
Concurrent Automata vs. Asynchronous Systems

Rémi Morin

Laboratoire d’Informatique Fondamentale de Marseille,
39 rue F. Joliot-Curie, F-13453 Marseille cedex 13, France

remi.morin@lif.univ-mrs.fr

Abstract. We compare the expressive power of two automata-based
finite-state models of concurrency. We show that Droste’s and Kuske’s
coherent stably concurrent automata and Bednarczyk’s forward-stable
asynchronous systems describe the same class of regular event structures.
This connection subsumes a previous study by Schmitt which relates
Stark’s trace automata to asynchronous systems. This work relies on
Zielonka’s theorem and some unrecognized result due to Arnold.

1 Introduction

In a seminal paper [12] Nielsen, Plotkin and Winskel introduced prime event
structures as natural unfoldings of 1-safe Petri nets. This semantics can be de-
composed into several steps by means of intermediate models which are prefix-
closed Mazurkiewicz trace languages [9] and asynchronous systems [2]. More gen-
eral automata-based models of concurrency were later related to more general
event structures [19], namely trace automata [15] and concurrent automata [5].
Interestingly three classes of automata-based models are known to describe ex-
actly prime event structures: Forward-stable asynchronous systems, stable trace
automata, and the more general model of coherent stably concurrent automata.

More recently the problem of characterizing the unfoldings of finite con-
current automata has been investigated [14,18,11]. In [14], Schmitt established
that all unfoldings of finite stable trace automata are also unfoldings of fi-
nite forward-stable asynchronous systems. In [18], Thiagarajan proved with the
help of Zielonka’s theorem [20] that all unfoldings of finite forward-stable asyn-
chronous systems are also unfoldings of finite 1-safe Petri nets.

In this paper we improve both approaches and show that all unfoldings of
finite coherent stably concurrent automata are unfoldings of finite 1-safe Petri
nets. We proceed in two steps. With the help of some unrecognized difficult work
by Arnold [1] we prove that if a prime event structure is the unfolding of a finite
coherent stably concurrent automaton then it is also the unfolding of a finite
coherent asynchronous system. Next we use Zielonka’s theorem to establish that
if a prime event structure is the unfolding of a finite coherent asynchronous sys-
tem then it is also the unfolding of a finite forward-stable asynchronous system.
This step is more technical so we sketch the construction in more details.

To simplify the presentation of this paper we consider particular domains as
semantical objects instead of prime event structures. These domains are known to
be equivalent to prime event structures so that we shall sketch in the conclusion
how our results can be rephrased in that setting.

J. J
↪
edrzejowicz and A. Szepietowski (Eds.): MFCS 2005, LNCS 3618, pp. 686–698, 2005.

c© Springer-Verlag Berlin Heidelberg 2005



Concurrent Automata vs. Asynchronous Systems 687

2 Background and Results

In this section we present the main framework of this study and compare the
contribution of this paper to some known results from the literature.

First we introduce the very general automata-based model of concurrency
known as automata with concurrency relations [5]. The latter appear as a gener-
alization of several other models such as asynchronous systems, trace automata,
and Mazurkiewicz traces.

Definition 2.1. An automaton with concurrency relations over the alphabet Σ
is a structure A = (Q, ı, Σ,−→, (‖q)q∈Q) such that
1. Q is a non-empty (possibly infinite) set of states, with an initial state ı ∈ Q;
2. −→⊆ Q × Σ × Q is a set of transitions;
3. if q

a
−→ q1 and q

a
−→ q2 then q1 = q2;

4. (‖q)q∈Q is a family of binary, irreflexive, and symmetric relations on Σ;

5. if a‖qb then there exist q
a

−→ q1, q
b

−→ q2, q1
b

−→ q3 and q2
a

−→ q3.
We say that A is finite if Q and Σ are finite.

The language L(A) of sequential computations of A consists of all words u =
a1...an ∈ Σ� for which there are some states q0, ..., qn ∈ Q such that ı = q0 and
for each i ∈ [1, n], qi−1

ai−→ qi. For short, these conditions will be denoted by

q0
u

−→ qn. Now the independence relations ‖q yield a natural equivalence relation
over the set of sequential computations L(A) as follows. The trace equivalence
∼A associated with A is the least equivalence over L(A) such that for all words

u, v ∈ Σ� and all actions a, b ∈ Σ if ı
u

−→ p
ab
−→ q

v
−→ r and a‖pb then

u.ab.v ∼A u.ba.v. Conditions 3 and 5 ensure that if w and w′ are two trace
equivalent words then they lead from the initial state to the same state.

For any word u ∈ L(A), the trace [u] consists of all words v ∈ L(A) that
are trace equivalent to u: Formally we put [u] = {v ∈ Σ� | v ∼A u}. The
trace language L(A) = L(A)/ ∼A consists of all traces. The latter are partially
ordered in the following way: We put [u] � [v] if there exists some word z ∈ Σ�

such that u.z ∼A v. The trace domain of A is the partial order (L(A),�).

