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Boundary rigidity

Problem’s formulation

Conjecture (Haslegrave, Scott, Tamitegama, and Tan, 2023) Any finite
CAT(0) cube complex 𝑋 is boundary rigid.

Definition
Let 𝑋 be a finite Piecewise Euclidean cell complex.

Facet of a cell 𝐶: a maximal by inclusion proper subcell of 𝐶.
Boundary 𝜕𝑋 of 𝑋: the downward closure of all non-maximal cells of
𝑋 such that each of them is a facet of a unique cell of 𝑋.
1-Skeleton of 𝑋: the graph 𝐺 = 𝐺(𝑋) with 0-cells as vertices and
1-cells as edges and endowed with the standard graph-distance 𝑑𝐺.
Boundary rigidity of 𝑋: 𝑋 can be reconstructed from the pairwise
distances (computed in 𝐺) between all vertices belonging to 𝜕𝑋.
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Motivation and History

Motivation and History

Origins: Riemannian geometry, where it is conjectured (Michel,
1981/82) that any Riemannian manifold (𝑀,𝑔) is boundary rigid, i.e.,
its metric 𝑑𝑔 is determined up to isometry by its boundary distance
function.

Known results: Confirmed in the case of 2-dimensional Riemannian
manifolds by Pestov and Uhlmann in 2005.
Discrete version: I. Benjamini asked if any plane triangulation in which
all inner vertices have degrees ≥ 6 is boundary rigid. Confirmed by
Haslegrave in 2023.
Partial results for CAT(0) cube complexes: 2-dimensional and
embedded in ℝ3 3-dimensional CAT(0) cube compelxes (Haslegrave et
al., 2023).
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CAT(0) cube complexes

CAT(0) spaces

Definition
Geodesic triangle: Δ = Δ(𝑥1, 𝑥2, 𝑥3) consists of three points and a
geodesic between each pair of vertices.

Comparison triangle: for Δ(𝑥1, 𝑥2, 𝑥3) is a triangle Δ(𝑥′1, 𝑥
′
2, 𝑥

′
3) in 𝔼2

such that 𝑑𝔼2(𝑥′𝑖, 𝑥
′
𝑗) = 𝑑(𝑥𝑖, 𝑥𝑗) for 𝑖, 𝑗 ∈ {1, 2, 3}.

Comparison axiom: If 𝑦 is a point on the side of Δ(𝑥1, 𝑥2, 𝑥3) with
vertices 𝑥1 and 𝑥2 and 𝑦′ is the unique point on the line segment
[𝑥′1, 𝑥

′
2] of the comparison triangle Δ(𝑥′1, 𝑥

′
2, 𝑥

′
3) such that

𝑑𝔼2(𝑥′𝑖, 𝑦
′) = 𝑑(𝑥𝑖, 𝑦) for 𝑖 = 1, 2, then 𝑑(𝑥3, 𝑦) ≤ 𝑑𝔼2(𝑥′3, 𝑦

′).
CAT(0) space: A geodesic metric space (𝑋, 𝑑) in which all geodesic
triangles satisfy the comparison axiom.
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CAT(0) cube complexes

CAT(0) cube complexes

Cube complex: a cell complex where each cell is a cube and when two
cubes intersect, they intersect on a common face.

Cube condition: any three 𝑑-cubes, pairwise intersecting in
(𝑑 − 1)-cubes and all three intersecting in a (𝑑 − 2)-cube, belong to a
(𝑑 + 1)-cube.

Theorem (Gromov, 1987)

A cube complex 𝑋 endowed with the 𝓁2-metric is CAT(0) iff 𝑋 is simply
connected and 𝑋 satisfies the cube condition.
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CAT(0) cube complexes

Median graphs

In a graph 𝐺, the interval 𝐼(𝑢, 𝑣) between two vertices 𝑢 and 𝑣 is

𝐼(𝑢, 𝑣) = {𝑥 ∶ 𝑑(𝑢, 𝑥) + 𝑑(𝑥, 𝑣) = 𝑑(𝑥, 𝑣).}

A graph is median if for all 𝑢, 𝑣,𝑤, there exists a unique
𝑥 ∈ 𝐼(𝑢, 𝑣) ∩ 𝐼(𝑣,𝑤) ∩ 𝐼(𝑢,𝑤).
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CAT(0) cube complexes

CAT(0) cube complexes and median graphs

Theorem (C, 1998, Roller, 1998)

A cube complex 𝑋 is CAT(0) iff it 1-skeleton is a median graph.

