Computer vision - Retrieval

Ronan Sicre Credits to Yannis Avrithis https://sif-dlv.github.io/

・ 同 ト ・ ヨ ト ・ ヨ ト

э

background

image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- number of instances
- texture/color
- pose
- deformability
- intra-class variability

image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- number of instances
- texture/color
- pose
- deformability
- intra-class variability

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- distinctiveness
- distractors
- main difference to classification:
 - no intra-class variability

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- distinctiveness
- distractors

main difference to classification:

no intra-class variability

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- distinctiveness
- distractors

main difference to classification:

• no intra-class variability

• query vs. dataset image

• pairwise descriptor matching

• pairwise descriptor matching for every dataset image

• similar descriptors should all be nearby in the descriptor space

• let's quantize them into visual words

• now visual words act as a proxy; no pairwise matching needed

original images

local features

tentative correspondences: too many

inliers: now more expensive to find

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p=rac{t}{k}$$
, recall $r=rac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• precision
$$p = \frac{t}{k}$$
, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

• average precision = area under curve

• the mean average precision (mAP) is the mean over queries

• ranked list of items with true/false labels

• average precision = area under curve (filled-in curve)

• the mean average precision (mAP) is the mean over queries

Oxford buildings dataset

[Philbin et al. 2007]

Magdalen

Pitt Rivers

Radcliffe Camera

- Oxford5k: 5k images, 11 landmarks, $5\times11=55$ queries, $10\sim200$ positives/query
- Oxford105k: 100k additional distractor images

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.

Paris dataset

[Philbin et al. 2008]

Defense

Moulin Rouge

Eiffel

Invalides

Musée d'Orsay

Notre Dame

Louvre

Pantheon

Pompidou

Sacré-Cœur

Triomphe

- Paris6k: 6k images, 11 landmarks, $5\times11=55$ queries, $50\sim300$ positives/query
- Paris106k: same 100k distractor images as Oxford

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases.

Holidays dataset

[Jégou et al. 2008]

- personal holiday photos, natural and man-made scenes
- $1.5 \rm k$ images, $500~\rm groups,~1~\rm query/group,~1000~\rm positives,~1 \sim 12~\rm positives/query$

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.

neural codes for image retrieval

- fine-tuning by softmax on 672 classes of 200k landmark photos
- outperforms VLAD and Fisher vectors on standard retrieval benchmarks, but still inferior to SIFT local descriptors

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.

regional CNN features

[Razavian et al. 2015]

3-channel RGB input, largest square region extracted

- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w'\times h'\times k=36\times 36\times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

- CNN visual representation jumps by more than 30% mAP to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical

- CNN visual representation jumps by more than 30% mAP to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization

global max-pooling (MAC)

- VGG-16 last convolutional layer, k = 512
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)

- VGG-16 last convolutional layer, k = 512
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)

- VGG-16 last convolutional layer, k = 512
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- MAC: maximum activation of convolutions

global max-pooling: matching

• receptive fields of 5 components of MAC vectors that contribute most to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.

global max-pooling: matching

• receptive fields of 5 components of MAC vectors that contribute most to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.

global max-pooling: matching

• receptive fields of 5 components of MAC vectors that contribute most to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.

[Kalantidis et al. 2016]

• VGG-16 feature map A, last pooling layer, k = 512

- spatial weights F, channel weights w, weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights w, weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights w, weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

[Kalantidis et al. 2016]

• VGG-16 feature map A, last pooling layer, k = 512

- spatial weights F, channel weights \mathbf{w} , weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights \mathbf{w} , weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights \mathbf{w} , weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

• input image

• receptive fields of nonzero elements of the 10 channels with the highest sparsity-sensitive weights

manifold learning

siamese architecture

[Chopra et al. 2005]

 \mathbf{x}_i \mathbf{x}_j

- an input sample is a pair $(\mathbf{x}_i, \mathbf{x}_j)$
- both $\mathbf{x}_i, \mathbf{x}_j$ go through the same function f with shared parameters $oldsymbol{ heta}$
- loss ℓ_{ij} is measured on output pair $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.

siamese architecture

[Chopra et al. 2005]

- an input sample is a pair $(\mathbf{x}_i, \mathbf{x}_j)$
- both $\mathbf{x}_i, \mathbf{x}_j$ go through the same function f with shared parameters $oldsymbol{ heta}$
- loss ℓ_{ij} is measured on output pair $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.

siamese architecture

[Chopra et al. 2005]