Example 2.2. Let D = {(n, m) ∈ N
2 | n � m} be equipped with the partial

order � for which (n, m) � (n′, m′) if n � n′ and m � m′. Then (D,�) is
(isomorphic to) the trace domain of the automaton with concurrency relations

A = (D, (0, 0), {a, b},−→, (‖q)q∈Q) where (n, m)
a

−→ (n′, m′) if n′ = n + 1 and

m′ = m; (n, m)
b

−→ (n′, m′) if n′ = n and m′ = m + 1; and a‖(n,m)b if n < m.
Noteworthy it is easy to see that no finite automaton with concurrency relations
admits the partial order (D,�) as trace domain.

2.1 Coherent Stably Concurrent Automata

In the literature, a particular attention was devoted to automata whose concur-
rency relations ‖q depend locally on each other. In the two following definitions,
for all actions a, b, c ∈ Σ and all states q, we write a‖q.cb if there exists a state

q′ ∈ Q such that q
c

−→ q′ and a‖q′b.



688 R. Morin

q

q1

q2

q3 q5

q6

q7

a

b

c

c

c

a

b
b

a

⇔

q

q1

q2

q5

q6

q7q4

a

b
b

c

a

c

c

b

a

q

q1

q2

q3 q5

q6

q4

a

b

c
b

c

a

c

a

b
⇒

q

q1

q2

q3 q5

q6

q7q4

a

b

c
b

c

a

c

a

b

c

b

a

Fig. 1. Stably concurrent automata Fig. 2. Coherence property

Definition 2.3. An automaton with concurrency relations A is called a stably
concurrent automaton if for all states q ∈ Q and all actions a, b, c ∈ Σ:

a‖qc ∧ b‖qc ∧ a‖q.cb if and only if a‖qb ∧ b‖q.ac ∧ a‖q.bc

This requirement is depicted in Fig. 1. In this paper we are interested in sta-
bly concurrent automata that satisfy an additionnal coherence condition that
ressembles the requirement (C) of the generalized trace languages from [13].

Definition 2.4. A stably concurrent automaton is coherent if for all states
q ∈ Q and all actions a, b, c ∈ Σ: a‖qb ∧ a‖qc ∧ b‖qc implies a‖q.cb.

This requirement is depicted in Fig. 2. The trace language of such a coherent
stably concurrent automaton can be viewed as a generalized trace language [13].
Consequently, it corresponds also to a labeled event structure with a binary
conflict. As we will explain in the conclusion, most results used or established in
this paper can be rephrased and applied in the framework of event structures.

2.2 Forward-Stable Asynchronous Systems

Automata with concurrency relations are a generalization of several other mod-
els of concurrency, in particular Bednarczyk’s asynchronous automata [2] and
Stark’s trace automata [15]. These models are known to have close relationships
to event structures, too. As opposed to automata with concurrency relations,
both models involve a single independence relation.

Definition 2.5. Let Σ be some alphabet and ‖ be a binary, symmetric, and
irreflexive relation over Σ. Let A = (Q, ı, Σ,−→, ‖) be a structure satisfying
Conditions 1, 2, and 3 of Definition 2.1. Then A is called an asynchronous
system [2] if we have

ID: q1
a

−→ q2 ∧ q2
b

−→ q3 ∧ a‖b implies q1
b

−→ q4 ∧ q4
a

−→ q3 for some q4 ∈ Q.
On the other hand, A is called a trace automaton [15] if we have

FD: q1
a

−→ q2 ∧ q1
b

−→ q3 ∧ a‖b implies q2
b

−→ q4 ∧ q3
a

−→ q4 for some q4 ∈ Q.

Finally, if A satisfies both conditions ID and FD then it is called a forward-stable
asynchronous system [2].



Concurrent Automata vs. Asynchronous Systems 689

Asynchronous systems and trace automata can be seen as automata with con-

currency relations by putting a‖qb if a‖b, q
a

−→ q1
b

−→ q2, and q
b

−→ q3
a

−→ q2.
Consequently they are associated with a set of sequential computations L(A), a
trace language L(A), and a trace domain (L(A),�).

Observe that any trace automaton satisfies the coherence property (Fig. 2).
Moreover it fulfills also half of the requirement to be a stably concurrent au-
tomaton (Fig. 1) namely the implication from left to right. We say that a trace
automaton is stable if it is a stably concurrent automaton.

2.3 Comparisons of Expressive Power

Observe now that any asynchronous automaton is a stably concurrent automa-
ton. Furthermore, it is coherent as soon as it is forward-stable. Thus the trace
domain of any forward-stable asynchronous automaton is obviously the trace
domain of a coherent stably concurrent automaton. The next theorem expresses
the converse property.

Theorem 2.6. For any coherent stably concurrent automaton A, there exists a
forward-stable asynchronous system A′ such that the trace domains (L(A),�)
and (L(A′),�) are isomorphic.

This theorem summarizes some results from [2,8]. In [2] it is shown that the trace
domains of forward-stable asynchronous systems can be identified with event
structures by means of a coreflection between the two models. This connection
can be extended to coherent stably concurrent automata [8].

Consider now again the trace domain (D,�) of Example 2.2. As explained
above, this partial order is isomorphic to the trace domain of some coherent
stably concurrent automaton over the finite alphabet {a, b}. However, as noticed
by Husson [7], any asynchronous automaton whose trace domain is isomorphic
to (D,�) admits some infinite alphabet. This shows that Theorem 2.6 fails if
one considers finite alphabets only.

