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vector quantization → visual words... back to image retrieval

15query

2

• query vs. dataset image

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsFeature correspondences with image #15

15query
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• pairwise descriptor matching

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsFeature correspondences with image #19
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• pairwise descriptor matching for every dataset image

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsMatching in descriptor space
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• similar descriptors should all be nearby in the descriptor space

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsVector quantization → visual words
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• let’s quantize them into visual words

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsVocabulary
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• now visual words act as a proxy; no pairwise matching needed

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



back to geometry: re-ranking

original images

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

local features

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

tentative correspondences: too many

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

inliers: now more expensive to find

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



average precision (AP)

• ranked list of items with true/false labels
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Oxford buildings dataset
[Philbin et al. 2007]

All Souls Ashmolean Balliol Bodleian

Christ Church Cornmarket Hertford Keble

Magdalen Pitt Rivers Radcliffe Camera

• Oxford5k: 5k images, 11 landmarks, 5× 11 = 55 queries, 10 ∼ 200
positives/query

• Oxford105k: 100k additional distractor images

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



Paris dataset
[Philbin et al. 2008]

Defense Eiffel Invalides Louvre

Moulin Rouge Musée d’Orsay Notre Dame Pantheon

Pompidou Sacré-Cœur Triomphe

• Paris6k: 6k images, 11 landmarks, 5× 11 = 55 queries, 50 ∼ 300
positives/query

• Paris106k: same 100k distractor images as Oxford
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large
Scale Image Databases.



Holidays dataset
[Jégou et al. 2008]

• personal holiday photos, natural and man-made scenes

• 1.5k images, 500 groups, 1 query/group, 1000 positives, 1 ∼ 12
positives/query

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.



neural codes for image retrieval592 A. Babenko et al.

Fig. 4. Sample images from the ”Leeds Castle” and ”Kiev Pechersk Lavra” classes of
the collected Landmarks dataset. The first class contains mostly “clean” outdoor images
sharing the same building while the second class contains a lot of indoor photographs
that do not share common geometry with the outdoor photos.

than to landmark photographs. To confirm this, we performed the second re-
training experiment, where we used the Multi-view RGB-D dataset [12] which
contains turntable views of 300 household objects. We treat each object as a
separate class and sample 200 images per class. We retrain the network (again,
initialized by the ILSVRC CNN) on this dataset of 60,000 images (the depth
channel was discarded). Once again, we observed (Table 1) that this retrain-
ing provides an increase in the retrieval performance on the related dataset, as
the accuracy on the UKB increased from 3.43 to 3.56. The performance on the
unrelated datasets (Oxford, Oxford-105K) dropped.

5 Compressed Neural Codes

As the neural codes in our experiments are high-dimensional (e.g. 4096 for
L6(I)), albeit less high-dimensional than other state-of-the-art holistic descrip-
tors, a question of their efficient compression arises. In this section, we evaluate
two different strategies for such compression. First, we investigate how efficiency
of neural codes degrades with the common PCA-based compression. An im-
portant finding is that this degradation is rather graceful. Second, we assess a
more sophisticated procedure based on discriminative dimensionality reduction.
We focus our evaluation on L6(I), since the performance of the neural codes

• fine-tuning by softmax on 672 classes of 200k landmark photos

• outperforms VLAD and Fisher vectors on standard retrieval
benchmarks, but still inferior to SIFT local descriptors

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



regional CNN features
[Razavian et al. 2015]
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• 3-channel RGB input, largest square region extracted

• fixed multiscale overlapping regions, warped into w × h = 227× 227

• each region yields a w′ × h′ × k = 36× 36× 256 dimensional feature
at the last convolutional layer of AlexNet

• global spatial max-pooling

• `2-normalization, PCA-whitening of each descriptor

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
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regional CNN features

