AI, deep learning, computer vision

Ronan Sicre (MCF) Ecole Centrale Méditerranée / LIS - QARMA

CINaM 01/2024

Where is AI ?

This technology can be found in:

- Games (chess, go, starcraft, dota)
- Web search
- Recommendation
- Audio recognition
- Autonomous driving
- Face/image recognition
- Anti-spam
- Computer-Aided Diagnosis

Machine Learning is Everywhere?

AlphaGo

Character recognition

Assisted driving

Recommendation systems

Drug discovery

🔈 TWO SIGMA

Hedge fund stock predictions

Face detection/recognition

Voice assistants

Cancer diagnosis

What is AI ?

A technology

A science (research field)

"Old Al"

Machine learning

Deep learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Reinforcement learning

Games, robotics, simulated environment (drive, walk, etc.).

https://www.youtube.com/watch?v=SX08NT55YhA

Supervised learning

Classification

Example of classification

Mushrooms:

- Edible
- Poisonous

We look for regularities

in the data

More classifiers

More complex models, more parameters:

Kernel trick

Project your data into a new space of higher dimension

Choice of the model

Simple model that works well on training data.

More importantly, model that can **generalize** well to new data.

Generalization

Train, validation, test

Train and validation: try out numerous combination of hyperparameters.

Adjust based on the validation performance.

Then use test data for final results.

Lots of experiments - comparison on open datasets

Training a model

The deep learning field

Supervised learning: classification, regression

Unsupervised learning

Reinforcement learning

Self-supervised learning

Generative models (image generation, deep fakes, chat GPT)

Deep learning history

Neural Networks were studied in the 90s then disappear in the 2000s

In 2011, AlexNet wins the ImageNet Challenge: image classification (1M images, 1k categories).

Why Convolutional Neural Networks work !

- Lots of data
- Lots of computing power (parallelization on 2 GPUs)

Types of data

Image // image, video recognition (Computer vision)

Text // translation, information extraction, classification (Natural Language Processing)

Audio // speech, sound, music

Time series // weather, stock market

Graphs // social medias, brains

Multi-view, multi-modal

Building blocks of deep architectures

Dense (or fully connected) layers: f(x) = W x + b

Building blocks of deep architectures

Convolutional layers (1D, 2D, 3D)

Stride, padding

Building blocks of deep architectures

Pooling: max pool, average pool, global.

Normalizations: batch norm

Non-linearities: ReLU, tanh, sigmoid

Dropout

Architectures

Convolutional Neural Networks (CNN),

Transformers,

Graph Neural Networks (GNN, GCN),

Spiking Neural Networks

Recurrent Neural Networks (RNN),

Gated Recurrent Unit (GRU),

Long Short-Term Memory (LSTM)

Loss function:

Adapted to the task: classification, regression, reconstruction

Regularizations

Optimization: Stochastic gradient descent (SGD)

Optimizer choice: learning rate evolution

Computer Vision

Image classification, object detection,

Instance segmentation, generative models,

Videos: object tracking, action recognition.

Example of image classification

Architectures: CNN, Transformers

CNNs: LeNet, AlexNet, VGG,

GoogleNet, ResNets, DenseNet,

NAS-Net, Efficient Net...

Transformers: ViT

Train an image classification model

1 Million image: train from scratch

Transfer learning: use a pretrained Network (ImageNet) and fine-tune on your data.

Self-supervised learning

Learn representations

Without labels

With good transfer capabilities

Clustering, pretext tasks,

augmentations and contrastive loss,

distillation, masking...

Object detection

2 stages: Faster R-CNN

1 stage: Yolo v8

https://www.youtube.com/watch?v=ZyKK4o4HaAM

Image / instance segmentation

U-Net

Generative models

Generative Adversarial Networks (GANs), Variational auto-encoder (VAE), Masking auto-encoder (MAE), Denoising auto-encoder (DAE), Diffusion models.

https://thispersondoesnotexist.com/

Generative models

Stable diffusion:

image generation from prompt

"a guy giving a seminar in the calanques"

Generative models

Stable diffusion:

image generation from prompt

"a guy giving a seminar to scientists

in the calanques"

Biases, ethics, fairness, privacy

Models reproduce biases in the data

Model can take shortcuts

Inforce fairness when training

Inforce privacy when training

Robustness

Adversarial examples

"pig" (91%)

classified as Max Speed 100 "airliner" (99%)

noise (NOT random)

eXplainable AI: post-hoc interpretability vs transparency

Attributions, local vs global.

Saliency maps as an explanation for image classification.

Environmental impact of deep learning

Power consumption of GPUs

Training BERT = flight NYC to San Francisco.

Frugal models, light models (training, inference)

"Energy and Policy Considerations for Deep Learning in NLP"

https://arxiv.org/pdf/1906.02243.pdf

Questions

Thanks to Cécile Capponi, Francois-Xavier Dupé and Yannis Avrithis.

MOOC Andrew Ng (Stanford)

https://www.youtube.com/watch?v=6QRpDLj8huE&t=201s

https://www.youtube.com/watch?v=h0e2HAPTGF4&t=361s

https://ericdatascience.wordpress.com/python-machine-learning-randomforest_p2-parameter-tuning/

https://desh2608.github.io/2018-07-27-deep-learning-theory-2/

UNETR: Transformers for 3D Medical Image Segmentation (WACV 2022)

https://stablediffusionweb.com/#ai-image-generator

https://www.researchgate.net/figure/Adversarial-examples-for-traffic-signs-picture-by-Chen-and-Wu-71_fig1_369368588

https://networkpages.nl/ai-thinks-my-dog-is-a-pig-want-to-know-why/