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Distributed	Network	of	Robots

Distributed System of robots
> That move autonomously
> Perform sensing, data gathering, exploration
> Fault Tolerant, self adjusting 

Highly Dynamic Networks,  Mobile Sensor Networks

S.	DAS
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Large	Teams	of	Small	Robots

Small and inexpensive robots

l Limited Memory

l Limited Visibility

• Limited communication

• Inaccurate measurement 

Limitations 
of 

Robots 

Distributed
Tasks 

Major Issue: Energy consumption

S.	DAS
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Moving	consumes	Energy

l Moving consumes more energy than computing!
l Small robots cannot have a large Fuel-Tank (or Battery)!
l Robots cannot refuel or recharge while moving!

Assumption: 
[ Energy bound = B ]   => At most B moves per robot.

Limited 
Energy 

Distributed
Tasks 

S.	DAS



U.	Liverpool,	31	may	2018		 5

The	Model

• Undirected	Weighted	Graph	G
• Robots	start	from	a	set	of	nodes
• Each	robot	can	travel	a	distance	

of	at	most	B

S.	DAS
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The	Problems

l Exploration	/	Search
l Delivering	Goods
l Patrolling	/	Guarding
l Rendezvous	
l Pattern	Formation

• Undirected	Weighted	Graph	G
• Robots	start	from	a	set	of	nodes
• Each	robot	can	travel	a	distance	

of	at	most	B

S.	DAS
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A	simple	Problem	:	Delivery

l Move	an	item	from	source	to	target

S

T

S.	DAS
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A	simple	Problem	:	Delivery

l Move	an	item	from	source	to	target

S

T

S.	DAS

Single	Agent:	
Easy	Solution
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A	simple	Problem	:	Delivery

l Move	an	item	from	source	to	target
l Multiple robots,	scattered	among	nodes	of	G

S

T

S.	DAS
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Collaborative	Delivery
Definition:	Given	G(V,E);	w;	s,t ⍷ V;	p1,p2,…pk ⍷ V;	B
Q:	Is	there	a	schedule	for	robots	starting	at	p1,p2,…pk,	such	that	no	
robot	moves	more	than	B	and	the	item	is	delivered	from	s	to	t?		

S

T

• The	item	is	moved	along	a	simple	
s-t	path	P	(not	shortest)

• Each	robot	pushes	the	item	on	a	
continuous	segment	of	P.

S.	DAS
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Complexity	of	Delivery

THEOREM:	Collaborative	Delivery	is	NP-complete	for	arbitrary	
graph	with	many	agents.
l By	a	reduction	from	3-PARTITION	Problem

3-Partition:
S={a_1,a_2,	… a_3m}
Find	S_1,S_2,…S_m
s.t.	Sum(S_i)	=	B
&	|S_i|	=	3

S.	DAS
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Easy	instances	of	Delivery

When	is	it	easy	to	solve	Collaborative	Delivery?

S.	DAS

• If	the	delivery	path	P	is	fixed? NO

v If	the	order	of	robots	is	fixed? ?

• If	the	number	of	robots	is	constant?
• If	the	energy	budgets	are	constants?
• Specific	graphs:	

• Planar	graphs
• Trees
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Delivery	with	fixed	order

THEOREM:	When	the	order	on	robots	is	fixed,	Collaborative	
Delivery	can	be	solved	in	time	O(k(n+m)(n·log n	+	m))

S.	DAS

p1	<	p2	<	p3
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Delivery	with	fixed	order

THEOREM:	When	the	order	on	robots	is	fixed,	Collaborative	
Delivery	can	be	solved	in	time	O(k(n+m)(n·log n	+	m))

S.	DAS

p1	<	p2	<	p3
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Delivery	with	fixed	order

THEOREM:	When	the	order	on	robots	is	fixed,	Collaborative	
Delivery	can	be	solved	in	time	O(k(n+m)(n·log n	+	m))

S.	DAS

p1	<	p2	<	p3
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Delivery	with	fixed	order

THEOREM:	When	the	order	on	robots	is	fixed,	Collaborative	
Delivery	can	be	solved	in	time	O(k(n+m)(n·log n	+	m))

S.	DAS

COROLLARY:
For	a	constant number	of	robots	k,	Collaborative	Delivery	can	be	
solved	in	polynomial	time

Algorithm:	Brute	force,	trying	all	possible	ordering	of	robots
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Easy	instances	of	Delivery

When	is	it	easy	to	solve	Collaborative	Delivery?

