Computer vision and image processing introduction

Ronan Sicre Credits to Yannis Avrithis https://sif-dlv.github.io/

伺 ト イヨ ト イヨト

computer vision in images

computer vision in images

computer vision—related fields

machine learning—related fields

modern deep learning

ImageNet

[Russakovsky et al. 2014]

- 22k classes, 15M samples
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000 classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

AlexNet

[Krizhevsky et al. 2012]

- implementation on two GPUs; connectivity between the two subnetworks is limited
- ReLU, data augmentation, local response normalization, dropout
- outperformed all previous models on ILSVRC by 10%

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

learned layer 1 kernels

- 96 kernels of size $11 \times 11 \times 3$
- top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

ImageNet classification performance

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

object detection

[Redmon et al. 2016]

- learn to detect objects as a single classification and regression task, without scanning the image or detecting candidate regions
- first object detector to operate at 45fps

semantic segmentation

[Long et al. 2015]

- learn to upsample
- apply to pixel-dense prediction tasks

Long, Shelhamer, Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.

instance segmentation and pose estimation [He et al. 2017]

- semantic segmentation per detected region
- pose estimation as regression

multi-task learning [Kokkinos 2017]

 learn several vision tasks with a joint network architecture including task-specific skip layers

Kokkinos. CVPR 2017. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory.

geometric matching

[Rocco et al. 2017]

- mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation
- still trainable end-to-end

Rocco, Arandjelovic, Sivic. CVPR 2017. Convolutional Neural Network Architecture for Geometric Matching.

image retrieval

[Gordo et al. 2016]

- learn to match
- apply as generic feature extractor

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.

photorealistic style transfer

[Luan et al. 2017]

(a) Reference style image

(b) Input image

(c) Neural Style (distortions)

(d) Our result

(e) Insets

- generate same scene as input image
- transfer style from reference image
- photorealism regularization

image captioning [Vinyals et al. 2017]

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are

A close up of a cat laying on a couch.

Describes with minor errors

A dog is jumping to catch a

A refrigerator filled with lots of

food and drinks.

frisbee.

Somewhat related to the image

- image description by deep CNN
- language generation by RNN •

Describes without errors

Vinyals, Toshev, Bengio and Erhan. PAMI 2017. Show and Tell: Lessons Learned From the 2015 MSCOCO Image Captioning Challenge

A skateboarder does a trick on a ramp.

A little girl in a pink hat is

blowing bubbles.

Generative models

GAN, Diffusion, VAE, MAE, DAE.

Self-supervised models

RotNet, Deep Cluster, BYOL, DINO, iBOT

Figure 3: Overview of iBOT framework, performing masked image modeling with an online tokenizer. Given two views u and v of an image x, each view is passed through a teacher network $h_t \circ f_t$ and a student network $h_s \circ f_s$. iBOT minimizes two losses. The first loss $\mathcal{L}_{[CLS]}$ is self-distillation between cross-view [CLS] tokens. The second loss \mathcal{L}_{MIM} is self-distillation between in-view patch tokens, with some tokens masked and replaced by $e_{[MASK]}$ for the student network. The objective is to reconstruct the masked tokens with the teacher networks' outputs as supervision.