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Abstract. Hierarchical Message Sequence Charts are a well-established
formalism to specify telecommunication protocols. In this model, nu-
merous undecidability results were obtained recently through algebraic
approaches or relationships to Mazurkiewicz trace theory. We show how
to check whether a rational language of MSCs requires only channels of
finite capacity. In that case, we also provide an upper bound for the size
of the channels. This enables us to prove our main result: one can decide
whether the iteration of a given regular language of MSCs is regular if,
and only if, the Star Problem in trace monoids (over some restricted
independence alphabets) is decidable too.

Message Sequence Charts (MSCs) are a popular model often used for the
documentation of telecommunication protocols. They profit by a standartized
visual and textual presentation (ITU-T recommendation Z.120 [20]) and are re-
lated to other formalisms such as sequence diagramms of UML [5] or message
flow diagramms. An MSC gives a graphical description of the intended communi-
cations between processes. It abstracts away from the values of variables and the
actual contents of messages. However, this formalism can be used at a very early
stage of design to detect errors in the specification [18]. In this direction, several
studies have already brought up methods and complexity results for the model
checking of MSCs viewed as a specification language [14,26,27,1]. However, many
undecidable problems arose by algebraic reductions to formal language theory
[7] or relationships to Mazurkiewicz trace theory [28,16].

We are here interested in regular sets of MSCs, a notion recently introduced
in [16]. These languages of MSCs are such the set of associated sequential execu-
tions can be described by a finite automaton; therefore model checking becomes
decidable and particular complexity results could be obtained [1,28]. Moreover,
regular languages of MSCs satisfy the channel-bounded property, that is, the
number of messages stored in channels at any stage of any execution is bounded
by a finite natural number. Consequently, as shown in [17,25], regular languages
of MSCs admit a finite distributed abstract implementation in the form of mes-
sage passing automata whose channels have a finite capacity; noteworthy, this
result relies on asynchronous mappings [8] studied in order to associate a finite
cellular asynchronous automaton to any recognizable subset of Mazurkiewicz
traces. Another interesting characterization of regular MSC languages was es-
tablished in [17]: they are precisely the languages that are definable in Monadic
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Second Order logic and which satisfy the channel-bounded property. Again, this
result relies on technical results from trace theory.

It is the aim of this paper to contribute to this stream of relationships between
traces and MSCs. These two formalisms consist of labelled partial orders (also
known as pomsets [32]) provided with a concatenation that yields a monoidal
structure. A Hierarchical (or High-level) Message Sequence Chart (HMSC ) is
then a description of a set of MSCs built from finite sets by use of union, con-
catenation (i.e. products), and iteration. Thus an HMSC is simply a rational
expression in the monoid of MSCs. Moreover any HMSC can be flattened into
a Message Sequence Graph (MSG), which is a kind of finite automaton labelled
by MSCs. However, HMSCs are more succint descriptions than MSGs and they
are also closer to the hierarchical specification of MSC languages. On the other
hand, MSGs are often more convenient for the study of languages of MSCs [1,
28,16]. Since MSGs and HMSCs have the same expressive power, most results
known for MSGs apply also to HMSCs. In [28], correction and consistency of
a given HMSC are shown to be undecidable; more important here, it is shown
in [16] that one cannot decide whether a given HMSC describes a regular lan-
guage of MSCs. Both negative results rely actually on the undecidable Closure
Problem in trace monoids [33]. A natural approach is now to restrict the class
of HMSCs to be used, so that interesting properties of the associated languages
are ensured or can effectively be checked.

In this direction, a particular class of HMSCs, called locally synchronized in
[28] and bounded in [1] restricts iteration to sets of MSCs whose communication
graphs are strongly connected. These sc-HMSC proved to be interesting since the
associated languages are regular [28,1]. The converse was shown in [16]: any reg-
ular finitely generated language of MSCs can be described by an sc-HMSC. We
shall see here how both relationships can be infered from Ochmański’s theorem
[31]. In our way, we show how one should adapt the definition of communication
graph in order to deal with internal actions.

Our first result asserts that an HMSC satisfies the channel-bounded property
if, and only if, iteration occurs only over sets of MSCs for which each connected
component of the communication graph is strongly connected. Therefore diver-
gence of channels is easily decidable. This evokes Ben-Abdallah & Leue static
criterion [4] to check divergence freeness of HMSCs, although divergence free-
ness and channel-boundedness are in general distinct notions. Our proof also
differs from [3,4] by providing a technically usefull upper bound for the size of
the channels.

As mentionned above, regularity is however undecidable [16]. We consider in
this paper a variation of this problem: we would like to check whether each sub-
expression of a given HMSC describes a regular language — and not only the
whole HMSC itself. Since unions and products of regular languages are regular,
we consider here the following problem for MSCs: given a regular language of
MSCs, decide whether its iteration is regular too. Our second result asserts that
this problem is decidable if, and only if, the well-known Star Problem in trace
monoids is decidable too [12,21].
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1 Basic Notions

Let (M, ·) be a monoid with unit 1. For any subsets L and L′ of M, the product
of L by L′ is L · L′ = {x · x′ | x ∈ L ∧ x′ ∈ L′}. We let L0 = {1} and for any
n ∈ IN, Ln+1 = Ln · L; then L? =

⋃

n∈IN Ln is the iteration of L. A language
L ⊆ M is finitely generated if there is a finite subset L0 of M such that L ⊆ L?

