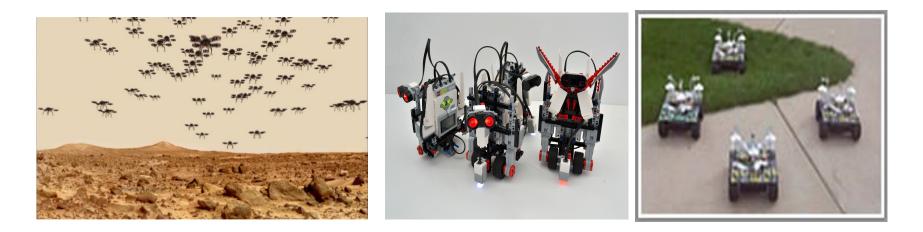
Algorithms for Distributed Team of *Energy-Constrained* Mobile Robots

Shantanu Das Aix-Marseille University, France

Joint work with:

Andreas Bärtschi; Jérémie Chalopin; Yann Disser; Barbara Geissmann; Daniel Graf; Jan Hackfeld; Arnaud Labourel; Matus Mihalak; Paolo Penna; Peter Widmayer

Distributed Network of Robots



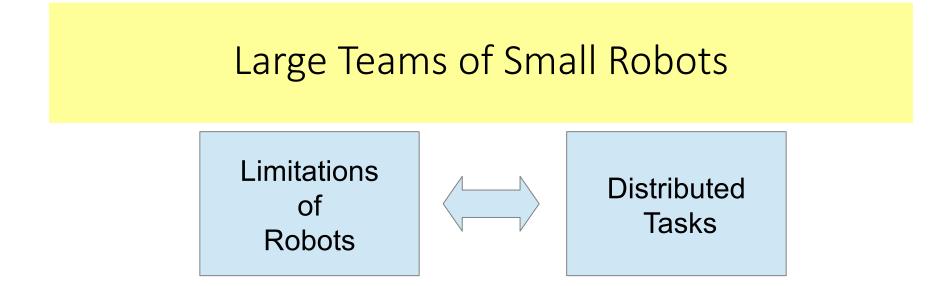
Distributed System of robots

> That move autonomously
> Perform sensing data gathering

> Perform sensing, data gathering, exploration

> Fault Tolerant, self adjusting

Highly Dynamic Networks, Mobile Sensor Networks

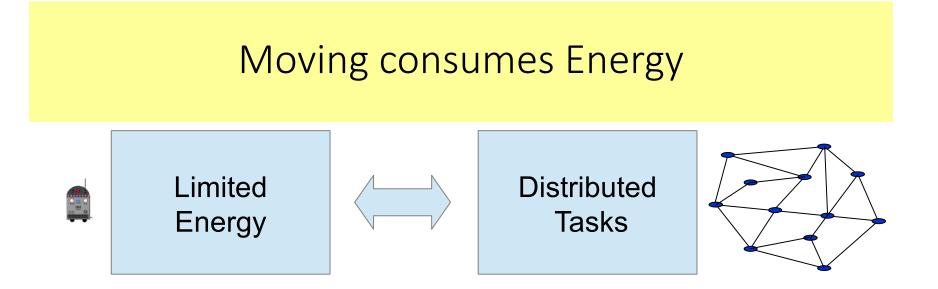


Small and inexpensive robots

- Limited Memory
- Limited Visibility

- Limited communication
- Inaccurate measurement

Major Issue: Energy consumption



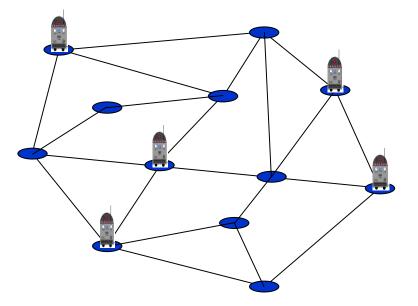
- Moving consumes more energy than computing!
- Small robots cannot have a large Fuel-Tank (or Battery)!
- Robots cannot refuel or recharge while moving!

Assumption:

[Energy bound = B] => At most B moves per robot.

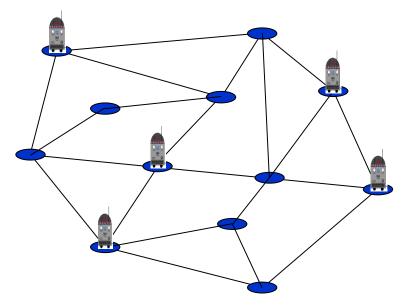
The Model

- Undirected Weighted Graph G
- Robots start from a set of nodes
- Each robot can travel a distance of at most **B**



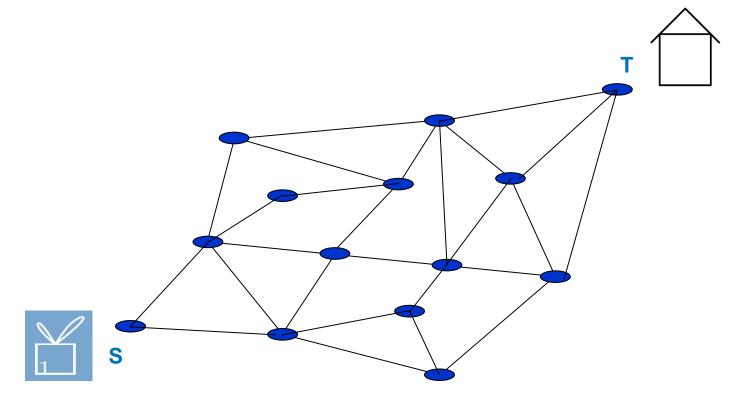
The Problems

- Undirected Weighted Graph G
- Robots start from a set of nodes
- Each robot can travel a distance of at most **B**
 - Exploration / Search
 - Delivering Goods
 - Patrolling / Guarding
 - Rendezvous
 - Pattern Formation



