h+j)$

 $K : \mathbb{Z}/2\mathbb{Z}$ -chain complex

• $C_0 = span(A, B, C, D)$

•
$$C_1 = span(f, g, h, i, j)$$

• $C_2 = span(\Phi)$

 $\partial_{0} = \begin{pmatrix} A & B & C & D \\ (0 & 0 & 0 & 0 \end{pmatrix} \qquad \partial_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} f & g & h & i & j \\ i & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix}$

+(C+D)

 $K : \mathbb{Z}/2\mathbb{Z}$ -chain complex

• $C_0 = span(A, B, C, D)$

•
$$C_1 = span(f, g, h, i, j)$$

•
$$C_2 = span(\Phi)$$

 $\partial_0 = \begin{pmatrix} A & B & C & D \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \partial_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} f \\ g \\ h \\ i \\ 0 \\ j \end{pmatrix}$ $\partial_1 = \begin{pmatrix} f & g & h & i & j \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix}$

$$\lambda = I + H + j = C C_1$$
$$\partial_1(x) = \partial_1(f + h + j)$$
$$= (A + B) + (B + C)$$
$$+ (C + D)$$
$$= A + 2B + 2C + D$$

 $\mathbf{y} - \mathbf{f} + \mathbf{h} + \mathbf{i} \in C_1$

 $\mathbf{x} = f + h + i \in C_1$

= (A + B) + (B + C)

 $K : \mathbb{Z}/2\mathbb{Z}$ -chain complex

• $C_0 = span(A, B, C, D)$

•
$$C_1 = span(f, g, h, i, j)$$

• $C_2 = span(\Phi)$

Yann-Situ Gazull

+(C+D)

 $\partial_1(x) = \partial_1(f+h+j)$

 $\partial_1(x) = A + D$

A *q*-boundary is a *q*-chain that is the boundary of a (q + 1)-chain.

A *q*-boundary is a *q*-chain that is the boundary of a (q + 1)-chain.

A *q*-boundary is a *q*-chain that is the boundary of a (q + 1)-chain.

A *q*-boundary is a *q*-chain that is the boundary of a (q + 1)-chain.

Cycle - Definition

A *q*-cycle is a *q*-chain whose boundary is null.

q-cycles = ker(∂_q)

Cycles

Yann-Situ Gazull

21/31

Cycles and Boundaries

Proposition

A boundary is a cycle.

Cycles and Boundaries

Proposition

A boundary is a cycle.

 $\partial_{q+1} \circ \partial_q = 0$, "a boundary has no boundary", $\operatorname{im}(\partial_{q+1}) \subseteq \operatorname{ker}(\partial_q)$.

Cycles and Boundaries : Summary

Hole - Intuitive definition

A *q*-hole is a *q*-cycle that is not a *q*-boundary.

Hole - Intuitive definition

A *q*-hole is a *q*-cycle that is not a *q*-boundary.

Yann-Situ Gazull

24/31

Hole - Equivalence

$$x \stackrel{q}{\sim} x \iff x - y \in \operatorname{im}(\partial_{q+1})$$

Hole - Equivalence

$$x \stackrel{q}{\sim} x \iff x - y \in \operatorname{im}(\partial_{q+1})$$

Hole - Equivalence

$$x \stackrel{q}{\sim} x \iff x - y \in \operatorname{im}(\partial_{q+1})$$

Hole - Equivalence

$$x \stackrel{q}{\sim} x \iff x - y \in \operatorname{im}(\partial_{q+1})$$

Homology group - Definition

The equivalence classes of $\stackrel{q}{\sim}$ form a group structure, called the $q\text{-}\mathbf{homology}$ group :

$$\mathsf{H}_{\mathsf{q}}(\mathsf{K}) = \frac{\mathsf{ker}(\partial_{\mathsf{q}})}{\overset{q}{\sim}}$$

Homology group - Definition

The equivalence classes of $\stackrel{q}{\sim}$ form a group structure, called the q-homology group :

$$\mathsf{H}_{\mathsf{q}}(\mathsf{K}) = \frac{\mathsf{ker}(\partial_q)}{\frac{q}{2}} \qquad = \frac{\mathsf{ker}(\partial_q)}{\mathsf{im}(\partial_{q+1})}$$

Homology group - Definition

The equivalence classes of $\stackrel{q}{\sim}$ form a group structure, called the q-homology group :

$$\mathsf{H}_{\mathsf{q}}(\mathsf{K}) = \frac{\ker(\partial_{q})}{\frac{q}{2}} \qquad = \frac{\ker(\partial_{q})}{\operatorname{im}(\partial_{q+1})}$$

Betti numbers - Proposition

There exist a number β_q such that $H_q(K) \approx (\mathbb{Z}/2\mathbb{Z})^{\beta_q}$.

 β_q is called the **Betti number** of dimension q and intuitively represent the number of holes of dimension q.

Clarification

 $H_q(K) \approx (\mathbb{Z}/2\mathbb{Z})^{\beta_q}$: there are β_q holes and 2^{β_q} equivalence classes in $H_q(K)$. Each equivalence class represents a subset of holes.

Clarification

 $H_q(K) \approx (\mathbb{Z}/2\mathbb{Z})^{\beta_q}$: there are β_q holes and 2^{β_q} equivalence classes in $H_q(K)$. Each equivalence class represents a subset of holes.

$H_1(K) \approx (\mathbb{Z}/2\mathbb{Z})^2$

27/31

Starting from a combinatorial/geometric structure (simplicial complex), we built an algebraic structure (chain complex) that allowed us to intuitively define holes and formally grasp homology groups.

To go further : Computing homology

Three approaches for computational homology :

Effective approach

Combinatorial approach

Discrete Morse Theory

Yann-Situ Gazull

Chain complex with a ring

If use \mathbb{Z} instead of $\mathbb{Z}/2\mathbb{Z}$, C_q is not anymore a vector space but a \mathbb{Z} -module. Weird things happen...

Chain complex with a ring

If use \mathbb{Z} instead of $\mathbb{Z}/2\mathbb{Z}$, C_q is not anymore a vector space but a \mathbb{Z} -module. Weird things happen...

 $H_1(K) \approx \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

The location of a hole : where intuition struggles

The location of a hole : where intuition struggles

