
Undecidability of Equality in the Free Locally
Cartesian Closed Category
Simon Castellan, Pierre Clairambault, and Peter Dybjer

Abstract
We show that a version of Martin-Löf type theory with extensional identity, a unit type N1,Σ,Π,
and a base type is a free category with families (supporting these type formers) both in a 1-
and a 2-categorical sense. It follows that the underlying category of contexts is a free locally
cartesian closed category in a 2-categorical sense because of a previously proved biequivalence.
We then show that equality in this category is undecidable by reducing it to the undecidability
of convertibility in combinatory logic.

1998 ACM Subject Classification F.4.1, F.3.2

Keywords and phrases Extensional type theory, locally cartesian closed categories, undecidabil-
ity

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.x

1 Introduction

In previous work [5, 6] we showed the biequivalence of locally cartesian closed categories
(lcccs) and the I,Σ,Π-fragment of extensional Martin-Löf type theory. More precisely, we
showed the biequivalence of the following two 2-categories.

The first has as objects lcccs, as arrows functors which preserve the lccc-structure (up to
isomorphism), and as 2-cells natural transformations.
The second has as objects categories with families (cwfs) [8] which support extensional
identity types (I-types), Σ-types, Π-types, and are democratic, as arrows pseudo cwf-
morphisms (preserving structure up to isomorphism), and as 2-cells pseudo cwf-transformations.
A cwf is democratic iff there is an equivalence between its category of contexts and its
category of closed types.

This result is a corrected version of a result by Seely [13] concerning the equivalence of
the category of lcccs and the category of Martin-Löf type theories. Seely’s paper did not
address the coherence problem caused by the interpretation of substitution as pullbacks [7].
As Hofmann showed [9], this coherence problem can be solved by extending a construction
of Bénabou [2]. Our biequivalence is based on this construction.

Cwfs are models of the most basic rules of dependent type theory; those dealing with
substitution, assumption, and context formation, the rules which come before any rules for
specific type formers. The distinguishing feature of cwfs, compared to other categorical
notions of model of dependent types, is that they are formulated in a way which makes the
connection with the ordinary syntactic formulation of dependent type theory transparent.
They can be defined purely equationally [8] as a generalised algebraic theory (gat) [3], where
each sort symbol corresponds to a judgment form, and each operator symbol corresponds to
an inference rule in a variable free formulation of Martin-Löf’s explicit substitution calculus
for dependent type theory [11, 15].

Cwfs are not only models of dependent type theory, but also suggest an answer to the
question what dependent type theory is as a mathematical object. Perhaps surprisingly,
this is a non-trivial question, and Voevodsky has remarked that “a type system is not a

© Simon Castellan and Pierre Clairambault and Peter Dybjer;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.x
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Undecidability of Equality in the Free Locally Cartesian Closed Category

mathematical notion”. There are numerous variations of Martin-Löf type theory in the
literature, even of the formulation of the most basic rules for dependent types. There are
systems with explicit and implicit substitutions, variations in assumption, context formation,
and substitution rules. There are formulations with de Bruijn indices and with ordinary
named variables, etc. In fact, there are so many rules that most papers do not try to
provide a complete list; and if you do try to list all of them how can you be sure that
you haven’t forgotten any? Nevertheless, there is a tacit assumption that most variations
are equivalent and that a complete list of rules could be given if needed. However, from a
mathematical point of view this is neither clear nor elegant.

To remedy this situation we suggest to define Martin-Löf type theory (and other depen-
dent type theories) abstractly as the initial cwf (with extra structure). The category of cwfs
and morphisms which preserve cwf-structure on the nose was defined by Dybjer [8]. We
suggest that the correctness of a definition or an implementation of dependent type theory
means that it gives rise to an initial object in this category of cwfs (with extra structure).
Here we shall construct the initial object in this category explicitly in the simplest possible
way following closely the definition of the generalised algebraic theory of cwfs. Note however
that the notion of a generalised algebraic theory is itself based on dependent type theory,
that is, on cwf-structure. So just defining the initial cwf as the generalised algebraic theory
of cwfs would be circular. Instead we construct the initial cwf explicitly by giving gram-
mar and inference rules which follow closely the operators of the gat of cwfs. However, we
must also make equality reasoning explicit. To decrease the number of rules, we present a
"per-style" system rather than an ordinary one. We will mutually define four partial equiv-
alence relations (pers): for the judgments of context equality Γ = Γ′, substitution equality
∆ ` γ = γ′ : Γ, type equality Γ ` A = A′, and term equality Γ ` a = a′ : A. The ordinary
judgments will be defined as the reflexive instances, for example, Γ ` a : A will be defined
as Γ ` a = a : A.

