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Laboratoire d’Informatique Fondamentale de Marseille — CNRS, UMR 6166 — Aix-Marseille Université
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Abstract—Message Sequence Graphs (MSGs) form a popular
model often used for the documentation of telecommunica-
tion protocols. They consist of typical scenarios of message
exchanges depicted as partial-orders of events that lead from
one control state to another. On the other hand Petri nets
are a well-known formalism for distributed or parallel systems
based on the notion of token game. Both approaches profit by
a visual presentation and are the subject of numerous formal
verification techniques and tools.

In this paper we investigate a formalism which provides
MSGs with the notion of token game and extends Petri nets
with both control states and partial orders. Providing Petri
nets with control states corresponds precisely to the model of
Vector Addition Systems with States (VASSs). Thus we need to
define first a partial-order semantics for VASSs which adopts
the basic features of communication scenarios. To do so we
extend simply the classical process semantics of Petri nets. We
obtain a formal model that enjoys several interesting properties
in terms of expressiveness and concision.

The addition of control states to Petri nets under the partial-
order semantics leads to undecidable problems. Similarly to
MSGs, one cannot decide in particular whether two given
VASSs describe the same process language. However we show
that basic problems about the set of markings reached along
the processes of a VASS, such as boundedness, covering and
reachability, can be reduced to the analogous problems for Petri
nets. This relies on a new technique that simulates all prefixes
of all processes. In this way Petri net tools can be used to verify
the properties of a VASS under the process semantics.

We present also a technique to check effectively any MSO
property of these partial orders, provided that the given
system is bounded. This enables us to tackle more verification
problems and subsumes known results for the model checking
of MSGs. All algorithms presented in this paper have been
implemented in a prototype tool available on-line.
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INTRODUCTION

Consider a set of reactions that take place among a collec-

tion of particles such that each reaction consumes a multiset

of available particles and produces a linear combination

of other particle types. This kind of framework can be

formalized by a vector addition system [16] or, equivalently,

a (pure) Petri net [21]. Consider in addition some control

state which determines whether a reaction can occur or not,

and such that the occurrence of a reaction leads to a possibly

distinct control state. Then the model becomes formally

a vector addition system with states (a VASS), a notion

introduced in [15]. It is well-known that all these models

are computationally equivalent, because they can simulate

each other [21].

The popular model of message sequence graphs (MSGs)

can be regarded as a particular case of VASSs where the

only allowed reactions are the sending and the receipt of

one message from one site to another [4], [6], [11], [13],

[18]. Then each sequence of reactions can be described by

a partial order of events called a message sequence chart

(MSC). Each MSC corresponds to several sequences of

elementary actions which are equivalent up to the reordering

of independent events. Similarly each sequence of MSCs is

equivalent to several sequences of MSCs. Thus control states

are used to focus on particular interleavings of events in or-

der to avoid the state explosion problem due to concurrency.

However there exists so far no way to regard an execution

of a VASS as a partial order of events. Consequently there

is no means to apply techniques or tools for Petri nets

to the analysis of MSGs. In this paper we study a partial

order semantics for VASSs in such a way that MSGs can

effectively be regarded as a particular case of VASS. We

obtain a framework that allows for counters and message

losses as opposed to most works on MSCs in the literature.

We present in Section I a partial order semantics for

VASSs which extends the usual process semantics of Petri

nets. The approach is simple and natural. First we consider

the set of firable computation sequences of a VASS and sec-

ond we define the processes that represent a given sequence.

Then each process describes some causal dependencies

between events which are no longer linearly ordered. In

this way, message sequence graphs are embedded in the

framework of VASSs. However, one specific feature of the

process semantics is that a computation sequence can yield

several non-isomorphic processes depending on the order

identical particles are consumed. Along this paper, we shall

exhibit few other facts which make clear that the model

of VASS is more general and more difficult to handle than

MSGs.

It is easy to prove that checking the inclusion (or the

equality) of two process languages given by two VASSs

is undecidable by a reduction to the universality problem

in Mazurkiewicz traces [22, Theorem IV.4.3]. This basic

observation illustrates the computational gap between Petri



nets and VASSs under the process semantics because these

two problems are decidable for Petri nets.This shows also

that the analysis of the partially ordered executions of a

VASS does not boil down to the verification of a Petri net

in general, in spite of the well-known simulation of a VASS

by a Petri net. However we present in the rest of this paper

several new techniques to check properties of a VASS under

the process semantics.

A key verification problem for MSGs is to detect channel

divergence, i.e. to decide whether the number of pending

messages along an execution is unbounded [4], [6]. This

problem is NP-complete. An analogous problem in the

more general setting of VASSs is the prefix-boundedness

problem. It consists in checking that the set of markings

reached by prefixes of processes is finite. We present in

Section II a technique to solve this problem by means of

a reduction to Petri nets. We stress that our construction

differs from the usual simulation of a VASS by a Petri net

because the latter does not preserve prefix-boundedness. We

prove that prefix-boundedness is computationally equivalent

to the boundedness problem for Petri nets and consequently

requires exponential space [10]. This result exhibits an

interesting complexity gap between MSGs and VASSs. It

shows that tools used to check properties of MSGs need to be

adapted in order to deal with the more expressive framework

of VASSs. Other basic decision problems for the markings

reached by prefixes are of course interesting. We show in

particular that the reachability and the covering of a given

marking can be solved using the same technique.

The model-checking problem for MSGs against monadic

second-order logic (MSO) was investigated first in [17]. As

opposed to earlier works [4], formulas are interpreted on

the partially ordered scenarios accepted by the MSGs. This

problem was proved decidable for the whole class of safe

MSGs [18] (see also [11]). Each safe MSG can be regarded

as a bounded VASS. However a safe MSG can describe an

infinite set of markings because the reordering of events can

produce an unbounded number of pending messages within

channels: In other words, a safe MSG may be divergent.