0.
A subset of M is rational if it can be obtained from the finite subsets of M

by means of unions, products and iterations. Any rational language is finitely
generated. A subset L of M is recognizable if there exists a finite monoid M

′

and a monoid morphism η : M → M
′ such that L = η−1 ◦ η(L). Equivalently,

L is recognizable if and only if there exists a finite M-automaton recognizing L
— because the collection of all sets L/x = {y ∈ M | x · y ∈ L} is finite. Thus,
the set of recognizable subsets of any monoid is closed under union, intersection
and complement.

A pomset over an alphabet Σ is a triple t = (E,4, ξ) where (E,4) is a finite
partial order and ξ is a mapping from E to Σ. We denote by P(Σ) the class of
all pomsets over Σ. Let t = (E,4, ξ) be a pomset and x, y ∈ E. Then y covers
x (denoted x−≺y) if x ≺ y and x ≺ z 4 y implies y = z. The elements x and y
are concurrent or incomparable if ¬(x 4 y)∧¬(y 4 x). A pomset t = (E,4, ξ) is
without auto-concurrency if ξ(x) = ξ(y) implies (x 4 y or y 4 x) for all x, y ∈ E.
A pomset can be seen as an abstraction of an execution of a concurrent system
[32]. In this view, the elements e of E are events and their label ξ(e) describes
the basic action of the system that is performed by the event. Furthermore, the
order describes the causal dependence between the events. In particular, if two
events are concurrent, they can be executed in any order or even in parallel. A
pomset is without auto-concurrency if no action can be performed concurrently
with itself. An ideal of a pomset t = (E,4, ξ) is a subset H ⊆ E such that
x ∈ H ∧ y 4 x ⇒ y ∈ H. For all z ∈ E, we denote by ↓tz the ideal of events
below z, i.e. ↓tz = {y ∈ E | y 4 z}. If H is a subset of E, we denote by #a

t (H)
the number of events x ∈ H such that ξ(x) = a. (We will omit the subscript t
when it is clear from the context.) An order extension of a pomset t = (E,4, ξ)
is a pomset t′ = (E,4′, ξ) such that 4⊆4′. A linear extension of t is an order
extension that is linearly ordered. Linear extensions of a pomset t = (E,4, ξ)
can naturally be regarded as words over Σ. By LE(t) ⊆ Σ?, we denote the
set of linear extensions of a pomset t over Σ. Clearly, two isomorphic pomsets
admit the same linear extensions. Noteworthy the converse property holds for
pomsets without auto-concurrency: two pomsets without auto-concurrency t and
t′ are isomorphic iff LE(t) = LE(t′). For any subclass L of P(Σ), LE(L) denotes
⋃

t∈L LE(t).

Mazurkiewicz Traces. Let us now recall some basic notions of trace theory [9].
The concurrency of a distributed system is often represented by an independence
relation over the alphabet of actionsΣ, that is a binary, symmetric and irreflexive
relation ‖ ⊆ Σ ×Σ. The associated trace equivalence is the least congruence ∼
over Σ? such that ∀a, b ∈ Σ, a‖b ⇒ ab ∼ ba. A trace [u] is the equivalence class of
a word u ∈ Σ?. We denote by M(Σ, ‖) the set of all traces w.r.t. (Σ, ‖). Traces



On Regular Message Sequence Chart Languages and Relationships 335

can easily be composed in the following way: [u] · [v] = [u.v]. Then M(Σ, ‖)
appears as a monoid with the empty trace [ε] as unit. A trace language is a
subset L ⊆ M(Σ, ‖). It is easy to see that a trace language L is recognizable
in M(Σ, ‖) iff the set of associated linear extensions LE(L) is recognizable in
the free monoid Σ?. Let u ∈ Σ?; then the trace [u] is precisely the set of linear
extensions LE(t) of a unique pomset t = (E,4, ξ) without auto-concurrency, that
is, [u] = LE(t). Moreover t satisfies the following additional properties [24]:
MP1: for all events e1, e2 ∈ E with ξ(e1) 6 ‖ξ(e2), we have e1 4 e2 or e2 4 e1;
MP2: for all events e1, e2 ∈ E with e1−≺e2, we have ξ(e1) 6 ‖ξ(e2).
Conversely any pomset satisfying these two axioms is a pomset without auto-
concurrency whose linear extensions form a trace of M(Σ, ‖). Thus one usually
identifies M(Σ, ‖) with the class of pomsets satisfying MP1 and MP2 — up to
isomorphisms. The product of traces can now be viewed as a concatenation of
pomsets: let t1 = (E1,41, ξ1) and t2 = (E2,42, ξ2) be two traces over (Σ, ‖);
the concatenation t1 · t2 is the pomset t = (E1 ] E2,4, ξ1 ∪ ξ2) where 4 is the
transitive closure of 41 ∪ 42 ∪ {(e1, e2) ∈ E1 × E2 | ξ1(e1) 6 ‖ξ2(e2)}.

Basic Message Sequence Charts. MSCs are defined by several recommen-
dations that indicate how one should represent them graphically [20]. More for-
mally, they can be seen as particular labelled partial orders. Similar approaches
can be traced to Lamport’s diagrams [23] or Nielsen, Plotkin & Winskel’s ele-
mentary event structures [29].