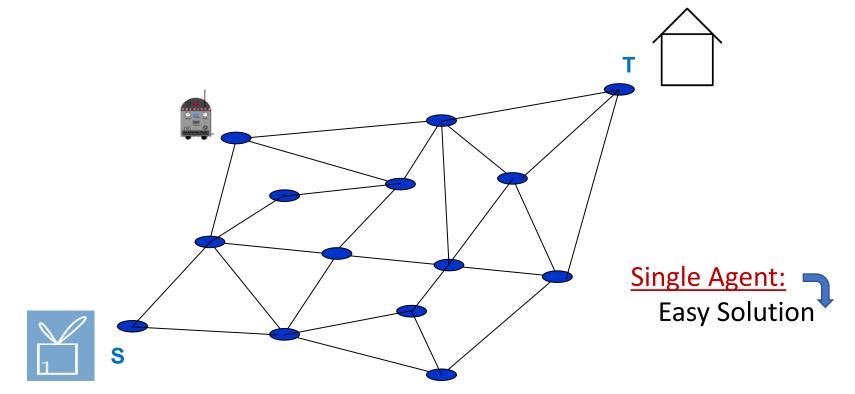
A simple Problem : Delivery

• Move an item from source to target



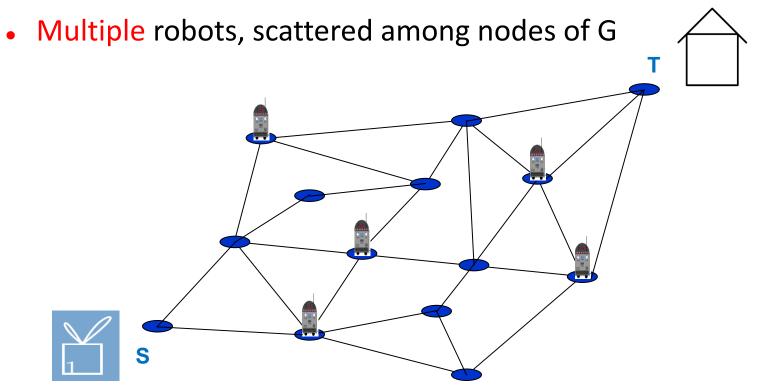
A simple Problem : Delivery

• Move an item from source to target



A simple Problem : Delivery

• Move an item from source to target

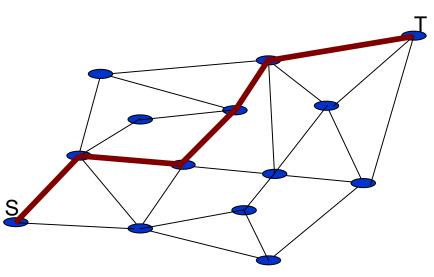


Collaborative Delivery

<u>Definition</u>: Given G(V,E); w; s,t $\in V$; $p_1,p_2,...p_k \in V$; B

Q: Is there a schedule for robots starting at $p_1, p_2, ..., p_k$, such that no robot moves more than B and the item is delivered from s to t?

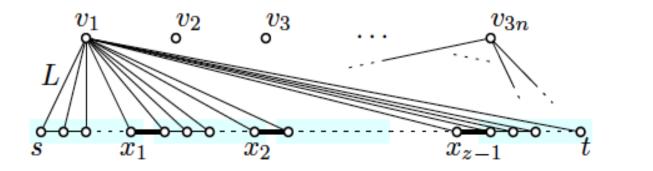
- The item is moved along a simple s-t path P (not shortest)
- Each robot pushes the item on a continuous segment of P.

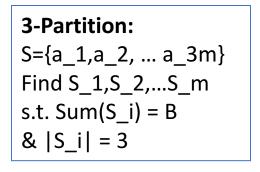


Complexity of Delivery

<u>THEOREM</u>: Collaborative Delivery is NP-complete for arbitrary graph with many agents.

• By a reduction from 3-PARTITION Problem



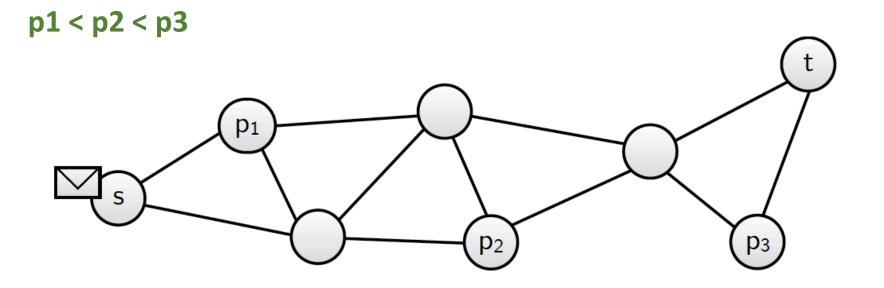


Easy instances of Delivery

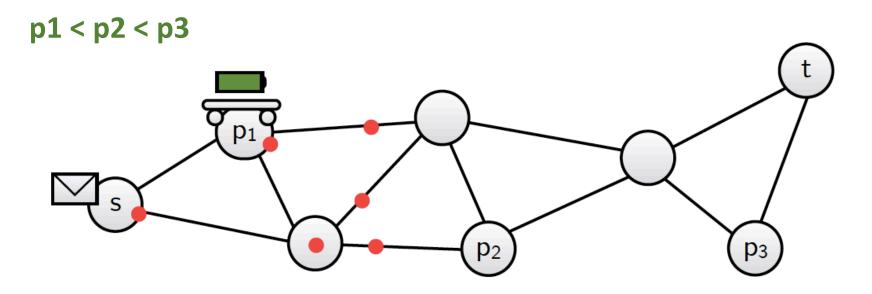
When is it easy to solve Collaborative Delivery?

