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Explanable Al Interpretability of deep models

L Background

L Motivation

Interpretability is important for high stakes decisions.

Model understanding is absolutely critical in several domains --
particularly those involving high stakes decisions!
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Explanable Al Interpretability of deep models

L Background

L Motivation

Interpretability is important for trustworthy DNNs.

FOOLING THE I |

Deep neural networks (DNNs) are brilliant at image
recognition — but they can be easily hacked.

These stickers made an Speed limit 45 m Robustness and
artificial-intelligence ‘ .
system read this stop |mpr0VementS

sign as ‘speed limit 45'.

m Trust and understanding

Scientists have King penguin
evolved images that
look like abstract
patterns — but which
DNNs see as familiar
objects.

m Security, legal necessity
and responsibility

enature
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L Background
L Related work

Dimensions of interpretability methods

Dimension 1 — Passive vs. Active Approaches
{ Passive Post hoc explain trained neural networks

Active Actively change the network architecture or training process for better interpretability

Dimension 2 — Type of Explanations (in the order of increasing explanatory power)

To explain a prediction/class by

T Examples Provide example(s) which may be considered similar or as prototype(s)

Attribution Assign credit (or blame) to the input features (e.g. feature importance, saliency masks)
Hidden semantics Make sense of certain hidden neurons/layers

Rules Extract logic rules (e.g. decision trees, rule sets and other rule formats)

Dimension 3 — Local vs. Global Interpretability (in terms of the input space)

T Local Explain network’s predictions on individual samples (e.g. a saliency mask for an input image)
Semi-local In between, for example, explain a group of similar inputs together
Global Explain the network as a whole (e.g. a set of rules/a decision tree)

[ZTLT20]
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LBackground

L Related work

Dimensions of interpretability methods
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L Attribution

LOverview
Attribution
| Local | Semi-Local | Global
. Dual-net
Active ExpO, DAPr, LFI-CAM | — (feature
(Transparency) importance)
LIME, MAPLE, Partial | ho ool iFT, | Feature
derivarives, De-
convNet Guided LRP, In- | selector,

) back ro’ Grad- tegrated TCAV, ACE,
Passive prop. gradients, SpRAy,
(Post hoc) CAM, Shapley values, | £ -, o MAME

Sensitivity  analysis, ’
X selector, DeepCon-
Feature selector, Bias
- MAME sensus
attribution
[ZTLT20]
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L Attribution

L Overview

Transparency

m Interpretability regularizer: ExpO [PASC*19],
DAPr [WJL19], LFI-CAM [LPOK21]

Perception Branch

Feature Map  Attention Mechanism

Backbone

i i
H 1

I - -
Feature Extractor i l i
1 1
Input Image: Fiase | !
[ 1 i

Probability
> Score

- ]
H H
(e i eature
Attention Map Network

Overlapped Result

Spi ™
LoDy -
Weighted
sum :

i Attention Map

ntio
(Learning of Feature Importance)

m Learning 'optimal’ feature with network: Dual-net [WC20]
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LAnribution

L Overview

Post-hoc interpretation

Model agnostic attribution

m LIME [RSG16]
m Shapley [SK10, AOG19]
m Sensitivity analysis: perturbation [PDS18, CCGD19, PPG20]

Saliency map

m Gradient-based and backpropagation methods:
Gradient [AGGK18, SDBR15, BSH™10], Guidedbackprop [SDBR15],
Grad-CAM [SCD"17]...

m Discrete Gradient: LRP [BBM™15, LTB™13, AMMS17],
DeepLIFT [SGK17], intergrated Grad [STY17]

m Adversarial perturbation based: perceptual ball [ELR21]
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L Post-hoc approaches

LModel agnostic attribution

LIME: Sparse Linear Explanation

1
1
1. Sample points around x, ® ?
2. Use model to predict labels for each sample [ 4 l’. 8
3. Weigh samples according to distance to x; #19
4.  Learn simple model on weighted samples ‘d;'.. J &8
5.  Use simple model to explain I #
1 )
I [ |

[RSG16]
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L Post-hoc approaches

LModel agnostic attribution

LIME: examples

Locally weighted

regression
Original Image \ H QEw ‘
P(labrador) =0.21 “N

#

LIME is quite customizable: l |:|
e How to perturb? 0 ‘
e Distance/similarity?
e How local you want it to be? Explanation
e How to express explanation Maybe to a fault?

[RSG16]
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L Post-hoc approaches

LModel agnostic attribution

Shapley

Marginal contribution of each feature towards the prediction,
averaged over all possible permutations.

X,
i

o LI PT FPIT P roeos

X M(x, 0) = 0.1

i

I 0 0 S

Fairly attributes the prediction to all the features.