S.	DAS

• If	the	delivery	path	P	is	fixed? NO

• If	the	order	of	robots	is	fixed? YES

• If	the	number	of	robots	is	constant? YES

• If	the	energy	budgets	are	constants? NO

• Specific	graphs:	
Ø Planar	graphs
Ø Trees

?
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Planar	Graphs

THEOREM:	Collaborative	Delivery	is	NP-complete	even	in	Planar	
graphs.

S.	DAS

Planar	3-SAT	Instance
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Planar	Graphs

THEOREM:	Collaborative	Delivery	is	NP-complete	even	in	Planar	
graphs.

S.	DAS
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Planar	Graphs

THEOREM:	Collaborative	Delivery	is	NP-complete	even	in	Planar	
graphs.

S.	DAS
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Easy	instances	of	Delivery

When	is	it	easy	to	solve	Collaborative	Delivery?

S.	DAS

• If	the	delivery	path	P	is	fixed? NO

If	the	order	of	robots	is	fixed? YES

• If	the	number	of	robots	is	constant? YES

• If	the	energy	budgets	are	constants? NO

• Specific	graphs:	
Ø Planar	graphs
Ø Trees

NO
?
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Collaborative	Delivery	on	a	Tree

l There	is	a	unique s-t	path	P.
l Each	robot	has	a	unique	path	to	reach	P.	
l The	problem	reduces	to	a	path

S T

S.	DAS
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Collaborative	Delivery	on	a	Line

l Collaborative	Delivery	on	a	line	is	poly-time	solvable,	if	each	
robot	is	already	on	the	line	and	has	same	energy	B.	

S T

l Collaborative-Delivery	on	a	line	is	(weakly)	NP-hard	!
l Reduction	from	Weighted-4-partition	problem.	
[Chalopin	et	al.	ICALP	2014]

S.	DAS

If	robots	have	arbitrary	energy	levels (B1,B2,B3,B4 ...)	?
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Collaborative	Delivery	on	a	Tree

THEOREM:	Collaborative	Delivery	is	weakly	NP-complete	for	
trees	with	many	agents.

S T

S.	DAS

l There	exists	pseudo-polynomial	algorithm	(dynamic	programming)



Collaborative	Delivery
with

Returning	Agents
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Delivery	with	Return

S.	DAS

l Each	agent	needs	to	return	to	home	station.
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Delivery	with	Return

S.	DAS

l What	is	the	complexity	of	Collaborative	Delivery	with	Return?

Definition:	Given	G(V,E);	w;	s,t ⍷ V;	p1,p2,…pk ⍷ V;	B
Q:	Is	there	a	schedule	for	robots	starting	at	p1,p2,…pk,	such	that	
Ø each	robot	performs	a	tour	of	length	B	(returning	home)	
Ø the	item	is	delivered	from	s	to	t?		
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Delivery	with	Return

S.	DAS

v Collaborative	Delivery	with	Return	for	many	agents	is	NP-hard,	
even	in	Planar	graphs

v Collaborative	Delivery	with	Return	can	be	solved	in	polynomial	
time	for	constant	number	of	agents (or	if	the	order	of	agents	is	
given)

THEOREM:	Collaborative	Delivery	with	Return	can	be	solved	in	
polynomial	time	in	Trees

Recall:	Collaborative	Delivery	(without	Return)	is	NP-complete	in	Trees!
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Delivery	with	Return	in	Trees

S.	DAS

v Reduce	the	problem	to	the	Path

S T

B1 B2 B3
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Delivery	with	Return	in	Trees

S.	DAS

v Reduce	the	problem	to	the	Path.	
v Each	agent	corresponds	to	an	interval	of	fixed	length.
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Delivery	with	Return	in	Trees

S.	DAS

v Reduce	the	problem	to	the	Path
v Each	agent	corresponds	to	an	interval	of	fixed	length.
v Cover	the	line	with	intervals	(choose	greedily)
v O(n	+	k	log	k)	algorithm	for	delivery	in	Trees	using	k	agents.
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Variants	of	Collaborative	Delivery

S.	DAS

• If	the	delivery	path	P	is	fixed Hard

• If	the	number	of	robots	is	constant	(or	order	is	fixed) EASY

• If	the	energy	budgets	are	constants Hard

• Specific	graphs:	
Ø Planar	graphs
Ø Delivery	(without	Return)	on	Trees
Ø Delivery with	Return	on	Trees	

Hard
Hard
EASY
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Approximations

Optimization	of	Energy	Budget	B
Approximation	Algorithm: Algorithm	solves	delivery	using	c.B	
energy	if	the	optimal	solution	uses	B	energy	per	agent.