Theorem (C, 1998)

A graph 𝐺 is a median graph if and only if its cube complex 𝑋𝑐𝑢𝑏𝑒(𝐺) is
simply connected and 𝐺 satisfies the 3-cube condition. Furthermore, if 𝑋 is
a CAT(0) cube complex, then 𝑋 = 𝑋𝑐𝑢𝑏𝑒(𝐺(𝑋)).
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CAT(0) cube complexes

Facts about median graphs

Quadrangle condition: For any 𝑢, 𝑣,𝑤, 𝑧 such that 𝑣,𝑤 ∼ 𝑧 and
𝑑(𝑢, 𝑣) = 𝑑(𝑢,𝑤) = 𝑑(𝑢, 𝑧) − 1 = 𝑘, there is a unique vertex 𝑥 ∼ 𝑣,𝑤
such that 𝑑(𝑢, 𝑥) = 𝑘 − 1;

Cubes a gated: Cubes of median graphs are gated;
Downward cube property: For any basepoint 𝑧 and any vertex 𝑣, there
exists a unique cube 𝐶(𝑣) containing all neighbors Λ(𝑣) of 𝑣 in 𝐼(𝑣, 𝑧).
The vertex 𝑣 opposite to 𝑣 in 𝐶(𝑣) is the gate of 𝑧 in the cube 𝐶(𝑣).
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Corner peelings of median graphs

Corner peeling

Definition
A corner of a graph 𝐺 is a vertex 𝑣 of 𝐺 such that 𝑣 and all its
neighbors in 𝐺 belong to a unique cube of 𝐺. Note that any corner
belongs to the boundary 𝜕𝐺.

A corner peeling of 𝐺 = (𝑉 ,𝐸) is a total order 𝑣1,… , 𝑣𝑛 of 𝑉 such
that 𝑣𝑖 is a corner of the subgraph 𝐺𝑖 = 𝐺[𝑣1,… , 𝑣𝑖] induced by the
first 𝑖 vertices of this order.
A monotone corner peeling (mcp) of 𝐺 with respect to 𝑧 is a corner
peeling 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that 𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛).

Proposition
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Corner peelings of median graphs

Corner peeling

Definition
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neighbors in 𝐺 belong to a unique cube of 𝐺. Note that any corner
belongs to the boundary 𝜕𝐺.
A corner peeling of 𝐺 = (𝑉 ,𝐸) is a total order 𝑣1,… , 𝑣𝑛 of 𝑉 such
that 𝑣𝑖 is a corner of the subgraph 𝐺𝑖 = 𝐺[𝑣1,… , 𝑣𝑖] induced by the
first 𝑖 vertices of this order.

A monotone corner peeling (mcp) of 𝐺 with respect to 𝑧 is a corner
peeling 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that 𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛).

Proposition

For any basepoint 𝑧 of 𝐺, any ordering 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that
𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛) is a mcp. Furthermore, 𝐶(𝑣𝑖) is the
unique cube of 𝐺𝑖 containing 𝑣𝑖 and the neighbors of 𝑣𝑖 in 𝐺𝑖 and the
vertex 𝑣𝑖 opposite to 𝑣𝑖 in 𝐶(𝑣𝑖) is the gate of 𝑧 in 𝐶𝑖.

Chalopin & Chepoi 𝜕𝑋-rigidity of CAT(0) cube complexes 9 / 18



Corner peelings of median graphs

Corner peeling

Definition
A corner of a graph 𝐺 is a vertex 𝑣 of 𝐺 such that 𝑣 and all its
neighbors in 𝐺 belong to a unique cube of 𝐺. Note that any corner
belongs to the boundary 𝜕𝐺.
A corner peeling of 𝐺 = (𝑉 ,𝐸) is a total order 𝑣1,… , 𝑣𝑛 of 𝑉 such
that 𝑣𝑖 is a corner of the subgraph 𝐺𝑖 = 𝐺[𝑣1,… , 𝑣𝑖] induced by the
first 𝑖 vertices of this order.
A monotone corner peeling (mcp) of 𝐺 with respect to 𝑧 is a corner
peeling 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that 𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛).