Let I be a finite set of processes, also called instances. For any instance i ∈ I,
Σint

i denotes a finite set of internal actions; the alphabet Σi is then the disjoint
union of the set of send actions Σ!

i = {i!j | j ∈ I \{i}}, the set of receive actions
Σ?

i = {i?j | j ∈ I \ {i}} and the set of internal actions Σint
i . We shall assume

that the alphabets Σi are disjoint and we let ΣI =
⋃

i∈I Σi. Given an action
a ∈ ΣI , we denote by Ins(a) the unique instance i such that a ∈ Σi, that is the
particular instance on which each occurrence of action a occurs. Finally, for any
pomset (E,4, ξ) over ΣI we denote by Ins(e) the instance on which the event
e ∈ E occurs : Ins(e) = Ins(ξ(e)).

Definition 1.1. A basic message sequence chart (or basic MSC) is a pomset
M = (E,4, ξ) over ΣI such that
M1: ∀e, f ∈ E: Ins(e) = Ins(f) ⇒ (e 4 f ∨ f 4 e)
M2: #i!j(E) = #j?i(E) for any distinct instances i and j
M3:

(

ξ(e) = i!j ∧ ξ(f) = j?i ∧ #i!j(↓e) = #j?i(↓f)
)

⇒ e 4 f
M4: [e−≺f ∧ Ins(e) 6= Ins(f)]

⇒
[

ξ(e) = i!j ∧ ξ(f) = j?i ∧ #i!j(↓e) = #j?i(↓f)
]

.

By M1, events occurring on the same instance are linearly ordered : hence non-
deterministic choice cannot be described within an MSC. Condition M2 makes
sure that there are as many send events from i to j than receive events from j to
i; this expresses the reliability of the channels. Since the latter are assumed to
be FIFO, the n-th message sent from i to j is received when the n-th event j?i
occurs; thus M3 formalizes simply that the reception of any message will occur
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Fig. 1. A basic MSC Fig. 2. M0 = M1 · M1 Fig. 3. Internal actions

only after the corresponding send event. Finally, by M4, causality in M consists
only in the linear dependency over each instance and the ordering of pairs of
corresponding send and receive events.

Thus, basic MSCs are precisely the model studied in [1,14,7,16,17,25] al-
though some authors forbid internal actions. Opposite to general sets of pomsets
[22], basic MSCs satisfy a fundamental property known for Mazurkiewicz traces
and also often considered in their generalization as P-traces [2,19].

Lemma 1.2. Let M and M ′ be two basic MSCs. If LE(M) ∩ LE(M ′) 6= ∅ then
M and M ′ are isomorphic.

Examples of basic MSCs over two instances i and j are described informally
in Figures 1 and 2. There, each arrow i!j → j?i represents a pair of send-receive
related events (and as usual MSCs should be read from top to bottom). Thus
the MSC M0 has two linear extensions i!j.i!j.j?i.j?i and i!j.j?i.i!j.j?i. Hence the
second send event and the first receive event are concurrent (or independent).
The MSC M1 has only one linear extension i!j.j?i and thus does not describe
actually any concurrent behavior.

Hierarchical Message Sequence Charts. We denote by bMSC the set of
(isomorphism classes) of basic MSCs. The asynchronous concatenation of two
basic MSCs M1 = (E1,41, ξ1) and M2 = (E2,42, ξ2) is M1 · M2 = (E,4, ξ)
where E = E1 ]E2, ξ = ξ1 ∪ ξ2 and the partial order 4 is the transitive closure
of 41 ∪ 42 ∪{(e1, e2) ∈ E1 × E2 | Ins(e1) = Ins(e2)}. It is easy to check
that the asynchronous concatenation of two basic MSCs is a basic MSC. With
Lemma 1.2, this concatenation can be shown to be associative and admits the
empty MSC (∅, ∅, ∅) as unit. Therefore we shall refer to bMSC as the monoid
of basic message sequence charts. As observed in [7], bMSC can also be viewed
as a sub-monoid of the product

∏

i∈I Σ
?
i provided with the component-wise

concatenation. Numerous indecidability results were derived from this simple
reduction [7, Th. 5].

The monoidal structure of basic MSCs enables us to use hierarchical specifi-
cations for sets of MSCs by composing finite languages by unions, concatenations
or iterations — as this is usually done when considering rational languages within
a monoid. In that way, we obtain hierarchical message sequence charts.
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Definition 1.3. A hierarchical message sequence chart (HMSC) is a rational
expression of bMSC, that is, an expression built from basic MSCs by use of union,
product and iteration.

Note that the language of basic MSCs associated to an HMSC is finitely gen-
erated w.r.t. bMSC. We follow here the approach adopted, e.g., in [1,7,16,17,25]
where HMSCs are however often flattened into message sequence graphs.

2 Channel-Bounded vs. Regular Languages

In this section, we show how one can decide whether a given HMSC does not in-
duce divergence into channels, i.e. it could be implemented with channels having
a finite capacity. This interesting property is called channel-boundedness.

Channel-Boundedness, Regularity, and Mazurkiewicz Traces. In [4],
Ben-Abdallah & Leue defined the process divergence of HMSC by the existence
of an infinite sequential execution that induce unbounded numbers of messages
in channels. More recently, a simpler notion of boundedness was considered in
[16,17,25] for the study of regular languages.

