Visual interpretability: saliency maps and interpretable classification

Ronan Sicre

LIS, Marseille - QARMA team

Visual interpretability: saliency maps and inter

Visual interpretability: saliency maps and interpretable classification

Ronan Sicre: a computer vision guy!

LIS, Marseille - QARMA team

Saliency map evaluation

Introduction

Saliency maps for image classification interpretability Opti-CAM: Optimizing saliency maps for interpretability Hanwei Zhang, Felipe Torres, Ronan Sicre, Yannis Avrithis, Stephane Ayache

Interpretable image classification with parts DP-Net: Learning Discriminative Parts for Image Recognition (ICIP 2023) Ronan Sicre; Hanwei Zhang; Julien Dejasmin; Chiheb Daaloul; Stephane Ayache; Thierry Artières

Interpretability is important for high stakes decisions

Model understanding is absolutely critical in several domains -particularly those involving *high stakes decisions*!

Building trust for users - Responsibility - Robustness

Interpretability is important for trustworthy DNNs

FOOLING THE AI

Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

These stickers made an artificial-intelligence system read this stop sign as 'speed limit 45'. Stop - Speed limit 45'. Stop - Speed limit 45'. Stop - Stop -

 Robustness and improvements

- Trust and understanding
- Security, legal necessity and responsibility

onature

Dimensions of interpretability methods

The mythos of model interpretability... 2018 Transparency vs post-hoc interpretability

A survey on NN interpretability 2020

Dimension 1 — Pas	sive vs. Active Approaches
{ Passive Active	Post hoc explain trained neural networks Actively change the network architecture or training process for better interpretability
Dimension 2 — Typ	e of Explanations (in the order of increasing explanatory power)
To explain a prediction	on/class by
Examples	Provide example(s) which may be considered similar or as prototype(s)
Attribution	Assign credit (or blame) to the input features (e.g. feature importance, saliency masks)
Hidden semantics	Make sense of certain hidden neurons/layers
 Rules 	Extract logic rules (e.g. decision trees, rule sets and other rule formats)
Dimension 3 — Loc	cal vs. Global Interpretability (in terms of the input space)
Local	Explain network's predictions on individual samples (e.g. a saliency mask for an input image)
Semi-local	In between, for example, explain a group of similar inputs together
🕇 Global	Explain the network as a whole (e.g. a set of rules/a decision tree)

Dimensions of interpretability methods

э

< ロ > < 回 > < 回 > < 回 > < 回</p>

Post-hoc / Passive interpretability

LIME and SHAP: most common model agnostic approach

Image classification: methods specific to saliency maps

< (□) < 三 > (□)

Saliency Map Overview

What parts of the input are most relevant for the model's prediction: 'Junco Bird'?

• Feature Attribution

・ロト ・ 四ト ・ ヨト ・ ヨト

- 'Saliency Map'
- Heatmap

э

Class activation maps (CAM)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Class activation maps (CAM)

CAM-based saliency maps

linear combination of feature maps $A_{\ell}^k = f_{\ell}^k(\mathbf{x})$. For layer ℓ and class c, the saliency is

$$S_{\ell}^{c}(\mathbf{x}) := h\left(\sum_{k} w_{k}^{c} A_{\ell}^{k}\right), \qquad (1)$$

where w_k^c are the weights and h an activation function.

Grad-CAM

$$S_{\ell}^{c}(\mathbf{x}) := h\left(\sum_{k} w_{k}^{c} A_{\ell}^{k}\right), \qquad (2)$$

h = relu and weights

$$w_k^c := \operatorname{GAP}\left(\frac{\partial y_c}{\partial A_\ell^k}\right),$$
 (3)

< (□) < 三 > (□)

where GAP is global average pooling and y_c is the logit.

Score-CAM

$$S_{\ell}^{c}(\mathbf{x}) := h\left(\sum_{k} w_{k}^{c} A_{\ell}^{k}\right), \qquad (4)$$

h = relu and weights $w_k^c := \text{softmax}(\mathbf{u}^c)_k$, where \mathbf{u}^c is the increase in confidence for class c of the input image \mathbf{x} masked by the saliency map:

$$u_k^c := f(\mathbf{x} \odot n(\operatorname{up}(A_\ell^k)))_c - f(\mathbf{x})_c,$$
(5)

 \odot is Hadamard product, up upsampling, *n* normalization.

Cons: requires as many forward as features.