- ullet an input sample is a pair $(\mathbf{x}_i,\mathbf{x}_j)$
- both $\mathbf{x}_i, \mathbf{x}_j$ go through the same function f with shared parameters $oldsymbol{ heta}$
- loss ℓ_{ij} is measured on output pair $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_i , output vectors $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- target variables $t_{ij} = \mathbb{1}[sim(\mathbf{x}_i, \mathbf{x}_j)]$
- contrastive loss is a function of distance $\|\mathbf{y}_i \mathbf{y}_j\|$ only

$$\ell_{ij} = L((\mathbf{y}_i, \mathbf{y}_j), t_{ij}) = \ell(\|\mathbf{y}_i - \mathbf{y}_j\|, t_{ij})$$

similar samples are attracted

$$\ell(x,t) = t\ell^+(x) + (1-t)\ell^-(x) = tx^2 + (1-t)[m-x]_+^2$$

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping

contrastive loss

- input samples \mathbf{x}_i , output vectors $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- target variables $t_{ij} = \mathbb{1}[sim(\mathbf{x}_i, \mathbf{x}_j)]$
- contrastive loss is a function of distance $\|\mathbf{y}_i \mathbf{y}_j\|$ only

$$\ell_{ij} = L((\mathbf{y}_i, \mathbf{y}_j), t_{ij}) = \ell(\|\mathbf{y}_i - \mathbf{y}_j\|, t_{ij})$$

• similar samples are attracted

$$\ell(x,t) = t\ell^+(x) + (1-t)\ell^-(x) = tx^2 + (1-t)[m-x]_+^2$$

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

contrastive loss

- input samples \mathbf{x}_i , output vectors $\mathbf{y}_i = f(\mathbf{x}_i; oldsymbol{ heta})$
- target variables $t_{ij} = \mathbb{1}[sim(\mathbf{x}_i, \mathbf{x}_j)]$
- contrastive loss is a function of distance $\|\mathbf{y}_i \mathbf{y}_j\|$ only

$$\ell_{ij} = L((\mathbf{y}_i, \mathbf{y}_j), t_{ij}) = \ell(\|\mathbf{y}_i - \mathbf{y}_j\|, t_{ij})$$

• dissimilar samples are repelled if closer than margin m

$$\ell(x,t) = t\ell^+(x) + (1-t)\ell^-(x) = tx^2 + (1-t)[m-x]_+^2$$

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

triplet architecture

[Wang et al. 2014]

$$\mathbf{x}_i \quad \mathbf{x}_i^+ \quad \mathbf{x}_i^-$$

- an input sample is a triplet $(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)$
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.

triplet architecture

[Wang et al. 2014]

- an input sample is a triplet $(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)$
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.

triplet architecture

[Wang et al. 2014]

- an input sample is a triplet $(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)$
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.

graph-based methods

ranking on manifolds: single query

data points (•), query point (•), nearest neighbors (•)
iteration × 30

data points (•), query point (•), nearest neighbors (•)

• iteration 0×30

data points (•), query point (•), nearest neighbors (•)

• iteration 1×30

data points (•), query point (•), nearest neighbors (•)

• iteration 2×30

data points (•), query point (•), nearest neighbors (•)

• iteration 3×30

data points (•), query point (•), nearest neighbors (•)

• iteration 4×30

data points (•), query point (•), nearest neighbors (•)

• iteration 5×30

data points (•), query point (•), nearest neighbors (•)

• iteration 6×30

data points (•), query point (•), nearest neighbors (•)

• iteration 7×30

data points (•), query point (•), nearest neighbors (•)

• iteration 8×30

data points (•), query point (•), nearest neighbors (•)

• iteration 9×30

data points (•), query points (•), nearest neighbors (•)

• iteration 0×30

data points (•), query points (•), nearest neighbors (•)

• iteration 1×30

data points (•), query points (•), nearest neighbors (•)

• iteration 2×30

data points (•), query points (•), nearest neighbors (•)

• iteration 3×30

- data points (•), query points (•), nearest neighbors (•)
- iteration 4×30

data points (•), query points (•), nearest neighbors (•)

• iteration 5×30

data points (•), query points (•), nearest neighbors (•)

• iteration 6×30

data points (•), query points (•), nearest neighbors (•)

• iteration 7×30

data points (•), query points (•), nearest neighbors (•)

• iteration 8×30

data points (•), query points (•), nearest neighbors (•)

• iteration 9×30

[Iscen et al. 2018]

• data points (•), query point x (•)

[Iscen et al. 2018]

- data points (•), query point \mathbf{x} (•)
- Euclidean nearest neighbors $E(\mathbf{x})$ (•)

[Iscen et al. 2018]

- data points (•), query point \mathbf{x} (•)
- manifold nearest neighbors $M(\mathbf{x})$ (•)

[Iscen et al. 2018]

• data points (•), query point \mathbf{x} (•)

• hard positives $S^+ = M(\mathbf{x}) \setminus E(\mathbf{x})$ (•)

[Iscen et al. 2018]

• data points (•), query point \mathbf{x} (•)

• hard negatives $S^- = E(\mathbf{x}) \setminus M(\mathbf{x})$ (•)

• query (anchor) (\mathbf{x})

• positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$

• negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- query (anchor) (\mathbf{x})
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- query (anchor) (\mathbf{x})
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- ullet negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X\setminus E(\mathbf{x})$

- query (anchor) (\mathbf{x})
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- query (anchor) (\mathbf{x})
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

Conclusion

Features and embeddings Feature matching, geometric verification mean Average Precision Indexing, and approximate neighbor search deep representation contrastive loss manifold learning