Definition 2.1. The channel-width of a basic MSC M is

max
i,j∈I,i 6=j

{#i!j(H) − #j?i(H) | H ideal of M}.

A language L ⊆ bMSC is channel-bounded by an integer B if each basic MSC
of L has a channel-width at most B.

Recall now that graphical representations of MSCs should be read from top to
bottom on each instance. Thus in the basic MSC M3 of Fig. 4, the event labelled
k?j occurs before the event labelled k!l. Now the channel-width of M3 of is 4.
Removing the two events labelled l!i and i?l from M3 would lead to a basic
MSC with channel-width 5. Note also that the channel-width of M3 · M3 is 5.
Consider again the basic MSC M1 of Fig. 2; the rational language {M1}

? is not
channel-bounded.

As explained in the introduction, a particularly interesting notion of regu-
larity was introduced in [16] and related to MSO logic [17] and message passing
automata [25].

Definition 2.2. A language L of basic MSCs is regular if its set of linear
extensions LE(L) =

⋃

M∈L LE(M) is recognizable in the free monoid Σ?
I .

We remark that regularity differs from recognizability. On one hand, any
regular language is recognizable. But the converse fails: consider for instance
again the MSC M1 of Figure 2: the rational language {M1}

? is recognizable
in bMSC but not regular. Actually, as observed in [16, Prop. 2.1], any regular
language is channel-bounded.
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From a remark of [17,25] and Lemma 1.2, it follows that sets of basic MSCs
can be seen as generalized trace languages [30] or CCI sets of P-traces [2,19].
Therefore, regular sets of MSCs can be represented by recognizable subsets of
Mazurkiewicz traces by means of a relabeling [2,19]. But since MSCs are very
particular P-traces this basic relationship can be established here as follows.

Lemma 2.3 (D. Kuske). Let B be a positive integer. We consider the finite al-
phabet Σ = ΣI × [0, B] and the independence relation ‖ ⊆ Σ ×Σ such that

(a, n) 6 ‖(a′, n′) if Ins(a) = Ins(a′) or [ {a, a′} = {i!j, j?i} ∧ n = n′ ].

Let π1 be the first projection from Σ to ΣI which sends (a, n) ∈ Σ to a ∈ ΣI . The
map π1 extends naturally to a map from the pomsets over Σ to the pomsets over
ΣI for which (E,4, ξ) is associated to (E,4, π1 ◦ ξ). Then for any basic MSC
M with channel-width at most B, there exists a Mazurkiewicz trace t ∈ M(Σ, ‖)
such that π1(t) = M .

Proof. Let M = (e,4, ξ) be an MSC with channel-width at most B. We easily

check that the pomset t = (E,4, ξt) over Σ such that ξt(e) = (ξ(e),#
ξ(e)
M (↓e)

mod (B + 1)) is a trace over (Σ, ‖).
By [17], any regular language of MSCs is MSO definable. Therefore we can

use Büchi’s Theorem for Mazurkiewicz traces [11,34] together with Lemma 2.3
to derive the following representation result.

Corollary 2.4. Let L be a language of basic MSCs channel-bounded by B.
With the notations of Lemma 2.3, let π−1

1 (L) be the set of traces t ∈ M(Σ, ‖)
such that π1(t) ∈ L. If L is regular then π−1

1 (L) is recognizable in M(Σ, ‖) and
π1 ◦ π−1

1 (L) = L.

Thus any regular language of basic MSCs can be seen as a recognizable set
of traces up to an adequate relabeling; moreover the latter depends on an upper
bound for the channel-widths of the MSCs.

Easy Checking of the Channel-Boundedness Property. As established in
[16, Th. 4.6], one cannot decide whether a rational language of bMSC is regular.
In other words:

Theorem 2.5. [16] It is undecidable to check whether the language of basic
MSCs associated to a given HMSC is regular.

In this section, we shall cope with this negative result in two different ways. A
first natural approach is to weaken the problem: since any regular language is
channel-bounded, one could aim at checking only the channel-boundedness of the
language associated to an HMSC, instead of its regularity. This will be achieved
by Theorem 2.8 and Corollary 2.9 below. Another way to deal with Theorem 2.5
is to look for a subclass of HMSCs that describes only regular languages. This
is achieved in particular by sc-HMSCs defined below (Def. 2.11 and Cor. 2.13).

In order to represent a channel-bounded language of MSCs by a trace lan-
guage, Lemma 2.3 indicates that it suffices to compute an upper bound for the
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Fig. 4. A strongly connected MSC Fig. 5. π1(t1 · t1) 6= M0

channel-width of the MSCs. First, if L1 and L2 are channel-bounded by B1

and B2 respectively then L1 ∪ L2 is channel-bounded by max(B1, B2). For the
product, we simply observe:

Lemma 2.6. Let L1 and L2 be two languages of basic MSCs channel-bounded by
B1 and B2 respectively. Then L1 · L2 is channel-bounded by B1 +B2.

Thus, the main problem consists in deciding whether the iteration of a
channel-bounded language is channel-bounded and to compute a bound. For later
purposes, it is convenient to slightly extend now a useful notion related to MSCs.