Our only optimisation is the elimination of some redundant arguments of operators. For
example, the composition operator in the gat of cwfs has five arguments: three objects and
two arrows. However, the three object arguments can be recovered from the arrows, and
can hence be omitted. This method is also used in D-systems, the essentially algebraic
formulation of cwfs by Voevodsky.

The goal of the present paper is to prove the undecidability of equality in the free lccc.
To this end we extend our formal system for cwfs with rules for extensional I-types, N1,Σ,Π,
and a base type. Now we want to show that this yields a free lccc on one object, by appealing
to our biequivalence theorem. (Since the empty context corresponds to the unit type N1
and context extension to Σ, it follows that our free cwf is democratic.) However, it does
not suffice to show that we get a free cwf in the 1-category of cwfs and strict cwf-morphism,
but we must show that it is also free (“bifree”) in the 2-category of cwfs and pseudo cwf-
morphisms. Although informally straightforward, this proof is technically more involved
because of the complexity of the notion of pseudo cwf-morphism.

Once we have constructed the free lccc (as a cwf-formulation of Martin-Löf type theory
with extensional I-types, N1,Σ,Π, and one base type) we will be able to prove undecidability.
It is a well-known folklore result that extensional Martin-Löf type theory with one universe
has undecidable equality, and we only need to show that a similar construction can be
made without a universe, provided we have a base type. We do this by encoding untyped
combinatory logic as a context, and use the undecidability of equality in this theory.

Related work. Palmgren and Vickers [12] show how to construct free models of essen-
tially algebraic theories in general. We could use this result to build a free cwf, but this

Simon Castellan, Pierre Clairambault, and Peter Dybjer 3

only shows freeness in the 1-categorical sense. We also think that the explicit construction
of the free (and bifree) cwf is interesting in its own right.

Plan. In Section 2 we prove a few undecidability theorems, including the undecidability
of equality in Martin-Löf type theory with extensional I-types, Π, and one base type. In
Section 3 we construct a free cwf on one base type. We show that it is free both in a 1-
categorical sense (where arrows preserve cwf-structure on the nose) and in a 2-categorical
sense (where arrows preserve cwf-structure up to isomorphism). In Section 4 we construct
a free cwf with extensional identity types, N1,Σ,Π, and one base type. We then use the
biequivalence result to conclude that this yields a free lccc in a 2-categorical sense.

2 Undecidability in Martin-Löf type theory

Like any other single-sorted first order equational theory, combinatory logic can be encoded
as a context in Martin-Löf type theory with I-types, Π-types, and a base type o. The context
ΓCL for combinatory logic is the following:

k : o, axk : Πxy : o. I(o, k · x · y, x),
s : o, axs : Πxyz : o. I(o, s · x · y · z, x · z · (y · z))
· : o→ o→ o,

Here we have used the left-associative binary infix symbol “·” for application. Note that
k, s, ·, axk, axs are all variables.

I Theorem 1. Type-inhabitation in Martin-Löf type theory with (intensional or extensional)
identity-types, Π-types and a base type is undecidable.

This follows from the undecidability of convertibility in combinatory logic, because the type

ΓCL ` I(o, M, M ′)

is inhabited iff the closed combinatory terms M and M ′ are convertible. Clearly, if the
combinatory terms are convertible, it can be formalized in this fragment of type theory. For
the other direction we build a model of the context ΓCL where o is interpreted as the set of
combinatory terms modulo convertibility.

I Theorem 2. Judgmental equality in Martin-Löf type theory with extensional identity-types,
Π-types and a base type is undecidable.

With extensional identity types [10] the above identity type is inhabited iff the corresponding
equality judgment is valid:

ΓCL `M = M ′ : o

This theorem also holds if we add N1 and Σ-types to the theory. The remainder of the
paper will show that the category of contexts for the resulting fragment of Martin-Löf type
theory is bifree in the 2-category of lcccs (Theorem 20). Our main result follows:

I Theorem 3. Equality of arrows in the bifree lccc on one object is undecidable.

We would like to remark that the following folklore theorem can be proved in the same way.

I Theorem 4. Judgmental equality in Martin-Löf type theory with extensional identity-types,
Π-types and a universe U is undecidable.