In this paper, we focus on finite automata. We show in Corollary 4.6 that
Theorem 2.6 remains valid if we restrict to finite stably concurrent automata.
Since stable trace automata are coherent stably concurrent automata, Corol-
lary 4.6 subsumes the following theorem due to Schmitt.

Theorem 2.7. [14, Th. 3.12] For any finite stable trace automaton A, there
exists a finite forward-stable asynchronous system A′ such that the trace domains
(L(A),�) and (L(A′),�) are isomorphic.

Organization of the Paper. In the rest of this paper we consider only finite
alphabets. In the following section we relate stably concurrent automata to the
theory of regular consistent sets of pomsets [1] and Mazurkiewicz traces [4]. This
first step allows us to transform a finite stably concurrent automaton into a
finite asynchronous system with the same trace domain. Moreover this process
preserves coherence. Next we state our main result (Cor. 4.6) and sketch its
proof by means of Zielonka’s theorem [20]. This second step shows how to build



690 R. Morin

a forward-stable finite asynchronous system from a coherent one while preserving
the trace domain. In order to improve [14] and [18], the main difficulty here is
to ensure Property FD from the assumption of coherence. In the conclusion we
explain how this work applies to the setting of regular event structures [18].

3 Consistent Sets of Pomsets

A pomset over an alphabet Σ is a triple t = (E, �, ξ) where (E, �) is a finite
partial order and ξ is a mapping from E to Σ without autoconcurrency: ξ(x) =
ξ(y) implies x � y or y � x for all x, y ∈ E. A pomset can be seen as an
abstraction of an execution of a concurrent system. In this view, the elements
e of E are events and their label ξ(e) describes the action that is performed in
the system by the event e ∈ E. Furthermore, the order � describes the causal
dependence between events. We denote by P(Σ) the class of all pomsets over Σ.

An order extension of a pomset t = (E, �, ξ) is a pomset t′ = (E, �′, ξ)
such that �⊆�′. A linear extension of t is an order extension that is linearly
ordered. It corresponds to a sequential view of the concurrent execution t. Linear
extensions of a pomset t over Σ can naturally be regarded as words over Σ. By
LE(t) ⊆ Σ�, we denote the set of linear extensions of a pomset t over Σ. For
any subset of pomsets L ⊆ P(Σ), we put LE(L) =

⋃
t∈L LE(t).

Two isomorphic pomsets admit the same set of linear extensions. Notewor-
thy the converse property holds [17]: If LE(t) = LE(t′) then t and t′ are two
isomorphic pomsets. In the sequel of this paper we do not distinguish between
isomorphic pomsets any longer because they are used as representative of sets
of words. In particular, LE(t) = LE(t′) implies t = t′.

An ideal of a pomset t = (E, �, ξ) is a subset H ⊆ E such that x ∈ H ∧ y �

x ⇒ y ∈ H . The restriction t′ = (H, � ∩(H × H), ξ ∩ (H × Σ)) is then called
a prefix of t and we write t′ � t. For any set of pomsets L, Pref(L) denotes the
set of prefixes of pomsets from L. We say that L is prefix-closed if Pref(L) = L.

3.1 Regular Consistent Sets of Pomsets

We borrow now the notion of consistent sets of pomsets from [1]. Although
we deal mainly with prefix-closed sets of pomsets, we present here the general
definition of a regular consistent set of pomsets. Intuitively, consistency means
that concurrency is determined by any sequential ordering of events.

Definition 3.1. A set of pomsets L is called consistent if
∀t1, t2 ∈ Pref(L) : LE(t1) ∩ LE(t2) �= ∅ ⇒ t1 = t2.

Let L be a consistent set of pomsets. The pomset equivalence ∼L over LE(L) is
such that w ∼L w′ if and only if {w, w′} ⊆ LE(t) for some t ∈ L. Note that ∼L

is an equivalence relation over LE(L) because L is consistent.
For any two words w, w′ ∈ Σ�, we put w ≡L w′ if for all words u,v ∈ Σ�

it holds: w.u ∼L w.v ⇔ w′.u ∼L w′.v. It is easy to see that ≡L is a right-
congruence over Σ�. Relation ≡L appeared in [1] in the definition of regular,
complete, consistent, and prefix-closed sets of pomsets.



Concurrent Automata vs. Asynchronous Systems 691

Definition 3.2. A consistent set of pomsets L is regular if ≡L is of finite index.

Regularity satisfies several natural properties. In particular if L is a regular
consistent set of pomsets then Pref(L) is consistent and regular, too.

3.2 Relationships with Stably Concurrent Automata

The connection between prefix-closed consistent sets of pomsets and stably con-
current automata originates from a pomset description of traces.

Theorem 3.3. [3, Th. 4.6] Let A be a stably concurrent automaton over Σ.
Each trace [u] ∈ L(A) is the set of linear extensions of a (unique) pomset.