 If the delivery path P is fixed? 	NO
If the order of robots is fixed?	?
 If the number of robots is constant? 	
 If the energy budgets are constants? 	
 Specific graphs: Planar graphs Trees 	

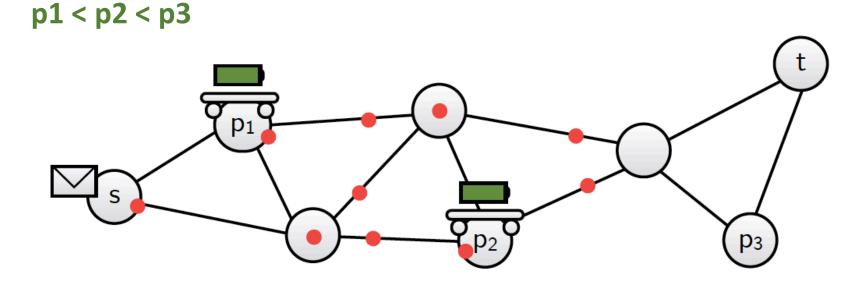
THEOREM: When the order on robots is fixed, Collaborative Delivery can be solved in time $O(k(n+m)(n \cdot \log n + m))$



THEOREM: When the order on robots is fixed, Collaborative Delivery can be solved in time $O(k(n+m)(n \cdot \log n + m))$



THEOREM: When the order on robots is fixed, Collaborative Delivery can be solved in time $O(k(n+m)(n \cdot \log n + m))$



<u>THEOREM</u>: When the order on robots is fixed, Collaborative Delivery can be solved in time $O(k(n+m)(n \cdot \log n + m))$

COROLLARY:

For a constant number of robots k, Collaborative Delivery can be solved in polynomial time

Algorithm: Brute force, trying all possible ordering of robots

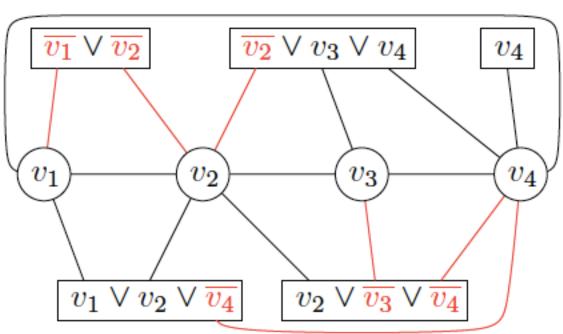
Easy instances of Delivery

When is it easy to solve Collaborative Delivery?

 If the delivery path P is fixed? 	NO
 If the order of robots is fixed? 	YES
 If the number of robots is constant? 	YES
 If the energy budgets are constants? 	NO
 Specific graphs: > Planar graphs > Trees 	?

Planar Graphs

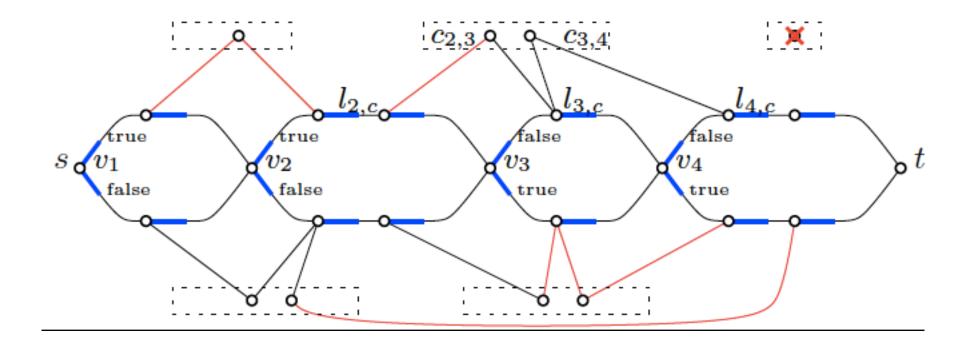
THEOREM: Collaborative Delivery is NP-complete even in Planar graphs.



Planar 3-SAT Instance

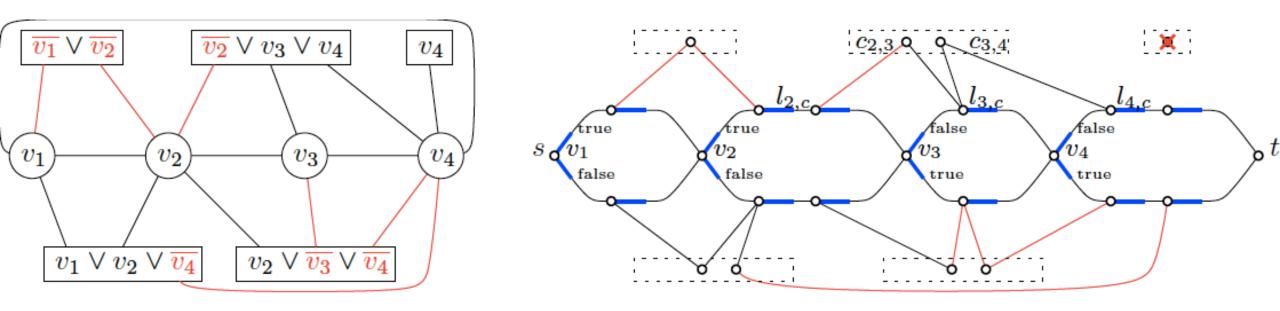
Planar Graphs

THEOREM: Collaborative Delivery is NP-complete even in Planar graphs.



Planar Graphs

THEOREM: Collaborative Delivery is NP-complete even in Planar graphs.