TLCA’15

4 Undecidability of Equality in the Free Locally Cartesian Closed Category

If we have a universe we can instead work in the context

X : U · : X → X → X,

k : X, axk : Πxy : X. I(X, k · x · y, x),
s : X, axs : Πxyz : X. I(X, s · x · y · z, x · z · (y · z))

and prove undecidability for this theory (without a base type) in the same way as above.
Note that we don’t need any closure properties at all for U – only the ability to quantify

over small types. Hence we prove a slightly stronger theorem than the folklore theorem
which assumes that U is closed under function types, and then uses the context

X : U,
x : I(U, X,X → X)

so that X is a model of the untyped lambda calculus.

3 A free category with families

In this section we define a free cwf syntactically, as a term model consisting of derivable
contexts, substitutions, types and terms modulo derivable equality. To this end we give
syntax and inference rules for a cwf-calculus, that is, a variable free explicit substitution
calculus for dependent type theory.

We first prove that this calculus yields a free cwf in the category where morphisms
preserve cwf-structure on the nose. The free cwf on one object is a rather degenerate
structure, since there are no non-trivial dependent types. However, we have nevertheless
chosen to present this part of the construction separately. Cwfs model the common core
of dependent type theory, including all generalised algebraic theories, pure type systems
[1], and fragments of Martin-Löf type theory. The construction of a free pure cwf is thus
the common basis for constructing free and initial cwfs with appropriate extra structure for
modelling specific dependent type theories.

In Section 3.4 we prove that our free cwf is also bifree. We then extend this result to
cwfs supporting N1,Σ, and Π-types. By our biequivalence result [5, 6] it also yields a bifree
lccc.

3.1 The 2-category of categories with families

The 2-category of cwfs and pseudo-morphisms which preserve cwf-structure up to isomor-
phism was defined in [5, 6]. Here we only give an outline.

I Definition 5 (Category with families). A cwf C is a pair (C, T) of a category C and a
functor T : Cop → Fam where Fam is the category of families of sets. We write CtxC = |C|
and SubC(∆,Γ) = HomC(∆,Γ). For Γ ∈ CtxC we write TΓ = (TmC(Γ, A))A∈TyCΓ. The
functorial action of T on a type A is written A[_]: if γ : SubC(Γ,∆) and A ∈ TyC(∆),
A[γ] ∈ TyC(Γ). Similarly if a ∈ TmC(∆, A), we write a[γ] ∈ TmC(Γ, A[γ]) for the functorial
action of T on a.

We assume that C has a terminal object 1C . Moreover we assume that for each Γ ∈ CtxC
and A ∈ TyC(Γ) there exists Γ.A ∈ CtxC with a map pA : SubC(Γ.A,Γ) and a term qA ∈
TmC(Γ.A,A[pA]), such that for every pair γ : SubC(∆,Γ) and a ∈ TmC(∆, A[γ]) there exists
a unique map 〈γ, a〉 : SubC(∆,Γ.A) such that pA ◦ 〈γ, a〉 = γ and qA[〈γ, a〉] = a.

Simon Castellan, Pierre Clairambault, and Peter Dybjer 5

Note that with the notation TyC and TmC there is no need to explicitly mention the
functor T when working with categories with families, and we will often omit it. Given a
substitution γ : Γ → ∆, and A ∈ TyC(∆), we write γ ↑ A or γ+ (when A can be inferred
from the context) for the lifting of γ to A: 〈γ ◦ p, q〉 : Γ.A[γ]→ ∆.A.

The indexed category. In [5, 6] it is shown that any cwf C induces a functor T :
Cop → Cat assigning to each context Γ the category whose objects are types in TyC(Γ) and
morphisms from A to B are substitutions γ : Γ.A → Γ.B such that p ◦ γ = p. (They are
in bijection with terms of type Γ · A ` B[p].) Any morphism γ in TΓ from a type A to B
induces a function on terms of that type written {γ} : TmC(Γ, A)→ TmC(Γ, B) defined by
{γ}(a) = q[γ ◦ 〈id, a〉]. We will write θ : A ∼=Γ B for an isomorphism in TΓ.

The functorial action is given by T(γ)(ϕ) = 〈p, q[ϕ ◦ γ ↑ A]〉 : Γ.A[γ] → Γ.B[γ], from
which we deduce the action on terms {T(γ)(ϕ)}(a) = q[ϕ ◦ 〈γ, a〉].

