
Computer vision and image
processing introduction

Ronan Sicre
Credits to Yannis Avrithis https://sif-dlv.github.io/

https://sif-dlv.github.io/


computer vision in images



computer vision in images



computer vision—related fields

computer
vision

neuro-
science

cognitive
sciences

machine
learning

information
retrieval

signal
processing

image
processing

optimi-
zation

geometry

computer
graphics

robotics

optics

solid-state
physics



machine learning—related fields

machine
learning

AI

pattern
recognition

data
mining

data
science

probability
theory

statistics

optimi-
zation

information
retrieval

computer
vision

speech,
NLP



modern deep learning



ImageNet
[Russakovsky et al. 2014]

• 22k classes, 15M samples

• ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



AlexNet
[Krizhevsky et al. 2012]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

• implementation on two GPUs; connectivity between the two
subnetworks is limited

• ReLU, data augmentation, local response normalization, dropout

• outperformed all previous models on ILSVRC by 10%

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



learned layer 1 kernels

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][α1λ1, α2λ2, α3λ3]
T

where pi and λi are ith eigenvector and eigenvalue of the 3 × 3 covariance matrix of RGB pixel
values, respectively, and αi is the aforementioned random variable. Each αi is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11×11×3 learned by the first convolutional
layer on the 224×224×3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈
∂L

∂w

∣∣
wi

〉

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ε is the learning rate, and
〈
∂L
∂w

∣∣
wi

〉
Di

is

the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

• 96 kernels of size 11× 11× 3

• top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



ImageNet classification performance

2010 2011 2012 2013 2014 2015

0

5

10

15

20

25

30 SVC+SVM

FV+SVM

AlexNet

ZFNet

GoogLeNet

ResNet

to
p

-5
er

ro
r

%

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



object detection
[Redmon et al. 2016]

1. Resize image.
2. Run convolutional network.
3. Threshold detections.

Dog: 0.39

Person: 0.94

Sheep: 0.49

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our
system (1) resizes the input image to 448× 448, (2) runs a single convolutional network on the image, and (3)
thresholds the resulting detections by the model’s confidence.

these boxes [26]. The classifier then takes additional time to evaluate the proposals. The best per-
forming systems require 2-40 seconds per image and even those optimized for speed do not achieve
real-time performance. Additionally, even a highly accurate classifier will produce false positives
when faced with so many proposals. When viewed out of context, small sections of background can
resemble actual objects, causing detection errors.

Finally, these detection pipelines rely on independent techniques at every stage that cannot be opti-
mized jointly. A typical pipeline uses Selective Search for region proposals, a convolutional network
for feature extraction, a collection of one-versus-all SVMs for classification, non-maximal suppres-
sion to reduce duplicates, and a linear model to adjust the final bounding box coordinates. Selective
Search tries to maximize recall while the SVMs optimize for single class accuracy and the linear
model learns from localization error.

Our system is refreshingly simple, see Figure 1. A single convolutional network simultaneously
predicts multiple bounding boxes and class probabilities for those boxes. We train our network
on full images and directly optimize detection performance. Context matters in object detection.
Our network uses global image features to predict detections which drastically reduces its errors
from background detections. At test time, a single network evaluation of the full image produces
detections of multiple objects in multiple categories without any pre or post-processing.

Our training and testing code are open source and available online at http://pjreddie.com/
darknet/yolo/. A variety of pre-trained models are also available to download.

2 Unified Detection

We unify the separate components of object detection into a single neural network. Using our
system, you only look once (YOLO) at an image to predict what objects are present and where they
are. Our network uses features from the entire image to predict each bounding box. It also predicts
all bounding boxes for an image simultaneously. This means our network reasons globally about
the full image and all the objects in the image. The YOLO design enables end-to-end training and
real-time speeds while maintaining high average precision.

