Ronan Sicre
Credits to Yannis Avrithis https://sif-dlv.github.io/


https://sif-dlv.github.io/




data-driven approach

parameters ——

model

——— representation

cat




beyond classification

. i
| I'e
object localization

classify + regress
bounding box (x,y,w, h)

object detection
per region: classify 4+ regress
bounding box (x,y,w, h)
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semantic segmentation
pixel-wise classify

instance segmentation
per region: pixel-wise classify



selective search (SS)
[van de Sande et al. 2011]

input image ground truth

van de Sande, Ui'Iinis, Gevers and Smeulders. ICCV 2011. Seimentation As Selective Search for Object RecoinitionA



selective search (SS)
[van de Sande et al. 2011]

hierarchical grouping object proposals

van de Sande, Ui'Iinis, Gevers and Smeulders. ICCV 2011. Seimentation As Selective Search for Object RecoinitionA



non-maximum suppression (NMS)




non-maximum suppression (NMS)

region 1 remains




non-maximum suppression (NMS)

region 2 remains




non-maximum suppression (NMS)

region 3 remains




non-maximum suppression (NMS)

region 4 is rejected because J(ry,r1) = 0.2750 > 0.25




non-maximum suppression (NMS)

region 5 is rejected because J(r5,7r1) = 0.5366 > 0.25



non-maximum suppression (NMS)

region 6 is rejected because J(rg,r2) = 0.3268 > 0.25



non-maximum suppression (NMS)

region 7 is rejected because J(r7,r3) = 0.3011 > 0.25



non-maximum suppression (NMS)

region 8 remains



non-maximum suppression (NMS)

region 9 is rejected because J(rg,r3) = 0.4706 > 0.25



non-maximum suppression (NMS)

in the end, regions 1, 2, 3, 8 remain



non-maximum suppression on regions

e given regions r1, 7o, ... of each class independently, ranked by
decreasing order of confidence score

e for i =2,3,..., reject region r; if it has intersection-over-union (loU)
overlap higher then a threshold 7

J(T‘,’, Tj) >T

with some higher scoring region r; with j < i that has not been
rejected



detection evaluation
[Russakovsky et al. 2015]

e for each image and for each class independently, rank predicted
regions by descending order of confidence and assign each region r to
the ground truth region ¢* = arg max, J(r, g) of maximum overlap if
J(r,g*) > 7 and mark it as true positive, else false

e each ground truth region can be assigned up to one predicted region

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. JCV 2015. Imagenet

Larie Scale Visual Recoinition Challenie.



detection evaluation
[Russakovsky et al. 2015]

e for each image and for each class independently, rank predicted
regions by descending order of confidence and assign each region r to
the ground truth region ¢* = arg max, J(r, g) of maximum overlap if
J(r,g*) > 7 and mark it as true positive, else false

e each ground truth region can be assigned up to one predicted region

e now for each class independently, rank predicted regions of all images
by descending order of confidence and compute average precision
(AP) according to true/false labels

e the mean average precision (mAP) is the mean over classes

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. 1JCV 2015. Imagenet

Larie Scale Visual Recoinition Challenie.



object detection datasets

o PASCAL VOC 2007-12: 20 classes; images 5-11k train/val, 5-11k
test (public for 2007)

e ImageNet ILSVRC 2013-14: 200 classes (subset or merged from
classification task); images 400-450k train (partially annotated), 20k
val, 40k test

e COCO 2014-17: 80 classes; images 80k train, 40k val (115k/5k in
2017), 40k test, 120k unlabeled; smaller objects

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. 1JCV 2015. Imagenet
Large Scale Visual Recognition Challenge.
Everingham, Eslami, van Gool, Williams, Winn and Zisserman. 1JCV 2015. The PASCAL Visual Object Classes Challenge: a

Retrospective.
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar and Zitnick. ECCV 2014. Microsoft COCO: Common Objects in Context.




two-stage detection



regions with CNN features (R-CNN)