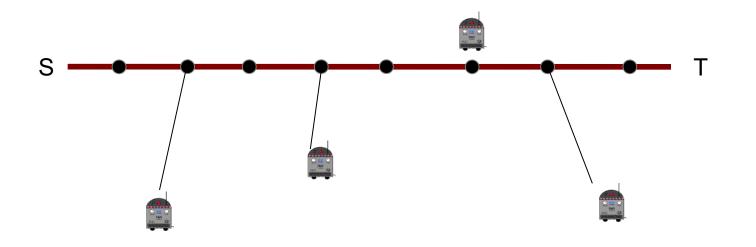
Easy instances of Delivery

When is it easy to solve Collaborative Delivery?

 If the delivery path P is fixed? 	NO
If the order of robots is fixed?	YES
 If the number of robots is constant? 	YES
 If the energy budgets are constants? 	NO
 Specific graphs: > Planar graphs > Trees 	NO ?

Collaborative Delivery on a Tree

- There is a *unique* s-t path P.
- Each robot has a unique path to reach P.
- The problem reduces to a path



Collaborative Delivery on a Line

• Collaborative Delivery on a line is poly-time solvable, if each robot is already on the line and has same energy B.

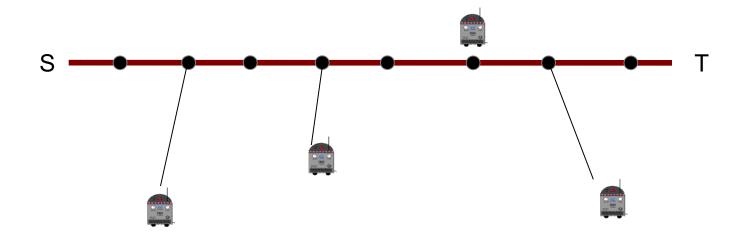
If robots have arbitrary energy levels (B₁, B₂, B₃, B₄ ...) ?

- Collaborative-Delivery on a line is (weakly) NP-hard !
- Reduction from Weighted-4-partition problem. [Chalopin et al. ICALP 2014]

Collaborative Delivery on a Tree

<u>THEOREM</u>: Collaborative Delivery is weakly NP-complete for trees with many agents.

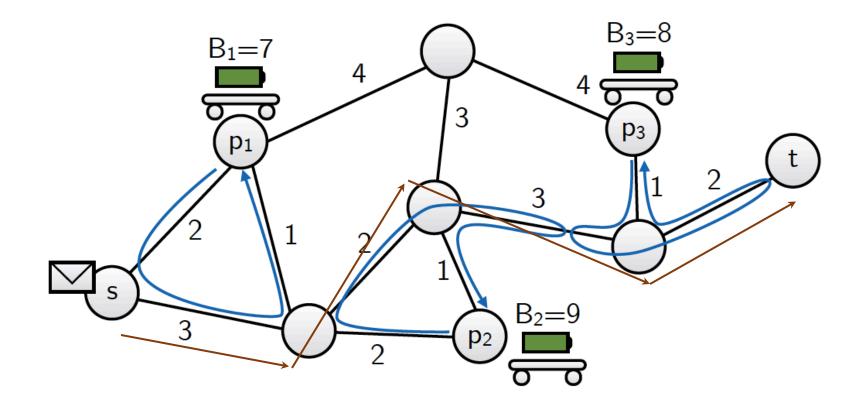
• There exists pseudo-polynomial algorithm (dynamic programming)



Collaborative Delivery with Returning Agents

Delivery with Return

• Each agent needs to return to home station.



Delivery with Return

<u>Definition</u>: Given G(V,E); w; s,t $\in V$; $p_1,p_2,...p_k \in V$; B

Q: Is there a schedule for robots starting at $p_1, p_2, ..., p_k$, such that

- > each robot performs a tour of length B (returning home)
- > the item is delivered from s to t?

• What is the complexity of Collaborative Delivery with Return?

Delivery with Return

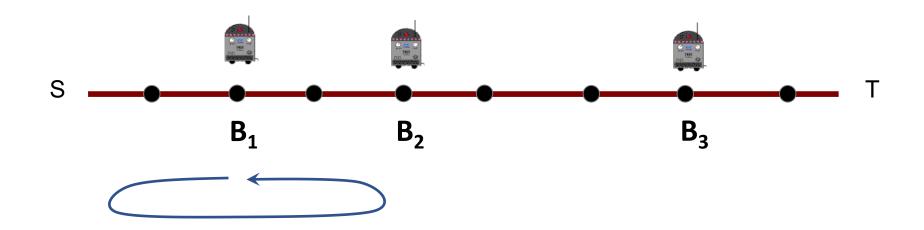
- Collaborative Delivery with Return for many agents is NP-hard, even in Planar graphs
- Collaborative Delivery with Return can be solved in polynomial time for constant number of agents (or if the order of agents is given)

THEOREM: *Collaborative Delivery with Return* can be solved in polynomial time in Trees

Recall: Collaborative Delivery (without Return) is NP-complete in Trees!

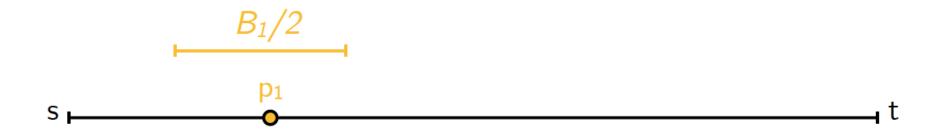
Delivery with Return in Trees

* Reduce the problem to the Path



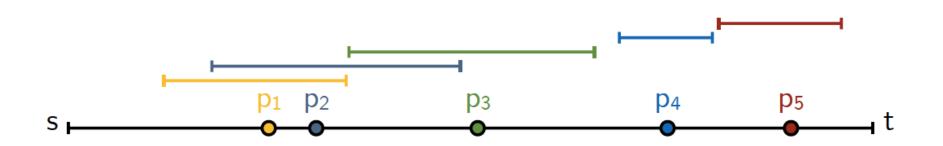
Delivery with Return in Trees

- * Reduce the problem to the Path.
- * Each agent corresponds to an interval of fixed length.



