
On Recognizable Stable Trace Languages

Jean-François Husson1 and Rémi Morin2?

1 IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
2 Institut für Algebra, Technische Universität Dresden, D-01062 Dresden, Germany

Abstract. We relate several models of concurrency introduced in the
literature in order to extend classical Mazurkiewicz traces. These are
mainly Droste’s concurrent automata and Arnold’s CCI sets of P-traces,
studied in the framework of local trace languages. Also, a connection
between these models and classical traces is presented in details through
a natural notion of projection. These relationships enable us to use ef-
ficiently Arnold’s result in two other frameworks. First, we give a finite
distributed implementation for regular CCI sets of P-traces (or, equiva-
lently, finite stably concurrent automata) by means of bounded labelled
Petri nets. Second, we present a new, simple and constructive method to
relate Stark’s trace automata with Bednarczyk’s asynchronous transition
systems. This improves a recent result in Scott domain theory.

Introduction. Mazurkiewicz trace languages are a well-known and widely stud-
ied model of concurrency [4]. They were introduced in [13] to provide a partial
order semantics for elementary Petri nets. In the past decade several differ-
ent generalizations of classical traces have been studied in the literature. First,
Droste introduced concurrent automata [5] for which the independence between
actions is no longer a global independence relation, but depends on the current
state of the system. These automata were shown to extend Bednarczyk’s asyn-
chronous transition systems [2] and Stark’s trace automata [18]. Independently,
Arnold introduced an extension of classical traces by means of labelled partial
orders called P-traces [1]. In particular, a strong connection between recogniz-
able classical trace languages and regular CCI sets of P-traces was established.
More recently, local trace languages were introduced to give a trace semantics
for Place/Transition nets [8,14]. There a local independence relation specifies in
each configuration which subsets of actions can be executed concurrently.

At some point, it seems necessary to classify and relate the different models
of concurrency arisen in the literature. For instance, the synthesis problem of
Petri nets consists in characterizing which automata (or languages) correspond
to the behavior of a Petri net [7,15,8]. More generally, semantical studies bring
relationships between models of different levels of abstraction [20,2,16,11].

In this paper, we relate three models of concurrency which are roughly at
the same level of abstraction. These are CCI sets of P-traces, stably concurrent
automata and a restricted subclass of local trace languages called stable trace
languages. The latter are also precisely compared to classical trace languages by

? Supported by the German Research Foundation (DFG/Graduiertenkolleg)

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 177–191, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

178 Jean-François Husson and Rémi Morin

means of projections. We show that these relationships lead to some improve-
ments for the theories of Petri nets, concurrent automata and dI-domains.

After some basic definitions relating recognizable local trace languages and
Mukund’s step transition systems [15], we introduce the subclass of stable trace
languages with the help of some cube properties. The latter are actually meant
to mimic the particular behaviors of stably concurrent automata. In that way,
recognizable stable trace languages are easily shown to correspond to the behav-
ior of finite stably concurrent automata. Next we focus on CCI sets of P-traces
which are shown to be equivalent to some stable trace languages. Therefore they
represent the behavior of stably concurrent automata. Also regular CCI sets of
P-traces are associated to recognizable stable trace languages. Thus we obtain
precise relationships between these three models.

These connections lead us to give a new formulation of a strong result due
to Arnold [1, Th. 6.16] showing that these extensions of classical traces are
closely related to the original model: any recognizable stable trace language is
the projection of a recognizable classical trace language. This relationship holds
also for non-recognizable languages over infinite alphabets. However, answering
an open problem raised by Arnold, we prove that this relationship fails in the
case of non-recognizable stable trace languages over finite alphabets. This relies
on a counter-example provided by a Producer-Consumer system.

In a seminal paper [21], Zielonka proved that any recognizable classical trace
language is described by an asynchronous automaton which provides a finite
implementation in the form of distributed processes. In [1], Arnold introduced
an extension of Zielonka’s asynchronous automata, called P-asynchronous au-
tomata. However these systems failed to describe all regular CCI sets of P-traces.
Besides, it is still an open problem to know which regular CCI sets of P-traces are
described by P-asynchronous automata (obviously these are not the whole class
of regular CCI sets of P-traces, see [10] for a counter-example). In order to avoid
this restriction, we present a construction of a finite distributed implementation
for any recognizable stable trace language (or any regular CCI set of P-traces) in
the form of a labelled Petri net. This construction turns out to complete nicely a
somewhat dual approach followed by Droste and Shortt [6]. There the Petri nets
whose behavior corresponds to a stably concurrent automaton (or a stable trace
language) are characterized by some simple conditions on the weight function.

In [17], Schmitt tackles the difficult problem to define a recognizability notion
for coherent dI-domains. The basic idea is that a coherent dI-domain should be
considered recognizable if it corresponds to the behavior of a finite distributed au-
tomaton. However several families of distributed automata might be considered
and might give rise to different recognizability notions. The main result of [17]
asserts that the coherent dI-domains obtained from either finite trace automata
[18] or finite asynchronous transition systems [2] are the same. We present here a
new, simple and constructive proof of this result — whereas Schmitt’s approach
is not constructive.

The proofs of our main results partly rely on technical results borrowed from
[1] and [3]. A detailled study is available in [10].