We present in Section III a technique to check effectively

that all processes of a given bounded VASS satisfy a given

MSO formula. We shall explain in details why this result

subsumes, but cannot be reduced to, previous works on the

model-checking of MSGs.

Due to the page limit, all proofs are omitted but they are

available in the full paper [5]. The algorithms presented in

this paper have been implemented in a prototype tool [3]

which is built on TINA [2] for the reachability properties

and MONA [1] for the MSO model-checking.

I. MODEL AND SEMANTICS

The goal of this section is to extend the usual process

semantics from Petri nets to VASSs. In order to avoid

repetitive definitions we introduce the model of Petri nets

ı
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FIG. 2. A labeled causal net and a prefix

with states as a minimal framework which includes both

Petri nets and VASSs. Thus Petri nets are regarded as Petri

nets with states provided with a single state whereas VASSs

are simply Petri nets with states using pure transition rules,

only. Next we introduce the notions of firable computation

sequence, reachable marking, and (non-branching) process

as simple generalizations of the classical definitions in the

restricted setting of Petri nets.

For simplicity’s sake, for any mapping f : A → B be-

tween two finite sets A and B, we shall denote also by f the

natural mapping f : A⋆ → B⋆ from words over A to words

over B and the mapping f : NA → N
B from multisets over

A to multisets over B such that f(µ) =
∑

a∈A µ(a) · f(a)
for each multiset µ ∈ N

A. Moreover we will often identify

a set S with the multiset µS for which µS(x) = 1 if x ∈ S
and µS(x) = 0 otherwise.

A. Petri net with states

We borrow from the setting of Petri nets the abstract

notion of places which can represent different kinds of

components within a system: A local control state of a se-

quential process, a communication channel, a shared register,

a particle type, a molecule in a chemical system, etc. We

let P denote a finite set of places throughout this paper.

As usual a multiset of places is called a marking and it is

regarded as a distribution of tokens in places. Further we fix

a finite set Λ of rule names.

A transition rule (or a reaction) is a means to produce

new tokens in some places by consuming tokens in some

other places. Formally a rule is a triple r = (λ, α, β) where

λ ∈ Λ is a rule name and α, β ∈ N
P are markings called the

guard and the update respectively. Such a rule is denoted

by λ : α➝β. It means intuitively that a multiset of tokens

α can be consumed to produce a multiset of tokens β in an

atomic way. Different rules can share the same guard α and

the same update β. That is why we use here rule names to

distinguish between similar but distinct rules. For each rule

r = (λ, α, β), we put •r = α and r• = β.



Definition 1.1: A Petri net with states (for short: A PNS)

over a set of rules R is an automaton S = (Q, ı,−→, µin)
where Q is a finite set of states, with a distinguished initial

state ı ∈ Q, −→⊆ Q×R×Q is a finite set of arcs labeled

by rules, and µin ∈ N
P is some initial marking.

Let S = (Q, ı,−→, µin) be a Petri net with states. A labeled

arc (q1, r, q2) ∈−→ will be denoted by q1
r

−→ q2. A rule

sequence s = r1...rn ∈ R⋆ is called a computation sequence

of S if there are states q0, ..., qn ∈ Q such that ı = q0 and

for each i ∈ [1, n], qi−1
ri−→ qi. These conditions will be

summed-up by the notation ı
s

−→ qn. For instance, (p :
x➝x+z) ·(c : y+z➝ y) ·(p : x➝x+z) ·(c : y+z➝ y) is

a computation sequence of the PNS with two states depicted

in Fig. 1. We denote by CS(S) the set of all computation

sequences of S.

A rule sequence s = r1...rn ∈ R⋆ is firable from a

marking µ if there are multisets of places µ0, ..., µn such

that µ0 = µ and for each k ∈ [1, n]: µk−1 > •rk and

µk = µk−1− •rk + r
•

k. This means intuitively that each rule

from s can be applied from the marking µ in the linear order

specified by s: Each rule rk consumes •rk tokens from µk−1

and produces r•k new tokens which yields the subsequent

multiset µk. Then we say that µn is reached by the rule

sequence s from the marking µ. We also say that s leads to

µn. We denote by FCS(S) the set of all firable computation

sequences of S. A marking is reachable in S if it is reached

by a firable computation sequence of S. A PNS is said to

be bounded if the set of its reachable markings is finite.

B. VASS, Petri net and causal net

Originally introduced in [15], the notion of a vector

addition system with states (for short: A VASS) can be

formally defined in several slightly different ways. In this

paper, a VASS is simply a PNS such that each rule r labeling

an arc is pure, which means that for all places p ∈ P ,
•r(p) × r•(p) = 0. This amounts to require that •r(p) > 1
implies r•(p) = 0 and vice versa. For this reason each rule

r in a VASS can be represented by a vector v ∈ Z
P where

v(p) = r•(p) − •r(p) for all p ∈ P . We explain at present

why we can identify the well-known formalism of Petri nets

as particular PNSs provided with a single state.

Definition 1.2: A Petri net is a quadruple N =
(P, T,W, µin) where

• P is a finite set of places and T is a finite set of

transitions such that P ∩ T = ∅;

• W is a map from (P × T ) ∪ (T × P ) to N, called the

weight function;

• µin is a map from P to N, called the initial marking.

We shall depict Petri nets in the usual way as in Fig. 4: Black

rectangles represent transitions whereas circles represent

places; moreover tokens in places describe the initial mark-

ing. Given a Petri net N = (P, T,W, µin) and a transition

t ∈ T , •t =
∑

p∈P W (p, t) · p is the pre-multiset of t and

t• =
∑

p∈P W (t, p) · p is the post-multiset of t. Similarly

x+ y

c : y + z➝ yp : x➝x+ z

FIG. 3. A PNS with a single state

x p z c y

FIG. 4. and the corresponding Petri net

we put •p =
∑

t∈T W (t, p) · t and p• =
∑

t∈T W (p, t) · t
for each place p ∈ P .

