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Figure 1: Overview of Opti-CAM. Given an input image x, a fixed network f , a target layer ℓ and a class of interest c, we extract the feature maps from layer ℓ and obtain a saliency map Sℓ(x;u) by combining the feature maps (×)
with weights from variable u (5). After upsampling and normalizing, the saliency map is element-wise multiplied (⊙) with the input image and fed to f . We find u∗ maximizing F c

ℓ (x;u) along the path highlighted in blue.

Abstract

Methods based on class activation maps (CAM) interpret predictions of Deep neural net-
works (DNN) by using a linear combinations of feature maps as saliency maps. By contrast,
masking-based methods optimize a saliency map directly in the image space or train another
network on additional data to build it.

We introduce Opti-CAM, combining ideas from CAM-based and masking-based ap-
proaches. Our saliency map is a linear combination of feature maps, where weights are
optimized per image such that the logit of the masked image for a given class is maxi-
mized. We also study evaluation metrics and propose the Average Gain.Opti-CAM largely
outperforms other CAM-based approaches. We also show that localization and classifier
interpretability are not necessarily aligned.

Background

CAM-based saliency maps are built as a linear combination of feature maps Ak
ℓ = f k

ℓ (x).
For layer ℓ and class c, the saliency is

Sc
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ℓ

)
, (1)

where wc
k are the weights of each channel and h an activation function.

Grad-CAM is defined with h = relu and weights

wc
k := GAP

(
∂yc
∂Ak

ℓ

)
, (2)

where GAP is global average pooling.
Score-CAM [2] is defined with h = relu and weights wc

k := softmax(uc)k, where uc is the
increase in confidence for class c of the input image x masked by the saliency map:

uck := f (x⊙ n(up(Ak
ℓ )))c − f (xb)c, (3)

where ⊙ is the Hadamard product, up is upsampling and n the saliency map normalization.
Masking-based methods rely on optimization in the input space, like extremal perturba-

tions [1]. Optimization often takes the form

Sc(x) := arg max
m∈M

f (x⊙ n(up(m)))c + λR(m). (4)

Here, a mask m is directly optimized and does not rely on feature maps of any layer. How-
ever, the optimization is complex and requires regularization.

Opti-CAM

As CAM methods, our saliency map is a combination of feature maps, but we optimize the
weights given an objective function. We use channel weights wk := softmax(u)k, where u
is the variable. Our saliency map Sℓ is a function of input x and variable u:

Sℓ(x;u) :=
∑
k

softmax(u)kA
k
ℓ . (5)

Given a layer ℓ, we find the vector u∗ that maximizes the classifier confidence for class c,
when the input image x is masked according to saliency map Sℓ(x;u

∗):

u∗ := argmax
u

F c
ℓ (x;u), where F c

ℓ (x;u) := gc(f (x⊙ n(up(Sℓ(x;u))))). (6)

The saliency map Sℓ(x;u) is adapted to x by upscaling and normalizing. Finally we have

Sc
ℓ(x) := Sℓ(x;u

∗) = Sℓ(x; arg max
u

F c
ℓ (x;u)), (7)

Figure 1 shows Opti-CAM, without details like upsampling and normalization. Optimiza-
tion takes place along the highlighted path from variable u to objective function F c

ℓ .

Results

Visualization of saliency maps on ImageNet and medical data are given in Figure 5.
Classification metrics: average drop/increase (AD, AI) measure the increase/drop of pre-

diction when masking the input image with the saliency map. Since a trivial solution Fake-
CAM exist, we propose to complete them with average gain (AG), see Figure 2.

Insertion (I) and deletion (D) iteratively insert/delete pixels from the input image and mea-
sure its impact on prediction, but these metrics favour small, compact saliency maps.

Localization metrics are often used to evaluate saliency maps, see Figure 3, but a network
decision does not only take the object into account but the context as well. We show how
bounding box, and background perform, when used as saliency map, see Figure 4.

METHOD
RESNET50 VGG16 VIT-B DEIT-B RESNET50 VGG16

AD↓AG↑ AI↑ AD↓AG↑ AI↑ AD↓AG↑ AI↑ AD↓AG↑ AI↑ I↑ D↓ I↑ D↓
Fake-CAM 0.8 1.6 46.0 0.5 0.6 42.6 0.3 0.4 48.3 0.6 0.3 44.6 50.7 28.1 46.1 26.9