Under review as a conference paper at ICLR 2015
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Figure 1: Rapid progress of the performance of ConvNet based methods on two standard image retrieval
datasets during 2014. Each blue bar shows the publication of a result which improved the performance of a
ConvNet method. The red horizontal line marks the performance of the state-of-the-art non-ConvNet method
with representation ≤ 100k and no search refinement procedure. The rightmost bar in each figure is the result
of the performance of the medium representation presented in this paper. The jumps in performance over time
are due to the following improvements. From March to May (Razavian et al., 2014b), the ConvNet feature was
post-processed with PCA whitening (Jégou & Chum, 2012). In June, factors affecting the transferability were
listed and categorized (Azizpour et al., 2014a) and the architecture and training of our ConvNet for retrieval
were optimized w.r.t. these factors. In November (Azizpour et al., 2014b), the ConvNet representation extracted
was from the last convolutional layer instead of the first fully connected layer and also a deeper network was
employed. Finally in December, this paper, the dimension of the image input to the ConvNet was increased
from 227×227×3 to 576×576×3.

improvements in performance have been brought about by building better ConvNet representations.
Section 3 details these improvements, in particular, switching the ConvNet representation from the
first fully connected layer to the final convolutional layer. One should view this part of the paper as
the culmination of a series of papers we have written exploring the expressiveness and usefulness of
ConvNet representation, but distilled towards the task of visual image retrieval.

Another issue for visual instance retrieval is the dimensionality and memory requirements of the
image representation. Usually two separate categories are considered. These are the small footprint
representations encoding each image with less than 1kbytes and the medium footprint representa-
tions which have dimensionality between 10k and 100k. The small regime is required when the
number of images is massive and memory is a bottleneck, while the medium regime is more useful
when the number of images is less than 50k.

Our representation (∼16k in dimensionality), described in section 3, falls into the medium regime
category. Its performance is sufficiently good to make us believe that it is only a matter of time
before a ConvNet based method will more-or-less solve the medium sized image datasets that exist
today with medium regime representations, see section 3.3 for our justification. We feel the next
challenge, without the introduction of massive and diverse datasets, is to solve the existing datasets
with very low memory representations that require no PCA-whitening or specialized fine-tuning on
the test dataset. Section 4 explains our approach toward this problem.

To further push this challenge and after being inspired by the recent work of Chatfield et al. (2014b),
we report the results for a tiny representation. We define a tiny image representation as one that
takes 32bytes or less to store and is learnt independently of the test dataset. Such a compressed rep-
resentation would allow large scale searches to be completed on mobile phones (Panda et al., 2013)
and massive searches on the cloud(Quack et al., 2004). In section 4 we describe a first attempt to
build small and tiny ConvNet representations - basically a streamlined version of the representation
introduced in section 3 without PCA whitening. Performance does drop as we go from the medium
to the small and then finally to the tiny representation, see figure 4. However, the drop is not as large
as one would anticipate and offers the promise that this is a solvable problem, because as this paper
reports it is amazing what performance gains can be achieved in a year.

2

• CNN visual representation jumps by more than 30% mAP to
outperform standard SIFT pipeline in a few months

• however, this is based on multiple regional descriptors per image and
exhaustive pairwise matching of all descriptors of query and all dataset
images, which is not practical

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
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datasets during 2014. Each blue bar shows the publication of a result which improved the performance of a
ConvNet method. The red horizontal line marks the performance of the state-of-the-art non-ConvNet method
with representation ≤ 100k and no search refinement procedure. The rightmost bar in each figure is the result
of the performance of the medium representation presented in this paper. The jumps in performance over time
are due to the following improvements. From March to May (Razavian et al., 2014b), the ConvNet feature was
post-processed with PCA whitening (Jégou & Chum, 2012). In June, factors affecting the transferability were
listed and categorized (Azizpour et al., 2014a) and the architecture and training of our ConvNet for retrieval
were optimized w.r.t. these factors. In November (Azizpour et al., 2014b), the ConvNet representation extracted
was from the last convolutional layer instead of the first fully connected layer and also a deeper network was
employed. Finally in December, this paper, the dimension of the image input to the ConvNet was increased
from 227×227×3 to 576×576×3.

improvements in performance have been brought about by building better ConvNet representations.
Section 3 details these improvements, in particular, switching the ConvNet representation from the
first fully connected layer to the final convolutional layer. One should view this part of the paper as
the culmination of a series of papers we have written exploring the expressiveness and usefulness of
ConvNet representation, but distilled towards the task of visual image retrieval.