This result shows that the trace language L(A) of a stably concurrent au-
tomaton can be represented by a set of pomsets. We adopt this dual view in
the rest of this paper. Clearly L(A) = LE(L(A)) and ∼A=∼L(A). Noteworthy
[u] � [v] means in this setting that the pomset [u] is a prefix of the pomset [v].
Moreover the trace language of any stably concurrent automaton is prefix-closed
[3, Cor. 4.11]. It follows that L(A) is a consistent set of pomsets.

The mapping from stably concurrent automata to prefix-closed and consistent
sets of pomsets is actually onto: Any prefix-closed and consistent set of pomsets is
the trace language of a stably concurrent automaton. This connection specializes
into a correspondance between finite stably concurrent automata and regular,
prefix-closed, and consistent sets of pomsets.

3.3 From Consistent Sets of Pomsets to Mazurkiewicz Traces

Basically Arnold’s result relates regular consistent sets of pomsets to regular
Mazurkiewicz trace languages [4]. The latter can be viewed as the trace language
of a particular asynchronous system. Consider some independence relation (Σ, ‖)

and some asynchronous system A that has a single state q such that q
a

−→ q for
all a ∈ Σ. Then the set of Mazurkiewicz traces M(Σ, ‖) may be defined as the
trace language L(A). Since A is a stably concurrent automaton, for each u ∈ Σ�

there exists a (unique) pomset t over Σ such that [u] = LE(t) (Th. 3.3). That
is why subsets of Mazurkiewicz traces are particular cases of consistent sets of
pomsets. Noteworthy a subset of Mazurkiewicz traces L ⊆ M(Σ, ‖) is regular
(Def. 3.2) if and only if LE(L) is a regular set of words.

Let Σ and Γ be two alphabets and π : Γ → Σ a mapping from Γ to Σ.
This mapping extends in a natural way into a function that maps each pomset
t = (E, �, ξ) over Γ to the structure π(t) = (E, �, π◦ξ). The latter might not be
a pomset over Σ in case some autoconcurrency appears in it. This situation can
occur if π(a) = π(b) for two distinct actions a, b ∈ Σ while there are two events
e and f that are labelled by a and b and that are not causally related. The next
notion of refinement allows to relate two sets of pomsets that are identical up to
some relabeling.

Definition 3.4. Let L and L′ be two consistent sets of pomsets over Σ and Γ
respectively. A mapping π : Γ → Σ from Γ to Σ is a refinement from L to L′ if
π is a bijection from L′ onto L and from Pref(L′) onto Pref(L).



692 R. Morin

Now one main contribution of [1] can be slightly extended as follows.

Theorem 3.5. [1, Th. 6.16] For any regular consistent set of pomsets L over Σ,
there is a refinement from L to a regular set of Mazurkiewicz traces L′ ⊆ M(Γ, ‖).

4 From Coherence to Forward-Stability

In this section we want to apply Theorem 3.5 in order to build a finite forward-
stable asynchronous system from a finite coherent stably concurrent automaton
(Cor. 4.6). The requirement that the asynchronous system should be forward-
stable is the main difficulty tackled in this section: Without this requirement,
the result would follow directly from Th. 3.5 because any regular prefix-closed
set of Mazurkiewicz traces is the trace language of a finite asynchronous system.

4.1 Coherent and Forward-Stable Mazurkiewicz Trace Languages

It is easy to characterize the trace languages associated with the stably concur-
rent automata we are intererested in.

Definition 4.1. A prefix-closed and consistent set of pomsets L over Σ is co-
herent if for all words u ∈ Σ�, all distinct actions a, b, c ∈ Σ:
u.ab ∼L u.ba ∧ u.bc ∼L u.cb ∧ u.ca ∼L u.ac implies u.abc ∼L u.acb ∼L u.cab.

Clearly, the trace language of a coherent stably concurrent automaton is coher-
ent. Conversely, we can show that any coherent prefix-closed consistent set of
pomsets is the trace language of some coherent stably concurrent automaton.

Since we deal also with forward-stable asynchronous systems (Def. 2.5 and
Cor. 4.6), we focus also on forward-stable Mazurkiewicz trace languages.

Definition 4.2. A prefix-closed set of Mazurkiewicz traces L ⊆ M(Σ, ‖) is
forward-stable w.r.t. (Σ, ‖) if for all words u, v ∈ Σ� and all actions a, b ∈ Σ:

[u.a] ∈ L ∧ [u.b] ∈ L ∧ a‖b implies [u.ab] ∈ L.

This condition is well-known. A forward-stable Mazurkiewicz trace language is
called safe-branching in [16], forward independence closed in [10], ideal in [2],
and proper in [9]. Clearly the trace language of a forward-stable asynchronous
system is forward-stable. Actually, the converse property holds. As expressed by
the next basic lemma, this connection specializes into a correspondance between
finite asynchronous systems and regular sets of Mazurkiewicz traces.

Lemma 4.3. Any regular, forward-stable, and prefix-closed set of Mazurkiewicz
traces is the trace language of some finite forward-stable asynchronous system.

Observe now that any forward-stable prefix-closed set of Mazurkiewicz traces
is coherent. It is easy to see that the converse property does not hold. However
we can represent coherent set of Mazurkiewicz traces by forward-stable sets
of Mazurkiewicz traces by means of a refinement (Def. 3.4). This is expressed
for regular languages in the next useful result whose proof will be sketched in
Subsection 4.3 and relies on Zielonka’s theorem.