Grad-CAM 12.2 17.6 44.4 14.2 14.7 40.6 69.4 2.5 12.4 33.5 1.7 12.5 66.3 14.7 64.1 11.6
Grad-CAM++ 12.9 16.0 42.1 17.1 10.2 33.4 86.3 1.5 1.0 50.7 0.9 7.2 66.0 14.7 62.9 12.2
Score-CAM [2] 8.6 26.6 56.7 13.5 15.6 41.7 32.0 6.2 33.0 53.6 2.2 12.2 65.7 16.3 62.5 12.1
XGrad-CAM 12.2 17.6 44.4 13.8 14.8 41.2 88.1 0.4 4.3 80.5 0.3 4.1 66.3 14.7 64.1 11.7
Layer-CAM 15.6 15.0 38.8 48.9 3.1 13.5 82.0 0.2 2.9 88.9 0.4 2.6 67.0 14.2 58.3 6.4
ExPerturbation [1] 38.1 9.5 22.5 43.0 7.1 20.5 28.8 6.2 24.4 60.9 2.0 8.5 70.7 15.0 61.1 15.0
Opti-CAM (ours) 1.5 68.8 92.8 1.3 71.2 92.7 0.6 18.0 90.1 0.9 26.0 83.5 62.0 19.7 59.2 11.0

Figure 2: Classification metrics on ImageNet validation set, using CNNs and Transformers. AD/AI/AG: aver-
age drop/increase/gain; I/D: insertion/deletion; bold: best, excluding Fake-CAM.

METHOD
RESNET50 VGG16

OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓ OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓
Fake-CAM 63.6 54.0 57.7 47.9 99.8 28.5 0.98 64.7 54.0 57.7 47.9 99.8 28.5 1.07

Grad-CAM 72.9 65.8 49.8 56.2 69.8 33.3 1.30 71.1 62.3 42.0 54.2 64.8 32.0 1.39
Grad-CAM++ 73.1 66.1 50.4 56.2 69.9 33.1 1.29 70.8 61.9 44.3 55.2 66.2 32.3 1.38
Score-CAM [2] 72.2 64.9 49.6 54.5 68.7 32.4 1.25 71.2 62.5 45.3 58.5 68.2 33.4 1.40
Ablation-CAM 72.8 65.7 50.2 56.1 69.9 33.1 1.26 71.3 62.6 43.2 56.2 65.7 32.7 1.39
XGrad-CAM 72.9 65.8 49.8 56.2 69.8 33.3 1.30 70.8 62.0 41.9 53.5 64.4 31.6 1.41
Layer-CAM 73.1 66.0 50.1 55.5 70.0 33.0 1.29 70.5 61.5 28.0 54.7 65.0 32.4 1.45
ExPerturbation [1] 73.6 66.6 37.5 44.2 64.8 38.2 1.59 74.1 66.4 37.8 43.3 62.7 36.1 1.74
Opti-CAM (ours) 72.2 64.8 47.3 49.2 59.4 30.5 1.34 69.1 59.9 44.1 51.2 61.4 30.7 1.34

Figure 3: Localization metrics on ImageNet. OM: official metric; LE: localization error; F1: pixel-wise F1
score; BA: box accuracy; SP: standard pointing game; EP: energy pointing game; SM: saliency metric.

METHOD
AD↓ AG↑ AI↑

S B∩SS\B S B∩SS\B S B∩SS\B
S := B 67.2 – – 2.3 – – 9.2 – –
S := I \B 44.0 – – 2.8 – – 16.3 – –

Fake-CAM 0.5 67.2 44.1 0.7 2.3 2.8 42.0 9.2 18.9

Grad-CAM 15.0 72.6 52.1 15.3 1.8 6.0 40.4 8.4 19.4
Grad-CAM++ 16.5 72.9 53.1 10.6 1.6 4.1 35.2 7.3 17.1
Score-CAM [2] 12.5 71.5 50.5 16.1 2.2 6.3 42.5 8.6 20.8
Ablation-CAM 15.1 72.8 52.1 13.5 1.7 5.6 39.9 7.8 19.0
XGrad-CAM 14.3 72.6 51.4 15.1 1.8 6.0 42.1 8.0 20.1
Layer-CAM 49.2 84.2 74.4 2.7 0.4 1.2 12.7 4.4 7.3
ExPerturbation [1]43.8 81.6 71.0 7.1 1.4 3.2 18.9 5.6 11.1
Opti-CAM (ours) 1.4 62.5 34.8 66.3 8.7 25.8 92.5 18.6 47.1

Figure 4: Bounding box study. Classification metrics on ImageNet using VGG16. B: ground-truth box used
by localization metrics; I: entire image; S: saliency map. Bold: best, excluding Fake-CAM.
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Figure 5: Saliency maps obtained on ImageNet (top two rows), Chest X-ray and Kvasir with VGG16.

References
[1] R. Fong, M. Patrick, and A. Vedaldi. Understanding deep networks via extremal perturbations and smooth

masks. In ICCV, 2019.
[2] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. Score-CAM: Score-

weighted visual explanations for convolutional neural networks. In CVPR Workshop, 2020.