Proposition

For any basepoint 𝑧 of 𝐺, any ordering 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that
𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛) is a mcp. Furthermore, 𝐶(𝑣𝑖) is the
unique cube of 𝐺𝑖 containing 𝑣𝑖 and the neighbors of 𝑣𝑖 in 𝐺𝑖 and the
vertex 𝑣𝑖 opposite to 𝑣𝑖 in 𝐶(𝑣𝑖) is the gate of 𝑧 in 𝐶𝑖.

Chalopin & Chepoi 𝜕𝑋-rigidity of CAT(0) cube complexes 9 / 18



Corner peelings of median graphs

Corner peeling

Definition
A corner of a graph 𝐺 is a vertex 𝑣 of 𝐺 such that 𝑣 and all its
neighbors in 𝐺 belong to a unique cube of 𝐺. Note that any corner
belongs to the boundary 𝜕𝐺.
A corner peeling of 𝐺 = (𝑉 ,𝐸) is a total order 𝑣1,… , 𝑣𝑛 of 𝑉 such
that 𝑣𝑖 is a corner of the subgraph 𝐺𝑖 = 𝐺[𝑣1,… , 𝑣𝑖] induced by the
first 𝑖 vertices of this order.
A monotone corner peeling (mcp) of 𝐺 with respect to 𝑧 is a corner
peeling 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that 𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛).

Proposition

For any basepoint 𝑧 of 𝐺, any ordering 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 such that
𝑑(𝑧, 𝑣1) ≤ 𝑑(𝑧, 𝑣2) ≤ … ≤ 𝑑(𝑧, 𝑣𝑛) is a mcp. Furthermore, 𝐶(𝑣𝑖) is the
unique cube of 𝐺𝑖 containing 𝑣𝑖 and the neighbors of 𝑣𝑖 in 𝐺𝑖 and the
vertex 𝑣𝑖 opposite to 𝑣𝑖 in 𝐶(𝑣𝑖) is the gate of 𝑧 in 𝐶𝑖.

Chalopin & Chepoi 𝜕𝑋-rigidity of CAT(0) cube complexes 9 / 18



Corner peelings of median graphs

Mcp and lemmas about boundaries

Notations: Let 𝑣1 = 𝑧, 𝑣2,… , 𝑣𝑛 be a mcp of 𝐺. Denote by 𝜕𝐺𝑖 the
boundary of the cube complex 𝑋𝑖 = 𝑋𝑐𝑢𝑏𝑒(𝐺𝑖) restricted to 𝐺𝑖, 𝑖 = 𝑛,… , 1.
Let 𝐶𝑖 = 𝐶(𝑣𝑖) the unique cube of 𝐺𝑖 containing 𝑣𝑖 and Λ(𝑣𝑖) be the set of
all neighbors of 𝑣𝑖 in 𝐺𝑖. Denote also by 𝑢𝑖 = 𝑣𝑖 the opposite of 𝑣𝑖 in 𝐶𝑖.

Lemma

All vertices of the cube 𝐶𝑖 except eventually 𝑢𝑖 belong to the boundary 𝜕𝐺𝑖
of 𝐺𝑖.

Set 𝑆(𝐺𝑛) = 𝜕𝐺𝑛 = 𝜕𝐺 and 𝑆(𝐺𝑖−1) = 𝑆(𝐺𝑖) ⧵ {𝑣𝑖} ∪ {𝑢𝑖}, 𝑖 = 𝑛 − 1,…2.
We call 𝑆(𝐺𝑖) the extended boundary of 𝐺𝑖.