I Definition 6 (Pseudo cwf-morphisms). A pseudo-cwf morphism from a cwf (C, T) to a cwf
(C′, T ′) is a pair (F, σ) where F : C → C′ is a functor and for each Γ ∈ C, σΓ is a Fam-
morphism from TΓ to T ′FΓ preserving the structure up to isomorphism. For example, there
are isomorphisms

ρΓ,A : F (Γ.A) ∼= FΓ.FA
θA,γ : FΓ.FA[Fγ] ∼= FΓ.F (A[γ]) for Γ ` γ : ∆.

satisfying some coherence diagrams, see [6] for the complete definition.

As σΓ is a Fam-morphism from (TmC(Γ, A))A∈TyC(Γ) to (TmD(FΓ, B))B∈TyD(FΓ), we
write FA for the image of A by TyC(Γ) → TyD(FΓ) induced by σΓ and Fa for the image
of Γ ` a : A through TmC(Γ, A)→ TmD(FΓ, FA) induced by σΓ.

A pseudo cwf-morphism is strict whenever θA,γ and ρΓ,A are both identities and F1 = 1.
Cwfs and strict cwf-morphisms form a category CwFs.

I Definition 7 (Pseudo cwf-transformation). A pseudo cwf-transformation between functors
(F, σ) and (G, τ) is a pair (ϕ,ψ) where ϕ : F ⇒ G is a natural transformation, and for each
Γ ∈ C and A ∈ TyC(Γ) ψΓ,A is a type isomorphism FA ∼=FΓ GA[ϕΓ] satisfying:

ϕΓ.A = F (Γ.A) ρF−−→ FΓ.FA ψΓ,A−−−→ FΓ.GA[ϕΓ]
ϕ+

Γ−−→ GΓ.GA
ρ−1

G−−→ G(Γ.A)

We will write CwF for the resulting 2-category.

3.2 Syntax and inference rules for the free category with families

3.2.1 Raw terms

In this section we define the syntax and inference rules for a minimal dependent type theory
with one base type o. This theory is closely related to the generalised algebraic theory of
cwfs [8], but here we define it as a usual logical system with a grammar and a collection
of inference rules. The grammar has four syntactic categories: contexts Ctx, substitutions
Sub, types Ty and terms Tm:

Γ ::= 1 | Γ.A A ::= o | A[γ]
γ ::= γ ◦ γ | idΓ | 〈〉Γ | pA | 〈γ, a〉A a ::= a[γ] | qA

TLCA’15

6 Undecidability of Equality in the Free Locally Cartesian Closed Category

These terms have as few annotations as possible, only what is needed to recover the domain
and codomain of a substitution, the context of a type, and the type of a term:

dom(γ ◦ γ′) = dom(γ′) cod(γ ◦ γ′) = cod(γ)
dom(idΓ) = Γ cod(idΓ) = Γ
dom(〈〉Γ) = Γ cod(〈〉Γ) = 1
dom(pA) = ctx-of(A).A cod(pA) = ctx-of(A)

dom(〈γ, a〉A) = dom(γ) cod(〈γ, a〉A) = cod(γ).A

ctx-of(o) = 1 type-of(a[γ]) = (type-of(a))[γ]
ctx-of(A[γ]) = dom(γ) type-of(qA) = A[pA]

These functions will be used in the freeness proof.

3.2.2 Inference rules

We simultaneously inductively define four families of partial equivalence relations (pers) for
the four forms of equality judgment:

Γ = Γ′ ` Γ ` A = A′ ∆ ` γ = γ′ : Γ Γ ` a = a′ : A

In the inference rules which generate these pers we will use the following abbreviations for
the basic judgment forms: Γ ` abbreviates Γ = Γ `, Γ ` A abbreviates Γ ` A = A, ∆ ` γ : Γ
abbreviates ∆ ` γ = γ : Γ, and Γ ` a : A abbreviates Γ ` a = a : A.

Per-rules for the four forms of judgments:

Γ = Γ′ ` Γ′ = Γ′′ `
Γ = Γ′′ `

Γ = Γ′ `
Γ′ = Γ `

∆ ` γ = γ′ : Γ ∆ ` γ′ = γ′′ : Γ
∆ ` γ = γ′′ : Γ

∆ ` γ = γ′ : Γ
∆ ` γ′ = γ : Γ

Γ ` A = A′ Γ ` A′ = A′′

Γ ` A = A′′
Γ ` A = A′

Γ ` A′ = A
Γ ` a = a′ : A Γ ` a′ = a′′ : A

Γ ` a = a′′ : A

Γ ` a = a′ : A
Γ ` a′ = a : A

Preservation rules for judgments:

Γ = Γ′ ` ∆ = ∆′ ` Γ ` γ = γ′ : ∆
Γ′ ` γ = γ′ : ∆′

Γ = Γ′ ` Γ ` A = A′

Γ′ ` A = A′

Γ = Γ′ ` Γ ` A = A′ Γ ` a = a′ : A
Γ′ ` a = a′ : A′

Simon Castellan, Pierre Clairambault, and Peter Dybjer 7

Congruence rules for operators:

Γ ` δ = δ′ : ∆ ∆ ` γ = γ′ : Θ
Γ ` γ ◦ δ = γ′ ◦ δ′ : Θ

Γ = Γ′ `
Γ ` idΓ = idΓ′ : Γ

Γ ` A = A′ ∆ ` γ = γ′ : Γ
∆′ ` A[γ] = A′[γ′]

Γ ` a = a′ : A ∆ ` γ = γ′ : Γ
∆ ` a[γ] = a′[γ′] : A[γ′] 1 = 1 `

Γ = Γ′ `
Γ ` 〈〉Γ = 〈〉Γ′ : 1

Γ = Γ′ ` Γ ` A = A′

Γ.A = Γ′.A′ `

Γ ` A = A′

Γ.A ` pA = pA′ : Γ
Γ ` A = A′

Γ.A ` qA = qA′ : A[pA]

Γ ` A = A′ ∆ ` γ = γ′ : Γ ∆ ` a = a′ : A[γ]
∆ ` 〈γ, a〉A = 〈γ′, a′〉A′ : Γ.A

Conversion rules:

∆ ` θ : Θ Γ ` δ : ∆ Ξ ` γ : Γ
(θ ◦ δ) ◦ γ = θ ◦ (δ ◦ γ)

Γ ` γ : ∆
Γ ` γ = id∆ ◦ γ : ∆

Γ ` γ : ∆
Γ ` γ = γ ◦ idΓ : ∆

Γ ` A ∆ ` γ : Γ Θ ` δ : ∆
Θ ` A[γ ◦ δ] = (A[γ])[δ]

Γ ` A
Γ ` A[idΓ] = A

Γ ` a : A ∆ ` γ : Γ Θ ` δ : ∆
Θ ` a[γ ◦ δ] = (a[γ])[δ] : (A[γ])[δ]

Γ ` a : A
Γ ` a[idΓ] = a : A

Γ ` γ : 1
Γ ` γ = 〈〉Γ : 1

Γ ` A ∆ ` γ : Γ ∆ ` a : A[γ]
∆ ` pA ◦ 〈γ, a〉A = γ : Γ

Γ ` A ∆ ` γ : Γ ∆ ` a : A[γ]
∆ ` qA[〈γ, a〉A] = a : A[γ]

∆ ` γ : Γ.A
∆ ` γ = 〈pA ◦ γ, qA[γ]〉A : Γ.A

Rule for the base type:

1 ` o = o

3.2.3 The syntactic cwf T

We can now define a term model as the syntactic cwf obtained by the well-formed contexts,
etc, modulo judgmental equality. We use brackets for equivalence classes in this definition.
(Note that brackets are also used for substitution in types and terms, but this should not
cause confusion since we will soon drop the equivalence class brackets.)

I Definition 8. The term model T is given by:
CtxT = {Γ | Γ ` }/=c, where Γ =c Γ′ if Γ = Γ′ ` is derivable.
SubT ([Γ], [∆]) = {γ | Γ ` γ : ∆}/=Γ

∆ where γ =Γ
∆ γ′ iff Γ ` γ = γ′ : ∆ is derivable. Note

that this makes sense since it only depends on the equivalence class of Γ (morphisms and
morphism equality are preserved by object equality).
TyT ([Γ]) = {A | Γ ` A}/ =Γ where A =Γ B if Γ ` A = B.
TmT ([Γ], [A]) = {a | Γ ` a : A}/ =Γ

A where a =Γ
A a
′ if Γ ` a = a′ : A.

The cwf-operations on T can now be defined in a straightforward way. For example, if
∆ ` θ : Θ, Γ ` δ : ∆, we define [θ] ◦T [δ] = [θ ◦ δ], which is well-defined since composition
preserves equality.

TLCA’15

8 Undecidability of Equality in the Free Locally Cartesian Closed Category

3.3 Freeness of T
We shall now show that T is the free cwf on one base type, in the sense that given a cwf C
and a type A ∈ TyC(1), there exists a unique strict cwf morphism T → C which maps [o] to
A. Such a morphism can be defined by first defining a partial function for each sort of raw
terms (where Ctx denotes the set of raw contexts, Sub the set of raw substitutions, and so
on defined by the grammar of Section 3.2.1), cf Streicher [14].

