Boundary rigidity of finite CAT(0) cube complexes

Jérémie Chalopin and Victor Chepoi, LIS, Marseille, France

Master 2 IMD, Luminy, November 2023

Boundary rigidity of finite CAT(0) cube complexes

Jérémie Chalopin and Victor Chepoi, LIS, Marseille, France

Master 2 IMD, Luminy, November 2023

Based on the paper:

- J. Chalopin and V. Chepoi, Boundary rigidity of finite CAT(0) cube complexes, arXiv:2310.04223, 2023.

Problem's formulation

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Problem's formulation

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C : a maximal by inclusion proper subcell of C.

Problem's formulation

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C : a maximal by inclusion proper subcell of C.
- Boundary ∂X of X : the downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell of X.

Problem's formulation

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C : a maximal by inclusion proper subcell of C.
- Boundary ∂X of X : the downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell of X.
- 1-Skeleton of X : the graph $G=G(X)$ with 0 -cells as vertices and 1 -cells as edges and endowed with the standard graph-distance d_{G}.

Problem's formulation

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite CAT(0) cube complex X is boundary rigid.

Definition

Let X be a finite Piecewise Euclidean cell complex.

- Facet of a cell C : a maximal by inclusion proper subcell of C.
- Boundary ∂X of X : the downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell of X.
- 1-Skeleton of X : the graph $G=G(X)$ with 0 -cells as vertices and 1-cells as edges and endowed with the standard graph-distance d_{G}.
- Boundary rigidity of $X: X$ can be reconstructed from the pairwise distances (computed in G) between all vertices belonging to ∂X.

Motivation and History

- Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any Riemannian manifold (M, g) is boundary rigid, i.e., its metric d_{g} is determined up to isometry by its boundary distance function.

Motivation and History

- Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any Riemannian manifold (M, g) is boundary rigid, i.e., its metric d_{g} is determined up to isometry by its boundary distance function.
- Known results: Confirmed in the case of 2-dimensional Riemannian manifolds by Pestov and Uhlmann in 2005.

Motivation and History

- Origins: Riemannian geometry, where it is conjectured (Michel, 1981/82) that any Riemannian manifold (M, g) is boundary rigid, i.e., its metric d_{g} is determined up to isometry by its boundary distance function.
- Known results: Confirmed in the case of 2-dimensional Riemannian manifolds by Pestov and Uhlmann in 2005.
- Discrete version: I. Benjamini asked if any plane triangulation in which all inner vertices have degrees ≥ 6 is boundary rigid. Confirmed by Haslegrave in 2023.

Motivation and History

- Origins: Riemannian geometry, where it is conjectured (Michel, $1981 / 82$) that any Riemannian manifold (M, g) is boundary rigid, i.e., its metric d_{g} is determined up to isometry by its boundary distance function.
- Known results: Confirmed in the case of 2-dimensional Riemannian manifolds by Pestov and Uhlmann in 2005.
- Discrete version: I. Benjamini asked if any plane triangulation in which all inner vertices have degrees ≥ 6 is boundary rigid. Confirmed by Haslegrave in 2023.
- Partial results for $\operatorname{CAT}(0)$ cube complexes: 2-dimensional and embedded in \mathbb{R}^{3} 3-dimensional CAT(0) cube compelxes (Haslegrave et al., 2023).

CAT(0) spaces

Definition

- Geodesic triangle: $\Delta=\Delta\left(x_{1}, x_{2}, x_{3}\right)$ consists of three points and a geodesic between each pair of vertices.

CAT(0) spaces

Definition

- Geodesic triangle: $\Delta=\Delta\left(x_{1}, x_{2}, x_{3}\right)$ consists of three points and a geodesic between each pair of vertices.
- Comparison triangle: for $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ is a triangle $\Delta\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ in \mathbb{E}^{2} such that $d_{\mathbb{E}^{2}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=d\left(x_{i}, x_{j}\right)$ for $i, j \in\{1,2,3\}$.

CAT(0) spaces

Definition

- Geodesic triangle: $\Delta=\Delta\left(x_{1}, x_{2}, x_{3}\right)$ consists of three points and a geodesic between each pair of vertices.
- Comparison triangle: for $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ is a triangle $\Delta\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ in \mathbb{E}^{2} such that $d_{\mathbb{E}^{2}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=d\left(x_{i}, x_{j}\right)$ for $i, j \in\{1,2,3\}$.
- Comparison axiom: If y is a point on the side of $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ with vertices x_{1} and x_{2} and y^{\prime} is the unique point on the line segment [$x_{1}^{\prime}, x_{2}^{\prime}$] of the comparison triangle $\Delta\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ such that $d_{\mathbb{E}^{2}}\left(x_{i}^{\prime}, y^{\prime}\right)=d\left(x_{i}, y\right)$ for $i=1,2$, then $d\left(x_{3}, y\right) \leq d_{\mathbb{E}^{2}}\left(x_{3}^{\prime}, y^{\prime}\right)$.