Ronan Sicre

ScoreCAM

Masking-based methods

Masking-based methods: extremal perturbations

Optimization in the input space of a masking objective Optimization per image like adversarial examples.

$$S^{c}(\mathbf{x}) := \arg \max_{\mathbf{m} \in \mathcal{M}} f(\mathbf{x} \odot n(\operatorname{up}(\mathbf{m})))_{c} + \lambda R(\mathbf{m}).$$
(6)

A mask \mathbf{m} is directly optimized without relying on feature maps.

Cons: the optimization is complex and requires regularization.

Optimization of activation weights (CAM) of masking objective. Optimization per image like adversarial examples.

$$S_{\ell}^{c}(\mathbf{x}) := h\left(\sum_{k} w_{k}^{c} A_{\ell}^{k}\right),\tag{7}$$

 $w_k := \operatorname{softmax}(\mathbf{u})_k$, where \mathbf{u} is the variable

$$S_{\ell}(\mathbf{x}; \mathbf{u}) := \sum_{k} \operatorname{softmax}(\mathbf{u})_{k} A_{\ell}^{k}.$$
 (8)

Opti-CAM

We find the vector \mathbf{u}^* that maximizes the model prediction for class c, when the input image \mathbf{x} is masked by saliency map $S_{\ell}(\mathbf{x}; \mathbf{u}^*)$:

$$\begin{split} \mathbf{u}^* &:= \arg\max_{\mathbf{u}} F_\ell^c(\mathbf{x};\mathbf{u}), \text{ where } F_\ell^c(\mathbf{x};\mathbf{u}) := f(\mathbf{x} \odot n(\operatorname{up}(S_\ell(\mathbf{x};\mathbf{u})))). \end{split}$$
(9)
 The saliency map $S_\ell(\mathbf{x};\mathbf{u})$ is upscaled and normalized.
 Finally we have

$$S_{\ell}^{c}(\mathbf{x}) := S_{\ell}(\mathbf{x}; \mathbf{u}^{*}) = S_{\ell}(\mathbf{x}; \arg\max_{\mathbf{u}} F_{\ell}^{c}(\mathbf{x}; \mathbf{u})), \quad (10)$$

< (□) < 三 > (□)

э

イロト イヨト イヨト イヨト

Visualizations

Input image Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Opti-CAM

Visual interpretability: saliency maps and inter

Saliency map evaluation

Recent field: No concensus, No good practice.

Faithfulness Evaluation: Average Drop, Average Increase (Increase in confidence), Average Gain.

Causal Metrics: Insertion, Deletion.

Weakly-Supervised Object Localization: Official Metric (OM), Localization Error (LE), Pixel-wise F_1 score (F1), Box Accuracy (BA), Standard Pointing game (SP), Energy Pointing game (EP).

Saliency map evaluation

Average Drop (AD) how much predictive power is lost when masking .

$$AD(\%) = \sum_{i=1}^{N} \frac{max(0, Y_i^c - O_i^c)}{Y_i^c}$$
(11)

Average Gain (AG) how much gain in predictive power for the masked image.

$$AG(\%) = \sum_{i=1}^{N} \frac{max(0, O_i^c - Y_i^c)}{Y_i^c}$$
(12)

Average Increase (AI) percentage of images where the masked image has a higher score.

$$AI(\%) = \frac{1}{N} \sum_{i}^{N} \mathbb{1}(Y_i^c < O_i^c) * 100$$
(13)

< ロ > < 同 > < 回 > < 回 >

Saliency map evaluation

- Insertion starts from a blurry image and gradually insert the pixel ranked by saliency, At each iteration the images are passed through the network to compute the prediction ratio.
- Deletion gradually removes the most salient pixels. Removed pixels are replaced by black.