Let N = (P, T,W, µin) be a Petri net. We will regard N

as a PNS SN with the same set of places P and the same

initial marking. Moreover SN is provided with a single state

ı such that each transition t ∈ T is represented by a self-loop

labeled arc ı
r

−→ ı where r = (t, •t, t•). In this way, the

class of Petri nets is faithfully embedded into the subclass of

PNSs provided with a single state such that each transition

carries a rule with a distinct rule name. For instance the PNS

from Fig. 3 corresponds to the Petri net from Fig. 4.

If the weight function W takes only binary values then it

is often described as a flow relation F ⊆ (P ×T )∪ (T ×P )
where (x, y) ∈ F if W (x, y) = 1. Further F+ denotes the

transitive closure of F .

Definition 1.3: [9], [25] A causal net is a Petri net K =
(B,E, F, µmin) whose places are called conditions, whose

transitions are called events, and whose weight function

takes values in {0, 1} and is represented by a flow relation

F ⊆ (B × E) ∪ (E × B) which satisfies the following

requirements:

1) the net is acyclic, i.e. for all x, y ∈ B∪E, (x, y) ∈ F+

implies (y, x) /∈ F+.

2) the conditions do not branch, i.e. |•b| 6 1 and |b•| 6 1
for all b ∈ B.

3) the minimal conditions correspond to the initial mark-

ing: For all b ∈ B, µmin(b) = 1 if •b = ∅ and

µmin(b) = 0 otherwise.

The transitive and reflexive closure F ∗ of the flow relation

F in a causal net K = (B,E, F, µmin) yields a partial order

over the set of events E. A configuration is a subset of

events H ⊆ E that is downwards closed, i.e. e′F ∗e and

e ∈ H imply e′ ∈ H . Each configuration H defines a prefix

causal net KH whose events are precisely the events from H
and whose conditions consist of the minimal conditions of K
(with respect to the partial order relation F ∗) and all places

related to some event from H . For each class of labeled

causal nets L, we denote by Pref(L) the class of all prefixes

of all labeled causal nets from L.

C. Process semantics of a PNS

In this paper we are interested in a semantics of PNS

based on causal nets which is a direct generalization of the



process semantics of Petri nets [9], [12], [25]. A process

of a PNS N is a causal net K in which each condition of K
is labeled by a place of N and each event of K is labeled

by a transition of N. The process semantics characterizes

the labeled causal nets that describe an execution of a given

Petri net. For instance the labeled causal net K from Fig. 2

depicts a process of the Petri net N from Fig. 4.

The following definition explains how processes are de-

rived from a given rule sequence. Next the processes of a

PNS will be defined as the processes of its firable compu-

tation sequences (Def. 1.5).

Definition 1.4: Let P be a set of places, Λ be a set of rule

names, and R be a set of rules over P and Λ. A process of

a rule sequence s = r1...rn ∈ R⋆ from a marking µ ∈ N
P

consists of a causal net K = (B,E, F, µmin) with n events

e1, ..., en provided with a labeling π : B∪E → P ∪Λ such

that the following conditions are satisfied:

1) π(b) ∈ P for all b ∈ B, π(e) ∈ Λ for all e ∈ E, and

π(µmin) = µ;

2) ri = (π(ei), π(
•ei), π(ei

•)) for all i ∈ [1, n];

3) eiF
+ej implies i < j for any two i, j ∈ [1, n].

We denote by [[s]]µ the class of all processes of s from µ.

In this definition the mapping π denotes the labeling of K
and its natural extension to multisets. The first condition

asserts that the initial marking of the causal net describes

the marking µ; moreover each condition is associated with

some place and each event corresponds to some rule name.

The second condition requires that the label, the pre-set and

the post-set of each event coincide with the name, the guard

and the update of the corresponding rule. Finally the last

property ensures that the total order of rules in s corresponds

to an order extension of the partial order of events in K.

Consequently any subset of events {e1, ..., ek} is downwards

closed. Moreover the prefix causal net K′ corresponding

to the configuration {e1, ..., en−1} is a process of the rule

sequence r1...rn−1 from the same marking µ.

Let H be a configuration of a process K =
(B,E, F, µmin, π) of a rule sequence s from µ. Let Bmax

be the set of maximal conditions of the prefix KH w.r.t. F ∗.

Then the multiset of places π(Bmax) is called the marking

reached by KH and we say that KH leads to the marking

π(Bmax). Let sH be a linear order that extends the partial

order of events occurring in H . Then it is clear that the rule

sequence π(sH) is firable from µ and leads to the marking

π(Bmax); moreover KH is a process of π(sH) from µ.

Definition 1.5: Let S be a PNS with initial marking µin.

A process of S is a process of a computation sequence of S

from µin. We let [[S]] denote the class of all processes of S.

Thus [[S]] =
⋃

s∈CS(S) [[s]]µin
. It is easy to check that the

processes of a PNS provided with a single state are precisely

the processes of the corresponding Petri net w.r.t. the usual

process semantics [25].

ı

i+ j + n · w

q1 q2
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FIG. 5. Sliding window protocol
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D. From compositional MSGs to PNSs

The formalism of compositional message sequence graphs

(cMSGs) was introduced in [13] in order to strengthen the

expressive power of MSGs. As opposed to usual MSGs,

cMSGs are built on components MSCs in which unmatched

send or receive events are allowed. It was argued in [13] that

simple protocols such as the alternating bit protocol can be

described by cMSGs but not by MSGs. With no surprise

cMSGs can be regarded as a particular case of VASS under

the process semantics.