Delivery with Return in Trees

- * Reduce the problem to the Path
- * Each agent corresponds to an interval of fixed length.
- Cover the line with intervals (choose greedily)
- * $O(n + k \log k)$ algorithm for delivery in Trees using k agents.



Variants of Collaborative Delivery

•	If the delivery path P is fixed	Hard
•	If the number of robots is constant (or order is fixed)	EASY
•	If the energy budgets are constants	Hard
•	 Specific graphs: ➢ Planar graphs ➢ Delivery (without Return) on Trees ➢ Delivery with Return on Trees 	Hard Hard EASY

S. DAS

Approximations

Optimization of Energy Budget B

<u>Approximation Algorithm:</u> Algorithm solves delivery using c.B energy if the optimal solution uses B energy per agent.

There is a polynomial time 2-approximation algorithm

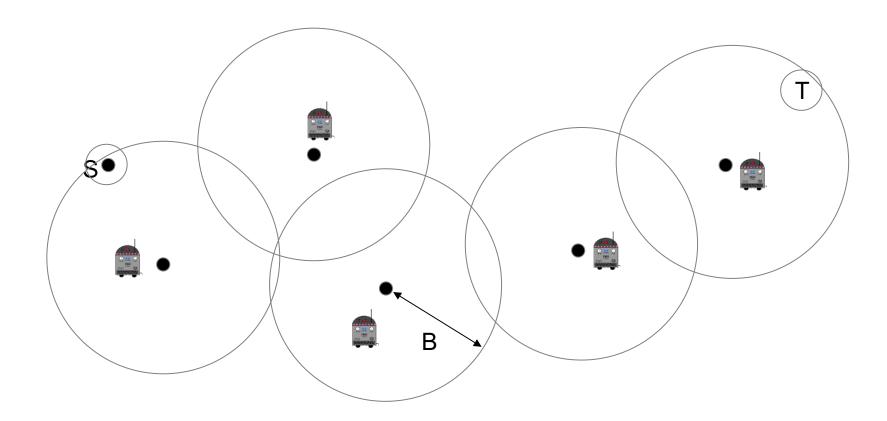
Distinct Energy Budgets

<u>Resource-augmented Algorithm:</u> Algorithm solves delivery using c.B(i) energy for robot r(i) whenever there is a solution to the original instance of the problem.

There is a polynomial time 3-resource augmented algorithm

Algorithm for Delivery

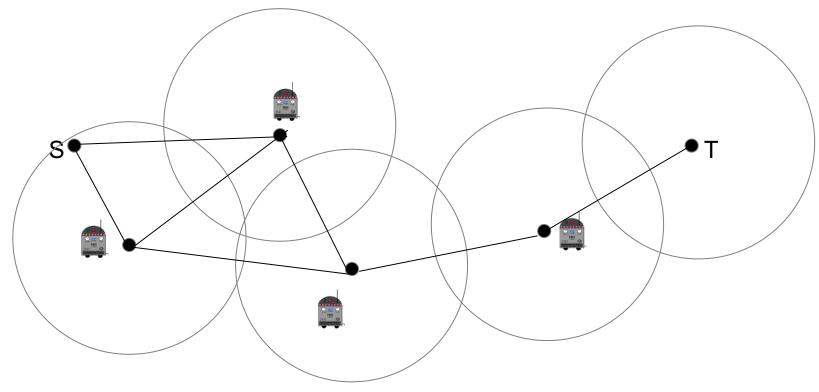
Necessary Condition:



Algorithm for Delivery

Necessary Condition:

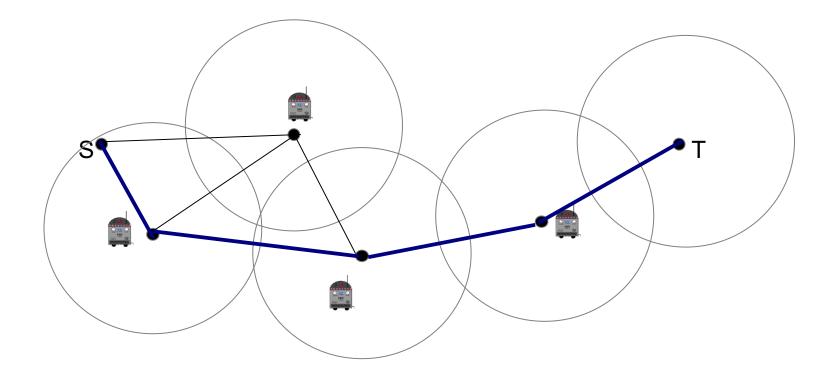
• There exists a S-T path in the intersection graph.



Algorithm for Delivery

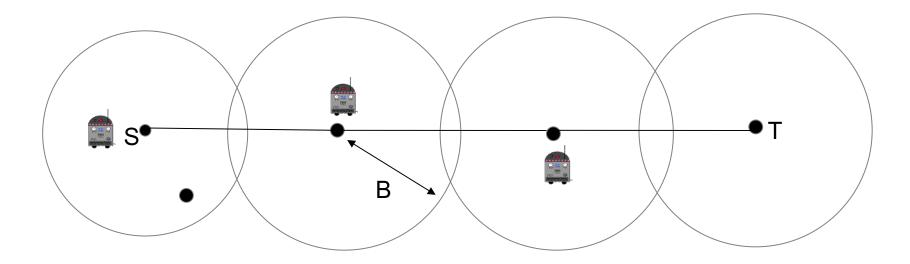
If there exists a S-T path in the intersection graph,

 \Rightarrow there is poly-time algorithm using 3B(i) energy for robot r(i).