Definition 2.7. The communication graph of a basic MSC M = (E,4, ξ) is
the directed graph (IM , 7→) where IM is the set of active instances of M : IM =
{i ∈ I | ∃e ∈ E, Ins(e) = i}, and such that (i, j) ∈7→ if there is e ∈ E such that
ξ(e) = i!j.

Thus there is an edge from i to j if M specifies a communication from i to
j. In [1,28,16], an extended communication graph (I, 7→) is considered without
restriction to the active instances, but still with the same edges. Actually our
slight variation is meant to cope with internal actions in Cor. 2.13.

The communication graph is the basis of a useful criterion to check whether
the iteration of a language of basic MSCs is channel-bounded.

Theorem 2.8. Let L ⊆ bMSC. The following conditions are equivalent:
(i) L? is channel-bounded.
(ii) L is channel-bounded and the communication graph of each M ∈ L is locally

strongly connected — i.e. each connected component is strongly connected.
Moreover, if (ii) holds and if L is channel-bounded by B then L? is channel-

bounded by 2N2

.(N + 1).B where N = Card(I).

Proof. First we prove (i) ⇒ (ii) by contradiction. We assume that L contains a
basic MSC M for which at least one connected component of its communication
graph is not strongly connected. This means that there are two distinct instances
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i and j such that i 7→ j and there is no path from j to i. We simply observe here
that the channel-width of MB+2 is larger than B + 1.

We prove now (ii) ⇒ (i). Let i and j be two fixed distinct instances. We shall
use several time the following observation:

Claim. Let M1,..., Mn be n basic MSCs of L and M = M1 · ... ·Mn. Let K be the
set of integers k ∈ [1, n] such that there is an edge i 7→ j in the communication
graph of Mk. Let k1 < k2 be two integers of [1, n] and let e ∈ Ek2

be such that
ξ(e) = i!j. If ∀f ∈ E, [f ∈ Ek ∧ f 4 e ∧ ξ(f) = j?i] ⇒ k < k1 then Card(K ∩
[k1, k2]) 6 2N.(N−1).(N + 1). 2

Let us prove this claim first, by contradiction. We assume that Card(K ∩
[k1, k2]) > 2N.(N−1).(N + 1). Since there are only 2N.(N−1) distinct extended
communication graphs, there are in the family (Mk)k∈K∩[k1,k2]

at least N + 1
MSCs with the same communication graph G0. The graph G0 contains an edge
(i, j). Since any connected component of G0 is strongly connected, there is a path
j = i1 7→ i2 7→ ... 7→ ir = i in G0 with r 6 Card(I) = N . We denote by J the
set of integers k ∈ K ∩ [k1, k2] such that the communication graph of Mk is G0.
Then Card(J) > N+1. Let j1, j2, ..., jCard(J) be an increasing enumeration of J .
Let f be an event of Mj1 such that ξ(f) = j?i. Since Card(J)−1 > Card(I) > r,
there is an event g in MCard(J)−1 such that Ins(g) = i and f 4 g. Now g 4 e
hence f 4 e. This contradicts f ∈ Ek1

.

We consider now some MSCs M1,..., Mn in L and their concatenation M =
(E,4, ξ) = M1 ·...·Mn. We let K be as above. Let e0 ∈ E be such that ξ(e0) = i!j
and consider k0 to be the integer of [1, n] ∩K such that e0 ∈ Ek0

. It is sufficient

to show that #i!j
M (↓Me0) − #j?i

M (↓Me0) 6 2N2

.(N + 1).B.

1. We assume first that Card(K ∩ [1, k0]) 6 2N.(N−1).(N + 1). We let M ′ =

M1 · ... ·Mk0
. We observe that ↓Me0 = ↓M ′e0. By Lemma 2.6, #i!j

M (↓Me0) −

#j?i
M (↓Me0) = #i!j

M ′(↓M ′e0) − #j?i
M ′(↓M ′e0) 6 2N.(N−1).(N + 1).B.

2. We assume now that Card(K ∩ [1, k0]) > 2N.(N−1).(N + 1). Then, according
to the claim above, there are some events f ∈ E such that ξ(f) = j?i and
f 4 e0. Among all these events below e0 and labelled j?i, we consider f1 to
be the maximal one. Let k1 be the integer such that f1 ∈ Ek1

. Since Mk1

is basic, there is an event e1 ∈ Ek1
such that ξ(e1) = i!j and #i!j

Mk1

(↓e1) =

#j?i
Mk1

(↓f1). Therefore #i!j
M (↓e1) = #j?i

M (↓f1). According to the claim above,

Card(K∩[k1+1, k0]) 6 2N.(N−1).(N+1) — otherwise f1 is not maximal. We
consider k′ ∈ K ∩ [k1 + 1, k0 − 1]. Let e ∈ Ek be such that ξ(e) = i!j. Then
there is no event f ∈ Ek such that f 4Mk

e and ξ(f) = j?i (otherwise f 4 e0
and f1 is not maximal). Therefore #i!j

Mk
(Ek) 6 B because the channel-width

of Mk is at most B. Similarly, Card{e ∈ Ek1
| ξ(e) = i!j ∧ e1 ≺ e} 6 B and

#i!j
Mk0

(↓Mk0

e0) 6 B. Consequently, #i!j
M (↓Me0) 6 (2+2N.(N−1).(N+1)).B+

#i!j
M (↓Me1). Hence #i!j

M (↓Me0) − #j?i
M (↓Me0) 6 (2 + 2N.(N−1).(N + 1)).B.