Lemma

For any 𝑖 = 𝑛,…2, we have 𝜕𝐺𝑖−1 ⊆ 𝜕𝐺𝑖 ∪ {𝑢𝑖} and 𝜕𝐺𝑖 ⊆ 𝑆(𝐺𝑖).
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Corner peelings of median graphs

Proof of the lemma

Lemma
For any 𝑖 = 𝑛,…2, we have 𝜕𝐺𝑖−1 ⊆ 𝜕𝐺𝑖 ∪ {𝑢𝑖} and 𝜕𝐺𝑖 ⊆ 𝑆(𝐺𝑖).

Proof: Inclusion 𝜕𝐺𝑖−1 ⊆ 𝜕𝐺𝑖 ∪ {𝑢𝑖}.
(1) Let 𝑥 ∈ 𝜕𝐺𝑖−1 ⧵ 𝜕𝐺𝑖.
(2) 𝑥 ∈ 𝜕𝐺𝑖−1 ⇒ ∃ 𝐶 ∈ 𝑋𝑖 s.t. 𝑥 ∈ 𝐶 and 𝐶 is a facet of unique 𝐶 ′ ∈ 𝑋𝑖.
(3) 𝑋𝑖−1 ⊂ 𝑋𝑖 and 𝑥 ∉ 𝜕𝑋𝑖 ⇒ 𝐶 is a facet of yet another cube 𝐶 ′′ of 𝑋𝑖.
(4) 𝐶 ′′ ∈ 𝑋𝑖 ⧵𝑋𝑖−1 ⇒ 𝑣𝑖 ∈ 𝐶 ′′.
(5) All cubes of 𝑋𝑖 containing 𝑣𝑖 are included in 𝐶𝑖 ⇒ 𝑥 ∈ 𝐶𝑖.
(6) 𝐶𝑖 ⧵ {𝑢𝑖} ⊂ 𝜕𝑋𝑖 and 𝑥 ∉ 𝜕𝐺𝑖 ⇒ 𝑥 = 𝑢𝑖.

Inclusion 𝜕𝐺𝑖 ⊆ 𝑆(𝐺𝑖). By induction on 𝑖 = 𝑛,… , 1. For 𝑖 = 𝑛,
𝑆(𝐺𝑛) = 𝜕𝐺𝑛. Suppose the assertion holds for 𝐺𝑖 and consider 𝐺𝑖−1. Since
𝑣𝑖 ∉ 𝐺𝑖, the first inclusion and the induction assumption yield

𝜕𝐺𝑖−1 ⊆ 𝜕𝐺𝑖 ⧵ {𝑣𝑖} ∪ {𝑢𝑖} ⊆ 𝑆(𝐺𝑖) ⧵ {𝑣𝑖} ∪ {𝑢𝑖} = 𝑆(𝐺𝑖−1).
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Reconstruction via corner peeling

The reconstruction algorithm, I

Goal: Reconstruct a median graph 𝐺 and its cube complex 𝑋 = 𝑋𝑐𝑢𝑏𝑒(𝐺)
from the pairwise distances between the vertices of the boundary 𝜕𝐺.
Variables:

Pick an arbitrary vertex 𝑧 ∈ 𝜕𝐺 as a basepoint.
During the algorithm, the reconstructor knows a set 𝑆 of vertices
(that is initially 𝜕𝐺) as well as the distance matrix 𝐷 of 𝑆.
The reconstructor constructs a graph Γ that is initially the subgraph of
𝐺 induced by 𝜕𝐺 and will ultimately coincide with 𝐺.
To analyze the algorithm, we consider the values 𝑆𝑖 of the set 𝑆, 𝐷𝑖 of
the distance matrix 𝐷, and Γ𝑖 of the graph Γ at the beginning of the
𝑖th step of the algorithm, and at each step, we decrease the values of 𝑖.
For the analysis of the algorithm, we also consider a graph 𝐺𝑖
(unknown to the algorithm), where 𝐺𝑛 = 𝐺.
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Reconstruction via corner peeling

The reconstruction algorithm, II

Step 𝑛: The input consists of the set 𝑆𝑛 = 𝜕𝐺 and its distance matrix 𝐷𝑛.
The graph Γ𝑛 is computed from 𝐷𝑛.
Step 𝑖:

1. The reconstructor picks a vertex 𝑣𝑖 of 𝑆𝑖 furthest from 𝑧;
2. The reconstructor removes 𝑣𝑖 from 𝑆𝑖 and eventually adds to 𝑆𝑖 (if it

is not already in 𝑆𝑖) the vertex 𝑢𝑖 opposite to 𝑣𝑖 in the unique cube 𝐶𝑖
of 𝐺 containing 𝑣𝑖 and its neighbors in 𝑆𝑖. The resulting set is
denoted by 𝑆𝑖−1.