2-Approx. Algorithm

- Guess the first robot r₁ in the optimal strategy.
- Place r₁ at S with reduced energy (smaller ball).
- Each robot can carry to neighboring robot using 2B energy.



Approximate Algorithms

Optimization version

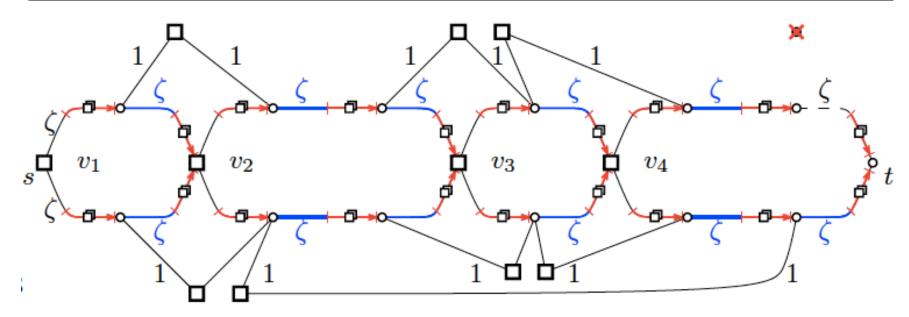
- There is a polynomial time 2-approximation algorithm
 Distinct Budget version
- There is a polynomial time 3-resource augmented (2-resource augmented) algorithm for collaborative delivery (with return)

Inapproximability

<u>Theorem</u>: There is no polynomial-time $(2-\underline{\epsilon})$ -resourceaugmented, resp. $(3-\underline{\epsilon})$ -resource augmented, algorithm for delivery with return (resp. without return) unless P=NP

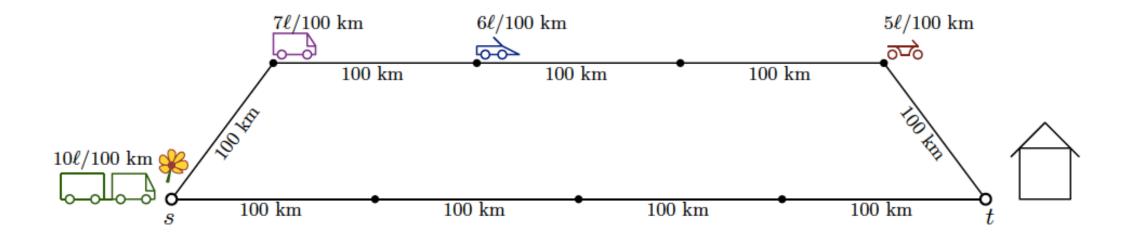
In-Approximability

<u>Theorem</u>: There is no polynomial-time $(2-\underline{\epsilon})$ -resourceaugmented, resp. $(3-\underline{\epsilon})$ -resource augmented, algorithm for delivery with return (resp. without return) unless P=NP

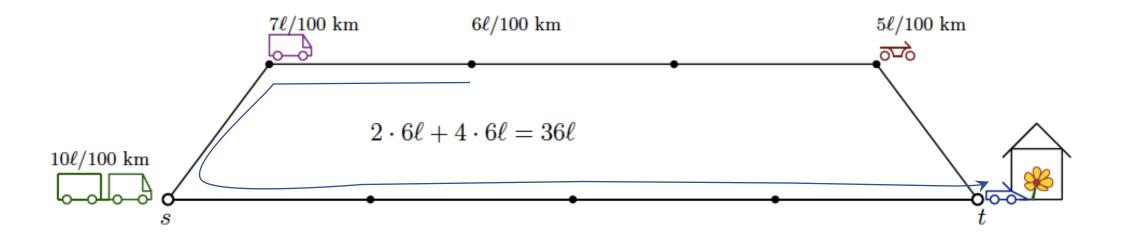


Collaborative Delivery with Heterogeneous Agents

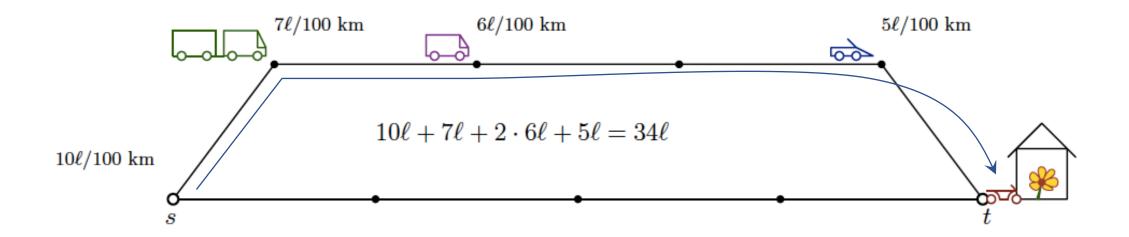
Agents differ in their rate of energy consumption ...



Agents differ in their rate of energy consumption ...



Agents differ in their rate of energy consumption ...



<u>Collaborative Delivery with Heterogenous Agents:</u>

- \mathbf{k} agents start at $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_k$, and
- Have energy consumption rate w₁, w₂, ... w_k,
- > **m** packages to be delivered between $(s_1,t_1) (s_2,t_2) \dots (s_m,t_m)$

<u>Objective</u>: Minimize Cost = SUM (w_i . D_i)

where D_i is the total distance traveled by i-th agent.