Now, the product or union of two languages L1 and L2 is channel-bounded if,
and only if, L1 and L2 are channel-bounded. For the iteration, we observe that
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one can inductively compute the set of all communication graphs of all the MSCs
associated to a given HMSC. Thus channel-boundedness is easily decidable:

Corollary 2.9. An HMSC is channel-bounded iff iteration occurs only over
sets of MSCs whose communication graphs are locally strongly connected.

As a consequence, a rational language of MSCs is channel-bounded iff it is
divergence-free in the sense of [4].

First Application to Regular Languages. We are here interested in a sub-
class of HMSCs that describes only regular languages. Again, union and product
do not raise problems at all:

Lemma 2.10. Let L1 and L2 be two regular languages of basic MSCs. Then
L1 ∪ L2 and L1 · L2 are regular too.

Now, a rather simple way to ensure the regularity of languages associated to
hierarchical message sequence charts is to restrict to sc-HMSCs. This restriction
is actually a reformulation of a condition of “local synchronization” or “bound-
edness” introduced in the framework of message sequence graphs [28,1].

Definition 2.11. A hierarchical MSC is an sc-HMSC if iteration occurs only
over sets of MSCs whose communication graphs are strongly connected.

We show here that this restriction corresponds precisely to an approach pre-
viously followed by Ochmański in the framework of Mazurkiewicz traces [31].
Recall that a trace t ∈ M(Σ, ‖) is connected if the restriction of the dependence
graph (Σ, 6 ‖) to the subset of actions appearing in t is connected. Then a subset
of M(Σ, ‖) is c-rational if it can be obtained from finite subsets by means of
unions, products and iterations over subsets of connected traces.

Theorem 2.12. [31] A trace language is recognizable iff it is c-rational.

The next result was originally shown in [28,1] and [16] however under the as-
sumption that there is no internal action. The (restricted) communication graph
of Def. 2.7 enables us to extend this relationship in the more general present
setting. We also show how it can be inferred from Theorem 2.12.

Corollary 2.13. Let L be a finitely generated language of basic MSCs. Then
L is regular if, and only if, it is the language of an sc-HMSC.

Proof. We consider first a regular, finitely generated language L of basic MSCs.
We consider Σ to be a finite family of basic MSCs such that L ⊆ Σ? ⊆ bMSC. We
may assume that the communication graph of each MSC M ∈ Σ is connected.
Since L is recognizable, there is a deterministic finite full bMSC-automaton
A = (Q, {ı},−→, F ) that recognizes L. Let A0 = (Q, {ı},−→0, F ) be the au-

tomaton over the alphabet Σ such that
M

−→0=
M

−→ ∩(Q×Σ ×Q). We consider
the independence relation over Σ such that M‖M ′ if for all events e of M and

for all events e′ of M ′, Ins(e) 6= Ins(e′). Then, if q
M

−→0 q1
M ′

−→0 q2 and M‖M ′
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then there is a state q3 such that q
M ′

−→0 q3
M

−→ q2 because M · M ′ = M ′ · M
and A is deterministic. The language L0 recognized by A0 is recognizable in
the free monoid Σ?; it is also closed for the commutation of independent MSCs.
Therefore L0 can be identified to a recognizable trace language of M(Σ, ‖). By
Th. 2.12, we can consider a c-rational expression h that describes L0 ∈ M(Σ, ‖).
We can see also h as a rational expression over bMSC — that is, as an HMSC —
that describes actually L. Recall now that the communication graph of each
MSC M ∈ Σ is connected; moreover the star operation is taken in h only over
sets of connected traces of M(Σ, ‖). Therefore the star operation is taken in h
over sets of MSCs which are connected. Now we know that L is regular, hence
channel-bounded. Therefore Th. 2.8 ensures that the star operation in h is only
taken over sets of MSCs which are strongly connected, i.e. h is an sc-HMSC.

For the converse, Lemma 2.10 shows it is sufficient to consider the iteration of
a regular language L0 of basic MSCs. Then L0 is channel-bounded by some inte-
ger B0. By Th. 2.8, the language L?

0 is channel-bounded by B = 2N2

.(N +1).B0

where N = Card(I). We use here Lemma 2.3 with Σ = ΣI × [0, B]. Then
π−1

1 (L0) is recognizable in M(Σ, ‖) (Corollary 2.4). Moreover π−1
1 (L0) is con-

nected because each MSC of L0 consists of strongly connected MSCs. There-
fore L† = π−1

1 (L0)
? is recognizable too (Th. 2.12). Consider now the language

LB ⊆ M(Σ, ‖) that consists of the traces t such that π1(t) is a basic MSC
of channel-width at most B. We can show that LB is definable in MSO logic,
hence it is recognizable in M(Σ, ‖) [34]. Then L†∩LB is recognizable in M(Σ, ‖).
Consequently, the set of linear extensions L† = LE(L† ∩ LB) is recognizable in
Σ? and its image through π1 : Σ? → Σ?

I is a recognizable language of Σ?
I . To

conclude we can show that L† ∩ LB = π−1
1 (L?

