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1. Topology joke, by Henry Segerman.
Yann-Situ Gazull

2. Wikipedia.




Algebraic Topology

Topology Algebra
® spaces ® groups
® simplicial complexes PN ® rings
® shapes e fields
® . e .

Homotopy, homology, cohomology, knot theory...
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Algebraic Topology

Figure — Illustration of homotopy on a torus.

homeomorphic = homotopic = homologuous
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Algebraic Topology

Decidability in Algebraic Topology

® Are two groups isomorphic given their representations ?
Undecidable!.

® Are two triangulations homeomorphic? Undecidable.

® Are two triangulations homotopic ? Undecidable.

® Are two triangulations homologuous ? Decidable !

.

1. P. S. Novikov, “Unsolvability of the conjugacy problem in the theory of groups”(1954)
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Why computing topology 7
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Figure — Topological data analysis.

1. Camara, Pablo & Levine, Arnold & Rabadan, Raul. (2015). Inference of Ancestral Recombination
Graphs through Topological Data Analysis.
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Figure — Holes measure, mainly useful for shape analysis or classification.
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Why computing topology 7

Figure — Computer aided design and topological optimization.

1. wiki.freecad.org
2. 3DPrint.com
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Introduction to Homology and Holes

@ Simplicial and Chain Complexes

-

@ Cycles and Boundaries

© Holes and Homology
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Holes and Dimension

® 0-holes : connected components
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Holes and Dimension

® 0-holes : connected components

® 1-holes : tunnels or handles
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Holes and Dimension

® 0-holes : connected components
® 1-holes : tunnels or handles

® 2_holes : cavities

N\
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Simplicial complexes
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Simplicial complexes

/ V.
Boundary of simplices

A
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Simplicial complexes

Simplicial complex - Definition

A simplicial complex K is a set of simplices satisfying the two
following properties :

® the boundary of every simplex in K is also included in K.

® the intersection of two simplices of K is either empty, either
exactly one common subface.
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Examples of simplicial complexes
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Counter examples of simplicial complexes

/)
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Examples of practical simplicial complexes

Greyjoy
stark
Other
Lannister
Baratheon
Targaryen
Snow

a. Game of Thrones Relationship Graph, by Kumar,
Martinez, Wong, Zhao.
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Chain complex
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Chain complex

0,
K: G2 28,2 ™3 % 620

Cq is a vector space called the g-chains.

Jq : boundary operator

Jq is a linear map from G, to Cy_1 that satisfies  Ogy1 0 0q = 0.
It is called the g-boundary operator.
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Chain complex of a simplicial complex

0,
K: G2 28,2 ™3 % 620

Cq is a vector space called the g-chains.

Cq is the Z /27 vector space generated by the g-simplices.

Jq : boundary operator

Jq is a linear map from G, to Cy_1 that satisfies  Ogy1 0 0q = 0.
It is called the g-boundary operator.

Jq is the map generated by the boundary of the g-simplices.
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Concrete example

K : 7Z/27Z-chain complex

® Co = Span(A7 87 C? D)
e G =span(f,g,h,i,j)
° C2 = span(¢)
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Concrete example

K : 7Z/27Z-chain complex

® Co = Span(A7 87 C? D)
e G =span(f,g,h,i,j)
° C2 = span(¢)

®
1\ f
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Concrete example

K : Z/2Z-chain complex

e (Cy =span(A, B, C,D)
O Cl = Span(f7g7 h7 Ia./)
e C, = span(®P)
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Concrete example

K : Z/2Z-chain complex
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Concrete example

K : Z/2Z-chain complex

e (Cy =span(A, B, C,D)
O Cl = Span(f7g7 h7 Ia./)
e C, = span(®P)
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Boundary operator examples
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Boundary operator examples
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Boundary operator examples
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Boundary operator examples
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Boundary operator examples
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Boundaries

Boundary - Definition

A g-boundary is a g-chain that is the boundary of a (g + 1)-chain.