(x, y)

(x, y)

(x, y)

Divide The Image
Into a 7 x 7 grid. Assign detections to
grid cells based on their centers.

class = 12
x, y, w, h

class = 2
x, y, w, h

class = 7
x, y, w, h

Train The Network
To predict this grid of class probabilities
and bounding box coordinates.

Resize The Image
And bounding boxes to 448 x 448.

...

1st - 20th Channels:
Class probabilities
Pr(Airplane), Pr(Bike)...

Last 4 Channels:
Box coordinates

x, y, w, h

Figure 2: The Model. Our system models detection as a regression problem to a 7× 7× 24 tensor.
This tensor encodes bounding boxes and class probabilities for all objects in the image.

2

• learn to detect objects as a single classification and regression task,
without scanning the image or detecting candidate regions

• first object detector to operate at 45fps

Redmon, Divvala, Girshick, Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



semantic segmentation
[Long et al. 2015]

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [13] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [13] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [12]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [13], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

6. Conclusion
Fully convolutional networks are a rich class of mod-

els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation.

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [33] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (◦3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [23] 76.7 - - - -
Tighe et al. [33] - - - - 90.8

Tighe et al. [34] 1 75.6 41.1 - - -
Tighe et al. [34] 2 78.6 39.2 - - -
Farabet et al. [7] 1 72.3 50.8 - - -
Farabet et al. [7] 2 78.5 29.6 - - -
Pinheiro et al. [28] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [15] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [15]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part
by DARPA’s MSEE and SMISC programs, NSF awards IIS-
1427425, IIS-1212798, IIS-1116411, and the NSF GRFP,
Toyota, and the Berkeley Vision and Learning Center. We
gratefully acknowledge NVIDIA for GPU donation. We

3438

• learn to upsample

• apply to pixel-dense prediction tasks

Long, Shelhamer, Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.



instance segmentation and pose estimation
[He et al. 2017]

Figure 6. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted
from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

APkp APkp
50 APkp

75 APkp
M APkp

L

CMU-Pose+++ [4] 61.8 84.9 67.5 57.1 68.2
G-RMI [25]† 62.4 84.0 68.5 59.1 68.1
Mask R-CNN, keypoint-only 62.7 87.0 68.4 57.4 71.1
Mask R-CNN, keypoint & mask 63.1 87.3 68.7 57.8 71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours
(ResNet-50-FPN) is a single model that runs at 5 fps. CMU-
Pose+++ [4] is the 2016 competition winner that uses multi-scale
testing, post-processing with CPM [33], and filtering with an ob-
ject detector, adding a cumulative ∼5 points (clarified in personal
communication). †: G-RMI was trained on COCO plus MPII [1]
(25k images), using two models (Inception-ResNet-v2 + ResNet-
101). As they use more data, this is not a direct comparison with
Mask R-CNN.

a relatively high resolution output (compared to masks) is
required for keypoint-level localization accuracy.

Models are trained on all COCO trainval35k im-
ages that contain annotated keypoints. To reduce overfit-
ting, as this training set is smaller, we train the models us-
ing image scales randomly sampled from [640, 800] pixels;
inference is on a single scale of 800 pixels. We train for 90k
iterations, starting from a learning rate of 0.02 and reducing
it by 10 at 60k and 80k iterations. We use bounding-box
non-maximum suppression with a threshold of 0.5. Other
implementations are identical as in §3.1.

Experiments on Human Pose Estimation: We evaluate
the person keypoint AP (APkp) using ResNet-50-FPN. We
have experimented with ResNet-101 and found it achieves
similar results, possibly because deeper models benefit from
more training data, but this dataset is relatively small.

Table 4 shows that our result (62.7 APkp) is 0.9 points
higher than the COCO 2016 keypoint detection winner [4]
that uses a multi-stage processing pipeline (see caption of
Table 4). Our method is considerably simpler and faster.