CAT(0) spaces

Definition

- Geodesic triangle: $\Delta=\Delta\left(x_{1}, x_{2}, x_{3}\right)$ consists of three points and a geodesic between each pair of vertices.
- Comparison triangle: for $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ is a triangle $\Delta\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ in \mathbb{E}^{2} such that $d_{\mathbb{E}^{2}}\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=d\left(x_{i}, x_{j}\right)$ for $i, j \in\{1,2,3\}$.
- Comparison axiom: If y is a point on the side of $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ with vertices x_{1} and x_{2} and y^{\prime} is the unique point on the line segment [$x_{1}^{\prime}, x_{2}^{\prime}$] of the comparison triangle $\Delta\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ such that $d_{\mathbb{E}^{2}}\left(x_{i}^{\prime}, y^{\prime}\right)=d\left(x_{i}, y\right)$ for $i=1,2$, then $d\left(x_{3}, y\right) \leq d_{\mathbb{E}^{2}}\left(x_{3}^{\prime}, y^{\prime}\right)$.
- $\operatorname{CAT}(0)$ space: A geodesic metric space (X, d) in which all geodesic triangles satisfy the comparison axiom.

CAT(0) cube complexes

- Cube complex: a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

CAT(0) cube complexes

- Cube complex: a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.
- Cube condition: any three d-cubes, pairwise intersecting in ($d-1$)-cubes and all three intersecting in a $(d-2)$-cube, belong to a $(d+1)$-cube.

CAT(0) cube complexes

- Cube complex: a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.
- Cube condition: any three d-cubes, pairwise intersecting in ($d-1$)-cubes and all three intersecting in a $(d-2)$-cube, belong to a $(d+1)$-cube.

Theorem (Gromov, 1987)

A cube complex X endowed with the ℓ_{2}-metric is CAT(0) iff X is simply connected and X satisfies the cube condition.

Median graphs

- In a graph G, the interval $I(u, v)$ between two vertices u and v is

$$
I(u, v)=\{x: d(u, x)+d(x, v)=d(x, v) .\}
$$

- A graph is median if for all u, v, w, there exists a unique $x \in I(u, v) \cap I(v, w) \cap I(u, w)$.

Median graphs

- In a graph G, the interval $I(u, v)$ between two vertices u and v is

$$
I(u, v)=\{x: d(u, x)+d(x, v)=d(x, v) .\}
$$

- A graph is median if for all u, v, w, there exists a unique $x \in I(u, v) \cap I(v, w) \cap I(u, w)$.

Median graphs

- In a graph G, the interval $I(u, v)$ between two vertices u and v is

$$
I(u, v)=\{x: d(u, x)+d(x, v)=d(x, v) .\}
$$

- A graph is median if for all u, v, w, there exists a unique $x \in I(u, v) \cap I(v, w) \cap I(u, w)$.

Median graphs

- In a graph G, the interval $I(u, v)$ between two vertices u and v is

$$
I(u, v)=\{x: d(u, x)+d(x, v)=d(x, v) .\}
$$

- A graph is median if for all u, v, w, there exists a unique $x \in I(u, v) \cap I(v, w) \cap I(u, w)$.

CAT(0) cube complexes and median graphs

Theorem (C, 1998, Roller, 1998)

A cube complex X is $\operatorname{CAT}(0)$ iff it 1-skeleton is a median graph.

Theorem (C, 1998)

A graph G is a median graph if and only if its cube complex $X_{\text {cube }}(G)$ is simply connected and G satisfies the 3-cube condition. Furthermore, if X is a CAT(0) cube complex, then $X=X_{\text {cube }}(G(X))$.