Another issue for visual instance retrieval is the dimensionality and memory requirements of the
image representation. Usually two separate categories are considered. These are the small footprint
representations encoding each image with less than 1kbytes and the medium footprint representa-
tions which have dimensionality between 10k and 100k. The small regime is required when the
number of images is massive and memory is a bottleneck, while the medium regime is more useful
when the number of images is less than 50k.

Our representation (∼16k in dimensionality), described in section 3, falls into the medium regime
category. Its performance is sufficiently good to make us believe that it is only a matter of time
before a ConvNet based method will more-or-less solve the medium sized image datasets that exist
today with medium regime representations, see section 3.3 for our justification. We feel the next
challenge, without the introduction of massive and diverse datasets, is to solve the existing datasets
with very low memory representations that require no PCA-whitening or specialized fine-tuning on
the test dataset. Section 4 explains our approach toward this problem.

To further push this challenge and after being inspired by the recent work of Chatfield et al. (2014b),
we report the results for a tiny representation. We define a tiny image representation as one that
takes 32bytes or less to store and is learnt independently of the test dataset. Such a compressed rep-
resentation would allow large scale searches to be completed on mobile phones (Panda et al., 2013)
and massive searches on the cloud(Quack et al., 2004). In section 4 we describe a first attempt to
build small and tiny ConvNet representations - basically a streamlined version of the representation
introduced in section 3 without PCA whitening. Performance does drop as we go from the medium
to the small and then finally to the tiny representation, see figure 4. However, the drop is not as large
as one would anticipate and offers the promise that this is a solvable problem, because as this paper
reports it is amazing what performance gains can be achieved in a year.

2

• CNN visual representation jumps by more than 30% mAP to
outperform standard SIFT pipeline in a few months

• however, this is based on multiple regional descriptors per image and
exhaustive pairwise matching of all descriptors of query and all dataset
images, which is not practical

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional max-pooling (R-MAC)
[Tolias et al. 2016]
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• VGG-16 last convolutional layer, k = 512

• fixed multiscale overlapping regions, spatial max-pooling
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• sum-pooling over all descriptors, `2-normalization

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.
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global max-pooling (MAC)
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• VGG-16 last convolutional layer, k = 512

• global spatial max-pooling

• `2-normalization, PCA-whitening, `2-normalization

• MAC: maximum activation of convolutions
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global max-pooling: matching

Under review as a conference paper at ICLR 2016

• receptive fields of 5 components of MAC vectors that contribute most
to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.
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cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]
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cross-dimensional weighting (CroW)

• input image

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.



cross-dimensional weighting (CroW)

• receptive fields of nonzero elements of the 10 channels with the
highest sparsity-sensitive weights

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.



..

manifold learning



siamese architecture
[Chopra et al. 2005]

xi xj

f θ f

L tij

`ij

yi = f(xi;θ) yj = f(xj ;θ)

• an input sample is a pair (xi,xj)

• both xi,xj go through the same function f with shared parameters θ

• loss `ij is measured on output pair (yi,yj) and target tij

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.
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contrastive loss
[Hadsel et al. 2006]
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• input samples xi, output vectors yi = f(xi;θ)
• target variables tij = 1[sim(xi,xj)]
• contrastive loss is a function of distance ‖yi − yj‖ only

`ij = L((yi,yj), tij) = `(‖yi − yj‖, tij)
• similar samples are attracted

`(x, t) = t`+(x) + (1− t)`−(x) = tx2 + (1− t)[m− x]2+

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
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• target variables tij = 1[sim(xi,xj)]
• contrastive loss is a function of distance ‖yi − yj‖ only

`ij = L((yi,yj), tij) = `(‖yi − yj‖, tij)
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triplet architecture
[Wang et al. 2014]
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• an input sample is a triplet (xi,x
+
i ,x

−
i )

• xi,x
+
i ,x

−
i go through the same function f with shared parameters θ

• loss `i measured on output triplet (yi,y
+
i ,y

−
i )

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.
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graph-based methods
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Conclusion

Features and embeddings
Feature matching, geometric veri�cation
mean Average Precision
Indexing, and approximate neighbor search
deep representation
contrastive loss
manifold learning