Consider a distributed system consisting of a set I of sites

and a set K of communication channels between pairs of

sites. The behaviour of such a system can be specified by a

PNS over the set P = I ∪K of places such that the sending

of a message from site i to site j within the channel ki,j
from i to j is encoded by a rule i➝ i+ ki,j and the receipt

of such a message is encoded by a rule j + ki,j ➝ j. Then

we require that the initial marking contains a single token

in each place i ∈ I . Such a PNS can actually be regarded

as a compositional message sequence graph. The semantics

of cMSGs consists of message sequence charts which are

simply a partial order of events obtained from a process by

removing all conditions.

Example 1.6: The PNS from Figure 5 describes a sim-

plified sliding window protocol used to transmit data from

a server i to a client j. The maximal number of missing

acknowledgments is specified by the n initial tokens in the

place w (the window). The system behaviour consists of

three basic steps.

1) The server sends a new data formalized by a token d if

some token w is available: It consumes first a w token:



i+ w➝ i and next sends a new data: i➝ i+ d.

2) The client receives a data and returns an acknowledg-

ment formalized by a token a: It consumes first a data:

j + d➝ j and next produces the ack: j➝ j + a.

3) The server receives an acknowledgment and increments

the window size: First the ack is consumed: i + a➝ i
and then a new token w is released: i➝ i+ w.

A typical process of this system with n = 1 is depicted in

Figure 6. It is clear that this system is bounded.

Since counters are prohibited in MSGs, any safe cMSG

equivalent to the PNS from the above example needs n
distinct states. Its size is thus exponential w.r.t. the size of

the PNS, provided that n is encoded in binary. In this way

a bounded PNS can be exponentially more concise than an

equivalent safe cMSG.

II. CHECKING REACHABILITY PROPERTIES OF PREFIXES

In this section we investigate three basic verification

problems about the set of markings reached by prefixes of

processes: Boundedness, covering and reachability. We show

how to reduce these problems to the particular case of Petri

nets in such a way that all complexity results extend from

Petri nets to PNSs under the process semantics.

Definition 2.1: A marking µ is prefix-reachable in a PNS

S if there exists a prefix of a process of S which leads to

the marking µ.

Thus any reachable marking is prefix-reachable. Yet the

set of prefix-reachable markings can differ from the set of

reachable markings in general. For instance, each process

of the PNS from Fig. 1 leads to a marking with at most 3

tokens whereas prefixes of these processes lead to infinitely

many distinct markings (see in Fig. 2 a prefix of a process

which leads to a marking with 4 tokens). Consequently this

PNS is bounded but not prefix-bounded. In the particular

case of Petri nets, however, any prefix-reachable marking is

reachable, because the class of processes is prefix-closed.

Thus the problems we study in this section are well-known

for Petri nets but new for Petri nets with states.

The first basic problem we consider is the prefix-

boundedness problem, which asks whether the set of prefix-

reachable markings of a given PNS S is finite. We propose

in this section a linear construction of a PNS S
◦ from S

such that S is prefix-bounded if and only if S◦ is bounded.

Since the boundedness of S◦ boils down to the boundedness

of a Petri net, we get that the prefix-boundedness problem

for PNSs is computationally equivalent to the boundedness

problem of Petri nets. Further we show that this technique

apply to other similar basic problems about prefix-reachable

markings, namely covering and reachability.

A. From Petri nets with states to Petri nets

Let S = (Q, ı,−→, µin) be a fixed PNS. We build a

PNS S
◦ that allows us to analyse the set of prefix-reachable

markings of S. The construction of S◦ from S is illustrated

ı

πpre(x) + πpre(y)x : πpre(x)➝ πsuf(x) + πcut(x)
y : πpre(y)➝πsuf(y) + πcut(y)
z : πpre(z)➝πsuf(z) + πcut(z)

q

x : πpre(x)➝ πsuf(x) + πcut(x)
y : πpre(y)➝πsuf(y) + πcut(y)
z : πpre(z)➝πsuf(z) + πcut(z)

p : πpre(x)➝ πpre(x) + πpre(z)
p : πsuf(x)➝ πsuf(x) + πsuf(z)

c : πpre(y) + πpre(z)➝πpre(y)
c : πsuf(y) + πsuf(z)➝πsuf(y)

FIG. 7. Verification of prefix-reachable markings

by Fig. 7 where the PNS S
◦ resulting from the PNS S from

Fig. 1 is depicted. Intuitively the PNS S
◦ is made of two

copies of S that share the same set of states and that are in

charge of executing on the fly events from the prefix or from

the suffix respectively. Additionally some new loop labeled

arcs allow tokens to move from the prefix to the suffix:

This transfer is tracked by particular cut places in order to

represent the marking reached by the resulting prefix.

The PNS S
◦ makes use of three disjoint sets of places:

Ppre, Psuf, Pcut which are copies of the set of places P of

S. We let πpre : P → Ppre, πsuf : P → Psuf, and πcut :
P → Pcut be the bijections that map each place from P to

the corresponding place in Ppre, Pcut and Psuf respectively.

These mappings extend naturally to mappings from multisets

to multisets. The initial marking µ◦

in of S
◦ is the multiset

µ◦

in = πpre(µin).
The PNS S

◦ shares with S its set of states Q and its

initial state ı. It consists of three disjoint sets of labeled arcs:

−→pre,−→suf,−→cut. The restriction of S
◦ to the labeled

arcs from −→pre and to the places from Ppre yields a PNS

S
◦

pre isomorphic to S. Thus for each labeled arc q1
r

−→ q2 in

S with r = (a, •r, r•) there exists some labeled arc q1
s

−→pre

q2 with s = (a, πpre(
•r), πpre(r

•)). Similarly the restriction

of S◦ to the labeled arcs from −→suf and to the places from

Psuf yields a PNS S
◦

suf isomorphic to S, except that its initial

marking is empty: For each labeled arc q1
r

−→ q2 in S

with r = (a, •r, r•) there exists some labeled arc q1
s

−→suf

q2 with s = (a, πsuf(
•r), πsuf(r

•)). The set of labeled arcs

−→cut consists of a self-loop q
s

−→cut q for each state q and

each place p ∈ P ; this labeled arc allows to move a token

from the place πpre(p) to the place πsuf(p) and to keep track

of that transfer in the place πcut(p), i.e. •s = πpre(p) and

s• = πsuf(p) + πcut(p). Note that tokens in Pcut cannot be

consumed.