Opti-CAM results

Метнор	ResNet50			,	VGG16			VIT-B		Rest	Ne⊤50	VG	G16
,	$AD\!\downarrow$	$AG\!\uparrow$	$AI\uparrow$	$AD\downarrow$	$AG\uparrow$	$AI\uparrow$	$AD \downarrow$	$AG\!\uparrow$	$AI\uparrow$	$ I\uparrow$	$D \downarrow$	$ I\uparrow$	$D \downarrow$
Fake-CAM	0.8	1.6	46.0	0.5	0.6	42.6	0.3	0.4	48.3	50.7	28.1	46.1	26.9
Grad-CAM Grad-CAM++ Score-CAM XGrad-CAM Layer-CAM ExPerturb. Opti CAM	12.2 12.9 8.6 12.2 15.6 38.1	17.6 16.0 26.6 17.6 15.0 9.5	44.4 42.1 56.7 44.4 38.8 22.5	14.2 17.1 13.5 13.8 48.9 43.0	14.7 10.2 15.6 14.8 3.1 7.1 71 2	40.6 33.4 41.7 41.2 13.5 20.5	69.4 86.3 32.0 88.1 82.0 28.8	2.5 1.5 6.2 0.4 0.2 6.2	12.4 1.0 33.0 4.3 2.9 24.4	66.3 66.0 65.7 66.3 67.0 70.7	14.7 14.7 16.3 14.7 14.2 15.0	64.1 62.9 62.5 64.1 58.3 61.1	11.6 12.2 12.1 11.7 6.4 15.0

AD, AG and AI are aligned with our optimization objective I, D: OOD data, biased towards sparse saliency maps.

Opti-CAM results

Метнор	RESNET50							VGG16						
	OM↓	LE↓	F1↑	BA↑	SP↑	EP↑	SM↓	OM↓	LE↓	F1↑	BA↑	SP↑	EP↑	SM↓
Fake-CAM	63.6	54.0	57.7	47.9	99.8	28.5	0.98	64.7	54.0	57.7	47.9	99.8	28.5	1.07
Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM XGrad-CAM Layer-CAM ExPerturb Opti-CAM	72.9 73.1 72.2 72.8 72.9 73.1 73.6 72.2	65.8 66.1 64.9 65.7 65.8 66.0 66.6 64.8	49.8 50.4 49.6 50.2 49.8 50.1 37.5 47.3	56.2 54.5 56.1 56.2 55.5 44.2 49.2	69.8 69.9 68.7 69.9 69.8 70.0 64.8 59.4	33.3 33.1 32.4 33.1 33.3 33.0 38.2 30.5	1.30 1.29 1.25 1.26 1.30 1.29 1.59 1.34	71.1 70.8 71.2 71.3 70.8 70.5 74.1 69.1	62.3 61.9 62.5 62.6 62.0 61.5 66.4 59.9	42.0 44.3 45.3 43.2 41.9 28.0 37.8 44.1	54.2 55.2 58.5 56.2 53.5 54.7 43.3 51.2	64.8 66.2 68.2 65.7 64.4 65.0 62.7 61.4	32.0 32.3 33.4 32.7 31.6 32.4 36.1 30.7	1.39 1.38 1.40 1.39 1.41 1.45 1.74 1.34

2

イロト イヨト イヨト イヨト

Opit-CAM results

Метнор	$AD\downarrow$				↑		AI↑			
	S	$B \cap S$	$S \backslash B$	$\mid S$	$B \cap S$	$S \backslash B$	S	$B \cap S$	$S \backslash B$	
S := B	67.2	-	_	2.3	-	_	9.2	_	-	
$S := I \setminus B$	44.0	-	-	2.8	_	-	16.3	-	-	
Fake-CAM	0.5	67.2	44.1	0.7	2.3	2.8	42.0	9.2	18.9	
Grad-CAM	15.0	72.6	52.1	15.3	1.8	6.0	40.4	8.4	19.4	
G-CAM++	16.5	72.9	53.1	10.6	1.6	4.1	35.2	7.3	17.1	
Score-CAM	12.5	71.5	50.5	16.1	2.2	6.3	42.5	8.6	20.8	
Abl-CAM	15.1	72.8	52.1	13.5	1.7	5.6	39.9	7.8	19.0	
XGrad-CAM	14.3	72.6	51.4	15.1	1.8	6.0	42.1	8.0	20.1	
Layer-CAM	49.2	84.2	74.4	2.7	0.4	1.2	12.7	4.4	7.3	
ExPerturb.	43.8	81.6	71.0	7.1	1.4	3.2	18.9	5.6	11.1	
Opti-CAM	1.4	62.5	34.8	66.3	8.7	25.8	92.5	18.6	47.1	

Explanations and localization are two different tasks.

A (10) A (10)

Evaluation: good practice, limitations of the metrics.