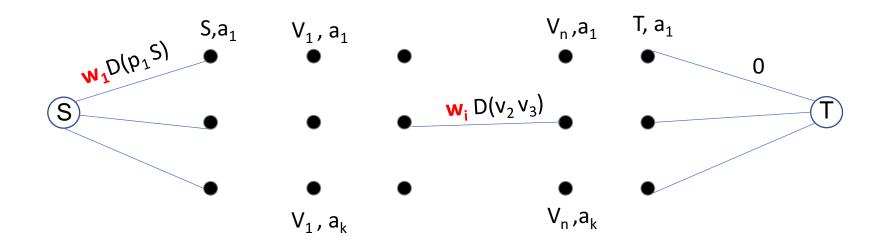
Single Message:

Lemma: If the message is delivered by $p_1, p_2, ..., p_k$ in this order, then

 $w_1 > w_2 > ... > w_k$

<u>Theorem</u>: The optimal solution for single message delivery can be computed in $O(n^3)$ time.

<u>Theorem</u>: The optimal solution for single message delivery can be computed in $O(n^3)$ time.



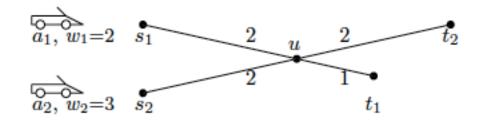
Shortest s-t path in auxiliary graph Gx => Optimal Solution

Single Message:

Lemma: If the message is delivered by $p_1, p_2, ..., p_k$ in this order, then

 $w_1 > w_2 > ... > w_k$

Many Messages:



Delivery of Multiple Packages

Delivery with Heterogenous Agents:

Collaboration:

Should the agents collaborate on delivering a package?

> Planning:

How to plan the route of an agent delivering multiple packages?

Coordination:

How to assign messages to agents?

Collaboration

What is the benefit of Collaboration?

Delivery without Collaboration:

Algorithms where each package is delivered by single agent : Algos

Definition:

BoC = MIN [Cost (Algo_s) / Optimal Cost]

Benefit of Collaboration

Lower Bound (BoC >= 2)

Any algorithm for delivery *without collaboration* cannot achieve an approximation ratio better than 2

For a single message, the ratio cannot de better than 1/ln(2) = 1.44

Upper Bound (BoC <= 2)

There is an algorithm for delivery *without collaboration* that has approximation ratio <= 2

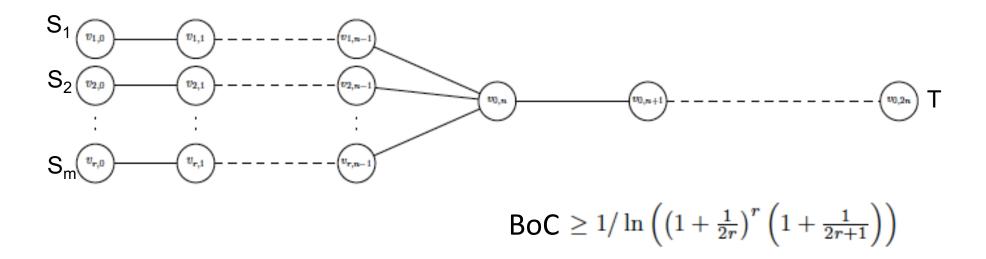
For a single message, there is an 1/ln(2) approximation algorithm.

Benefit of Collaboration

Lower Bound (BoC >= 2)

Any algorithm for delivery *without collaboration* cannot achieve an approximation ratio better than 2

For a single message, the ratio cannot de better than $1/\ln(2) = 1.44$



Benefit of Collaboration

Upper Bound (BoC <= 2)

There is an algorithm for delivery *without collaboration* that has approximation ratio <= 2

Proof Idea:

- Consider any optimal algorithm A and take the trajectory graph GA
- For each directed edge in GA, add a reverse edge
- In each connected component perform a Eulerian tour using the cheapest agent present in the component.
- Cost = 2.w_i. Sum(edges in C_i) < 2 OPT(C_i)

Delivery of Multiple Packages

Delivery with Heterogenous Agents:

Collaboration:

Delivery without collaboration => 2-approximation

> Planning:

How to plan the route of an agent delivering multiple packages?

Coordination:

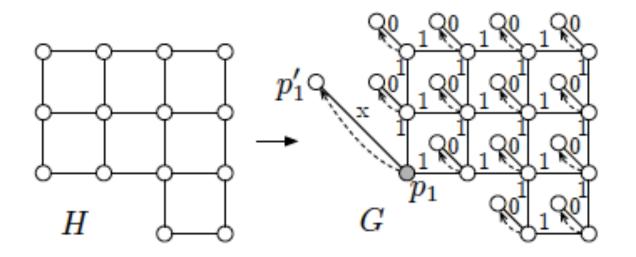
How to assign messages to agents?

Planning

Planning the schedule for a single agent

<u>Theorem</u>: Planning of delivery is NP-hard even for a single agent, and even in Planar graphs.

Reduction from Hamiltonian Cycle



Planning

Planning the schedule for a single agent

<u>Theorem</u>: *Planning of delivery* is NP-hard even for a single agent, and even in Planar graphs.

Inapproximability

<u>Theorem</u>: It is NP-hard to approximate *Planning of delivery* to within any constant less than 367/366

Planning

Approximation Algorithm for Planning Delivery

<u>Theorem</u>: There is a **3.5 approximation** for Planning of delivery when restricted to delivery without collaboration.