Intuitively, for any process K of S and for any prefix K′

of K, the PNS S
◦ can simulate a computation sequence of S

which corresponds to K in such a way that each event from

the prefix K′ corresponds to the occurrence of a labeled

arc from −→pre and each event from the suffix K \ K′

corresponds to the occurrence of a labeled arc from −→suf.

Moreover the set of places Pcut keeps track of the tokens

transferred from K to K′, i.e. from S
◦

pre to S
◦

suf, by the labeled



arcs from −→cut. Thus any prefix-reachable marking of S is

represented by the restriction to Ppre ∪ Pcut of a reachable

marking of S◦. The key property of this representation, stated

in Prop. 2.2 below, asserts that, conversely, each firable

computation sequence of S◦ corresponds to a process K of

S and a prefix K′ of K such that the marking of Ppre ∪ Pcut

describes the marking reached by K′.

In the next statement, for each marking µ and for each

subset of places X , we denote by µ|X the restriction of

µ to the places from X . The main results of this section

rely essentially on the next observation. We claim that any

prefix-reachable marking of S is represented by a reachable

marking of µ◦ and vice versa. The interested reader is

referred to the detailed proof given in [5, Subsection 3.2].

Proposition 2.2: A multiset of places µ ∈ N
P is prefix-

reachable in S if and only if there exists some reach-

able marking µ◦ of S
◦ such that µ = π−1

pre (µ
◦|Ppre) +

π−1
cut (µ

◦|Pcut).

B. Proof sketch of Proposition 2.2

For any rule sequence u ∈ R⋆, we call requirement of u
and we denote by req(u) the least marking µ such that u
is firable from µ. This means that [[u]]µ 6= ∅ if and only if

µ > req(u). Let S = (Q, ı,−→, µin) be a PNS. For each

rule sequence u = r1...rn ∈ R⋆ firable from µin, we let

µu denote the marking reached by u from µin, i.e. µu =
µin +

∑n
i=1(ri

• − •ri). Similarly for each rule sequence s
firable from the initial marking µ◦

in, µ◦

s denotes the marking

reached by s in S
◦.

We shall use the following notion of partial computation:

A partial computation is a triple (u, v, w) ∈ R⋆ ×R⋆ ×R⋆

such that [[v.w]]µin
∩ [[u]]µin

6= ∅ and u ∈ CS(S). Then

[[v]]µin
6= ∅ hence the rule sequence v is firable from µin. A

partial computation is used as a witness for a process Ku of

u and a prefix Kv of Ku with Kv ∈ [[v]]µin
. Note that v need

not to be a prefix of u, nor to be a computation sequence

of S. Partial computations are closely related to prefix-

reachable markings, as the next basic observation shows.

Proposition 2.3: For each partial computation (u, v, w),
the marking µv is prefix-reachable. Conversely, for any

prefix-reachable marking µ, there exists some partial com-

putation (u, v, w) such that µ = µv.

The proof of Prop. 2.2 relies on the two next technical

lemmas which can be established by means of a bit tedious

inductions. The first one asserts that for each firable com-

putation sequence u ∈ FCS(S) and each prefix Kv of each

process Ku ∈ [[u]]µin
, the VASS S

◦ can be guided in order

to simulate each rule of u in its sequential order so that the

marking reached by u is described by the current marking of

Ppre ∪Psuf while the marking reached by Kv is described by

the current marking of Ppre ∪ Pcut. Furthermore we have to

make sure that the state q ∈ Q reached by u is also reached

by s in S
◦ and to check that all events from Ku that do not

occur in Kv are performed by transitions from −→suf. To

do so, we have to guide S
◦ to transfer exactly the required

number of tokens from Ppre to Psuf, which corresponds to

the marking of Pcut.

Lemma 2.4: Let (u, v, w) be a partial computation in S

and q be some state such that ı
u

−→ q in S. There exists some

firable rule sequence s in S
◦ which leads to the marking µ◦

s

such that

(a) π−1
cut (µ

◦

s |Pcut) + π−1
pre (µ

◦

s |Ppre) = µv ,

(b) π−1
suf (µ

◦

s |Psuf) + π−1
pre (µ

◦

s |Ppre) = µu,

(c) π−1
cut (µ

◦

s |Pcut) = req(w),
(d) ı

s
−→ q in S

◦.

Conversely we need to show that the marking of Ppre∪Pcut

reached after any firable transition sequence s of S
◦ cor-

responds to a prefix-reachable marking of S, i.e. to some

partial computation (u, v, w). To do so, we have to build

a firable rule sequence u ∈ FCS(S), a process Ku ∈
[[u]]µin

and a prefix Kv ∈ [[v]]µin
inductively from s. At

each step the state reached by s coincides with the state

reached by u. When S
◦ applies an additional labeled arc a,

the corresponding partial computation is either (u, v, w) if

a ∈
r

−→cut; or (u.r, v, w.r) if a ∈
r

−→suf; or (u.r, v.r, w) if

a ∈
r

−→pre. In this last case, the rule r and the sequence

of rules w can be performed concurrently: Formally we

shall establish that •r+ req(w) 6 µv. This property follows

actually from the fact that w can be fired from the marking

obtained by the tokens transferred from Ppre to Psuf, i.e.

πcut(req(w)) 6 µ◦

s|Pcut.