Improve saliency map methods for Transformers

< 47 ▶

Parts and prototypes

Prototype/Part based architectures:

Scene recognition with prototype-agnostic scene layout, 2019 **This looks like that: deep learning for interpretable image recognition, 2019** Protopshare: Prototypical parts sharing... 2021 Neural prototype trees for interpretable fine-grained image reco. 2021 Interpretable image classification with differentiable prototypes... 2022 PIP-Net: Patch-Based Intuitive Prototypes for Interpretable... 2023

Figure 2. The network architecture.

• • • • • • • • • • •

Parts and prototypes

・ロト ・日下・ ・ ヨト

A bit of history

Deformable Part Models: Object detection with discriminatively trained part-based models, 2010

Blocks That Shout: Distinctive Parts for Scene Classification, 2013 Mid-level Visual Element Discovery as Discriminative Mode Seeking, 2013 **Discriminative part model for visual recognition, 2014-2016** Automatic discovery and optimization of parts for image classif., 2014 No spare parts: Sharing part detectors for image categorization, 2016

Two-stage optimization with specific definition of parts and constraints.

Part-based models: mid-level features

Learning a set of discriminative parts per class.

Detect parts in an image to produce a part-based description

Visual interpretability: saliency maps and inter

DP-Net: Discriminative Part Network

Part constraints

1) Parts should be complementary, *i.e.* parts should be different one from another.

2) Parts should cover as much as possible the diversity of regions extracted from images.

- 3) Parts should be discriminative with respect to classes.
- 4) Parts should be specific to categories.

Part constraints

1) Parts should be complementary, *i.e.* parts should be different one from another.

2) Parts should cover as much as possible the diversity of regions extracted from images.

3) Parts should be discriminative with respect to classes.

4) Parts should be specific to categories.

Categorical Cross entropy loss

Part constraints

1) Parts should be complementary, *i.e.* parts should be different one from another.

2) Parts should cover as much as possible the diversity of regions extracted from images.

3) Parts should be discriminative with respect to classes.

4) Parts should be specific to categories.

$$C_{\perp}(U) = -\frac{1}{P^2} \sum_{i=1}^{P} \sum_{j=1, j \neq i}^{P} (u_i^T u_j)^2$$

 u_p is assumed to be l2-normalized

• • • • • • • • • • •

Part constraints

1) Parts should be complementary, *i.e.* parts should be different one from another.

2) Parts should cover as much as possible the diversity of regions extracted from images.

3) Parts should be discriminative with respect to classes.

4) Parts should be specific to categories.

$$C_{Assign}(U) = -\sum_{r=1}^{R} \sum_{p=1}^{P} s_{p,r} log(s_{p,r})$$

Softmax is first applied on the columns of the matrix ${\cal S}$ and u_p is assumed to be l2-normalized

• • • • • • • • • • • • •

Part constraints

1) Parts should be complementary, *i.e.* parts should be different one from another.

2) Parts should cover as much as possible the diversity of regions extracted from images.

3) Parts should be discriminative with respect to classes.

4) Parts should be specific to categories.

$$CS(V) = \frac{1}{P(C-1)} \sum_{i=1}^{C} \sum_{j=1, j \notin [q(i-1), qi]}^{P} V_{i,j}$$

Results

Table: DP-Net without constraints on parts and global representations

Dataset	N	1IT	Bi	rds	ImageNet		
Network	VGG	RN50	VGG	RN50	VGG	RN50	
Global	76.2	78.1	66.4	81.5	61.0	70.8	
Parts	76.9	79.7	76.1	84.9	69.0	74.6	

Table: Accuracy when using the constraints, with ResNet-50.

Dataset	Constraints								
	wo	\perp	Assign	CS					
Birds	84.9	84.6	84.6	84.5					
MIT	79.7	79.1	80.3	79.5					
	⊥+Assign	CS+⊥	CS+Assign	CS+⊥+Assign					
Birds	85.1	84.4	84.3	85.0					
MIT	80.3	78.8	79.9	80.5					

イロト イヨト イヨト イヨト

Class-level: what is the participation of each part.

Image-level: what is the participation of each part (as Class Activation Maps (CAM)). A part can be linked to its most activating region in a given image.

• • • • • • • • • • • • •

Interpretability - Casino parts

Visual interpretability: saliency maps and inter

Interpretability - heatmaps

Visual interpretability: saliency maps and interpretable classification

Interpretable image classification

Interpretability - best box

Part conclusions

Evaluation focused on accuracy and qualitative results.

Simpler explanations with specific constraints.

Cross attention for CNNs

Improving insertion/deletion

< ロ > < 回 > < 回 > < 回 > < 回</p>