On Recognizable Stable Trace Languages 179

1 Basic Notions

Preliminaries. We will use the following notations: for any (possibly infinite)
alphabet Σ, and any words u ∈ Σ?, v ∈ Σ?, we write u ≤ v if u is a prefix of v,
i.e. there is z ∈ Σ? such that u.z = v; the empty word is denoted by ε. We write
|u|a for the number of occurrences of a ∈ Σ in u ∈ Σ? and ℘f (Σ) denotes the
set of finite subsets of Σ; for any p ∈ ℘f (Σ), Lin(p) = {u ∈ p? | ∀a ∈ p, |u|a = 1}
is the set of linearisations of p. Finally, if λ : Σ → Σ′ is a map from Σ to Σ′,
we also write λ : Σ? → Σ′? and λ : ℘f (Σ) → ℘f (Σ′) to denote the naturally
associated monoid morphisms. For short, a right semi-congruence will be called
right-congruence.

Local Independence Relations and Local Trace Languages. As estab-
lished in [8,14], the behaviors of Petri nets are faithfully represented by local
trace languages. These are a generalization of the classical Mazurkiewicz’ traces
[13] since they specify sets of independent actions rather than pairs.

Definition 1.1. A local independence relation over Σ is a non-empty subset I

of Σ? × ℘f (Σ). The (local) trace equivalence ∼ induced by I is the least equiva-
lence on Σ? such that

TE1: ∀u, u′ ∈ Σ?, ∀a ∈ Σ, u ∼ u′ ⇒ u.a ∼ u′.a;
TE2: ∀(u, p) ∈ I, ∀p′ ⊆ p, ∀v1, v2 ∈ Lin(p′), u.v1 ∼ u.v2.

A (local) trace is an ∼-equivalence class [u] of a word u ∈ Σ?.

By TE1 local trace equivalences are right-congruences. TE2 asserts that for every
subset of actions which are independent after a sequence u, all sequences obtained
by executing first u and then in an arbitrary order the actions from this subset,
are equivalent. Note also that local trace equivalences are Parikh equivalences:
u ∼ u′ ⇒ ∀a ∈ Σ, |u|a = |u′|a.

These assumptions on the trace equivalence can be translated into explicit
additional conditions on the local independence relation without affecting the
resulting traces. A local independence relation satisfying these additional condi-
tions is called complete and can be shown to be a maximal representative among
local independence relations defining the same behaviors.

Definition 1.2. A local independence relation I over Σ is complete if
Cpl1: (u, p) ∈ I ∧ p′ ⊆ p ⇒ (u, p′) ∈ I;
Cpl2: (u, p) ∈ I ∧ p′ ⊆ p ∧ v ∈ Lin(p′) ⇒ (u.v, p \ p′) ∈ I;
Cpl3: (u, {a, b}) ∈ I ∧ (u.ab.v, p) ∈ I ⇒ (u.ba.v, p) ∈ I;
Cpl4: (u.a, ∅) ∈ I ⇒ (u, {a}) ∈ I.

Cpl1 makes explicit what TE2 from Def. 1.1 guarantees for the trace equivalence:
if a set of actions p can be executed concurrently after u, then so can any subset
of p; moreover, following Cpl2, the step p can be split into a sequential execution
v and a concurrent step of the remaining actions. We remark now that Cpl3 is
equivalent to the requirement that u ∼ u′ ∧ (u, p) ∈ I ⇒ (u′, p) ∈ I. Thus Cpl3
states that after two equivalent sequences the independency of actions is the

180 Jean-François Husson and Rémi Morin

same; it corresponds to the right-congruence property TE1 from Def. 1.1. Local
independence relations satisfying Cpl3 were called consistent in [16] and durable
in [9]. Finally Cpl4 guarantees that whenever u.a is a sequential execution, then
action a is allowed as a step after u.

In this paper, we study the local trace languages introduced in [11] as combi-
nations of a complete local independence relation and a language of sequences.

Definition 1.3. A local trace language over Σ is a structure L = (Σ, I, L)
where I is a complete local independence relation on Σ and L ⊆ Σ? is such that
u ∈ L ⇔ (u, ∅) ∈ I.

Note here that the set of sequences L is closed for the prefix relation and the
trace equivalence. Moreover any local trace language is entirely determined by
its associated local independence relation.

Global Independence Relations and Mazurkiewicz Traces. Local trace
languages are actually a direct generalization classical traces [13,4]. There, the
independence between actions does not depend on the context of previously
occurred events. Thus we consider a global independence relation over Σ to be
a binary symmetric and irreflexive relation ‖ ⊆ Σ × Σ. Then a classical trace
language over (Σ, ‖) consists of a language L ⊆ Σ? which is closed for the
commutation of independent actions: ∀u, v ∈ Σ?, ∀a, b ∈ Σ, u.ab.v ∈ L∧ a‖b ⇒
u.ba.v ∈ L.

In order to connect this approach with local trace languages, we will only
consider here prefix-closed languages. In that way any classical trace language can
be formally identified with a local trace language L = (Σ, I, L) for which (u, p) ∈
I if the actions in p are pairwise independent w.r.t. the global independence
relation. This leads us to introduce formally Mazurkiewicz trace languages within
the general framework of local trace languages as follows.

Definition 1.4. Let ‖ be a global independence relation over Σ. A Mazurkie-
wicz trace language over (Σ, ‖) is a local trace language L = (Σ, I, L) such that
∀u ∈ Σ?, ∀n ∈ IN, ∀a1, ..., an ∈ Σ:

(u, {a1, ..., an}) ∈ I ⇔ u.a1...an ∈ L ∧ ∀i, j ∈ [1, n] distinct, ai‖aj.

Now associating any prefix-closed classical trace language L over a fixed indepen-
dent alphabet (Σ, ‖) to the Mazurkiewicz trace language L = (Σ, I, L), where
I is defined as in Def. 1.4, we build clearly a one-to-one correspondence between
prefix-closed classical trace languages and Mazurkiewicz trace languages.