Lemma 2.5: Let s be a firable rule sequence in S
◦ leading

to the state q and the marking µ◦

s . There exists some partial

computation (u, v, w) of S such that

(a) π−1
cut (µ

◦

s |Pcut) + π−1
pre (µ

◦

s |Ppre) = µv ,

(b) π−1
suf (µ

◦

s |Psuf) + π−1
pre (µ

◦

s |Ppre) = µu,

(c) π−1
cut (µ

◦

s |Pcut) > req(w), and

(d) ı
u

−→ q in S.

We are now ready to prove Prop. 2.2. Let µ be the

marking reached by a prefix K′ of a process K ∈ [[S]].
According to Prop. 2.3, there exists some partial com-

putation (u, v, w) such that µv = µ. By Lemma 2.4,

there exists some firable rule sequence s in S
◦ such that

π−1
cut (µ

◦

s |Pcut) + π−1
pre (µ

◦

s|Ppre) = µv = µ. Conversely if

π−1
cut (µ

◦

s |Pcut) + π−1
pre (µ

◦

s|Ppre) = µ for some firable rule

sequence s in S
◦ then Lemma 2.5 ensures that there exists

some partial computation (u, v, w) such that π−1
cut (µ

◦

s|Pcut)+
π−1

pre (µ
◦

s |Ppre) = µv . Moreover Prop. 2.3 asserts that µv is

the marking reached by some prefix K′ of some process

K ∈ [[S]].

C. Analysis of prefix-reachable markings

Proposition 2.2 enables us to derive some techniques to

analyse the set of prefix-reachable markings of S. First, the

prefix-boundedness problem asks whether the set of prefix-

reachable markings of a given PNS S is finite. We can easily

derive from Prop. 2.2 that the PNS S is prefix-bounded if



and only if the PNS S
◦ is bounded. This latter property can

be checked by means of the usual linear simulation of a

VASS by a Petri net. Thus,

Theorem 2.6: The prefix-boundedness problem of PNSs

is computationally equivalent to the boundedness problem

of Petri nets.

Second, the prefix-covering problem asks whether a given

multiset of places µ ∈ N
P is covered by some prefix-

reachable marking µ′ ∈ N
P , i.e. µ(p) 6 µ′(p) for all p ∈ P .

It is easy to see that µ is prefix-covered in S if and only if

the multiset of places πcut(µ) is covered by some reachable

marking of S◦. Thus,

Theorem 2.7: The prefix-covering problem for PNSs is

computationally equivalent to the covering problem in Petri

nets.

Last but not least, the prefix-reachability problem asks

whether a given multiset of places is prefix-reachable in S.

Let us consider a slight modification S
′ of S

◦ where for

each place p ∈ Psuf, each state q ∈ S
◦ is provided with

an additional self-loop labeled arc which carries a rule that

consumes a token from p and produces nothing. Then a

multiset µ of places is prefix-reachable in S if and only if

πcut(µ) is reachable in S
′. Thus,

Theorem 2.8: The prefix-reachability problem of PNSs is

computationally equivalent to the reachability problem of

Petri nets.

III. CHECKING MSO PROPERTIES OF PROCESSES

At present we aim at checking more properties about the

processes of a given PNS. We show in this section how to

check effectively whether all processes of a given bounded

Petri net with states S satisfy a formula ψ expressed in

monadic second-order (MSO) logic. Since we do not require

the PNS to be prefix-bounded, our technique applies to

infinite state systems. It relies essentially on Büchi Theorem

[7] and a notion of process coloring that enables us to

recover a process from one of its linearizations.

A. MSO logic

In the rest of this section, we fix a bounded PNS S with

an initial marking µin over the finite set of places P and the

finite set of rules R. In order to simplify the presentation

of our result, we consider in this section that the events of

a process are labeled by a rule instead of a rule name. The

MSO logic we consider applies to the class of partial orders

whose nodes are labeled by letters from the disjoint union

Σ = P ∪̇R, which includes in particular the processes of

each rule sequence s ∈ R⋆. Thus the models we consider

here are triples (N,4, ξ) where N is a finite set of nodes,

4 is a partial order over N , and ξ is a mapping from N to

Σ = P ∪̇R.

Formulae of the MSO logic that we consider involve first-

order variables x, y, z... for nodes and second-order variables

X,Y, Z... for sets of nodes. They are built up from the

Client’s identity

Ticket request

Job submission

Client’s private key

Trusted third party

Tickets

Jobs
Server

Masquerade

Interception

FIG. 8. A simple cryptographic protocol

atomic formulae Pa(x) for a ∈ Σ (which stands for “the

node x is labeled by the letter a”), x 4 y, and x ∈ X
by means of the Boolean connectives ¬,∨,∧,→,↔ and

quantifiers ∃, ∀ (both for first order and for set variables).

Formulae without free variables are called sentences.

The satisfaction relation |= between a labeled partial order

(N,4, ξ) and a sentence is defined canonically with the

understanding that first order variables range over nodes of

N and second order variables over subsets of N . The class of

labeled partial orders which satisfy a sentence ϕ is denoted

by Mod(ϕ). We say that a class of labeled partial orders

L is MSO-definable if there exists a sentence ϕ such that

L = Mod(ϕ).

Example 3.1: The Petri net from Fig. 8 describes a simple

cryptographic protocol for the submission of jobs to a server.

The client is specified on the left-hand side. It can request

tickets to a trusted third party by using its own identity. Then

the third party produces a ticket that can be used to submit a

job to the server, with the help of the client’s private key. The

behaviour of an intruder is depicted on the right-hand side.

It can use the client’s identity to produce a ticket request

or intercept tickets. Consider at present the three next basic

properties:

(P1) A ticket cannot be consumed without the client’s

private key.

(P2) The server does not consume jobs submitted by the

intruder.