Distinct	Energy	Budgets
Resource-augmented	Algorithm: Algorithm	solves	delivery	using	
c.B(i)	energy	for	robot	r(i)	whenever	there	is	a	solution	to	the	
original	instance	of	the	problem.

S.	DAS

There	is	a	polynomial	time	2-approximation	algorithm

There	is	a	polynomial	time	3-resource	augmented	algorithm



U.	Liverpool,	31	may	2018		 34

Algorithm	for	Delivery

Necessary	Condition:

S

T

B

S.	DAS
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Algorithm	for	Delivery
Necessary	Condition:
l There	exists	a	S-T	path	in	the	intersection	graph.

S T

S.	DAS
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Algorithm	for	Delivery

If	there	exists	a	S-T	path	in	the	intersection	graph,
Þ there	is	poly-time	algorithm	using	3B(i)	energy	for	robot	r(i).	

S T

S.	DAS
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2-Approx.	Algorithm

l Guess	the	first	robot	r1 in	the	optimal	strategy.
l Place	r1 at	S	with	reduced	energy	(smaller	ball).
l Each	robot	can	carry	to	neighboring	robot	using	2B	energy.

TS

S.	DAS

B
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Approximate	Algorithms

Optimization	version
• There	is	a	polynomial	time	2-approximation	algorithm
Distinct	Budget	version
• There	is	a	polynomial	time	3-resource	augmented	(2-resource	
augmented)	algorithm	for	collaborative	delivery	(with	return)

Inapproximability
Theorem:	There	is	no	polynomial-time	(2-⍷)-resource-
augmented,	resp.	(3-⍷)-resource	augmented,	algorithm	for	
delivery	with	return	(resp.	without	return)	unless	P=NP

S.	DAS
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In-Approximability

Theorem:	There	is	no	polynomial-time	(2-⍷)-resource-
augmented,	resp.	(3-⍷)-resource	augmented,	algorithm	for	
delivery	with	return	(resp.	without	return)	unless	P=NP

S.	DAS
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Heterogeneous	Agents

Agents	differ	in	their	rate	of	energy	consumption	…

S.	DAS
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Heterogeneous	Agents

Agents	differ	in	their	rate	of	energy	consumption	…

S.	DAS
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Heterogeneous	Agents

Agents	differ	in	their	rate	of	energy	consumption	…

S.	DAS



U.	Liverpool,	31	may	2018		 44

Heterogeneous	Agents

S.	DAS

Collaborative	Delivery	with	Heterogenous Agents:
Ø k agents	start	at	p1,p2,… pk,	and	
Ø Have	energy	consumption	rate	w1,w2,… wk,	
Ø m packages	to	be	delivered	between	(s1,t1)	(s2,t2)	… (sm,tm)

Objective: Minimize	Cost	=	SUM	(	wi . Di )		
where	Di is	the	total	distance	traveled	by	i-th agent.
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Heterogeneous	Agents

S.	DAS

Single	Message:
Lemma:	If	the	message	is	delivered	by	p1,p2,… pk	in	this	order,	then

w1 >	w2 >	… > wk

Theorem:	The	optimal	solution	for	single	message	delivery	can	
be	computed	in	O(n^3)	time.	
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Heterogeneous	Agents

S.	DAS

Theorem:	The	optimal	solution	for	single	message	delivery	can	
be	computed	in	O(n^3)	time.