Facts about median graphs

- Quadrangle condition: For any u, v, w, z such that $v, w \sim z$ and $d(u, v)=d(u, w)=d(u, z)-1=k$, there is a unique vertex $x \sim v, w$ such that $d(u, x)=k-1$;

Facts about median graphs

- Quadrangle condition: For any u, v, w, z such that $v, w \sim z$ and $d(u, v)=d(u, w)=d(u, z)-1=k$, there is a unique vertex $x \sim v, w$ such that $d(u, x)=k-1$;
- Cubes a gated: Cubes of median graphs are gated;

Facts about median graphs

- Quadrangle condition: For any u, v, w, z such that $v, w \sim z$ and $d(u, v)=d(u, w)=d(u, z)-1=k$, there is a unique vertex $x \sim v, w$ such that $d(u, x)=k-1$;
- Cubes a gated: Cubes of median graphs are gated;
- Downward cube property: For any basepoint z and any vertex v, there exists a unique cube $C(v)$ containing all neighbors $\Lambda(v)$ of v in $I(v, z)$. The vertex \bar{v} opposite to v in $C(v)$ is the gate of z in the cube $C(v)$.

Corner peeling

Definition

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G.

Corner peeling

Definition

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G.
- A corner peeling of $G=(V, E)$ is a total order v_{1}, \ldots, v_{n} of V such that v_{i} is a corner of the subgraph $G_{i}=G\left[v_{1}, \ldots, v_{i}\right]$ induced by the first i vertices of this order.

Corner peeling

Definition

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G.
- A corner peeling of $G=(V, E)$ is a total order v_{1}, \ldots, v_{n} of V such that v_{i} is a corner of the subgraph $G_{i}=G\left[v_{1}, \ldots, v_{i}\right]$ induced by the first i vertices of this order.
- A monotone corner peeling (mcp) of G with respect to z is a corner peeling $v_{1}=z, v_{2}, \ldots, v_{n}$ such that $d\left(z, v_{1}\right) \leq d\left(z, v_{2}\right) \leq \ldots \leq d\left(z, v_{n}\right)$.

Corner peeling

Definition

- A corner of a graph G is a vertex v of G such that v and all its neighbors in G belong to a unique cube of G. Note that any corner belongs to the boundary ∂G.
- A corner peeling of $G=(V, E)$ is a total order v_{1}, \ldots, v_{n} of V such that v_{i} is a corner of the subgraph $G_{i}=G\left[v_{1}, \ldots, v_{i}\right]$ induced by the first i vertices of this order.
- A monotone corner peeling (mcp) of G with respect to z is a corner peeling $v_{1}=z, v_{2}, \ldots, v_{n}$ such that $d\left(z, v_{1}\right) \leq d\left(z, v_{2}\right) \leq \ldots \leq d\left(z, v_{n}\right)$.

Proposition

For any basepoint z of G, any ordering $v_{1}=z, v_{2}, \ldots, v_{n}$ such that $d\left(z, v_{1}\right) \leq d\left(z, v_{2}\right) \leq \ldots \leq d\left(z, v_{n}\right)$ is a mcp. Furthermore, $C\left(v_{i}\right)$ is the unique cube of G_{i} containing v_{i} and the neighbors of v_{i} in G_{i} and the vertex $\overline{v_{i}}$ opposite to v_{i} in $C\left(v_{i}\right)$ is the gate of z in C_{i}.

Mcp and lemmas about boundaries

Notations: Let $v_{1}=z, v_{2}, \ldots, v_{n}$ be a mcp of G. Denote by ∂G_{i} the boundary of the cube complex $X_{i}=X_{\text {cube }}\left(G_{i}\right)$ restricted to $G_{i}, i=n, \ldots, 1$. Let $C_{i}=C\left(v_{i}\right)$ the unique cube of G_{i} containing v_{i} and $\Lambda\left(v_{i}\right)$ be the set of all neighbors of v_{i} in G_{i}. Denote also by $u_{i}=\overline{v_{i}}$ the opposite of v_{i} in C_{i}.

Lemma

All vertices of the cube C_{i} except eventually u_{i} belong to the boundary ∂G_{i} of G_{i}.

Set $S\left(G_{n}\right)=\partial G_{n}=\partial G$ and $S\left(G_{i-1}\right)=S\left(G_{i}\right) \backslash\left\{v_{i}\right\} \cup\left\{u_{i}\right\}, i=n-1, \ldots 2$.
We call $S\left(G_{i}\right)$ the extended boundary of G_{i}.

Lemma

For any $i=n, \ldots 2$, we have $\partial G_{i-1} \subseteq \partial G_{i} \cup\left\{u_{i}\right\}$ and $\partial G_{i} \subseteq S\left(G_{i}\right)$.