Despite of this nice formal connection, we should stress here that the local in-
dependence relation associated to a Mazurkiewicz trace language may have some
unusual (but technically necessary) properties. In particular, if the language L

is not forward-closed w.r.t. the global independence relation ‖ then there are a
word u and two actions a and b such that u.a ∈ L, u.b ∈ L, a‖b but u.ab 6∈ L; in
that case, a and b are not independent after u: (u, {a, b}) 6∈ I.

Recognizable Languages and Finite Step Transition Systems. The model
of step transition systems was introduced by Mukund [15] in order to extend the

On Recognizable Stable Trace Languages 181

so-called synthesis problem of elementary Petri nets [7] to the more general
model of Place/Transition nets.

Definition 1.5. A step transition system over the alphabet Σ is a structure
= (Q, s, Σ,−→) where Q is a set of states, s ∈ Q is an initial state and

−→⊆ Q × ℘f (Σ) × Q is a set of labelled transitions such that

– ∀q1, q2 ∈ Q: q1
∅

−→ q2 ⇔ q1 = q2;

– ∀q1, q2 ∈ Q, ∀p′ ⊆ p ∈ ℘f (Σ): q1
p

−→ q2 ⇒ ∃q3 ∈ Q, q1
p′

−→ q3
p\p′

−→ q2;

– ∀q1, q2, q3 ∈ Q, ∀p ∈ ℘f (Σ): q1
p

−→ q2 ∧ q1
p

−→ q3 ⇒ q2 = q3.
The step transition system is finite if Σ and Q are finite.

As usual, for any word u = a1...an ∈ Σ?, we write q
u

−→ q′ if there are states

q0,..., qn such that q0 = q, qn = q′ and for each i ∈ [1, n], qi−1
{ai}
−→ qi. Let us

also stress here that we only consider deterministic step transition systems. This
is actually meant to make sure that the local independence relations intuitively
associated to them are complete — in particular, they satisfy Cpl3.

Definition 1.6. The local trace language associated to a step transition system
= (Q, s, ℘f(Σ),−→) is the structure L = (Σ, I, L) where

– ∀u ∈ Σ?: u ∈ L ⇔ ∃q ∈ Q, s
u

−→ q;

– ∀u ∈ Σ?, ∀p ∈ ℘f (Σ): (u, p) ∈ I ⇔ ∃q1, q2 ∈ Q, s
u

−→ q1
p

−→ q2.

Step transition systems define naturally a notion of recognizability which
extends a similar notion well-known and widely studied in the case of classical
language theory or classical trace languages.

Definition 1.7. A local trace language is recognizable if it is the language of a
finite step transition system.

Note here that if L = (Σ, I, L) is recognizable then L is a recognizable language
of Σ?, but the converse is false — except, e.g., for Mazurkiewicz trace languages
over finite independent alphabets.

2 Stable Trace Languages

We introduce in this section the subclass of stable trace languages. These later
generalize Mazurkiewicz traces and Nielsen, Sassone and Winskel’s generalized
trace languages [16].

Cube Properties in Local Trace Languages. Stable trace languages are
characterized by cube properties that can be formalized as follows.

Definition 2.1. A stable trace language is a local trace language L = (Σ, I, L)
such that
S1: ∀u ∈ Σ?, ∀n ≥ 2, ∀a1, ..., an ∈ Σ distinct:

[

∀σ : [1, n] → [1, n] onto : u.a1...an ∼ u.aσ(1)...aσ(n)

]

⇒ (u, {a1, ..., an}) ∈ I

182 Jean-François Husson and Rémi Morin

S2: ∀u ∈ Σ?, ∀a, b, c ∈ Σ distinct:
[(u, {a, c}) ∈ I ∧ (u.a, {b, c}) ∈ I] ⇒ [(u, {a, b}) ∈ I ⇔ (u.c, {a, b}) ∈ I]

Condition S1 asserts that whenever a set of actions may be executed in any order
after a given sequence without affecting the resulting trace then these actions
are mutually independent. Note here that the converse always holds. Therefore
S1 means simply that the independence relation I is somehow determined by its
trace equivalence ∼. Now, the second condition S2 requires that the concurrency
between actions satisfies some local properties. As explained by the following
proposition, this insures that the set of traces of a stable trace language satisfies
some cube properties (CP) similar to those used to characterize stably concurrent
automata.

Proposition 2.2. Let L = (Σ, I, L) be a local trace language satisfying S1. In
the following diagrams, for all u, v ∈ Σ?, we note [u] −→ [v] if there is a ∈ Σ

such that u.a ∼ v. The language L is stable iff ∀u ∈ Σ?, ∀a, b, c ∈ Σ distinct:

(CP) ⇔

It is clear that any Mazurkiewicz trace language is a stable trace language.
Let us also mention here that Nielsen, Sassone and Winskel’s generalized trace
languages [16] can be identified to the stable trace languages which satisfy the
following additional coherence property: if (u, {a, b}) ∈ I, (u, {a, c}) ∈ I and
(u, {b, c}) ∈ I then (u, {a, b, c}) ∈ I.

Stably Concurrent Automata. We present now the very natural connection
between stable trace languages and stably concurrent automata.

Definition 2.3. [3] An automaton with concurrency relations over the alphabet
Σ is a structure = (Q, s, Σ,−→, (‖q)q∈Q) such that
1. Q is a non-empty set of states, with an initial state s;
2. −→⊆ Q×Σ×Q is a set of transitions assumed deterministic, i.e. whenever

p
a

−→ q and p
a

−→ r then q = r;
3. (‖q)q∈Q is a family of irreflexive, symmetric binary relations on Σ; it is

required that whenever a‖pb then there exist transitions p
a

−→ q, p
b

−→ q′,

q
b

−→ r and q′
a

−→ r.