More importantly, we have a unified model that can si-
multaneously predict boxes, segments, and keypoints while
running at 5 fps. Adding a segment branch (for the per-

APbb
person APmask

person APkp

Faster R-CNN 52.5 - -
Mask R-CNN, mask-only 53.6 45.8 -
Mask R-CNN, keypoint-only 50.7 - 64.2
Mask R-CNN, keypoint & mask 52.0 45.1 64.7

Table 5. Multi-task learning of box, mask, and keypoint about the person
category, evaluated on minival. All entries are trained on the same data
for fair comparisons. The backbone is ResNet-50-FPN. The entry with
64.2 AP on minival has 62.7 AP on test-dev. The entry with 64.7
AP on minival has 63.1 AP on test-dev (see Table 4).

APkp APkp
50 APkp

75 APkp
M APkp

L

RoIPool 59.8 86.2 66.7 55.1 67.4
RoIAlign 64.2 86.6 69.7 58.7 73.0

Table 6. RoIAlign vs. RoIPool for keypoint detection on minival.

son category) improves the APkp to 63.1 (Table 4) on
test-dev. More ablations of multi-task learning on
minival are in Table 5. Adding the mask branch to the
box-only (i.e., Faster R-CNN) or keypoint-only versions
consistently improves these tasks. However, adding the
keypoint branch reduces the box/mask AP slightly, suggest-
ing that while keypoint detection benefits from multitask
training, it does not in turn help the other tasks. Neverthe-
less, learning all three tasks jointly enables a unified system
to efficiently predict all outputs simultaneously (Figure 6).

We also investigate the effect of RoIAlign on keypoint
detection (Table 6). Though this ResNet-50-FPN backbone
has finer strides (e.g., 4 pixels on the finest level), RoIAlign
still shows significant improvement over RoIPool and in-
creases APkp by 4.4 points. This is because keypoint detec-
tions are more sensitive to localization accuracy. This again
indicates that alignment is essential for pixel-level localiza-
tion, including masks and keypoints.

Given the effectiveness of Mask R-CNN for extracting
object bounding boxes, masks, and keypoints, we expect it
be an effective framework for other instance-level tasks.

8

• semantic segmentation per detected region

• pose estimation as regression

He, Gkioxari, Dollar, Girshick. ICCV 2017. Mask R-CNN.



multi-task learning
[Kokkinos 2017]

UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-,
and High-Level Vision using Diverse Datasets and Limited Memory

Iasonas Kokkinos
University College London & Facebook Artificial Intelligence Research

i.kokkinos@cs.ucl.ac.uk

Abstract

In this work we train in an end-to-end manner a con-
volutional neural network (CNN) that jointly handles low-,
mid-, and high-level vision tasks in a unified architecture.
Such a network can act like a ‘swiss knife’ for vision tasks;
we call it an “UberNet” to indicate its overarching nature.

The main contribution of this work consists in handling
challenges that emerge when scaling up to many tasks. We
introduce techniques that facilitate (i) training a deep archi-
tecture while relying on diverse training sets and (ii) train-
ing many (potentially unlimited) tasks with a limited mem-
ory budget.

This allows us to train in an end-to-end manner a unified
CNN architecture that jointly handles (a) boundary detec-
tion (b) normal estimation (c) saliency estimation (d) se-
mantic segmentation (e) human part segmentation (f) se-
mantic boundary detection, (g) region proposal generation
and object detection. We obtain competitive performance
while jointly addressing all tasks in 0.7 seconds on a GPU.
Our system will be made publicly available.

1. Introduction
Computer vision involves a host of tasks, such as bound-

ary detection, semantic segmentation, surface estimation,
object detection, image classification, to name a few. While
Convolutional Neural Networks (CNNs) [32] have been
shown to be successful at effectively handling most vision
tasks, in the current literature most works focus on indi-
vidual tasks and devote all of a CNN’s power to maximiz-
ing task-specific performance. In our understanding a joint
treatment of multiple problems can result not only in sim-
pler and faster models, but will also be a catalyst for reach-
ing out to other fields. One can expect that such all-in-one,
“swiss knife” architectures will become indispensable for
general AI, involving, for instance, robots that will be able
to recognize the scene they are in, identify objects, navigate
towards them, and manipulate them.

