Computer vision and classification
deep architectures

TRANSFOMERS
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Vision Transformers
Transformers use multi-head attention on sequence of patches.
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An image is worth 16x16 words: Transformers for image recognition at scale



https:/ /towardsdatascience.com/illustrated-self-attention-
2d627e33b20a


https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Vision Transformers

Attention(Q, K, V) = Softmax(<- V)
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Transformer architectures: Swin

Transformers

Shifted windows

Hierarchical filters (pyramids)

Can cope with multiple down stream tasks (object localization)
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Combining CNNs and transformers
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Combining CNNs and transformers:

Conformer
CNN and transformers in parallel
Orthogonal connections at every block
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Figure 2: Network architecture of the proposed Conformer. (a) Up-sampling and down-sampling for spatial alignment of
feature maps and patch embeddings. (b) Implementation details of the CNN block, the transformer block, and the Feature

Coupling Unit (FCU). (c) Thumbnail of Conformer.




Combining CNNs and transformers:

Mobileformer
mobileNet v3 + LeViT

Model FLOPs
MobieNews  356M 766
=, Levir 0sM 766
@ MobileFormer (ours)  294M  77.9

MobileNet Transformer

» Mobile-Former Block

Mobile ¢- Former

Mobile > Former

Mobile sub-block

-
|

stem

image learnable tokens

Figure 1. Overview of Mobile-Former, which parallelizes Mo-
bileNet [2¢] on the left side and Transformer [*¢] on the right
side. Different from vision transformer [*] that uses image patches
to form tokens, the transformer in Mobile-Former takes very few
learnable tokens as input that are randomly initialized. Mobile
(refers to MobileNet) and Former (refers to transformer) commu-
nicate through a bidirectional bridge, which is modeled by the pro-
posed light-weight cross attention. Best viewed in color.




Self-supervised models

RotNet, Deep Cluster, BYOL, DINO, iBOT
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Figure 3: Overview of iBOT framework, performing masked image modeling with an online
tokenizer. Given two views u and v of an image x, each view is passed through a teacher m,[wurk
hy o fy and a student network b, © fo. iBOT minimizes two losses, The first loss £
distillation between cross-view [CLS] tokens. The second loss Ly is self- d]\l]".ﬂll)l] I)Ltm.i.n
in-view patch tokens, with some tokens masked and replaced by e «y for the student network,
The objective is to reconstruct the masked tokens with the teacher networks” outputs as supervision.