Concurrent Automata vs. Asynchronous Systems 693

Theorem 4.4. Let L be a regular, coherent, and prefix-closed set of Mazurkie-
wicz traces. There exists a refinement from L to a regular, forward-stable, and
prefix-closed set of Mazurkiewicz traces.

In order to apply Theorem 4.4 together with Theorem 3.5, we observe that
coherence of consistent sets of pomsets is preserved by refinements.

Lemma 4.5. Let L1 and L2 be two consistent sets of pomsets over Σ1 and Σ2

respectively. Let π : Σ1 → Σ2 be a refinement from L2 to L1. If L2 is prefix-closed
and coherent then L1 is prefix-closed and coherent, too.

We come now to the statement of our main result.

Corollary 4.6. For any finite coherent stably concurrent automaton A, there
exists some finite forward-stable asynchronous system A′ such that the trace
domains (L(A),�) and (L(A′),�) are isomorphic.

Proof. The trace language L(A) is a regular, coherent, prefix-closed, and consis-
tent set of pomsets. By Th. 3.5 there exists a refinement from L(A) to a regular
and prefix-closed set of Mazurkiewicz traces L′. By Lemma 4.5, L′ is coherent,
too. By Theorem 4.4, we get a refinement from L′ to a regular, forward-stable,
and prefix-closed set of Mazurkiewicz traces L′′. By Lemma 4.3, L′′ is the trace
language of a finite forward-stable asynchronous system A′′. Since we can com-
pose refinements, we get a refinement from L(A) to L(A′′). It follows that the
trace domains (L(A),�) and (L(A′′),�) are isomorphic.

4.2 Zielonka’s Theorem

Let S = (Pi)i∈I be a family of finite automata Pi = (Qi, ıi, Σi,−→i) where Qi is
a non-empty finite set of states, ıi ∈ Qi is the initial state, Σi is an alphabet of
actions and −→i⊆ Qi × Σi × Qi is a set of deterministic transitions: If q

a
−→ q′

and q
a

−→ q′′ then q′ = q′′. The global behaviour of such a system can be
modelled by a single automaton which is the mixed product of its components
[6]:

∏
S = (

∏
i∈I Qi, (ıi)i∈I ,

⋃
i∈I Σi,−→) where (qi)i∈I

a
−→ (q′i)i∈I if and only

if for all i ∈ I it holds a ∈ Σi ⇒ qi
a

−→i q′i and a �∈ Σi ⇒ qi = q′i. We can
enrich the mixed product of S by explicitly modelling concurrency: We put a‖b
if {a, b} �⊆ Σi for all i ∈ I. In that way we provide the mixed product

∏
S with an

independence relation ‖ and turn it into a forward-stable asynchronous system.
The latter is associated with a trace language L(

∏
S).

Let us now formulate a particular version of Zielonka’s theorem [20,10,16] in
terms of mixed products and refinements. Let A be an asynchronous system over
the independence alphabet (Σ, ‖) with set of states Q and initial state ı ∈ Q. A
finite family δ = (Σi)i∈I of subsets of Σ is called a distribution of (Σ, ‖) if for
all actions a, b ∈ Σ we have a � ‖b ⇔ ∃i ∈ I, {a, b} ⊆ Σi. Given a subset of states

F ⊆ Q, we let LF (A) denote the subset of traces [u] such that ı
u

−→ q ∈ F .

Theorem 4.7. Let δ = (∆i)i∈I be a distribution of some independence alphabet
(Σ, ‖). Let L ⊆ M(Σ, ‖) be a regular, forward-stable, and prefix-closed set of



694 R. Morin

Mazurkiewicz traces. There exists a family of finite automata S = (Pi)i∈I with
local alphabets (Σi)i∈I and a refinement π :

⋃
i∈I Σi → Σ from L to L(

∏
S) such

that for all i ∈ I and all a ∈
⋃

i∈I Σi it holds a ∈ Σi ⇔ π(a) ∈ ∆i.

4.3 Proof of Theorem 4.4

In this section we fix a regular, coherent, and prefix-closed set of Mazurkiewicz
traces L ⊆ M(Γ1, ‖1). There exists a finite forward-stable asynchronous system
A1 = (Q1, ı1, Γ1,−→1, ‖1) together with a subset of states F ⊆ Q1 such that
L = LF (A1). Clearly we can assume that all states of q ∈ Q1 are reachable

from the initial state ı1. Consequently if q
a

−→1 q′ ∈ F then q ∈ F because L is
prefix-closed.

We build from (Γ1, ‖1) an extended independence alphabet (Γ2, ‖2) such that
Γ2 = Γ1 � {{a, b} ⊆ Γ1 | a‖1b} and the independence relation ‖2 is defined as
follows:

– for all a, b ∈ Γ1, a‖2b if a‖1b;
– for all {a, b} ∈ Γ2 \ Γ1, for all c ∈ Γ1, c‖2{a, b} if c‖1a and c‖1b;
– for all {a, b}, {c, d} ∈ Γ2 \ Γ1, {a, b}‖2{c, d} if a‖1c, a‖1d, b‖1c, and b‖1d.