0) hence π1(L
†) = LE(L?

0).

Note finally that the restriction of communication graphs to active instances
makes sense: with M2 of Fig. 3, {M2}

? is obviously not regular.

3 Connecting Two Star Problems

The subclass of sc-HMSCs describes precisely all regular languages of MSCs
(Corollary 2.13). However allowing iteration over sets of strongly connected
MSCs only can be considered to be too restrictive. We investigate now how
we could weaken this restriction while keeping the same expressive power. By
Lemma 2.10, it suffices to forbid the iteration of a regular language whenever
the resulting language is not regular. However, this might lead to an intractable
criterion. Indeed, we shall prove here the following result.

Theorem 3.1. Consider the two following problems:

Pb1: Given a finite independence alphabet (Σ, ‖) and a recognizable language L
of M(Σ, ‖), decide whether L? is recognizable in M(Σ, ‖).

Pb2: Given a finite set of instances I and a regular language L of bMSC over
I, decide whether L? is regular.

Then Pb1 is decidable if, and only if, Pb2 is decidable.
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Recall that Pb1 is known as “the Star Problem in trace monoids,” and it is still
an open question to know whether it is decidable [21]. The proof of Theorem 3.1
proceeds from Propositions 3.2 and 3.6 below.

It is well-known that some classical telecommunication protocols — such as
the alternating bit protocol — cannot be described by HMSCs because they are
not finitely generated languages. For this reason, compositional MSCs are intro-
duced in [13]: they enable to describe any regular language of MSCs by a rational
expression. That is why, we stress that an important aspect of Theorem 3.1 is
that we do not restrict to finitely generated languages in the statement of Pb2.
In fact, Propositions 3.2 and 3.6 also show that Theorem 3.1 still holds if we
restrict to finitely generated languages. First, the “if” part of Theorem 3.1.

Proposition 3.2. Consider the following variation of Pb2.
Pb′

2: Given a finite set of instances I and a regular finitely generated language
L of bMSC over I, decide whether L? is regular.

If Pb′
2 is decidable then the Star Problem Pb1 of Theorem 3.1 is decidable too.

Proof. Let (Σ, ‖) be a finite independence alphabet. There exists a finite set of
instances I and a family of basic MSCs (Ma)a∈Σ with the following properties:

– a‖b ⇒ Ma ·Mb = Mb ·Ma;
– the morphism ψ : M(Σ, ‖) → bMSC such that ψ(a) = Ma is one-to-one.
– for any recognizable language L ∈ M(Σ, ‖), given a finite automaton over Σ

that recognizes LE(L), one can effectively build a finite automaton over ΣI

that recognizes LE(ψ(L)).

Note here that ψ is well-defined because a‖b ⇒ Ma · Mb = Mb · Ma. Moreover
ψ(M(Σ, ‖)) is finitely generated. (See [15] for an example of such a family that
was used to prove Th. 2.5).

We show that we can decide whether L?
0 is recognizable in M(Σ, ‖) when L0

is a recognizable language of M(Σ, ‖) given by a finite automaton over Σ that
recognizes LE(L0). We can effectively construct an automaton A

′ that recog-
nizes LE(ψ(L0)). Then ψ(L0) is finitely generated. Thus, we need only to show
that L?

0 is recognizable if and only if ψ(L0)
? is regular. Assume first that L?

0

is recognizable. Let A0 be a finite automaton over Σ that recognizes LE(L?
0).

Then there is a finite automaton A
′ over ΣI that recognizes LE(ψ(L?

0)). Since
ψ is a monoid morphism, ψ(L?

0) = ψ(L0)
? hence ψ(L0)

? is regular. Conversely,
assume that ψ(L0)

? is regular. Then L?
0 = ψ−1(ψ(L0)

?) because ψ is one-to-one
and ψ(L?

0) = ψ(L0)
?. Since ψ(L0)

? is regular, it is recognizable in bMSC hence
L?

0 is recognizable in M(Σ, ‖).
The other direction of Theorem 3.1 turns out to be more difficult and is, in

our opinion, the most interesting part of this paper. The reason is that we cannot
simply use Kuske’s relabeling technique (Lemma 2.3) because the mapping π1

does not preserves products: consider for instance MSC M1 of Fig. 2 and let
t1 ∈ M(Σ, ‖) be such that π1(t1) = M1. Then t1 is simply a word (i!j, n).(j?i, n)
for some n ∈ IN. We observe here that π1(t1 · t1) 6= M1 ·M1 (cf. Fig. 1 and 5).

To cope with this algebraic flaw, we shall adapt the representation technique
as follows.
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Definition 3.3. Let B be a positive integer and let (Σ, ‖) be the corresponding
independence alphabet defined in Lemma 2.3. We denote by ρ : P(Σ) → P(ΣI)
the function from the pomsets over Σ to the pomsets over ΣI such that t =
(E,4, ξ) maps to (E,4†, π1 ◦ ξ) where 4† is the transitive closure of
{(e, f) ∈ E2 | ξ(e) 6 ‖ξ(f) ∧ e 4 f ∧ ∀i, j ∈ I, (π1(ξ(e)) 6= j?i ∨ π1(ξ(f)) 6= i!j)}

For any language L ∈ bMSC, we denote by ρ−1(L) the set of all traces t ∈
M(Σ, ‖) such that ρ(t) ∈ L.