Note that we only consider automata with concurrency relations provided with
a single initial state. On the other hand, the set of states and the alphabet
may be infinite. The language L associated to an automaton with concurrency
relations is the set of finite sequences u = a1...an ∈ Σ? such that there are
states q0,...,qn for which s = q0 and for each i ∈ [1, n], qi−1

ai−→ qi. For short,

these conditions will be denoted by s
u

−→ qn. Now the independence relations ‖q

On Recognizable Stable Trace Languages 183

provide naturally an equivalence relation over L as follows. The trace equivalence
∼ associated to is the least equivalence over L such that ∀u, v ∈ Σ?, ∀a, b ∈ Σ:

s
u

−→ p
ab
−→ q

v
−→ r ∧ a‖qb ⇒ u.ab.v ∼ u.ba.v.

For many different reasons, it appears that one may expect the independence
relations ‖q to depend locally of each other. In that way, a particular attention
has been devoted to stably concurrent automata. In the following definition, for
all actions a, b and c, and for all state q, we note a‖q.cb if there exists a state

q′ ∈ Q such that q
c

−→ q′ and a‖q′b.

Definition 2.4. [3] A automaton with concurrency relations is called stably
concurrent automaton if for all q ∈ Q and all actions a, b, c ∈ Σ, the following
equivalence holds: a‖qc ∧ b‖qc ∧ a‖q.cb ⇔ a‖qb ∧ b‖q.ac ∧ a‖q.bc. We say that

is finite if Q and Σ are finite.

A fundamental property of stably concurrent automata is the following cor-
respondence between the trace equivalence ∼ and the family of independence
relations (‖q)q∈Q: ∀u ∈ Σ?, ∀a, b ∈ Σ distinct, u.ab ∼ u.ba ⇔ s

u
−→ q ∧ a‖qb.

Therefore the assumption on (‖q)q∈Q in Def. 2.4 corresponds precisely to the
cube properties (CP) of Prop. 2.2. Also, the independency of actions is entirely
determined by the trace equivalence. This remark lead us to represent the be-
havior of stably concurrent automata by stable trace languages as follows.

Definition 2.5. Let be a stably concurrent automaton over Σ, L be its lan-
guage and ∼ be its trace equivalence. The stable trace language associated to

is L() = (Σ, I, L) where ∀u ∈ Σ?, ∀n ∈ IN, ∀a1, ..., an ∈ Σ distinct:

(u, {a1, ..., an}) ∈ I ⇔

{

u.a1...an ∈ L

∀σ : [1, n] → [1, n] onto : u.a1...an ∼ u.aσ(1)...aσ(n)
.

We easily check that L() is indeed a stable trace language. Moreover the re-
striction of the trace equivalence of L() to L is precisely the trace equivalence
of . We stress that L() is a representation of the behavior of equivalent to
the labelled dI-domain usually considered (see e.g. [3]). Furthermore any stable
trace language is the language of a stably concurrent automaton. Besides a
stable trace language is recognizable if and only if it is the trace language of a
finite stably concurrent automaton.

Full Stable Trace Languages Are Stable Right-Congruences. Although
stable trace languages play a central role to relate stably concurrent automata
with CCI sets of P-traces, we need to introduce first an equivalent representation
in the form of particular right-congruences.

Definition 2.6. Let ∼ be a right-congruence over Σ?. The associated diamond
relation ∼� is the least right-congruence over Σ? such that

∀u ∈ Σ?, ∀a, b ∈ Σ, u.ab ∼ u.ba ⇒ u.ab ∼� u.ba.
We say that the right-congruence ∼ is homotopic if ∼�=∼.

It is clear that for all right-congruence ∼, ∼�⊆∼. The converse inclusion holds
in particular for the trace equivalence of any local trace language which is thus
a homotopic right-congruence.

184 Jean-François Husson and Rémi Morin

Definition 2.7. A right-congruence over Σ? is stable if it is homotopic and
satisfies axiom (CP) of Prop. 2.2, whenever a, b, c ∈ Σ are distinct and u ∈ Σ?.

Clearly, the trace equivalence of a stable trace language is a stable right-
congruence. However, different stable trace languages may determine the same
trace equivalence. That is why we focus now on full local trace languages. The
latter are defined as the local trace languages L = (Σ, I, L) such that L = Σ?.

Proposition 2.8. An equivalence relation over Σ? is the trace equivalence of a
stable trace language if and only if it is a stable right-congruence. Moreover, in
that case, it is the trace equivalence of a unique full stable trace language.

3 CCI Sets of P-Traces

We show here a one-to-one correspondence between Arnold’s CCI sets of P-
traces [1] and full stable trace languages. Moreover, regular CCI sets of P-traces
correspond to recognizable full stable trace languages.

P-Traces. In this section we consider a fixed alphabet Σ. Note here that we
shall consider a slight extension of Arnold’s approach since Σ may be infinite.

Definition 3.1. [1] A P-trace t over Σ is a triple (Et,≺t, ξt) where (Et,≺t) is
a finite partial order and ξt is a mapping from Et to Σ such that for all x, y ∈ Et,
ξt(x) = ξt(y) ⇒ (x ≺t y or y ≺t x).

Definition 3.2. A linear extension of a P-trace t = (Et,≺t, ξt) is a total order
≺ over Et such that ≺t⊆≺.

Now, linear extensions of a P-trace t can easily be identified to words over
Σ. Formally, let n be the cardinal of Et. For any linear extension ≺ of t, there
is only one way to write Et = {e1, ..., en} with ei ≺ ej ⇔ i ≤ j. Then the word
associated to ≺ is ξt(e1)...ξt(en). Clearly, this mapping from linear extensions of
t to words is one-to-one. In the following, we shall identify any linear extension
of t with its associated word.