We fix some arbitrary distribution δ = (∆i)i∈I of (Γ1, ‖1). For each i ∈ I, we
define an extended subset of actions ∆′

i = ∆i � {x ∈ Γ2 \ Γ1 | x ∩ ∆i �= ∅}. We
can check easily that δ′ = (∆′

i)i∈I is a distribution of (Γ2, ‖2).

We build also a new structure A2 = (Q2, ı2, Γ2,−→2, ‖2) where Q2 ⊆ (Q1)
2Γ1

,
that is, a state σ ∈ Q2 is a map that associates each subset of actions A ⊆ Γ1

with some state σ(A) ∈ Q1. The initial state ı2 ∈ Q2 maps each subset A ⊆ Γ1

to the initial state ı1. The transition relation −→2 is defined as follows: Consider
two states σ : 2Γ1 → Q1 and σ′ : 2Γ1 → Q1

– we put σ
a

−→2 σ′ for some action a ∈ Γ1 if for all A ⊆ Γ1,

• if a ∈ A then σ′(A) = σ(A);

• if a �∈ A then σ(B)
a

−→1 σ′(A) where B = {c ∈ A | c‖1a}.

– we put σ
x

−→2 σ′ with x = {a, b} ∈ Γ2 \ Γ1 if σ = σ′, σ(A)
a

−→1 qa ∈ F ,

σ(A)
b

−→1 qb ∈ F , and σ(A)
ab
−→1 q �∈ F where A = {c ∈ Γ1 | c‖1a ∧ c‖1b}.

Finally let Q2 be the subset of states that are reachable from ı2. By an immediate
induction, it is clear that for all words u ∈ Γ �

1 and all states σ ∈ Q2, if ı2
u

−→2 σ

then ı1
u

−→1 σ(∅). We shall prove a useful converse property in Lemma 4.8.
The product of two Mazurkiewicz traces [w], [w′] ∈ M(Γ1, ‖1) is defined as

usual by [w] · [w′] = [w.w′]. For all A ⊆ Γ1 and all traces [u] ∈ M(Γ1, ‖1) we
denote by [u]/A the least trace [v] such that [u] = [v] · [z] for some z ∈ A�. If
u ∈ L(A1) then we define the map σu : 2Γ1 → Q1 as follows: For all A ⊆ Γ1,

we let σu(A) be the state from Q1 such that ı1
v

−→1 σu(A) for all v ∈ [u]/A. In

particular ı1
u

−→1 σu(∅). Note also that ı2 = σε and u ∼ v implies σu = σv.

Lemma 4.8. For all u ∈ Γ �
1 , ı1

u
−→1 q1 in A1 if and only if ı2

u
−→2 σu in A2.



Concurrent Automata vs. Asynchronous Systems 695

Proof. The proof follows by induction by means of the next two key properties.
For all words u ∈ Γ �

1 , for all actions a ∈ Γ1, and for all subsets A ⊆ Γ1

1. if u.a ∈ L(A1) and a �∈ A then [u.a]/A = [v.a] where [v] = [u]/{c ∈ A | c‖1a};
2. if u.a ∈ L(A1) and a ∈ A then σu.a(A) = σ(A).

This lemma enables us to check easily that the structure A2 is a forward-
stable asynchronous system. Now L(A2) is a regular, prefix-closed, and forward-
stable set of Mazurkiewicz traces L(A2) ⊆ M(Γ2, ‖2). We can apply Zielonka’s
theorem (Th. 4.7) to L(A2) with the distribution δ′ = (∆′

i)i∈I from above. We
get a new independence alphabet (Γ3, ‖3), a mapping π : Γ3 → Γ2, and a finite
system of finite automata S3 = (Pi)i∈I with alphabets Σi such that (Σi)i∈I is
a distribution of (Γ3, ‖3), π is a refinement from L(A2) to L(

∏
S3), and for all

i ∈ I and all a ∈
⋃

i∈I Σi we have a ∈ Σi ⇔ π(a) ∈ ∆i. Then for all a, b ∈ Γ3,
we have a � ‖3b ⇔ π(a)� ‖1π(b). We put A3 = (Q3, ı3, Γ3,−→3, ‖3) =

∏
S3. We can

assume that in each component automaton Pi, each action occurs in at most one
transition.

We consider now a new forward-stable asynchronous system A4 by restricting
the alphabet and the independence relation over A3. We let (Γ4, ‖4) be the
independence alphabet such that Γ4 = Γ3∩π−1(Γ1) and for all a, b ∈ Γ4, a � ‖4b if
a � ‖3b or there exists some action x ∈ Γ3 \ Γ4 such that π(x) = {π(a), π(b)} and
the next condition is satisfied for all i ∈ I and all qi ∈ Qi:

∀c ∈ {a, b} :
(
c ∈ Σi ∧ ∃q′i ∈ Qi, qi

c
−→i q′i

)
⇒

(
x ∈ Σi ∧ ∃q̃i ∈ Qi, qi

x
−→i q̃i

)

As transitions, we simply restrict to transitions carrying actions from Γ4: We
put q

a
−→4 q′ if q

a
−→3 q′ and π(a) ∈ Γ1. Obviously A4 = (Q3, ı3, Γ4,−→4, ‖4) is

also a forward-stable asynchronous system.
We build a last structure A5 by synchronizing A1 and A4 with a restriction

to the global states F ⊆ Q1. We put A5 = (Q5, (ı1, ı3), Γ4,−→5, ‖4) where

Q5 ⊆ F×Q3 and the transition relation is defined as follows: We put (q1, q3)
a

−→5

(q′1, q
′
3) if q1

π(a)
−→1 q′1 and q3

a
−→3 q′3. Now a pair (q1, q3) ∈ F ×Q3 belongs to Q5 if

it is reachable, that is: There exists some u ∈ Γ �
4 such that (ı1, ı3)

u
−→5 (q1, q3).