We first observe that Lemma 2.3 yields

Corollary 3.4. For any basic MSC M with channel-width at most B, there
exists a Mazurkiewicz trace t ∈ M(Σ, ‖) such that ρ(t) = M .

Now the map ρ : P(Σ) → P(ΣI) satisfies two crucial properties that are not
fulfilled by π1 : P(Σ) → P(ΣI). First, ρ−1(bMSC) is a sub-monoid of M(Σ, ‖)
and ρ : ρ−1(bMSC) → bMSC is a monoid morphism. Second ρ−1(L?) = ρ−1(L)?

for any language L ⊆ bMSC. For this, it suffices to check the following property.

Lemma 3.5. With the notations of Def. 3.3, let M1 and M2 be two basic MSCs
and let t be a trace over M(Σ, ‖) such that ρ(t) = M1 ·M2. Then there are two
traces t1 and t2 such that ρ(t1) = M1, ρ(t2) = M2 and t = t1 · t2.

Proof. We consider M1 = (E1,41, ξ1) and M2 = (E2,42, ξ2) two basic MSCs.
We may assume here that E1∩E2 = ∅. Let t = (E,4, ξt) be a trace over M(Σ, ‖)
such that ρ(t) = M1 ·M2. Then E = E1 ∪E2 and E1 is an ideal of ρ(t). Actually,
the proof follows from the key observation that E1 is an ideal of t as well. We
proceed by contradiction. We can show that there are e ∈ E2 and f ∈ E1 such
that e−≺tf . Since t is a trace, ξ(e) 6 ‖ξ(f). But ¬(e 4ρ(t) f) since E1 is an ideal
of ρ(t). Therefore, ξ2(e) = j?i and ξ1(f) = i!j. Now M1 is a basic MSC so there

exists an event e0 ∈ E1 such that ξ(e0) = j?i and #j?i
M1

(↓e0) = #i!j
M1

(↓f). This

implies #j?i
M1·M2

(↓e0) = #i!j
M1·M2

(↓f). Hence f 4ρ(t) e0 because M1 · M2 is also
a basic MSC. But e0 4ρ(t) e because e ∈ E2, e0 ∈ E1 and Ins(e0) = Ins(e).
Therefore f 4ρ(t) e. This contradicts e−≺tf .

Finally, similarly to π1, we observe that ρ−1(bMSC) is definable in MSO logic.
From this we can adapt Corollary 2.4 to prove a third technical remark: for any
regular language L ⊆ bMSC, ρ−1(L) is recognizable in M(Σ, ‖).

Proposition 3.6. Consider the following variation of Pb1.
Pb′

1: Given a finite independence alphabet (Σ, ‖) such that each action ap-
pears in at most two maximal cliques of the dependence graph (Σ, 6 ‖) and a
recognizable language L of M(Σ, ‖), decide whether L? is recognizable.

If Pb′
1 is decidable then Pb2 of Theorem 3.1 is decidable too.

Proof. Let L be a regular language of bMSC described by a finite automaton
over ΣI that recognizes LE(L). Let B be the number of states of A. Then L is
channel-bounded by B. Clearly, we can decide from A whether each connected
component in the communication graph of all MSCs of L is strongly connected.
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If this is not the case, then L? is not channel-bounded (Th. 2.8) hence not regu-
lar. Therefore, we can assume now that this is the case. Then, again by Th. 2.8,

L? is channel-bounded by B′ = 2N2

.(N + 1).B. We use now the notations of
Def. 3.3 with Σ = ΣI × [0, B′]. Since L is regular, L0 = ρ−1(L) is recogniz-
able in M(Σ, ‖); moreover an automaton recognizing LE(L0) can effectively be
computed from A. To conclude this proof, we show that L?

0 is recognizable in
M(Σ, ‖) if, and only if, L? is regular in bMSC. By the second observation, we
have ρ−1(L?) = ρ−1(L)? = L?

0. Assume first that L? is regular; then (third
observation) ρ−1(L?) is recognizable in M(Σ, ‖). Conversely, assume that L?

0 is
recognizable in M(Σ, ‖). Then LE(L?

0) is recognizable in Σ? hence definable in
MSO logic. We consider now lexicographic normal forms of pomsets over ΣI

with the condition that j?i < i!j for any two distinct instances i and j. Since ρ
is a morphism, ρ(L?

0) ⊆ L?, hence ρ(L?
0) = L?. Therefore L? is the set of basic

MSCs M whose lexicographic normal forms belong to π1(LE(L?
0)). Thus L? is

MSO definable [10,11]. Since it is also channel-bounded, it is regular [17].

Discussion. Another corollary of Prop. 3.2 and 3.6 is the following reduction
of the Star Problem:

Corollary 3.7. The Star Problem is decidable for all independence alphabets
(Pb1 of Theorem 3.1) if, and only if, it is decidable for all independence alphabets
such that each action appears in at most 2 maximal cliques (Pb′

1 of Prop. 3.6).

To our knowledge, this reduction does not follow from known results. It remains
however unclear to us whether this reduction could be useful to provide a new
approach for an answer to this difficult question.

Acknowledgments. Many thanks to Dietrich Kuske for numerous motivating
discussions on this subject and several suggestions to simplify the proofs and
improve the presentation of the results.
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