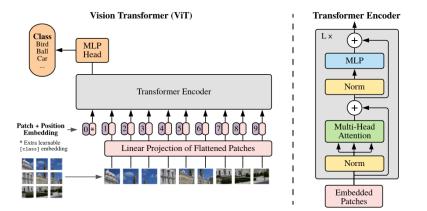
Computer vision and classification deep architectures TRANSFOMERS

Ronan Sicre

伺 ト イヨ ト イヨト

Vision Transformers

Transformers use multi-head attention on sequence of patches.



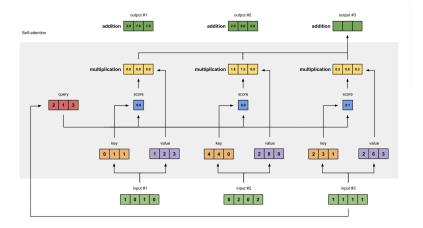
An image is worth 16x16 words: Transformers for image recognition at scale

Vision Transformers

https://towards data science.com/illustrated-self-attention-2d627 e 33 b 20 a

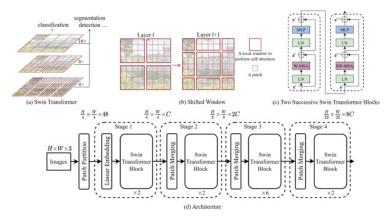
Vision Transformers

Attention(Q, K, V) = Softmax($\frac{QK^{T}}{\sqrt{d}}V$)

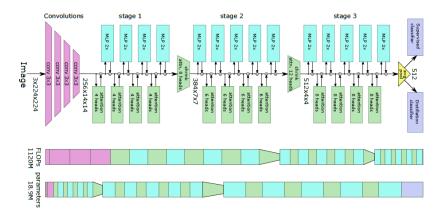


Transformer architectures: Swin Transformers Shifted windows Hierarchical filters (pyramids)

Can cope with multiple down stream tasks (object localization)



Combining CNNs and transformers: LeViT CNN embedding



ロトス団とスヨケスヨケーヨーの人で

Combining CNNs and transformers: Conformer

CNN and transformers in parallel Orthogonal connections at every block

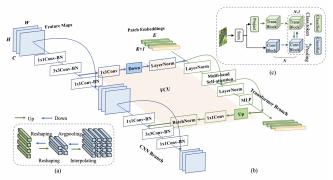


Figure 2: Network architecture of the proposed Conformer. (a) Up-sampling and down-sampling for spatial alignment of feature maps and patch embeddings. (b) Implementation details of the CNN block, the transformer block, and the Feature Coupling Unit (FCU). (c) Thumbnail of Conformer.

Combining CNNs and transformers: Mobileformer mobileNet v3 + LeViT

・ロト ・ 同ト ・ ヨト ・ ヨト

э

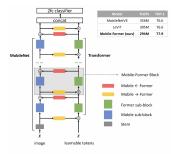


Figure 1. Overview of Mobile-Former, which parallelizes MobileNet [26] on the left side and Transformer [36] on the right side. Different from vision transformer [9] that uses image patches to form tokens, the transformer in Mobile-Former takes very few learnable tokens as input that are randomly initialized. Mobile (refers to MobileNet) and Former (refers to transformer) communicate through a bidirectional bridge, which is modeled by the proposed light-weight cross attention. Best viewed in color.

Self-supervised models

RotNet, Deep Cluster, BYOL, DINO, iBOT

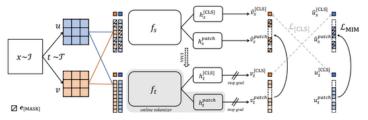


Figure 3: Overview of iBOT framework, performing masked image modeling with an online tokenizer. Given two views u and v of an image x, each view is passed through a teacher network $h_t \circ f_t$ and a student network $h_s \circ f_s$. iBOT minimizes two losses. The first loss $\mathcal{L}_{[CLS]}$ is self-distillation between cross-view [CLS] tokens. The second loss \mathcal{L}_{MIM} is self-distillation between in-view patch tokens, with some tokens masked and replaced by $e_{[MASK]}$ for the student network. The objective is to reconstruct the masked tokens with the teacher networks' outputs as supervision.