(P3) The client consumes only tickets that it has requested.

These properties can be easily formalized by MSO formulae

over processes. For instance (P1) corresponds to the sentence

∀x, (x : Tickets) → (x : Clients private key) where x : p is

a shorthand for the property that x is an event that consumes

a token available in a condition labeled by p, i.e.

∃y, Pp(y) ∧ y ≺ x ∧ ∀z, (y ≺ z ∧ z 4 x) → x 4 z

The technique presented in this section can be used to check

that (P1)→(P2) for all processes of the above Petri net.

Further it enables us to compute a counter-example (in the

form of a process) for the property (P1)→(P3).



B. A technique to decide S |= ψ

Since S is bounded, we can compute and fix some natural

number b such that each reachable marking µ of S is b-

bounded, that is, µ(p) 6 b for each p ∈ P . A rule sequence

s = r1...rm ∈ R⋆ firable from µin is said to be b-bounded

if the marking reached by each sub-sequence r1...rl is b-

bounded. In particular any firable computation sequence of

S is b-bounded.

We fix a word win ∈ P ⋆ that is a linear extension of µin,

i.e. |win|p = µin(p) for all p ∈ P . Similarly, for each rule

r ∈ R, we fix a word wr = r.w′

r where |w′

r|p = r•(p) for all

p ∈ P . Then for each rule sequence s = r1...rm ∈ R⋆, the

sequence ws = win.wr1 ...wrm is called the representative

word of s. We regard ws as a linearly ordered set of nodes

labeled by letters from Σ and we put ws = (N,6, ξ) where

N is a set of nodes, 6 is a total order over N , and ξ :
N → Σ is a labeling. Nodes labeled by a place are called

place nodes whereas nodes labeled by a rule are called rule

nodes. Interestingly, ws is a linear extension of any process

of s, where the place nodes following a rule node labeled

by r correspond to the multiset of tokens r• produced by

this occurrence of r.
In order to recover a process of s from the representative

word ws, we need to specify which available tokens are

consumed by each occurrence of rule. To do so, we use

a coloring of the place nodes of ws so that at each step

all available tokens in a given place get distinct colors.

Moreover we also provide rule nodes with a series of other

colors in order to specify which tokens are consumed at each

step of s.
Definition 3.2: Let w = (N,6, ξ) be a linear order of

nodes labeled by Σ. A process coloring of w consists of

• a partition C = {C1, ..., Cb} of the set of place nodes;

a place node n ∈ N is said to be colored by k in place

p if ξ(n) = p and n ∈ Ck.

• for each place p ∈ P and each k ∈ [1..b], a subset

of rule nodes Dp,k; we say that a rule node n ∈ N
consumes a token colored by k in place p if n ∈ Dp,k.

Moreover the three next conditions must be satisfied:

PC1: For each rule node n, for each place p ∈ P , we have

#{k ∈ [1..b] | n ∈ Dp,k} = (•ξ(n))(p);
PC2: For each place p ∈ P and each color k ∈ [1..b], any

two place nodes colored by k in place p are separated

by some rule node which consumes a token colored

by k in place p;

PC3: For each rule node n which consumes a token colored

by k in place p, there exists some preceding place

node n′ < n colored by k in place p such that no

rule node between n′ and n consumes a token colored

by k in place p.

Intuitively a place node belongs to Ck if it describes a token

colored by k in place ξ(n) ∈ P . A rule node n belongs

to Dp,k if it describes an occurrence of the rule ξ(n) ∈

ws x y z p z x c y
C1 ✗ ✗ ✗

C2 ✗ ✗ ✗

Dx,1 ✗

Dy,2 ✗

Dz,2 ✗

FIG. 9. A process coloring of ws = xyzpzxcy

x z

p

x

z

y

c

y

FIG. 10. Process of s = pc corresponding to Fig. 9

R which consumes a token colored by k in place p. Thus

the condition PC1 asserts that n consumes the appropriate

multiset of tokens in each place, provided that these tokens

have distinct colors. Precisely PC2 guarantees that the colors

given to new tokens produced in a place by the occurrence

of a rule differ from the colors used by available tokens

in this place. It ensures also that the tokens produced in

some place by the occurrence of a rule get distinct colors.

Consequently, at each step all available tokens in a place

have distinct colors. In order to recover a process of s from

a process coloring of ws, we have to make sure that there are

enough available tokens when each rule is applied. The last

requirement PC3 guarantees that for each rule node which

consumes a token colored by k in place p, some token of this

kind occurred before the rule and has not been consumed in

between.

We can show that the notion of process coloring char-

acterizes the linear extensions of processes and allows to

recover a process from a word. This property is established

by the two next statements (Prop. 3.3 and 3.4). Consider for

instance the rule sequence s = pc from the initial marking

µin = {x, y, z} where p : x➝x + z and c : y + z➝ y. A

process coloring of ws = xyzpzxcy with b = 2 is given by

the tabular of Fig. 9. The corresponding process is depicted

in Fig. 10.

Proposition 3.3: Let ws = (N,6, ξ) be a linear order of

nodes labeled by Σ which corresponds to the representative

word of a rule sequence s ∈ R⋆. Let C = (Ck)k∈[1..b] and

D = (Dp,k)p∈P,k∈[1..b] form a process coloring of ws. Let

·≺ be the binary relation over N such that x ·≺ y if

• either x is a rule node and y is a following place node

with no rule node in between

• or y is a rule node and x is a preceding place node

colored by k in place p such that y consumes a token

colored with k in place p and no rule node between x
and y consumes a token colored with k in place p.

Let 4 be the reflexive and transitive closure of ·≺ . Then the

labeled partial order (N,4, ξ) is a process of s firable from

µin, denoted by KC,D(s). Moreover s is b-bounded.



