Computer vision - Retrieval

Ronan Sicre
Credits to Yannis Avrithis https://sif-dlv.github.io/

background

image classification challenges

image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting
- number of instances
- texture/color
- pose
- deformability
- intra-class variability

image retrieval challenges

- scale
- distinctiveness
- viewpoint
- distractors
- occlusion
- clutter
- lighting

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting
- distinctiveness
- distractors
main difference to classification:

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting
- distinctiveness
- distractors
main difference to classification:
- no intra-class variability

vector quantization \rightarrow visual words

- query vs. dataset image

vector quantization \rightarrow visual words

- pairwise descriptor matching

vector quantization \rightarrow visual words

- pairwise descriptor matching for every dataset image

vector quantization \rightarrow visual words

- similar descriptors should all be nearby in the descriptor space

vector quantization \rightarrow visual words

- let's quantize them into visual words

vector quantization \rightarrow visual words

- now visual words act as a proxy; no pairwise matching needed

back to geometry: re-ranking

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

back to geometry: re-ranking

local features

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

back to geometry: re-ranking

tentative correspondences: too many

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

back to geometry: re-ranking

inliers: now more expensive to find

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- average precision $=$ area under curve
- the mean average precision (mAP) is the mean over queries

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- average precision $=$ area under curve (filled-in curve)
- the mean average precision (mAP) is the mean over queries

Oxford buildings dataset

- Oxford5k: 5k images, 11 landmarks, $5 \times 11=55$ queries, $10 \sim 200$ positives/query
- Oxford105k: 100k additional distractor images

Paris dataset

- Paris6k: 6k images, 11 landmarks, $5 \times 11=55$ queries, $50 \sim 300$ positives/query
- Paris106k: same 100k distractor images as Oxford

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases.

Holidays dataset

[Jégou et al. 2008]

- personal holiday photos, natural and man-made scenes
- 1.5 k images, 500 groups, 1 query/group, 1000 positives, $1 \sim 12$ positives/query

neural codes for image retrieval

- fine-tuning by softmax on 672 classes of 200k landmark photos
- outperforms VLAD and Fisher vectors on standard retrieval benchmarks, but still inferior to SIFT local descriptors

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

- CNN visual representation jumps by more than $30 \% \mathrm{mAP}$ to outperform standard SIFT pipeline in a few months exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical

regional CNN features

- CNN visual representation jumps by more than $30 \% \mathrm{mAP}$ to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization - sum-pooling over all descriptors, ℓ_{2}-normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization

[^0]
regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- sum-pooling over all descriptors, ℓ_{2}-normalization

global max-pooling (MAC)

- VGG-16 last convolutional layer, $k=512$
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)

- VGG-16 last convolutional layer, $k=512$
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)

- VGG-16 last convolutional layer, $k=512$
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- MAC: maximum activation of convolutions

global max-pooling: matching

- receptive fields of 5 components of MAC vectors that contribute most to image similarity

global max-pooling: matching

- receptive fields of 5 components of MAC vectors that contribute most to image similarity

global max-pooling: matching

- receptive fields of 5 components of MAC vectors that contribute most to image similarity

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights w, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights w
feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

- input image

cross-dimensional weighting (CroW)

- receptive fields of nonzero elements of the 10 channels with the highest sparsity-sensitive weights
manifold learning

siamese architecture

[Chopra et al. 2005]

$$
\mathbf{x}_{i} \quad \mathbf{x}_{j}
$$

- an input sample is a pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through the same function f with shared parameters θ
- loss $\ell_{i j}$ is measured on output pair $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

siamese architecture

[Chopra et al. 2005]

- an input sample is a pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss $\ell_{i j}$ is measured on output pair $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

siamese architecture

[Chopra et al. 2005]

- an input sample is a pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss $\ell_{i j}$ is measured on output pair $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_{i}, output vectors $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- target variables $t_{i j}=\mathbb{1}\left[\operatorname{sim}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$
- contrastive loss is a function of distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|$ only

$$
\ell_{i j}=L\left(\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right), t_{i j}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|, t_{i j}\right)
$$

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_{i}, output vectors $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- target variables $t_{i j}=\mathbb{1}\left[\operatorname{sim}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$
- contrastive loss is a function of distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|$ only

$$
\ell_{i j}=L\left(\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right), t_{i j}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|, t_{i j}\right)
$$

- similar samples are attracted

$$
\ell(x, t)=t \ell^{+}(x)+(1-t) \ell^{-}(x)=t x^{2}+(1-t)[m-x]_{+}^{2}
$$

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_{i}, output vectors $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- target variables $t_{i j}=\mathbb{1}\left[\operatorname{sim}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$
- contrastive loss is a function of distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|$ only

$$
\ell_{i j}=L\left(\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right), t_{i j}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|, t_{i j}\right)
$$

- dissimilar samples are repelled if closer than margin m

$$
\ell(x, t)=t \ell^{+}(x)+(1-t) \ell^{-}(x)=t x^{2}+(1-t)[m-x]_{+}^{2}
$$

triplet architecture

[Wang et al. 2014]

$$
\mathbf{x}_{i} \quad \mathbf{x}_{i}^{+} \quad \mathbf{x}_{i}^{-}
$$

- an input sample is a triplet $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\right)$

triplet architecture

[Wang et al. 2014]

- an input sample is a triplet $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\right)$
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss ℓ_{i} measured on output triplet $\left(\mathrm{y}_{i}, \mathrm{y}_{i}^{+}, \mathrm{y}_{i}^{-}\right)$

triplet architecture

[Wang et al. 2014]

- an input sample is a triplet $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\right)$
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss ℓ_{i} measured on output triplet $\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)$

graph-based methods

ranking on manifolds: single query

- data points (॰), query point (॰), nearest neighbors (\circ)
- iteration

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 0×30

ranking on manifolds: single query

- data points (\cdot), query point (•), nearest neighbors (${ }^{\circ}$)
- iteration 1×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 2×30

ranking on manifolds: single query

- data points (\cdot), query point (•), nearest neighbors (${ }^{\circ}$)
- iteration 3×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 4×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 5×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 6×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 7×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 8×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 9×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 0×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 1×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 2×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 3×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 4×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 5×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 6×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 7×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 8×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 9×30

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- Euclidean nearest neighbors $E(\mathbf{x})(\circ)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- manifold nearest neighbors $M(\mathbf{x})(\bullet)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- hard positives $S^{+}=M(\mathbf{x}) \backslash E(\mathbf{x})(\circ)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- hard negatives $S^{-}=E(\mathbf{x}) \backslash M(\mathbf{x})(\bullet)$

mining on manifolds

- query (anchor) (x)
positives $S^{+}(\mathbf{x})$
- negatives $S^{-}(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. 2018 (unpublished). Mining on Manifolds: Metric Learning without Labels.

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathrm{x})$
- negatives $S^{-}(\mathrm{x})$

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives S^{-}(X)

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^{-}(\mathbf{x})$ vs. Euclidean non-neighbors $X \backslash E(\mathrm{x})$

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^{-}(\mathbf{x})$ vs. Euclidean non-neighbors $X \backslash E(\mathbf{x})$

Conclusion

Features and embeddings
Feature matching, geometric verification mean Average Precision
Indexing, and approximate neighbor search deep representation contrastive loss manifold learning

[^0]: - sum-pooling over all descriptors, ℓ_{2}-normalization