Proof of the lemma

Lemma

For any $i=n, \ldots 2$, we have $\partial G_{i-1} \subseteq \partial G_{i} \cup\left\{u_{i}\right\}$ and $\partial G_{i} \subseteq S\left(G_{i}\right)$.
Proof: Inclusion $\partial G_{i-1} \subseteq \partial G_{i} \cup\left\{u_{i}\right\}$.
(1) Let $x \in \partial G_{i-1} \backslash \partial G_{i}$.
(2) $x \in \partial G_{i-1} \Rightarrow \exists C \in X_{i}$ s.t. $x \in C$ and C is a facet of unique $C^{\prime} \in X_{i}$.
(3) $X_{i-1} \subset X_{i}$ and $x \notin \partial X_{i} \Rightarrow C$ is a facet of yet another cube $C^{\prime \prime}$ of X_{i}.
(4) $C^{\prime \prime} \in X_{i} \backslash X_{i-1} \Rightarrow v_{i} \in C^{\prime \prime}$.
(5) All cubes of X_{i} containing v_{i} are included in $C_{i} \Rightarrow x \in C_{i}$.
(6) $C_{i} \backslash\left\{u_{i}\right\} \subset \partial X_{i}$ and $x \notin \partial G_{i} \Rightarrow x=u_{i}$.

Inclusion $\partial G_{i} \subseteq S\left(G_{i}\right)$. By induction on $i=n, \ldots, 1$. For $i=n$,
$S\left(G_{n}\right)=\partial G_{n}$. Suppose the assertion holds for G_{i} and consider G_{i-1}. Since $v_{i} \notin G_{i}$, the first inclusion and the induction assumption yield

$$
\partial G_{i-1} \subseteq \partial G_{i} \backslash\left\{v_{i}\right\} \cup\left\{u_{i}\right\} \subseteq S\left(G_{i}\right) \backslash\left\{v_{i}\right\} \cup\left\{u_{i}\right\}=S\left(G_{i-1}\right)
$$

Goal: Reconstruct a median graph G and its cube complex $X=X_{\text {cube }}(G)$ from the pairwise distances between the vertices of the boundary ∂G. Variables:

- Pick an arbitrary vertex $z \in \partial G$ as a basepoint.
- During the algorithm, the reconstructor knows a set S of vertices (that is initially ∂G) as well as the distance matrix D of S.
- The reconstructor constructs a graph Γ that is initially the subgraph of G induced by ∂G and will ultimately coincide with G.
- To analyze the algorithm, we consider the values S_{i} of the set S, D_{i} of the distance matrix D, and Γ_{i} of the graph Γ at the beginning of the i th step of the algorithm, and at each step, we decrease the values of i.
- For the analysis of the algorithm, we also consider a graph G_{i} (unknown to the algorithm), where $G_{n}=G$.

The reconstruction algorithm, II
Step n : The input consists of the set $S_{n}=\partial G$ and its distance matrix D_{n}. The graph Γ_{n} is computed from D_{n}. Step i :

1. The reconstructor picks a vertex v_{i} of S_{i} furthest from z;
2. The reconstructor removes v_{i} from S_{i} and eventually adds to S_{i} (if it is not already in S_{i}) the vertex u_{i} opposite to v_{i} in the unique cube C_{i} of G containing v_{i} and its neighbors in S_{i}. The resulting set is denoted by S_{i-1}.
3. From D_{i}, we compute the distance matrix D_{i-1} of S_{i-1} by computing the distances from u_{i} to the vertices of $S_{i-1}=S_{i} \backslash\left\{v_{i}\right\} \cup\left\{u_{i}\right\}$. These distances are easily computed since C_{i} is gated and $C_{i} \backslash\left\{u_{i}\right\} \subset S_{i}$.
4. If $u_{i} \in S_{i}$, we set $\Gamma_{i-1}=\Gamma_{i}$, otherwise Γ_{i-1} is Γ_{i} plus u_{i} and the edges between u_{i} and its neighbors in $S_{i-1} \cup\left\{v_{i}\right\}$ (detected via D_{i-1}).
Endstep: The algorithm ends when S_{i} becomes empty.

Correctness, I: the invariants

Let G_{i} be the subgraph of G obtained from G by removing the vertices $v_{n}, \ldots v_{i+1}$. Note that G_{i} is not known to the reconstructor. Suppose that the removed vertices v_{n}, \ldots, v_{i+1} and the eventually added vertices u_{n}, \ldots, u_{i+1} satisfy the following inductive properties:
(1) $d\left(z, v_{n}\right) \geq \ldots \geq d\left(z, v_{i+1}\right) \geq d(z, v)$ for any vertex of v of G_{i},
(2) each vertex v_{j} with $n \geq j \geq i+1$ is a corner of the graph G_{j},
(3) for each $n \geq j \geq i+1$, either all neighbors of v_{j} in G_{j} are in S_{j}, or u_{j} is the unique neighbor of v_{j} in G_{j}, and $u_{j} \in S_{j-1}$,
(9) S_{i} coincides with the extended boundary $S\left(G_{i}\right)$ of G_{i}, D_{i} is the distance matrix of $S\left(G_{i}\right)$ in G, and $\Gamma_{i}=G\left[\bigcup_{n \geq j \geq i} S_{j}\right]$.