3. From 𝐷𝑖, we compute the distance matrix 𝐷𝑖−1 of 𝑆𝑖−1 by computing
the distances from 𝑢𝑖 to the vertices of 𝑆𝑖−1 = 𝑆𝑖 ⧵ {𝑣𝑖} ∪ {𝑢𝑖}. These
distances are easily computed since 𝐶𝑖 is gated and 𝐶𝑖 ⧵ {𝑢𝑖} ⊂ 𝑆𝑖.

4. If 𝑢𝑖 ∈ 𝑆𝑖, we set Γ𝑖−1 = Γ𝑖, otherwise Γ𝑖−1 is Γ𝑖 plus 𝑢𝑖 and the edges
between 𝑢𝑖 and its neighbors in 𝑆𝑖−1 ∪ {𝑣𝑖} (detected via 𝐷𝑖−1).

Endstep: The algorithm ends when 𝑆𝑖 becomes empty.
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Reconstruction via corner peeling

Correctness, I: the invariants

Let 𝐺𝑖 be the subgraph of 𝐺 obtained from 𝐺 by removing the vertices
𝑣𝑛,… 𝑣𝑖+1. Note that 𝐺𝑖 is not known to the reconstructor. Suppose that
the removed vertices 𝑣𝑛,… , 𝑣𝑖+1 and the eventually added vertices
𝑢𝑛,… , 𝑢𝑖+1 satisfy the following inductive properties:

1 𝑑(𝑧, 𝑣𝑛) ≥ … ≥ 𝑑(𝑧, 𝑣𝑖+1) ≥ 𝑑(𝑧, 𝑣) for any vertex of 𝑣 of 𝐺𝑖,

2 each vertex 𝑣𝑗 with 𝑛 ≥ 𝑗 ≥ 𝑖 + 1 is a corner of the graph 𝐺𝑗 ,

3 for each 𝑛 ≥ 𝑗 ≥ 𝑖 + 1, either all neighbors of 𝑣𝑗 in 𝐺𝑗 are in 𝑆𝑗 , or 𝑢𝑗
is the unique neighbor of 𝑣𝑗 in 𝐺𝑗 , and 𝑢𝑗 ∈ 𝑆𝑗−1,

4 𝑆𝑖 coincides with the extended boundary 𝑆(𝐺𝑖) of 𝐺𝑖, 𝐷𝑖 is the
distance matrix of 𝑆(𝐺𝑖) in 𝐺, and Γ𝑖 = 𝐺[

⋃

𝑛≥𝑗≥𝑖 𝑆𝑗].
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Reconstruction via corner peeling

Correctness, II: 𝑣𝑖 is a corner of 𝐺𝑖

Lemma

Let 𝑣𝑖 be a vertex of 𝑆𝑖 maximizing 𝑑(𝑧, 𝑣𝑖). Then 𝑑(𝑧, 𝑣𝑖) ≥ 𝑑(𝑧, 𝑣) for any
vertex 𝑣 of 𝐺𝑖 and thus 𝑣𝑖 is a corner of 𝐺𝑖.

Proof: (1) Suppose ∃𝑢 in 𝐺𝑖 s.t. 𝑑(𝑧, 𝑣𝑖) < 𝑑(𝑧, 𝑢) and wlog 𝑢 maximizes
𝑑(𝑧, 𝑢) among vertices of 𝐺𝑖.

(2) Since 𝑑(𝑧, 𝑣𝑛) ≥ … ≥ 𝑑(𝑧, 𝑣𝑖+1) ≥ 𝑑(𝑧, 𝑣) for any vertex of 𝑣 of 𝐺𝑖 by
invariant (1), from Proposition there exists a mcp of 𝐺 starting with
𝑣𝑛,… , 𝑣𝑖+1, 𝑢.