[SK10, AOG19]
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L Post-hoc approaches

LSaliencp map

Saliency Map Overview

Input Model Predictions

* Junco Bird

What parts of the input are most relevant for the model’s prediction: ‘Junco Bird'?

-
'

e

e Feature Attribution
e ‘Saliency Map’
e Heatmap
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L Post-hoc approaches

LSaliencp map

Perceptual ball

dog +noise ~ ostrich
Adversarial Perturbation
m Misclassification c(f(x + 1)) # [,

m Small Distortion Norm (||r||2 or ||r]|s)

[ELR21]
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L Post-hoc approaches

LSaliencp map

Perceptual ball

Generate adversarial perturbation

m Misclassification:{(f(x+r),ly) = fi,(x+r)—max f, (x+r)
m Small distortion: Y, || fi(x + 1) — f{(x)|l2 + [|r]]2

[ELR21]
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L Post-hoc approaches

LSaliencp map

Masking-based saliency map method

Maximize masked-in

Image
cl N accuracy

Classifier é
I N ) Loss function
{ Classifier askin
f . : B Lout(fi, (xO(1-m)))
x B Lin(fi,(x ©m))
Mask out ] R(m)
‘Classifier %

Maximize masked-out
prediction entropy

[PPG20]
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L Post-hoc approaches

LSaliencp map

Masking-based saliency map method

Mask

Prediction
[ ]

Masker

Concatenate + Conv + Softmax

Classifier

FC + Softmax

Upsample
&Conv
"""""""""" Upsample
ResNet Block &Conv
A

------------------- Upsample
ResNet Block &Conv

----------------------------- Upsample
ResNet Block &Conv

-------------------------- Upsample
ResNet Block &Conv

Initial Block

(B)

[PPG20]
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L Post-hoc approaches

LSaliencp map

Class activation maps

Class Activation Maps

CNN

GAP Linear

R

?‘ General Equation

(Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016) 2
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L Post-hoc approaches

LSaliencp map

Class activation maps

Australian
terrier
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@
<=L
]

Class Activation Mapping

Class
+ ot Wi * = Activation
Map
‘ - . (Australian terrier)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

—|—W2>«
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‘—Post-hoc approaches

LSaliencp map

Class activation maps

Grad-CAM

e Ageneralization of CAM
o Now the weighting coefficient is obtained from the gradients flowing backwards from the
classification layer. (Rumelhart, Hinton, & Williams, 1986) (Springenberg, Dosovitskiy, Brox,
& Riedmiller, 2014)
o Some networks don’t have a simp]e classifier: i.e. VGG, thus having a CAM representation is
not easy to achieve.
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L Post-hoc approaches

LSaliencp map

Class activation maps

Layer-CAM

« Answer to the question of Grad-CAM answers on non semantic layers
o Now we don’t take into consideration the last convolution before the classifier-
o One convolution per layer can be taken into consideration.
o Arepresentation of the pyramidal structure of the network is built.

Image Stagel Stage2 Stage3 Stage4

Jiang, Zhang, Hou, Cheng, & Wei, 2021

Stage5 Fusion
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[

‘—Post-hoc approaches

LSaliencp map

Class activation maps

Grad-CAM++

e Use of a combination of the positive partial derivatives of the last

convolutional layer’s feature maps w.r.t. an specific class score as weights.
o Improved localization and sharper activation maps.
o  Better robustness towards more objects on the image

> Sl o ReLU (i G
G = wij © ReLU (=7 )—wlf = —5 e
(SAU J 55A’{)2 Yo ZbAab[(gA)lj 5]

Original Image E° Grad-CAM E° Grad-CAM++

Chattopadhyay, Sarkar, Howlader, &
Balasubramanian, 2017
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L Resources and tools

Resources and tools

Resources for free!:
m A Survey on Neural Network Interpretability

m Tutorial on Explaining ML Predictions: State-of-the-art,
Challenges, and Opportunities - NeurlPS 2020 YT

m Tutorial on Interpretable Machine Learning - CVPR 2020

Some tools:
m Pytorch CAM-based interpretability methods
m Colah’s blog
m Comparison CAM, SHAP, LIME
m TorchRay
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https://arxiv.org/pdf/2012.14261.pdf
https://slideslive.com/38935789/explaining-machine-learning-predictions-stateoftheart-challenges-opportunities
https://slideslive.com/38935789/explaining-machine-learning-predictions-stateoftheart-challenges-opportunities
https://www.youtube.com/watch?v=EbpU4p_0hes
https://interpretablevision.github.io/
https://github.com/jacobgil/pytorch-grad-cam
https://colah.github.io/
https://github.com/marvinbuss/ExplainableML-Vision
https://github.com/facebookresearch/TorchRay

Explanable Al Interpretability of deep models

Thank you!

QUESTIONS I

Q:A

I ANSWERS
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