S T

V1	,	a1

V1	,	ak

Vn	,a1

Vn	,ak

S,a1 T,	a1
0

Shortest	s-t	path	in	auxiliary	graph	Gx		=>	Optimal	Solution
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Heterogeneous	Agents

S.	DAS

Single	Message:
Lemma:	If	the	message	is	delivered	by	p1,p2,… pk	in	this	order,	then

w1 >	w2 >	… > wk

Many	Messages:
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Delivery	of	Multiple	Packages

S.	DAS

Delivery	with	Heterogenous	Agents:

Ø Collaboration:	
Should	the	agents	collaborate	on	delivering	a	package?

Ø Planning:	
How	to	plan	the	route	of	an	agent	delivering	multiple	packages?

Ø Coordination:	
How	to	assign	messages	to	agents?	
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Collaboration

S.	DAS

What	is	the	benefit	of	Collaboration?

Ø Delivery	without	Collaboration:	
Algorithms	where	each	package	is	delivered	by	single	agent	:	AlgoS

Definition:	
BoC =	MIN	[	Cost	(AlgoS)	/	Optimal	Cost	]
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Benefit	of	Collaboration

S.	DAS

Lower	Bound	(BoC	>=	2)
Any	algorithm	for	delivery	without	collaboration	cannot	achieve	an	
approximation	ratio	better	than	2
For	a	single	message,	the	ratio	cannot	de	better	than	1/ln(2)	=1.44

Upper	Bound	(BoC	<=	2)
There	is	an	algorithm	for	delivery	without	collaboration	that	has	
approximation	ratio	<=	2
For	a	single	message,	there	is	an	1/ln(2)	approximation	algorithm.
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Benefit	of	Collaboration

S.	DAS

Lower	Bound	(BoC	>=	2)
Any	algorithm	for	delivery	without	collaboration cannot	achieve	an	
approximation	ratio	better	than	2
For	a	single	message,	the	ratio	cannot	de	better	than	1/ln(2)	=1.44

T

S1

S2

Sm

BoC
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Benefit	of	Collaboration

S.	DAS

Upper	Bound	(BoC	<=	2)
There	is	an	algorithm	for	delivery	without	collaboration	that	has	
approximation	ratio	<=	2

Proof	Idea:

• Consider	any	optimal	algorithm	A	and	take	the	trajectory	graph	GA
• For	each	directed	edge	in	GA,	add	a	reverse	edge
• In	each	connected	component	perform	a	Eulerian	tour	using	the	cheapest	

agent	present	in	the	component.
• Cost	=	2.wi.	Sum(edges	in	Ci)	<	2	OPT(Ci)
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Delivery	of	Multiple	Packages

S.	DAS

Delivery	with	Heterogenous	Agents:

Ø Collaboration:	
Delivery	without	collaboration	=>	2-approximation

Ø Planning:	
How	to	plan	the	route	of	an	agent	delivering	multiple	packages?

Ø Coordination:	
How	to	assign	messages	to	agents?	
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Planning	

S.	DAS

Planning	the	schedule	for	a	single	agent

Theorem:	Planning	of	delivery	is	NP-hard	even	for	a	single	agent,	and	
even	in	Planar	graphs.
Reduction	from	Hamiltonian	Cycle
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Planning	

S.	DAS

Planning	the	schedule	for	a	single	agent

Theorem:	Planning	of	delivery	is	NP-hard	even	for	a	single	agent,	and	
even	in	Planar	graphs.

Inapproximability

Theorem:	It	is	NP-hard	to	approximate	Planning	of	delivery	to	within	
any	constant	less	than	367/366	
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Planning	

S.	DAS

Approximation	Algorithm	for	Planning	Delivery

Theorem:	There	is	a	3.5	approximation	for	Planning	of	delivery	when	
restricted	to	delivery	without	collaboration.

Proof	Idea:
Collection	-

• Each	agent	collects	all	messages	assigned	to	it	and	returns	home
• Using	an	MST	of	the	subgraph	containing	the	sources	and	p_i
• Gives	a	2-approximation
Delivery	-
• The	agent	delivers	all	messages	using	approximation	of	TSP	(e.g.	

Christofide’s Algorithm	gives	1.5	approximation)	
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Delivery	of	Multiple	Packages

S.	DAS

Delivery	with	Heterogenous	Agents:

Ø Collaboration:	
Delivery	without	collaboration	=>	2-approximation

Ø Planning:	
Planning	is	hard	but	can	be	approximated	for	each	agent

Ø Coordination:	
How	to	assign	messages	to	agents?	
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Coordination	

S.	DAS

How	to	assign	jobs	to	agent?