(3) Thus 𝑢 is a corner of 𝐺𝑖, i.e. 𝑢 ∈ 𝜕𝐺𝑖. Since 𝜕𝐺𝑖 ⊆ 𝑆(𝐺𝑖) by Lemma
and 𝑆(𝐺𝑖) = 𝑆𝑖 by invariant (4), 𝑢 ∈ 𝑆𝑖, contradicting the choice of 𝑣𝑖.

(4) Hence 𝑣𝑖 is a vertex of 𝐺𝑖 maximizing 𝑑(𝑧, 𝑣𝑖) and a corner of 𝐺𝑖.

Chalopin & Chepoi 𝜕𝑋-rigidity of CAT(0) cube complexes 15 / 18



Reconstruction via corner peeling

Correctness, III: the invariants hold after step 𝑖

Invariants (1) and (2) follow from previous Lemma and the definition of 𝑣𝑖.

Invariant (3) follows from the definition of 𝑢𝑖 and lemmas about boundaries.

Invariant (4): (a) Since 𝑆𝑖 = 𝑆(𝐺𝑖), and by the definitions of 𝑣𝑖 and 𝑢𝑖, we
have 𝑆𝑖−1 = 𝑆𝑖 ⧵ {𝑣𝑖} ∪ {𝑢𝑖} = 𝑆(𝐺𝑖) ⧵ {𝑣𝑖} ∪ {𝑢𝑖} = 𝑆(𝐺𝑖−1).

(b) Since the distances from 𝑢𝑖 to all vertices of 𝑆𝑖−1 have been correctly
computed, by induction hypothesis, 𝐷𝑖−1 is the distance matrix of 𝑆𝑖−1 that
coincides with 𝑆(𝐺𝑖−1).

(c) If 𝑢𝑖 ∈ 𝑆𝑖, then Γ𝑖−1 = Γ𝑖 = 𝐺[
⋃

𝑛≥𝑗≥𝑖 𝑆𝑗] = 𝐺[
⋃

𝑛≥𝑗≥𝑖−1 𝑆𝑗].
If 𝑢𝑖 ∉ 𝑆𝑖, then 𝑉 (Γ𝑖−1) = 𝑉 (Γ𝑖) ∪ {𝑢𝑖} =

⋃

𝑛≥𝑗≥𝑖−1 𝑆𝑗 .
Now, pick any edge 𝑢𝑖𝑤 of 𝐺 with 𝑤 ∈ 𝑉 (Γ𝑖−1). If 𝑤 ∈ 𝑆𝑖−1 ∪ {𝑣𝑖}, then
the edge 𝑤𝑢𝑖 is in 𝐸(Γ𝑖−1). Otherwise, 𝑤 = 𝑣𝑗 with 𝑗 > 𝑖. However, since
𝑢𝑖 ∉ 𝑆𝑗 , this implies by invariant (3) that 𝑢𝑖 ∈ 𝑆𝑗−1 and thus in 𝑆𝑖, a
contradiction. Therefore, Γ𝑖−1 is the subgraph of 𝐺 induced by

⋃

𝑛≥𝑗≥𝑖−1 𝑆𝑗 .

Chalopin & Chepoi 𝜕𝑋-rigidity of CAT(0) cube complexes 16 / 18



The main result

The main result

Lemma

The graph Γ0 returned by the reconstructor is isomorphic 𝐺.

Proof: By invariant (1) of the algorithm, 𝑧 is the last vertex removed from
𝑆. By the last lemma, when 𝑧 is considered by the algorithm, all vertices of
𝐺 have been already processed. This implies, that each vertex 𝑥 ∈ 𝑉 (𝐺)
belongs to some 𝑆𝑖 and thus to 𝑉 (Γ0), establishing 𝑉 (Γ0) = 𝑉 (𝐺). By
invariant (4), Γ0 is an induced subgraph of 𝐺 and is thus isomorphic to 𝐺.
From this lemma and the bijection between 𝑋 and 𝑋𝑐𝑢𝑏𝑒(𝐺(𝑋)), we obtain:

Theorem
Any finite CAT(0) cube complex is boundary rigid.
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Thank you!
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