Definition 3.3. Let t be a P-trace over Σ. We note LE(t) the set of all the
words associated to a linear extension of t.

P-traces are naturally structured with a notion of isomorphism: two P-traces
t = (Et,≺t, ξt) and t′ = (Et′ ,≺t′ , ξt′) are isomorphic if there is a bijection σ

from Et to Et′ such that
– ∀x, y ∈ Et : x ≺t y ⇔ σ(x) ≺t′ σ(y);
– ∀x ∈ Et : ξt(x) = ξt′(σ(x)).

Clearly, two isomorphic P-traces admit the same linear extensions. Noteworthy
is the converse property due to Szpilrajn [19].

Proposition 3.4. Two P-traces t and t′ are isomorphic iff LE(t) = LE(t′).

On Recognizable Stable Trace Languages 185

CCI Sets of P-Traces Are Stable Right-Congruences Too. As in the
classical case, a P-trace is meant to represent one concurrent execution of a
distributed system. In order to describe all the possible behaviors of a system,
one has to consider sets of P-traces.

Definition 3.5. [1] Let be a set of P-traces over Σ. We say that is con-
sistent and complete if
–

⋃

t∈ LE(t) = Σ? [Complete]
– ∀t, t′ ∈ , t 6= t′ ⇒ LE(t) ∩ LE(t′) = ∅ [Consistent]

Each consistent and complete set of P-traces determines an equivalence relation
∼ over Σ? whose equivalence classes are the linear extensions of its elements.
This equivalence will be called the trace equivalence of .

However, this equivalence relation is sometimes not a right-congruence, which
is admittedly still a natural assumption for traces. That is why, following Arnold,
we focus on ideal sets of P-traces. These are defined according to the following
partial order of P-traces.

Definition 3.6. We say that a P-trace t = (Et,≺t, ξt) is a prefix of a P-trace
t′ = (Et′ ,≺t′ , ξt′) if the following conditions are satisfied:
– Et ⊆ Et′ ;
– ∀x ∈ Et, ξt(x) = ξt′(x);
– ≺t=≺t′ ∩(Et × Et);
– ∀x ∈ Et, ∀y ∈ Et′ : y ≺t′ x ⇒ y ∈ Et.

Definition 3.7. A set of P-traces over Σ is ideal if for all t ∈ , if t′ is a prefix
of t then t′ ∈ . A complete, consistent and ideal set of P-traces will be called
CCI for short.

Useful consequence of [1, Prop. 3.1 and 3.3], our first result relates CCI sets
of P-traces and stable right-congruences as follows.

Theorem 3.8. An equivalence relation over Σ? is the trace equivalence of a
CCI set of P-traces if and only if it is a stable right-congruence (Def. 2.7).

Thus any CCI set of P-traces describes a stable right-congruence and con-
sequently it is associated to a uniquely determined full stable trace language
(Prop. 2.8). Conversely, any (full) stable trace language can be associated to a
CCI set of P-traces which is essentially unique up to the natural isomorphism
notion defined as follows. We say that two sets of P-traces 1 and 2 are isomor-
phic if there is a bijection σ from 1 to 2 such that for all P-trace t ∈ 1, σ(t)
and t are isomorphic P-traces. Clearly, two CCI sets of P-traces are isomorphic
iff their associated trace equivalences are equal. Thus, up to an isomorphism,
Prop. 2.8 and Th. 3.8 show that each stable trace language can be associated to
the unique CCI set of P-traces which determines the same trace equivalence.

Now the behaviors of stably concurrent automata are not full stable trace
languages — except if one provide them with an additional sink state. Thus the
traces of a stably concurrent automaton are described by a consistent and ideal

186 Jean-François Husson and Rémi Morin

set of P-traces (it is complete only if its language is Σ?). This result completes
actually some similar connections established independently in [3].

Regular CCI Sets of P-Traces vs Recognizable Languages. Theorem 3.8
and Proposition 2.8 establish a one-to-one correspondence between CCI sets of
P-traces and full stable trace languages. We explain here that this relationship
also holds between recognizable stable trace languages and regular CCI sets of
P-traces. The latter were introduced by Arnold as follows.

Definition 3.9. Let be a CCI set of P-traces over a finite alphabet Σ and
let ∼ be its associated trace equivalence. We consider the equivalence relation ≡
over Σ? such that u ≡ v if ∀w, w′ ∈ Σ?, u.w ∼ u.w′ ⇔ v.w ∼ v.w′.
The set is called regular if the equivalence ≡ is of finite index.

Using [3, Prop. 2.7], we can now complete Prop. 2.8 and Th. 3.8 as follows.

Proposition 3.10. A CCI set of P-traces is regular if and only if its associated
full stable trace language is recognizable.

4 Stable Trace Languages vs Mazurkiewicz Ones

We now show how stable trace languages relate to Mazurkiewicz ones. We ex-
plain that stable trace languages form a true generalization of Mazurkiewicz trace
languages through the particularly useful example of a Producer-Consumer sys-
tem. However, any stable trace language may be regarded simply as a labelled
Mazurkiewicz trace language. This will be formalized here by a notion of pro-
jections.

Projections of Local Trace Languages. We first recall the natural structure
of local trace languages by morphisms introduced in [11].

Definition 4.1. Let L = (Σ, I, L) and L′ = (Σ′, I ′, L′) be two local trace lan-
guages. A morphism λ from L to L′ is a map λ : Σ → Σ′ such that
– ∀(u, p) ∈ I, (λ(u), λ(p)) ∈ I ′;
– ∀(u, {a, b}) ∈ I: a 6= b ⇒ λ(a) 6= λ(b).