[Girshick et al. 2014]
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3-channel RGB input, fixed width W = 500 pixels
~ 2000 SS region proposals warped into fixed w x h = 227 x 227

e each proposal yields a k£ = 4096 dimensional feature by CaffeNet

each feature is classified into ¢ classes by ¢ one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic

Seimentation.



fast R-CNN (FRCN)

[Girshick 2015]
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e 3-channel RGB input, arbitrary size

e input yields a single k = 4096 dimensional feature map by VGG-16

e ~ 2000 region proposals, projected onto feature maps and Rol-pooled
into fixed size w’ X ' x k=Tx7xk

e several fully-connected layers follow, for each pooled map
* each pooled map is classified into ¢ + 1 classes (¢ 4+ background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015 Fast R-CNN.



fast R-CNN (FRCN)

pros

e fast (0.32s/image; 9x training, 213 test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

e 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

e better performance

cons

e region proposals are still needed for performance, but are now the
bottleneck (~ 2s/image)

e single-scale

Girshick ICCV 2015 Fast R-CNN.



faster R-CNN

[Ren et al. 2015]
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e same input, same VGG-16 feature maps as Fast R-CNN

e proposals detected directly on feature maps by RPN and max-pooled

e same classifier, same bounding box regression, but now also for RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.




region proposal network (RPN)
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e same input, same feature maps, dimension reduced to 512

e a =9 anchors at each position, for 3 scales and 3 aspect ratios

2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

softmax on scores, regression loss on coordinates

e region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.




faster R-CNN

pros

o faster (0.2s/image including proposals; 10x test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

e trained end-to-end including features, region proposals, classifier and
regressor

e more accurate: region proposals are learned, RPN is convolutional
cons

e still, several fully-connected layers needed for region-specific tasks

e still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Reiion Proiosal Networks.



one-stage detection



“you only look once” (YOLO)

[Redmon et al. 2016]

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.




“you only look once” (YOLO)

e input image

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Onli Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

e groung truth bounding boxes and their centers

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Onli Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

o(z,y)

e image partitioned into 7 X 7 grid and center coordinates assigned to
cells

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Onli Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

z,y,w,h

z,y,w,h

=12
z,y,w,h

e network learns to predict up to one object per cell, including class
label I, center coordinates x,y and bounding box size w, h

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Onli Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)
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class J, J, bbox

e 3-channel input W = H = 448, 24-layer NiN-like network
o fully connected layer, increasing to 4096 features
e ¢ = 20 class scores and 4 bounding box coordinates at each position

e in a single stage, network performs regression from the image to a
7 X 7 x 24 tensor encoding detected classes and positions

o regression (¢2) loss on both class scores and coordinates

“objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Onli Look Once: Unified, Real-Time Object Detection.



speed-accuracy trade-offs
[Huang et al. 2016]
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Huang, Rathod, Sun, Zhu, Korattikara, Fathi, Fischer, Wojna, Song, Guardarrama and Murphy 2016. Speed-Accuracy Trade-Offs

for Modern Convolutional Object Detectors.



what is wrong with dense detection?

e in a two-stage detector, the classifier is applied to a sparse set of
candidate object locations, which are found by binary classification
(object/non-object)

e in a one-stage detector, the classifier is applied to a dense set of
locations (e.g. a regular grid), which introduces extreme class
imbalance between foreground-background

e there is a vast number of easy negatives that can overwhelm the
detector

e as an alternative to OHEM, design the loss function such that it does
not penalize well-classified examples

Lin, Goial, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



one-stage vs. two-stage

e two-stage fights class imbalance; alternatively, use batch sampling,
hard negative mining, or a better loss function

e two-stage defines regions at different scales; alternatively, use multiple
scales from a feature pyramid

e two-stage pools resamples regions at different aspect ratios, or with
deformable parts; this has not been explored with feature pyramids or
one-stage detectors yet

Lin, Goial, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