Theorem:	Coordination	of	delivery	is	NP-hard	even	in	Planar	graphs.

Reduction	from	Planar	3-SAT
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Coordination	

S.	DAS

How	to	assign	jobs	to	agent?

Theorem:	Coordination	of	delivery	is	NP-hard	even	in	Planar	graphs.
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Coordination	

S.	DAS

Theorem:	Coordination	of	delivery	can	be	solved	in	polynomial	time	
for	agents	with	uniform	weights	and	unit	capacity.

• Each	agent	performs	a	sequence	of	jobs	(deliveries)
• Since	the	weights	are	same,	choose	the	closest	agent	for	each	job
• Assigning	jobs	to	agents	can	be	done	by	matching	in	an	auxiliary	

graph
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Coordination	

S.	DAS

Theorem:	Coordination	of	delivery	can	be	solved	in	polynomial	time	
for	agents	with	uniform	weights	and	unit	capacity.

Min	cost	matching	in	Bipartite	graphs
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Delivery	of	Multiple	Packages

S.	DAS

Delivery	with	Heterogenous	Agents:

Ø Collaboration:	
Delivery	without	collaboration	=>	2-approximation

Ø Planning:	
Planning	is	hard	but	can	be	approximated	for	each	agent

Ø Coordination:	
NP-hard,	constant	approximation	for	uniform	weight	agents		
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Weighted	Delivery

S.	DAS

How	to	solve	the	original	delivery	problem	with	weighted	agents?

Theorem:	There	is	a	polynomial	time	(4	max	wi/wj)	
approximation algorithm	for	collaborative	delivery	with	
heterogeneous	agents	(with	capacity	1)	

• Use	a	restricted	schedule	without	collaboration.														(2	factor)
• Each	agent	uses	DFS	to	go	from	one	job	to	next.															(2	factor)	
• Increase	the	energy	cost	of	each	agent	to	max(w_i).							(max	wi/wj)
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Related	Work

S.	DAS

Mechanism	Design	for	Selfish	Agents

[A.	Baertschi,	D. Graf,	P.	Penna,		ATMOS	2017]
Truthful	Mechanisms	for	Delivery	with	Agents

• Agents	can	lie	about	their	energy	rate	(wi’	>	wi)
• Objective:	Design	payment	mechanism	s.t.

Ø Encourage	agents	to	be	truthful
Ø Approximate	(optimize)	the	total	energy	consumption
Ø Payments	are	not	too	far	from	actual	consumption
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Other	Work	on	Delivery

S.	DAS

Heterogenous Agents
Ø Agents	have	speeds and	weights (Optimize	Energy	and	Time)

[A.	Baertschi	and	T.	Tschager;	FCT	2017]
[Czyzowicz,	Diks	et	al.	Sirocco’16]	;	[Bampas,	D.	et	al.	Algosensor’17]

Homogenous	Agents	:	Agents	can	share	energy
Ø Without	constraints	:	One	agent	gathers	all	energy

• Hard	for	general	graphs,	easy	for	trees
Ø With	capacity	constraints

• Hard	for	B=2	;	Easy	for	chosen	homebases
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Other	Related	Work

S.	DAS

Movement	Problems:	Optimize	TOTAL	or	MAX	distance	moved

• Homogeneous	agents	starting	at	given	nodes	of	G
• Objective:	Form	specific	configurations

Ø Connected	Subgraph
Ø Clique
Ø Independent	Set

• General	/	specific	graphs,	Polygons

[E.Demaine,	M.	Hajiaghayi	et	al.;	T.	Algo	2009]
[Bilò,	Gualà,	Leucci,	Proietti;	TCS	2016]			[D.	Bilo	et	al.	Algosensors	2013]
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Future	Work

S.	DAS

• Decentralized	solutions
Ø Selfish	(non-cooperating)	Agents
Ø Online	Algorithms	(Exploration,	…)

• Variants	of	the	Model
Ø Recharging	stations
Ø Energy	collection,	energy	sharing
Ø Edge	dependent	rates,	restrictions,	speeds

• Other	Problems	for	agents	with	budgets
Ø Barrier	Coverage,	Patrolling
Ø Gathering,	Spreading



Thank	you!
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