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Where is Al ? Machine Learning is Everywhere?

THE ULTIMATE GO CHALLENGE

12 MARCH 2016

This technology can be found in:

NETELIX

Recommendation systems

- Games (chess, go, starcraft, dota)

- Web search

Drug discovery
- Recommendation [

- Audio recognition @ TWO SIGMA

- Autonomous driving

Hedge fund stock
predictions

- Face/image recognition

- Anti-spam

- Computer-Aided Diagnosis

Cancer diagnosis
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What is Al ?

A technology

A science (research field)
“Old AI”
Machine learning

Deep learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn
without being explicitly programmed

DEEP LEARNING
Subset of machine learning
in which artificial neural
networks adapt and learn
from vast amounts of data
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Reinforcement learning

Games, robotics, simulated environment (drive, walk, etc.).

https://www.youtube.com/watch?v=SX08NT55YhA
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https://www.youtube.com/watch?v=SX08NT55YhA

Supervised learning

Classification
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Example of classification

Mushrooms:

- Edible
- Poisonous

We look for regularities

in the data




Classification

Height of the foot

Diameter

Pied

. Diametre

|

8



Classification

Training data @
o
Find a separation

y=ax+b

Diameétre
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Classification

y=ax+b

Pied

Pied = - 0,07 * Diametre + 13

Diameétre
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Classification

Pied

Si Pied > — 0,07 * Diameétre + 13 Alors @
Sinon @

. Diametre
1




Classification

Pied

Diameétre
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Classification

Pied

Si Pied = - 0,07 * Diametre + 13 Alors @
Sinon @

Pied = 9, Diametre = 76
— 0,07*Diamétre+13 = 7,68

76 ! . Diametre
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Classification

Pied

Diameétre
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More complex problems

Not linearly separable
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Linear classifier

Pied

Diameétre

16



Pied

More classifiers

More complex models, more parameters:
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Kernel trick

Project your data into a new space of higher dimension
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CGhoice of the model

Simple model that works well on training data.

More importantly, model that can generalize well to new data.
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Training a model

Generalization

Best
generalization Test Error

—————"/

Training Error

-\

>
No. of iterations
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Train, validation, test

Train and validation: try out numerous combination of hyperparameters.
Adjust based on the validation performance.
Then use test data for final results.

Lots of experiments - comparison on open datasets
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Training a model

Prediction error

Generali-

zation error

Real Life Deep learning

Training data

Model complexity
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The deep learning field

Supervised learning: classification, regression
Unsupervised learning

Reinforcement learning

Self-supervised learning

Generative models (image generation, deep fakes, chat GPT)
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Deep learning history

Neural Networks were studied in the 90s then disappear in the 2000s

In 2011, AlexNet wins the ImageNet Challenge: image classification (1M images, 1k
categories).

Why Convolutional Neural Networks work !

- Lots of data
- Lots of computing power (parallelization on 2 GPUs)
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Types of data

Image // image, video recognition (Computer vision)

Text /] translation, information extraction, classification (Natural
Language Processing)

Audio // speech, sound, music
Time series /l weather, stock market
Graphs // social medias, brains

Multi-view, multi-modal
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Building blocks of deep architectures

Dense (or fully connected) layers: f(x) =W x + b
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Building blocks of deep architectures

Convolutional layers (1D, 2D, 3D)

Stride, padding

o = NOU N

input

(-1)*1+ 0*0 +1*2
+(-1)*5+ 0*4 +1*2
+(-1)*3 + 04 +1*5

=0

P——————

\s
| S—.
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Building blocks of deep architectures

Pooling: max pool, average pool, global.
Normalizations: batch norm
Non-linearities: ReLU, tanh, sigmoid

Dropout
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Conv-1

VGG-16 CNN Architecture

Architectures

Conv-2

Conv-4
Convolutional Neural Networks (CNN), 7~ s
14 % 14 x 512 1x1x4096 1x1x1000
28 x 28 x 512
Transformers, S 56 7x7x512
Graph Neural Networks (GNN, GCN), o ) convolution+ReL.U
@ fully connected+ReLU
Spiking Neural Networks W
Scaled Dot-Product Attention Multi-Head Attention
Recurrent Neural Networks (RNN),
Concat
. i
Gated Recurrent Unit (GRU), = — lli
Scaled Dot-Product 1
Long Short-Term Memory (LSTM)
Linear PJ{ Linear ] Linear
Q K A 29




Training

Loss function:
Adapted to the task: classification, regression, reconstruction
Regularizations

Optimization: Stochastic gradient descent (SGD)

Optimizer choice: learning rate evolution
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Computer Vision

Image classification, object detection,
Instance segmentation, generative models,

Videos: object tracking, action recognition.