The problem of using a single network to solve multi-
ple tasks has been recently pursued in the context of deep

Input Boundaries Saliency Normals

Detection Semantic Boundaries & Segmentation Human Parts

Figure 1: We train in an end-to-end manner a CNN that
jointly performs tasks spanning low-, mid- and high- level
vision; all results are obtained in 0.7 seconds per frame.

learning for computer vision. In [50] a CNN is used for joint
localization, detection and classification, [17] propose a net-
work that jointly solves surface normal estimation, depth es-
timation and semantic segmentation, while [20] train a sys-
tem for joint detection, pose estimation and region proposal
generation. More recently [41] study the effects of shar-
ing information across networks trained for complementary
tasks, [6] propose the introduction of inter-task connections
that improves performance through task synergy and [47]
propose an architecture for a host of face-related tasks.

Inspired by these works, in Sec. 2 we introduce a CNN
architecture that jointly handles multiple tasks by using a
shared trunk which feeds into many task-specific branches.
Our contribution consists in introducing techniques that en-
able training to scale up to a large number of tasks.

Our first contribution enables us to train a CNN from
diverse datasets that contain annotations for distinct tasks.

6129

• learn several vision tasks with a joint network architecture including
task-specific skip layers

Kokkinos. CVPR 2017. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using
Diverse Datasets and Limited Memory.



geometric matching
[Rocco et al. 2017]

Figure 7: Filter visualization. Some convolutional filters from the first layer of the regressor, acting on the tentative correspondence
map, show preferences to spatially co-located features that transform consistently to the other image, thus learning to perform the local
neighborhood consensus criterion often used in classical feature matching. Refer to the text for more details on the visualization.

Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 8: Qualitative results on the Proposal Flow dataset. Each row shows one test example from the Proposal Flow dataset. Ground
truth matching keypoints, only used for alignment evaluation, are depicted as crosses and circles for images A and B, respectively. Key-
points of same color are supposed to match each other after image A is aligned to image B. To illustrate the matching error, we also overlay
keypoints of B onto different alignments of A so that lines that connect matching keypoints indicate the keypoint position error vector. Our
method manages to roughly align the images with an affine transformation (column 2), and then perform finer alignment using thin-plate
spline (TPS, column 3). It successfully handles background clutter, translations, rotations, and large changes in appearance and scale, as
well as non-rigid transformations and some perspective changes. Further examples are shown in the supplementary material [2] .

Methods StreetView-synth-aff Pascal-synth-aff

Concatenation [14] 26 29
Subtraction [29] 18 21
Ours without normalization 44 –
Ours 49 45

Table 2: Ablation studies. Matching quality on the Proposal Flow
dataset measured in terms of PCK. All methods use the same fea-
tures (VGG-16 cropped at pool4). The networks were trained on
the StreetView-synth-aff and Pascal-synth-aff datasets. For these
experiments, only the affine transformation is estimated.

respectively, incurs a large performance drop. The behavior
is expected as we designed the matching layer to only keep

information on pairwise descriptor similarities rather than
the descriptors themselves, as is good practice in classical
geometry estimation methods, while concatenation and sub-
traction do not follow this principle.

Generalization. As seen in Tab. 2, our method is relatively
unaffected by the choice of training data as its performance
is similar regardless whether it was trained with StreetView
or Pascal images. We also attribute this to the design choice
of operating on pairwise descriptor similarities rather than
the raw descriptors.