Thus each process coloring of ws yields a process from

[[s]]µin
. Consequently s is firable from µin as soon as it

admits a process coloring. With no surprise s has to be b-

bounded, too. Conversely the next result asserts that each

process of any rule sequence s firable from µin can be

obtained by some process coloring of ws, provided that s is

b-bounded.

Proposition 3.4: Let s = r1...rm be a b-bounded rule

sequence firable from µin and K be a process of s. Then

there exists a process coloring (C,D) of the representative

word ws such that KC,D(s) is isomorphic to K.

Thus the notion of process coloring characterizes the pro-

cesses of any b-bounded rule sequence firable from µin.

Following the easy part of Büchi Theorem, we can design

an MSO formula φS which defines the words w = (N,6, ξ)
over Σ which are representative words of a computation

sequence of S. We can also design a formula φpc(C,D) with

b × (|P | + 1) second-order free variables C = (Ck)k∈[1..b]

and D = (Dk,p)k∈[1..b],p∈P which characterizes the notion

of a process coloring for a word w = (N,6, ξ) over

Σ. Moreover, we can build a formula φ4(x, y, C,D) with

two first-order free variables x and y and b × (|P | + 1)
second-order free variables such that for any interpretation

of C = (Ck)k∈[1..b] and D = (Dk,p)k∈[1..b],p∈P and any

interpretation of x and y, φ4(x, y, C,D) is satisfied if and

only if we have x 4 y in the process corresponding to the

process coloring given by the interpretation.

Let ψ be an MSO sentence for labeled partial orders over

Σ. We consider the following formula ψS for words over Σ:

ψ
S
= φS ∧ ∃C, ∃D, (φpc(C,D) ∧ ¬ψ′(C,D))

where the formula ψ′(C,D) is obtained from ψ by replacing

each occurrence of x 4 y by φ4(x, y, C,D). Thus a word

satisfies ψS if (and only if) it is a representative word of a

computation sequence s of S for which there exists a process

coloring which describes a process satisfying ¬ψ. In this

way we get the main result of this section.

Theorem 3.5: Let S be a bounded PNS and ψ be an MSO

sentence over causal nets. All processes of S satisfy ψ if and

only if the word sentence ψS is not satisfiable.

We have implemented our technique on top of the tool

MONA [1]. Our prototype [3] allows us in particular to

design first a Petri net with TINA [2], next to use TINA

to compute an upper bound for the reachable markings, and

finally to apply Theorem 3.5 to check MSO formulae over

processes with the help of MONA. Continuing Example 3.1,

we could check that (P1)→(P2) for all processes. Further our

tool was able to compute a counter-example for the property

(P1)→(P3) in the form of a short process.

C. Comparisons to related works

Theorem 3.5 subsumes previous works in several ex-

tents. As opposed to [11], [18], we do not assume FIFO

behaviours and consequently we cannot make use of the

notion of representative linearizations. The fact is that, as

already mentioned, a computation sequence can correspond

to several non-isomorphic processes depending on the order

identical particles are consumed. Therefore we need the

notion of process coloring (Def. 3.2) and the related results

to recover a process from a word. This is the main difference

with the setting of MSCs because these are completely

specified by any of their linearizations as long as messages

are never lost and always delivered in a FIFO manner.

Still, the FIFO restriction can be formalized in MSO logic

and our technique applies also in this special case. Second

Petri nets and VASSs abstract away from the notions of

sites and channels in the setting of MSCs: A place can

describe the local state of a site, a communication channel,

a shared-variable, etc. In particular our approach applies

to any bounded Petri net. To the best of our knowledge,

the model checking problem of bounded Petri nets against

MSO formulae under the process semantics has not been

investigated so far in the literature.

The model-checking of graphs representing the executions

of a system against MSO sentences has been studied in

different settings. Provided that the class of graphs consid-

ered is definable in MSO logic and tree-width bounded, the

satisfiability of an MSO formula is known to be decidable

[8], [23], [19]. However the processes of a PNS need

not to be MSO-definable —even in the particular case of

a non-divergent MSG, because non-divergent MSGs can

describe non-regular sets of MSCs— so this line of work

does not apply to our setting. On the other hand, the class

of processes of any bounded Petri net is MSO-definable.

Consequently the partial order of events can be described

by a concurrent automaton or a regular event structure [24]

for which branching time model-checking is available [14].

This approach fails however for Petri nets with states which

are not prefix-bounded or whose processes are not MSO-

definable.

IV. CONCLUSION

We investigate a generalization of compositional MSGs

which adopts the abstract token game of Petri nets and

keeps a semantics based on partially ordered sets of events

called processes. This model allows for the specification

of bounded counters and appears to be exponentially more

concise than MSGs. We show how to check basic prop-

erties of the markings reached along partial executions,

namely boundedness, covering and reachability. Processes

are a means to track the causes of events occurring in

an execution. For bounded systems, we present a method

to check any MSO property of processes by a reduction

to the satisfiability of a word sentence. As illustrated by

Example 3.1, the process semantics of Petri nets can be

used to model and check systems with specific behavioural

constraints, such as FIFO channels, causal communication,

or private keys, as soon as these restrictions are formalized



by an MSO sentence. The techniques presented in this

paper allow us to check protocol specifications that include

message losses and bounded counters. They have been

implemented in a prototype tool [3] built on top of TINA [2]

to check the prefix-boundedness of a given PNS and MONA

[1] to check MSO properties of processes of a given bounded

PNS.

Previous works have proposed to mix MSCs and Petri

nets. In particular, netcharts [20] form a model of distributed

system where local states of components are formalized by

places of a 1-safe Petri net whose transitions are labeled

by an MSC. This model is expressively equivalent to com-

municating finite-state machines which makes it difficult to

check under the FIFO semantics adopted. On the other hand

Petri nets with states do not benefit so far from effective

relationships to models of distributed systems similar to

those available for MSGs [4], [11].
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