Proof Idea:

Collection -

- Each agent collects all messages assigned to it and returns home
- Using an MST of the subgraph containing the sources and p_i
- Gives a 2-approximation

Delivery -

• The agent delivers all messages using approximation of TSP (e.g. Christofide's Algorithm gives 1.5 approximation)

Delivery of Multiple Packages

Delivery with Heterogenous Agents:

Collaboration:

Delivery without collaboration => 2-approximation

> Planning:

Planning is hard but can be approximated for each agent

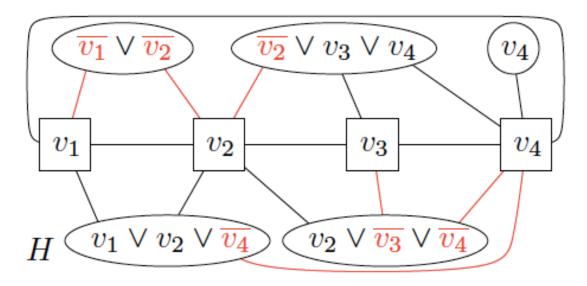
Coordination:

How to assign messages to agents?

How to assign jobs to agent?

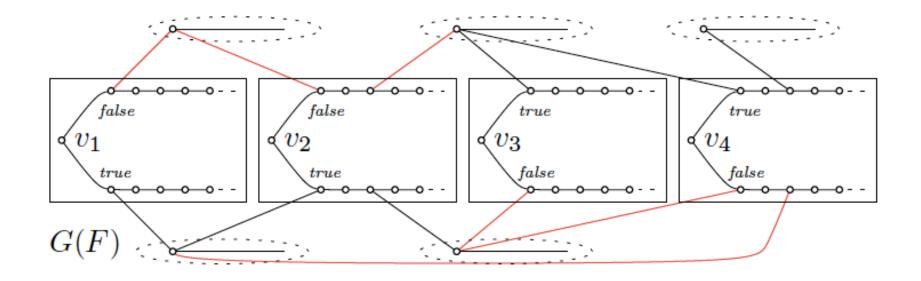
<u>Theorem</u>: Coordination of delivery is NP-hard even in Planar graphs.

Reduction from Planar 3-SAT



How to assign jobs to agent?

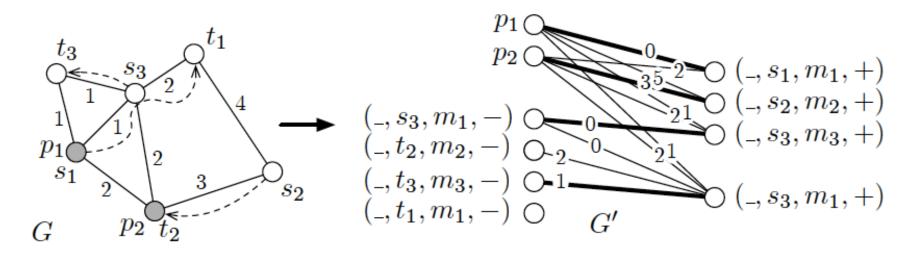
<u>Theorem</u>: Coordination of delivery is NP-hard even in Planar graphs.



Theorem: Coordination of delivery can be solved in polynomial time for agents with uniform weights and unit capacity.

- Each agent performs a sequence of jobs (deliveries)
- Since the weights are same, choose the closest agent for each job
- Assigning jobs to agents can be done by matching in an auxiliary graph

Theorem: Coordination of delivery can be solved in polynomial time for agents with uniform weights and unit capacity.



Min cost matching in Bipartite graphs

Delivery of Multiple Packages

Delivery with Heterogenous Agents:

Collaboration:

Delivery without collaboration => 2-approximation

> Planning:

Planning is hard but can be approximated for each agent

Coordination:

NP-hard, constant approximation for uniform weight agents

Weighted Delivery

How to solve the original delivery problem with weighted agents?

<u>Theorem</u>: There is a polynomial time (4 max w_i/w_j) approximation algorithm for collaborative delivery with heterogeneous agents (with capacity 1)

- Use a restricted schedule without collaboration.
- Each agent uses DFS to go from one job to next.
- Increase the energy cost of each agent to max(w_i).

(2 factor) (2 factor) (max w_i/w_j)

Related Work

Mechanism Design for Selfish Agents

- Agents can lie about their energy rate $(w_i' > w_i)$
- Objective: Design payment mechanism s.t.
 - Encourage agents to be truthful
 - > Approximate (optimize) the total energy consumption
 - > Payments are not too far from actual consumption

[A. Baertschi, D. Graf, P. Penna, ATMOS 2017]

Truthful Mechanisms for Delivery with Agents

Other Work on Delivery

Heterogenous Agents

> Agents have *speeds* and *weights* (Optimize Energy and Time)

Homogenous Agents : Agents can share energy

- Without constraints : One agent gathers all energy
 - Hard for general graphs, easy for trees
- > With capacity constraints
 - Hard for B=2 ; Easy for chosen homebases

[A. Baertschi and T. Tschager; FCT 2017]

[Czyzowicz, Diks et al. Sirocco'16]; [Bampas, D. et al. Algosensor'17]

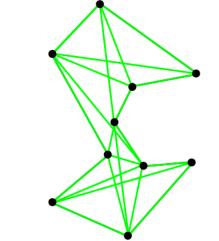
Other Related Work

Movement Problems: Optimize TOTAL or MAX distance moved

- Homogeneous agents starting at given nodes of G
- Objective: Form specific configurations
 - Connected Subgraph
 - Clique
 - Independent Set
- General / specific graphs, Polygons

[E.Demaine, M. Hajiaghayi et al.; T. Algo 2009]

[Bilò, Gualà, Leucci, Proietti; TCS 2016] [D. Bilo et al. Algosensors 2013]



Future Work

• Decentralized solutions

- Selfish (non-cooperating) Agents
- > Online Algorithms (Exploration, ...)

• Variants of the Model

- Recharging stations
- > Energy collection, energy sharing
- Edge dependent rates, restrictions, speeds

• Other Problems for agents with budgets

- Barrier Coverage, Patrolling
- Gathering, Spreading

Thank you!