It is easy to check that A5 is a finite asynchronous system.
We can use now the hypotheses that L is coherent and each action appears

locally in at most one transition to show the crucial following fact.

Lemma 4.9. The finite asynchronous system A5 is forward-stable.

Proof. Assume (ı1, ı3)
u

−→5 (q1, q3)
a

−→5 (q′1, q
′
3) and (q1, q3)

b
−→5 (q′′1 , q′′3 )

with a‖4b. Since a‖3b, q′3
b

−→3 q′′′3 and q′′3
a

−→3 q′′′3 for some state q′′′3 ∈ Q3

because A3 is forward-stable. Similarly there exists some state q′′′1 ∈ Q1 such that

q′1
π(b)
−→1 q′′′1 and q′′1

π(a)
−→1 q′′′1 . It is sufficient to prove that q′′′1 ∈ F . We proceed

by contradiction and assume q′′′1 �∈ F . Let A = {c ∈ Γ1 | c‖1π(a) ∧ c‖1π(b)}.

We consider [v] = [π(u)]/A. We have ı1
v

−→1 σπ(u)(A)
z

−→1 q1 = σπ(u)(∅)
with z ∈ A�. Since q′1 ∈ F , q′′1 ∈ F , q′′′1 �∈ F , and L is coherent we have

σπ(u)
x

−→2 σπ(u) with x = {π(a), π(b)}. There exists x′ ∈ Γ3 \ Γ4 such that
u.x′ ∈ L(A3) and π(x′) = x. We show now that a � ‖4b (which is the expected



696 R. Morin

contradiction). Let i ∈ I and qi ∈ Qi be such that a ∈ Σi and qi
a

−→ q′i. Then

π(a) ∈ ∆′
i and x ∈ ∆′

i. It follows that x′ ∈ Σi hence qi
x′

−→i q̃i for some local
state q̃i ∈ Qi because u.a ∈ L(A3), u.x′ ∈ L(A3), and each action appears locally
in at most one transition. Similarly, for all j ∈ I and all qj ∈ Qj if b ∈ Σj and

qj
b

−→ q′′j then x′ ∈ Σj and qj
x′

−→j q̃j for some state q̃j ∈ Qj. Thus a � ‖4b.

We can easily check that the mapping π : Γ4 → Γ1 induces a bijection from
L(A5) to LE(L). Moreover u ∼A5

v implies π(u) ∼L π(v). To complete the proof
and show that π : Γ4 → Γ1 is a refinement from L to L(A5) it is sufficient to
establish the converse property. Assume u.ab.v ∼L u.ba.v where u, v ∈ Γ �

1 and
a‖1b. There are u′, v′ ∈ Γ �

3 and a′, b′ ∈ Γ3 such that π(u′) = u, π(v′) = v,
π(a′) = a, π(b′) = b, and u′.a′b′.v′ ∈ L(A3). Moreover u′.a′b′.v′ ∼A3

u′.b′a′.v′

because a′‖3b
′. We need just to show that a′‖4b

′. We proceed by contradiction
and assume a′ � ‖4b

′. There exists some x ∈ Γ3 \ Γ4 such that π(x) = {a, b} and
the next condition is satisfied for all i ∈ I and all qi ∈ Qi:

∀c ∈ {a′, b′} :
(
c ∈ Σi ∧ ∃q′i ∈ Qi, qi

c
−→i q′i

)
⇒

(
x ∈ Σi ∧ ∃q̃i ∈ Qi, qi

x
−→i q̃i

)

We have ı3
u′

−→3 q3
a′

−→3 q′3
b′

−→3 q′′3 and q3
b′

−→3 q′′′3
a′

−→3 q′′3 . If x ∈ Σi then
π(x) ∈ ∆′

i hence it holds a ∈ ∆i or b ∈ ∆i, which implies that a′ ∈ Σi or b′ ∈ Σi.

Therefore q3
x

−→3 q̃3 in A3. It follows that u′.x ∈ L(A3) and u.π(x) ∈ L(A2).
Hence u.ab �∈ LE(LF (A1)) = LE(L), a contradiction.

5 Related Works

To conclude we wish to sketch some connections between this paper and the
theory of regular event structures [18]. Due to the page limit, most definitions
are omitted here. However we believe that the following arguments can clarify
how our results apply to that setting.