g-boundaries = im(Jg+1)
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Boundaries

Boundary - Definition

A g-boundary is a g-chain that is the boundary of a (g + 1)-chain.
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Non boundaries

) P
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Cycle - Definition

A g-cycle is a g-chain whose boundary is null.

g-cycles = ker(9q)
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Cycles

Cycle - Definition

A g-cycle is a g-chain whose boundary is null.

g-cycles = ker(0q)

=

AN

<

h—d
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Cycles and Boundaries

Proposition

A boundary is a cycle.
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Cycles and Boundaries

Proposition

A boundary is a cycle.
Og+100q = 0, "a boundary has no boundary", im(9g1) C ker(0q).

o K
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Cycles and Boundaries : Summary

Cq+ 1 Cq qu 1
(q+1)-chain q-chain (g-1)-chain
ker(0q+1)

(g+1)-cycle

im(Og+2)
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Holes and Homology

Hole - Intuitive definition

A g-hole is a g-cycle that is not a g-boundary.
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Holes and Homology

Hole - Intuitive definition

/

A g-hole is a g-cycle that is not a g-boundary.

S A
A
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Holes and Homology

Hole - Equivalence

Two g-holes are equivalent iff their difference is a g-boundary.

xzx<:>x—y€im(8q+1)
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Holes and Homology

Hole - Equivalence

Two g-holes are equivalent iff their difference is a g-boundary.

XA x = x—yeim(dg:1)
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Holes and Homology

Hole - Equivalence

Two g-holes are equivalent iff their difference is a g-boundary.

XA x = x—yeim(g1)
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Holes and Homology
Homology group - Definition

The equivalence classes of < form a group structure, called the
g-homology group :

Ho(K) = kergﬁq)

A
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Holes and Homology
Homology group - Definition

The equivalence classes of < form a group structure, called the
g-homology group :

o) _ )

A

Yann-Situ Gazull Introduction to Homology and Holes 26/31



Holes and Homology
Homology group - Definition

The equivalence classes of < form a group structure, called the
g-homology group :

o) _ )

Betti numbers - Proposition
There exist a number 3, such that Hq(K) ~ (Z/2Z)%.

Bq is called the Betti number of dimension g and intuitively
represent the number of holes of dimension g.
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Holes and Homology

Clarification

Hq(K) = (Z/27Z)P : there are B, holes and 2% equivalence classes
in Hq(K). Each equivalence class represents a subset of holes.
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Holes and Homology

Clarification

Hq(K) = (Z/27Z)P : there are B, holes and 2% equivalence classes
in Hq(K). Each equivalence class represents a subset of holes.

s Mo Re

Hi(K) ~ (Z/27.)?
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Conclusion

Starting from a combinatorial /geometric structure (simplicial
complex), we built an algebraic structure (chain complex) that
allowed us to intuitively define holes and formally grasp homology

“-R®
@vﬁ
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To go further : Computing homology

Three approaches for computational homology : )

Effective approach

Computation of reductions

9g+1,
"">Cq+14>cq‘>"'

hq
- IW\J%I gq/l\J(q

’ o ’
s Cpyq —— Cp— -

vV

Combinatorial approach

Discrete Morse Theory

0

Yann-Situ Gazull

Algebraic approach

Smith Normal Form

@ O 0 ... 0
0 0 ... 0
O=P| o o a o]l @

where a; | ajq1.
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To go further : Homology over a ring

Chain complex with a ring

If use Z instead of Z/2Z, Cg4 is not anymore a
vector space but a Z-module. Weird things
happen...
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To go further : Homology over a ring

Chain complex with a ring

If use Z instead of Z/2Z, Cg4 is not anymore a
vector space but a Z-module. Weird things
happen...

A\

Holes and torsion

Z Z

H(K) ~ 7B B S S

a(K) % a1z % ol % % amZ.
holes torsion

Hi(K) ~ Z x 7./2Z.
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The location of a hole : where intuition struggles
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