Normalization. Tab. 2 also shows the importance of the
correlation map normalization step, where the normaliza-

6154

• mimic the standard steps of feature extraction, matching and
simultaneous inlier detection and model parameter estimation

• still trainable end-to-end

Rocco, Arandjelovic, Sivic. CVPR 2017. Convolutional Neural Network Architecture for Geometric Matching.



image retrieval
[Gordo et al. 2016]

18 A. Gordo, J. Almazán, J. Revaud, D. Larlus

A Qualitative results

In Figure 5 we show the top retrieved results by our method, together with AP
curves, for a few Oxford 5k queries, and compare them to the results of the
R-MAC baseline with VGG16 and no extra training [14]. The results obtained
with the proposed trained model are consistently better in terms of accuracy.
In many cases, several of the correctly retrieved images by our method were
not well scored by the baseline method, that placed them far down in the list
of results. Note also the bad annotation of one of the images in the fifth query
(Corn Market), incorrectly labeled as not relevant.

In Figure 6 we show the image patches that produce the largest activations
for several neurons of VGG16’s “conv5 3” layer, before and after the proposed
training. First we can observe that, before training, many neurons tend to acti-
vate on “semantic” patches such as shoulders / bow ties, waists, or sunglasses,
even when they do not belong to the same instance, which is not desirable for
the task of instance-level retrieval. After training, many of these neurons have
been repurposed to a different task, e.g. , shoulders becoming domes. Many of the
new activations do belong to the same instance, which is more useful for the task
of instance retrieval. Note also how the “sunglasses” neuron was not correctly
repurposed, suggesting that improvements during training are still possible.

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (2) 2 (1) 3 (5) 4 (7) 5 (20) 6 (17) 7 (11) 8 (9) 9 (13) 10 (3) 11 (4) 12 (16)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (2) 3 (3) 4 (9) 5 (7) 6 (19) 7 (10) 8 (33)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (49) 2 (1) 3 (533) 4 (3) 5 (479) 6 (495) 7 (696) 8 (22) 9 (47) 10 (14)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (47) 3 (78) 4 (104) 5 (16) 6 (34) 7 (11) 8 (46)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (2) 3 (3) 4 (5) 5 (6) 6 (4) 7 (12) 8 (197) 9 (99) 10 (1226)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (13) 3 (7) 4 (8) 5 (5) 6 (268) 7 (108) 8 (19) 9 (53) 10 (70) 11 (84)

Fig. 5. Top retrieval results and AP curves for a few Oxford queries. R-MAC baseline
and our method (ranking-loss+proposals) are resp. color-coded as red and blue in the
AP plots and in the ranks obtained for each image. Green, gray and red borders resp.
denote positive, null and negative images.

• learn to match

• apply as generic feature extractor

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



photorealistic style transfer
[Luan et al. 2017]

Deep Photo Style Transfer

Fujun Luan
Cornell University

fujun@cs.cornell.edu

Sylvain Paris
Adobe

sparis@adobe.com

Eli Shechtman
Adobe

elishe@adobe.com

Kavita Bala
Cornell University
kb@cs.cornell.edu

Figure 1: Given a reference style image (a) and an input image (b), we seek to create an output image of the same scene as
the input, but with the style of the reference image. The Neural Style algorithm [5] (c) successfully transfers colors, but also
introduces distortions that make the output look like a painting, which is undesirable in the context of photo style transfer. In
comparison, our result (d) transfers the color of the reference style image equally well while preserving the photorealism of
the output. On the right (e), we show 3 insets of (b), (c), and (d) (in that order). Zoom in to compare results.

Abstract

This paper introduces a deep-learning approach to pho-
tographic style transfer that handles a large variety of image
content while faithfully transferring the reference style. Our
approach builds upon the recent work on painterly transfer
that separates style from the content of an image by consid-
ering different layers of a neural network. However, as is,
this approach is not suitable for photorealistic style transfer.
Even when both the input and reference images are pho-
tographs, the output still exhibits distortions reminiscent of a
painting. Our contribution is to constrain the transformation
from the input to the output to be locally affine in colorspace,
and to express this constraint as a custom fully differentiable
energy term. We show that this approach successfully sup-
presses distortion and yields satisfying photorealistic style
transfers in a broad variety of scenarios, including transfer
of the time of day, weather, season, and artistic edits.