Correctness, II: v_{i} is a corner of G_{i}

Lemma

Let v_{i} be a vertex of S_{i} maximizing $d\left(z, v_{i}\right)$. Then $d\left(z, v_{i}\right) \geq d(z, v)$ for any vertex v of G_{i} and thus v_{i} is a corner of G_{i}.

Proof: (1) Suppose $\exists u$ in G_{i} s.t. $d\left(z, v_{i}\right)<d(z, u)$ and wlog u maximizes $d(z, u)$ among vertices of G_{i}.
(2) Since $d\left(z, v_{n}\right) \geq \ldots \geq d\left(z, v_{i+1}\right) \geq d(z, v)$ for any vertex of v of G_{i} by invariant (1), from Proposition there exists a mcp of G starting with $v_{n}, \ldots, v_{i+1}, u$.
(3) Thus u is a corner of G_{i}, i.e. $u \in \partial G_{i}$. Since $\partial G_{i} \subseteq S\left(G_{i}\right)$ by Lemma and $S\left(G_{i}\right)=S_{i}$ by invariant (4), $u \in S_{i}$, contradicting the choice of v_{i}.
(4) Hence v_{i} is a vertex of G_{i} maximizing $d\left(z, v_{i}\right)$ and a corner of G_{i}.

Correctness, III: the invariants hold after step i

Invariants (1) and (2) follow from previous Lemma and the definition of v_{i}. Invariant (3) follows from the definition of u_{i} and lemmas about boundaries. Invariant (4): (a) Since $S_{i}=S\left(G_{i}\right)$, and by the definitions of v_{i} and u_{i}, we have $S_{i-1}=S_{i} \backslash\left\{v_{i}\right\} \cup\left\{u_{i}\right\}=S\left(G_{i}\right) \backslash\left\{v_{i}\right\} \cup\left\{u_{i}\right\}=S\left(G_{i-1}\right)$.
(b) Since the distances from u_{i} to all vertices of S_{i-1} have been correctly computed, by induction hypothesis, D_{i-1} is the distance matrix of S_{i-1} that coincides with $S\left(G_{i-1}\right)$.
(c) If $u_{i} \in S_{i}$, then $\Gamma_{i-1}=\Gamma_{i}=G\left[\bigcup_{n \geq j \geq i} S_{j}\right]=G\left[\bigcup_{n \geq j \geq i-1} S_{j}\right]$.

If $u_{i} \notin S_{i}$, then $V\left(\Gamma_{i-1}\right)=V\left(\Gamma_{i}\right) \cup\left\{u_{i}\right\}=\bigcup_{n \geq j \geq i-1} S_{j}$.
Now, pick any edge $u_{i} w$ of G with $w \in V\left(\Gamma_{i-1}\right)$. If $w \in S_{i-1} \cup\left\{v_{i}\right\}$, then the edge $w u_{i}$ is in $E\left(\Gamma_{i-1}\right)$. Otherwise, $w=v_{j}$ with $j>i$. However, since $u_{i} \notin S_{j}$, this implies by invariant (3) that $u_{i} \in S_{j-1}$ and thus in S_{i}, a contradiction. Therefore, Γ_{i-1} is the subgraph of G induced by $\bigcup_{n \geq i \geq i-1} S_{j}$.

The main result

Lemma

The graph Γ_{0} returned by the reconstructor is isomorphic G.
Proof: By invariant (1) of the algorithm, z is the last vertex removed from S. By the last lemma, when z is considered by the algorithm, all vertices of G have been already processed. This implies, that each vertex $x \in V(G)$ belongs to some S_{i} and thus to $V\left(\Gamma_{0}\right)$, establishing $V\left(\Gamma_{0}\right)=V(G)$. By invariant (4), Γ_{0} is an induced subgraph of G and is thus isomorphic to G. From this lemma and the bijection between X and $X_{\text {cube }}(G(X))$, we obtain:

Theorem

Any finite CAT(0) cube complex is boundary rigid.

Thank you!