Example of image classification
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Conv-1

VGG-16 CNN Architecture

Architectures:

Conv-2
Conv-3
CNN, Transformers
VLD FC-6 FC-7 FC-8
A 14 x 14 x 512 1 x 1 x 4096 l:ﬁlOOO
5 7x7x512
CNNs: LeNet, AlexNet, VGG, ERRSSES
11/ 112 128 @ convolution+ReLU
max poolin
GoogleNet, ResNets, DenseNet, — (ko R,
NAS-Net, Efficient Net... s
Scaled Dot-Product Attention Multi-Head Attention
Transformers: ViT
Concat
li

. ﬂin

Linear Linear Linear
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Train an image classification model

1 Million image: train from scratch

Transfer learning: use a pretrained Network (ImageNet) and fine-tune on your data.

Conv-1
VGG-16 CNN Architecture
Conv-2
/,
Conv-3
Conv-4
Conv-5
FC-6 FC-7 FC-8
CEEE———— GEE— CE—
' 14 14 x 512 14096 1x1xI00
28 x 28 x 512
56 % 56 x 256 Tx7x512

115 112 x 128 @ convolution+ReLU
@ max pooling
@ fully connected+ReLU
i 34

224 % 224 x 64




Self-supervised learning

Learn representations i
VGG-16 CNN Architecture
Without labels
With good transfer capabilities 77 conva
y, / FC-6 FC-7 FC-8
LA 14 %14 %512 1 x 1 x 4096 |>f1000
56 56 X 256 Tx7x512
Clustering, pretext tasks, 112128 () convolution+ReLU
max poolin
. . @ fully 2onnefted+ReLU
augmentations and contrastive loss,

224 x 224 x 64

distillation, masking...
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Object detection

2 stages: Faster R-CNN
1 stage: Yolo v8

https://www.youtube.com/watch?v=/2yKK404HaAM
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https://www.youtube.com/watch?v=ZyKK4o4HaAM

Image / instance segmentation

U-Net
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Generative models

Generative Adversarial Networks (GANs), Variational auto-encoder (VAE), Masking
auto-encoder (MAE), Denoising auto-encoder (DAE), Diffusion models.

https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

Generative models

Stable diffusion:
image generation from prompt

“a guy giving a seminar in the calanques”




Generative models

Stable diffusion:
image generation from prompt

“a guy giving a seminar to scientists

in the calanques”




Biases, ethics, fairness, privacy

Models reproduce biases in the data

Model can take shortcuts

Inforce fairness when training

Inforce privacy when training
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Robustness

+ —
Adversarial examples
classified as classified as
Stop Sign Max Speed 100
“pig” (91%) noise (NOT random) “airliner” (99%)

+0.005 x




XAl

eXplainable Al: post-hoc interpretability vs transparency

Attributions, local vs global.

Saliency maps as an explanation for image classification.




Environmental impact of deep learning

Power consumption of GPUs
Training BERT = flight NYC to San Francisco.

Frugal models, light models (training, inference)

“Energy and Policy Considerations for Deep Learning in NLP”

https://arxiv.ora/pdf/1906.02243.pdf
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https://arxiv.org/pdf/1906.02243.pdf
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Ressources

Thanks to Cécile Capponi, Francois-Xavier Dupé and Yannis Avrithis.
MOOC Andrew Ng (Stanford)

https://www.youtube.com/watch?v=6QRpDLj8huE&t=201s

https://www.youtube.com/watch?v=hQe2HAPTGF4&t=361s

https://ericdatascience.wordpress.com/python-machine-learning-randomforest _p2-parameter-tuning/

https://desh2608.qgithub.io/2018-07-27-deep-learning-theory-2/
UNETR: Transformers for 3D Medical Image Segmentation (WACV 2022)

https://stablediffusionweb.com/#ai-image-generator

https://www.researchgate.net/figure/Adversarial-examples-for-traffic-signs-picture-by-Chen-and-Wu-71_fig1l 369368588

https://networkpages.nl/ai-thinks-my-dog-is-a-pig-want-to-know-why/
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