Prefix-closed, coherent, and consistent sets of pomsets are the trace languages
of coherent stably concurrent automata. They can be regarded as generalized
trace languages [13]. The latter are closely related to event structures by means
of a coreflection whose units are labelings [13]. Event structures are a classical
semantical model in concurrency theory since they appeared as the unfoldings of
(possibly infinite) 1-safe Petri nets [12]. This strong relationship can be extended
to forward-stable asynchronous systems [2] and coherent stably concurrent au-
tomata [8].

The results presented in this paper allow us to claim that for an event struc-
ture E the following conditions are equivalent:

(i) E is the unfolding of a finite 1-safe Petri net;

(ii) E admits a regular forward-stable Mazurkiewicz labeling;

(iii) E is the unfolding of a finite forward-stable asynchronous system;

(iv) E is the unfolding of a finite coherent asynchronous system;

(v) E is the unfolding of a finite coherent stably concurrent automaton;

(vi) E admits a regular labeling.



Concurrent Automata vs. Asynchronous Systems 697

In [18], the equivalence between (i) and (ii) is established by means of Zielonka’s
theorem. The equivalences (ii) ⇔ (iii) and (v) ⇔ (vi) are easy consequences of
the corresponding definitions. The implications (iii) ⇒ (iv) and (iv) ⇒ (v) are
trivial. As explained in the proof of Corollary 4.6, Arnold’s result (Th. 3.5) was
used here to get (v) ⇒ (iv). Then we used Zielonka’s theorem to prove (iv) ⇒ (iii)
by means of Theorem 4.4. This work subsumes a difficult work by Schmitt who
established that (iii) holds if and only if E is the unfolding of a finite stable trace
automaton [14]. Note here that a direct proof of (vi) ⇒ (ii) would provide us
easily with an alternative proof of Theorem 3.5 which is a difficult result.

A very interesting conjecture by Thiagarajan [18] characterizes the unfold-
ings of finite 1-safe Petri nets. It asserts that any regular event structure is the
unfolding of a finite 1-safe Petri net. Since (vi) ⇒ (i), our contribution reduces
this conjecture to proving that any regular event structure admits a regular label-
ing. We are investigating at present this issue by adapting to the general setting
the techniques developped in [11]. We stress finally that any direct proof of Thi-
agarajan’s conjecture would show that (vi) ⇒ (ii) because (vi) implies that E is a
regular event structure. It would lead to a new proof of Theorem 3.5. The latter
is thus a natural ingredient to answer this question.

References

1. Arnold A.: An extension of the notion of traces and asynchronous automata.
RAIRO, Theoretical Informatics and Applications 25 (Gauthiers-Villars, 1991)
355–393

2. Bednarczyk M.A.: Categories of Asynchronous Systems. PhD thesis in Computer
Science (University of Sussex, 1988)

3. Bracho F., Droste M., Kuske D.: Representations of computations in concurrent
automata by dependence orders. Theoretical Computer Science 174 (1997) 67–96

4. Diekert V. and Rozenberg G.: The Book of Traces. (World Scientific, 1995)

5. Droste M.: Concurrency, automata and domains. LNCS 443 (1990) 195–208
6. Duboc C.: Mixed product and asynchronous automata. Theoretical Computer Sci-

ence 48 (1986) 183–199
7. Husson J.-Fr.: Modélisation de la causalité par des relations d’indépendances. PhD

thesis (Université Paul Sabatier de Toulouse, 1996)
8. Kuske D.: Nondeterministic automata with concurrency relations and domains.

CAAP, LNCS 787 (1994) 202–217

9. Mazurkiewicz A.: Trace theory. LNCS 255 (1987) 279–324
10. Mukund M.: From global specifications to distributed implementations. In Synthesis

and Control of Discrete Event Systems, Kluwer (2002) 19–34
11. Nielsen M., Thiagarajan P.S.: Regular Event Structures and Finite Petri Nets: The

Conflict-Free Case. ICATPN, LNCS 2260 (2002) 335–351
12. Nielsen M., Plotkin G and Winskel G.: Petri nets, event structures and domains I.

Theoretical Computer Science 13 (1980) 86–108

13. Sassone V., Nielsen M., Winskel G.: Deterministic Behavioural Models for Concur-
rency (Extended Abstract). MFCS, LNCS 711 (1993) 682–692

14. Schmitt V.: Stable trace automata vs. full trace automata. Theoretical Computer
Science 200 (1998) 45–100



698 R. Morin

15. Stark E.W.: Connections between a Concrete and an Abstract Model of Concurrent
Systems. LNCS 442 (1990) 53–79

16. Ştefănescu A., Esparza J., and Muscholl A.: Synthesis of distributed algorithms
using asynchronous automata. CONCUR, LNCS 2761 (2003) 20–34

17. Szpilrajn E.: Sur l’extension de l’ordre partiel. Fund. Math. 16 (1930) 386–389
18. Thiagarajan P.S.: Regular Event Structures and Finite Petri Nets: A Conjecture.

Formal and Natural Computing, LNCS 2300 (2002) 244–256
19. Winskel G.: Event structures. Advances in Petri Nets, LNCS 255 (1987) 325–392
20. Zielonka W.: Notes on finite asynchronous automata. RAIRO, Theoretical Infor-

matics and Applications 21 (Gauthiers-Villars, 1987) 99–135