1. Introduction

Photographic style transfer is a long-standing problem
that seeks to transfer the style of a reference style photo
onto another input picture. For instance, by appropriately
choosing the reference style photo, one can make the input
picture look like it has been taken under a different illumina-
tion, time of day, or weather, or that it has been artistically
retouched with a different intent. So far, existing techniques
are either limited in the diversity of scenes or transfers that
they can handle or in the faithfulness of the stylistic match
they achieve. In this paper, we introduce a deep-learning
approach to photographic style transfer that is at the same
time broad and faithful, i.e., it handles a large variety of
image content while accurately transferring the reference
style. Our approach builds upon the recent work on Neural
Style transfer by Gatys et al. [5]. However, as shown in
Figure 1, even when the input and reference style images
are photographs, the output still looks like a painting, e.g.,
straight edges become wiggly and regular textures wavy.
One of our contributions is to remove these painting-like

4990

• generate same scene as input image

• transfer style from reference image

• photorealism regularization

Luan, Paris, Shechtman, Bala. CVPR 2017. Deep Photo Style Transfer.



image captioning
[Vinyals et al. 2017]

(where humans rank 6th); METEOR is the automatic metric
where humans rank the highest (third).

5.2 Improvements Over Our CVPR15 Model

In this section we analyze what components were improved
with respect to the model which we originally studied in
our CVPR 2015 work [46]. Section 5.3 shows a summary of
the results on both automatic and human metrics from the
MSCOCO competition. We summarize all the improve-
ments in Table 8.

5.2.1 Image Model Improvement

When we first submitted our image captioning paper to
CVPR 2015, we used the best convolutional neural network
at the time, known as GoogleLeNet [48], which had 22 layers,
and was the winner of the 2014 ImageNet competition. Later
on, an even better approach was proposed in [24] and
included a new method, called Batch Normalization, to better
normalize each layer of a neural network with respect to the
current batch of examples, so as to be more robust to nonli-
nearities. The new approach got significant improvement on

the ImageNet task (going from 6.67 percent down to 4.8 per-
cent top-5 error) and the MSCOCO image captioning task,
improving BLEU-4 by 2 points absolute.

5.2.2 Image Model Fine Tuning

In the original set of experiments, to avoid overfitting we
initialized the image convolutional network with a pre-
trained model (we first used GoogleLeNet, then switched to
the better Batch Normalization model), but then fixed its
parameters and only trained the LSTM part of the model on
the MS COCO training set.

For the competition, we also considered adding some
fine tuning of the image model while training the LSTM,
which helped the image model focus more on the kind of
images provided in the MS COCO training set, and ended
up improving the performance on the captioning task.

It is important to note that fine tuning the image model
must be carried after the LSTM parameters have settled on

Fig. 5. A selection of evaluation results, grouped by human rating.

TABLE 6
Nearest Neighbors of a Few Example Words

Word Neighbors

car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

TABLE 7
Pearson Correlation and Human Rankings Found in the
MSCOCO Official Website Competition Table for Several

Automatic Metrics (Using 40 Ground Truth Captions
in the Test Set)

Correlation (versus CIDER) Human Rank

CIDER 1.0 6
METEOR 0.98 3
ROUGE 0.91 11
BLEU-4 0.87 13

VINYALS ET AL.: SHOW AND TELL: LESSONS LEARNED FROM THE 2015 MSCOCO IMAGE CAPTIONING CHALLENGE 659

• image description by deep CNN

• language generation by RNN

Vinyals, Toshev, Bengio and Erhan. PAMI 2017. Show and Tell: Lessons Learned From the 2015 MSCOCO Image Captioning
Challenge.



Generative models

GAN, Diffusion, VAE, MAE, DAE.



Self-supervised models

RotNet, Deep Cluster, BYOL, DINO, iBOT