Note that if two distinct actions a and b are independent after u then their
images should be independent after λ(u) in order to respect concurrency: that
is why we require that λ(a) 6= λ(b). Clearly if u1 and u2 are trace equivalent
according to I then λ(u1) and λ(u2) are trace equivalent according to I ′.

In this paper, we introduce particular morphisms which insure several nice
correspondences between the related local trace languages.

Definition 4.2. A projection from L = (Σ, I, L) to L′ = (Σ′, I ′, L′) is a mor-
phism λ : L → L′ whose underlying map λ : Σ → Σ′ is onto and such that
∀(u′, p′) ∈ I ′, ∃!(u, p) ∈ I, λ(u) = u′ ∧ λ(p) = p′.

We remark first that the trace equivalence is faithfully preserved and reflected by
projections. Moreover there is a one-to-one correspondence between the traces
of L and those of L′.

On Recognizable Stable Trace Languages 187

Lemma 4.3. Let λ be a projection from L = (Σ, I, L) to L′ = (Σ′, I ′, L′). Then
λ : Σ? → Σ′? induces a bijection between L and L′. Moreover, for all u1, u2 in
L, u1 ∼ u2 ⇔ λ(u1) ∼ λ(u2).

Therefore, projections of local trace languages should be regarded as simple
and faithful labellings. If λ : L → L′ is a projection then we will say that L′ is the
image of L through the projection λ. It is clear that the image of a recognizable
local trace language through a projection is recognizable.

Projections of Mazurkiewicz Trace Languages. The connection between
Mazurkiewicz trace languages and stable trace languages is first established by
Theorem 4.4 below. It asserts that any stable trace language is the projection of a
Mazurkiewicz trace language. This result can be established by means of known
relationships between stably concurrent automata, prime event structures, and
dI-domains [12,20] — at least if we assume that all alphabet is countable. How-
ever, a direct proof can be achieved without this assumption. It follows in fact
the same basic idea since it relies on equivalences of prime intervals [16,17,11].

Theorem 4.4. A local trace language (over a possibly infinite alphabet) is sta-
ble if and only if it is the image of a Mazurkiewicz trace language through a
projection.

The connection between projections of Mazurkiewicz languages and stable
languages expressed in the preceding theorem also applies to the subclasses of
recognizable languages (over finite alphabets). This very interesting result will be
used in the two last sections of this paper. It is a direct reformulation of Arnold’s
work [1, Th. 6.16] with the help of Prop. 3.10.

Theorem 4.5. A stable trace language is recognizable if and only if it is the
image of a recognizable Mazurkiewicz trace language through a projection.

The Producer-Consumer System. We are now interested by languages over
finite alphabets. An open problem raised by Arnold [1] is to know whether each
stable trace language over a finite alphabet is the image of a Mazurkiewicz trace
language over a finite alphabet through a projection1. We give a negative answer
to this question through the example of a Producer-Consumer system.

We consider the alphabet Σ = {p, c} where p represents a production of one
item and c a consumption. The language of the system describes all the possible
sequences for which at each stage there may not be more consumptions than
productions. Formally, L = {u ∈ Σ? | ∀v ≤ u, |v|p ≥ |v|c}. Thus p, pc, ppc and
pcp are sequential executions of the system. We now want to model a possible
independency between the producer and the consumer. Provided that there has
been already enough items produced, the producer and the consumer can act
simultaneously. For instance, ppc ∼ pcp. This can be represented by the local
independence relation I defined as follows:

1 The question raised by Arnold dealt with CCI sets of P-traces, i.e. full stable trace
languages. We leave it to the reader to adapt our counter-example accordingly.

188 Jean-François Husson and Rémi Morin

– (u, ∅) ∈ I ⇔ u ∈ L;
– (u, {c}) ∈ I ⇔ u ∈ L ∧ |u|p ≥ |u|c + 1;
– (u, {p}) ∈ I ⇔ u ∈ L;
– (u, {p, c}) ∈ I ⇔ u ∈ L ∧ |u|p ≥ |u|c + 1.

Clearly, L = (Σ, I, L) is a stable trace language. We now prove by contradiction
that L is not the image of a Mazurkiewicz trace language over a finite alphabet
through a projection. Let us assume that L is the image of a Mazurkiewicz trace
language L′ = (Σ′, I ′, L′) over a finite independent alphabet (Σ′, ‖′) through a
projection λ. Let n denote the size of Σ′. We consider the sequence u = (p.c)n+1

consisting of n + 1 productions and n + 1 consumptions. There is a unique
sequence v ∈ L′ such that λ(v) = u. Let us write v = a1.b1.a2.b2...an+1.bn+1.
Clearly, λ(ai) = p and λ(bi) = c for all i ∈ [1, n + 1]. We easily check that
for any i ∈ [1, n], we have bi 6 ‖ai and for all j ∈ [i + 1, n], bi‖aj . Now there
are i1, i2 ∈ [1, n] such that i1 < i2 and bi1 = bi2 because Card(Σ′) = n. Hence
bi1‖ai2 6 ‖bi2 . Contradiction.

5 Distributed Implementation of Stable Trace Languages

In this section, we establish that each recognizable stable trace language admits a
distributed implementation in the form of a finite bounded Petri net. According
to Prop. 3.10, this result also holds for regular CCI sets of P-traces. Furthermore,
this means that the labelled dI-domain of any finite stably concurrent automaton
is also described by a finite bounded Petri net.

We consider here the classical model of Place/Transition nets.

Definition 5.1. A Petri net is a quadruple = (S, T, W,Min) where
– S is a set of places and T is a set of transitions such that S ∩ T = ∅;
– W is a map from (S × T) ∪ (T × S) to IN, called weight function;
– Min is a map from S to IN, called initial marking.

Given a Petri net = (S, T, W, Min), Mar denotes the set of all markings
of that is to say functions M : S → IN; a step p ∈ ℘f (T) is enabled at
M ∈ Mar if ∀s ∈ S, M(s) ≥

∑

t∈p W (s, t); in this case, we note M [p〉 M′ where

M′(s) = M(s) +
∑

t∈p(W (t, s) − W (s, t)) and say that the transitions of p may

be fired concurrently and lead to the marking M′. A step firing sequence consists
of a sequence of markings M0,..., Mn and a sequence of steps p1,..., pn ∈ ℘f (T)
such that M0 = Min and ∀k ∈ [1, n], Mk−1 [pk〉 Mk. In that case, Mn is said
reachable.

Definition 5.2. A labelled Petri net is a structure (S, T, W,Min, ξ) where (S, T,

W,Min) is a Petri net and ξ is a map from T to an alphabet Σ such that for all
firing sequence Min = M0 [p1〉 ...Mn−1 [pn〉 Mn and all transitions t, t′ ∈ T :

Mn [{t}〉 ∧ Mn [{t′}〉 ∧ ξ(t) = ξ(t′) ⇒ t = t′.

The restriction adopted for the labelling ξ : T → Σ insures that two transitions
enabled by a common reachable marking correspond to two distinct actions. In
other words, the labelling is deterministic.

On Recognizable Stable Trace Languages 189

Definition 5.3. The local trace language associated to a labelled Petri net =
(S, T, W,Min, ξ) is () = (Σ, I, L) where I = {(ξ(t1...tn), ξ(p)) | (t1...tn, p) ∈
T ?×℘f(T)∧ Min [{t1}〉 M1... [{tn}〉 Mn [p〉} and the set of sequential executions
is L = {u ∈ Σ? | (u, ∅) ∈ I}.

Let us now focus on finite Petri nets — that is to say with a finite number
of places and transitions — which are also bounded, which means that there are
only a finite number of reachable markings. It is clear that local trace languages
of such Petri nets are recognizable. Using Th. 4.5 and Zielonka’s theorem [21]
we can establish the converse property for stable trace languages. Roughly, the
proof proceeds as follows. Given a recognizable stable trace L, we consider a
recognizable Mazurkiewicz trace language LM = (ΣM , IM , LM) over (ΣM , ‖M)
and a projection λ : LM → L by using Th. 4.5. Then Zielonka’s theorem [21]
yields an asynchronous automaton over (ΣM , ‖M) recognizing LM . We regard

as if all its states were final and describe its behavior by a (1-safe) Petri
net labelled by ξ. Then the trace language of this Petri net includes LM . The
technical point is then to add some places and to adapt the weight function in
order to restrict the behavior of the net to LM , without affecting the independency
of the transitions. Finally, the labelling of the final net is changed into λ ◦ ξ.

Theorem 5.4. Any recognizable stable trace language is the local trace language
of a finite bounded labelled Petri net.

6 Asynchronous Transition Systems vs Trace Automata

Motivated by domain theoretic considerations, Schmitt established in [17] that
any finite stable trace automaton is covered by a finite asynchronous transition
system — which thus describes the same coherent dI-domain. We explain here
how Theorem 4.5 provides a new approach to prove easily this result and yields
an algorithm for the construction of such an asynchronous transition system.

Definition 6.1. Let (Σ, ‖) be an independent alphabet. An independent au-
tomaton over (Σ, ‖) is a structure = (Q, s, Σ,−→, ‖) where Q is a set of
states, with initial state s ∈ Q and −→⊆ Q×Σ×Q is a transition relation such
that q

a
−→ q1 ∧ q

a
−→ q2 ⇒ q1 = q2.

A trace automaton is an independent automaton which satisfies the Forward
Diamond property FD:

FD: q
a

−→ q1 ∧ q
b

−→ q2 ∧ a‖b ⇒ ∃q3 ∈ Q, q2
a

−→ q3 ∧ q1
b

−→ q3.
An asynchronous transition system over (Σ, ‖) is an independent automaton

which satisfies FD and the Independent Diamond property ID:

ID: q
a

−→ q1 ∧ q1
b

−→ q2 ∧ a‖b ⇒ ∃q3 ∈ Q, q1
b

−→ q3 ∧ q3
a

−→ q2.

We shall assume in this paper that all states of an independent automaton are
reachable2. We note that each trace automaton may be regarded as an automaton

2 This means that ∀q ∈ Q,∃u ∈ Σ?, s
u

−→ q.

190 Jean-François Husson and Rémi Morin

with concurrency relation (Def. 2.3) for which a‖qb ⇔ a‖b∧ q
a

−→ q′∧ q
b

−→ q′′.
It is clear that each asynchronous transition system, regarded as an automaton
with concurrency relations, is in fact a stably concurrent automaton. That is
not true for trace automata in general (only one implication is fulfilled). That is
why Schmitt introduced stable trace automata as follows.

Definition 6.2. A trace automaton = (Q, s, Σ,−→, ‖) is stable if for all
states q, r ∈ Q and for all actions a, b and c pairwise independent w.r.t. ‖:

[

q
abc
−→ r ∧ q

acb
−→ r ∧ q

bca
−→ r

]

⇒
[

q
cab
−→ r ∧ q

cba
−→ r

]

.

We remark here that a trace automaton is a stably concurrent automaton iff
it is stable. Therefore any asynchronous transition system is a stable trace au-
tomaton. In order to strengthen this trivial relationship between stable trace au-
tomata and asynchronous transition systems, Schmitt used folding morphisms,
which correspond somehow to projections.

Definition 6.3. Let = (Q, s, Σ,−→) and ′ = (Q′, s′, Σ′,−→′) be two trace
automata. A folding morphism from to ′ is a pair of maps σ : Q → Q′ and
λ : Σ → Σ′ such that
– σ(s) = s′;

– q1
a

−→ q2 ⇒ σ(q1)
λ(a)
−→ σ(q2);

– q1
a

−→ q2 ∧ q1
b

−→ q3 ∧ a 6= b ⇒ λ(a) 6= λ(b);

– σ(q1)
a′

−→ q′2 ⇒ ∃q2 ∈ Q, ∃a ∈ Σ, q1
a

−→ q2 ∧ λ(a) = a′;

– ∀q ∈ Q, q
a

−→ q′ ∧ q
b

−→ q′′ ⇒ [a‖b ⇔ λ(a)‖′λ(b)].
In that case, we say that covers ′.

We can now state the main result of [17].

Theorem 6.4. Any finite stable trace automaton is covered by some finite asyn-
chronous transition system.

Let us now present a new, simple and constructive proof of this result.
Let = (Q, s, Σ,−→, ‖) be a finite stable trace automaton. Viewed as a sta-
bly concurrent automaton, it describes a recognizable stable trace language
L = (Σ, I, L). Applying Theorem 4.5, yields a recognizable Mazurkiewicz trace
language L = (ΣM , IM , LM) over an independent alphabet (ΣM , ‖M) and a pro-
jection λM : LM → L. We consider M = (QM , sM , ΣM ,−→M , FM) to be the
minimal automaton of LM , where FM denotes the set of final states. Since LM

is recognizable and prefix-closed, M is finite and FM = QM . We also remark
that M satisfies the Independent Diamond property ID w.r.t. ‖M , because LM

is closed for the commutation of independent actions. We consider the synchro-
nized product × M = (Q × QM , (s, sM), Σ × ΣM ,−→×, ‖×) where

(q, qM)
a,aM

−→× (q′, q′M) iff q
a

−→ q′ ∧ qM
aM−→ q′M ∧ λ(aM) = a

and (a, aM)‖×(b, bM) iff a‖b ∧ aM‖MbM . We easily check that × M is a
finite asynchronous transition system — once restricted to its reachable states.
Moreover the pair σ1 : (q, qM) 7→ q and λ1 : (a, aM) 7→ a is a folding morphism
from × M to .

On Recognizable Stable Trace Languages 191

Let us stress finally that the construction of M from is essentially provided
by Arnold’s proof of [1, Th. 6.16]. One can actually deduce from this proof some
upper bounds for the sizes of ΣM and QM (w.r.t. the sizes of Q and Σ). This is
definitively impossible when following Schmitt’s approach.

Acknowledgments The authors are grateful to A. Arnold and B. Rozoy for their

help and their useful advices. The second author thanks M. Droste and D. Kuske for

motivating discussions while preparing the last improvements of this paper.

References

1. Arnold A.: An extension of the notion of traces and asynchronous automata. The-
oretical Informatics and Applications 25 (1991) 355–393

2. Bednarczyk M.: Categories of asynchronous systems. PhD thesis (University of
Sussex, 1987)

3. Bracho F., Droste M., Kuske D.: Representations of computations in concurrent
automata by dependence orders. TCS 174 (1997) 67–96

4. Diekert V., Rozenberg G.: The Book of Traces. (World Scientific, 1995)
5. Droste M.: Concurrency, automata and domains. LNCS 443 (1990) 195–208
6. Droste M., Shortt R.M.: From Petri nets to automata with concurrency. – Unpub-

lished manuscript (1999) –
7. Ehrenfeucht A., Rozenberg G.: Partial (Set) 2-structures. Part II: State spaces of

concurrent systems, Acta Informatica 27 (1990) 343–368
8. Hoogers P.W., Kleijn H.C.M., Thiagarajan P.S.: A Trace Semantics for Petri Nets.

Information and Computation 117 (1995) 98–114
9. Husson J.-Fr.: Modélisation de la causalité par des relations d’indépendances. The-

sis (Université Paul Sabatier de Toulouse, 1996)
10. Husson J.-Fr., Morin R.: Relationships between Arnold’s CCI sets of P-traces and

Droste’s stably concurrent automata. Technical report MATH-AL-1-00 (Technische
Universität Dresden, 2000)

11. Kleijn H.C.M., Morin R., Rozoy B.: A General Categorical Connection between
Local Event Structures and Local Traces. FCT’99, LNCS 1684 (1999) 338–349

12. Kuske D.: Nondeterministic automata with concurrency relations and domains.
CAAP’94, LNCS 787 (1994) 202–217

13. Mazurkiewicz A.: Concurrent program schemes and their interpretations. Aarhus
University Publication (DAIMI PB-78, 1977)

14. Morin R., Rozoy B.: On the Semantics of Place/Transition Nets. Concur’99, LNCS
1664 (1999) 447–462

15. Mukund M.: Petri Nets and Step Transition Systems. International Journal of
Foundations of Computer Science 3 (1992) 443–478

16. Nielsen M., Sassone V., Winskel G.: Relationships between Models of Concurrency.
LNCS 803 (1994) 425–475

17. Schmitt V.: Stable trace automata vs. full trace automata. TCS 200 (1998) 45–100
18. Stark E.W.: Connections between concrete and abstract model of concurrent sys-

tems. LNCS 442 (1990) 53–79
19. Szpilrajn E.: Sur l’extension de l’ordre partiel. Fund. Math. 16 (1930) 386–389
20. Winskel G.: Event structures. LNCS 255 (1987) 325–392
21. Zielonka W.: Notes on finite asynchronous automata. Theoretical Informatics and

Applications 21 (1987) 99–135