J−K : Ctx → CtxC
J−KΓ,∆ : Sub → SubC(JΓK, J∆K)

J−KΓ : Ty → TyC(JΓK)
J−KΓ,A : Tm → TmC(JΓK, JAKΓ)

These functions are defined by mutual induction on the structure of raw terms:

J1K = 1C JΓ.AK = JΓK.CJAK

Jγ′ ◦ γKΓ,Θ = Jγ′K∆,Θ ◦C JγKΓ,∆ JidΓKΓ,Γ = idCJΓK

J〈γ, a〉AKΓ,∆.A = 〈JγKΓ,∆, JaKΓ,A[γ]〉 J〈〉ΓKΓ,1 = 〈〉Γ
JA[γ]KΓ = JAK∆[JγKΓ,∆] Ja[γ]KΓ,A[γ] = JaK∆,A[JγKΓ,∆]

JpAKΓ.A,Γ = pA JqAKΓ.A,A[p] = qA
JoK1 = A

Note that ∆ = dom(γ′) = cod(γ) in the equation for ◦, etc.
We then prove by induction on the inference rules that:

I Lemma 9. If Γ = Γ′ `, then JΓK = JΓ′K and both are defined.
If Γ ` γ = γ′ : ∆, then JγKΓ,∆ = Jγ′KΓ,∆ and both are defined.
If Γ ` A = A′, then JAKΓ = JA′KΓ and both are defined.
If Γ ` a = a′ : A, then JaKΓ,A = Ja′KΓ,A and both are defined.

Hence the partial interpretation lifts to the quotient of syntax by judgmental equality:

J−K : CtxT → CtxC
J−K[Γ],[∆] : SubT ([Γ], [∆]) → SubC(J[Γ]K, J[∆]K)

J−K[Γ] : TyT ([Γ]) → TyC(J[Γ]K)

J−K[Γ],[A] : TmT ([Γ], [A]) → TmC(J[Γ]K, J[A]K[Γ])

This defines a strict cwf morphism T → C which maps [o] to A. It is easy to check that it
is the unique such strict cwf-morphism. Hence we have proved:

I Theorem 10. T is the free cwf on one object, that is, for every other cwf C and A ∈ TyC(1)
there is a unique strict cwf morphism T → C which maps [o] to A.

From now on we will uniformly drop the equivalence class brackets and for example write
Γ for [Γ]. There should be no risk of confusion, but we remark that proofs by induction on
syntax and inference rules are on representatives rather than equivalence classes.

3.4 Bifreeness of T
We recall that an object I is bi-initial in a 2-category iff for any object A there exists an
arrow I → A and for any two arrows f, g : I → A there exists a unique 2-cell θ : f ⇒ g. It
follows that θ is invertible. It also follows that bi-initial objects are equivalent.

Simon Castellan, Pierre Clairambault, and Peter Dybjer 9

I Definition 11. A cwf C is bifree on one base type iff it is bi-initial in the 2-category CwFo:
Objects: Pairs (C, oC) of a CwF and a chosen oC ∈ TyC(1),
1-cells from (C, oC) to (D, oD): pseudo cwf-morphisms F : C → D such that there exists
ϕF : F (oC) ∼= oD in TyD(1),
2-cells from F to G with type (C, oC)→ (D, oD): pseudo cwf-transformations (ϕ,ψ) from
F to G satisfying ψoC = α−1

G ◦ αF : F (oC) ∼= G(oC).

I Theorem 12. T is a bifree cwf on one base type.

We have showed that for every cwf C, A ∈ TyC(1), the interpretation J−K is a strict cwf-
morphism mapping o to A. Hence it is a morphism in CwFo. It remains to show that for any
other morphism F : T → C in CwFo, there is a unique 2-cell (pseudo cwf-transformation)
(ϕ,ψ) : J−K → F , which happens to be an isomorphism. This asymmetric version of bi-
initiality is equivalent to that given above because the 2-cell we build is an isomorphism.

Existence of (ϕ,ψ)

We construct (ϕ,ψ) by induction on the inference rules and simultaneously prove their
naturality properties:

If Γ = Γ′ `, then there exist ϕΓ = ϕΓ′ : JΓK ∼= FΓ.
If Γ ` A = A′, then there exist ψA = ψA′ : JΓ.AK ∼=JΓK JΓK.FA[ϕΓ].
If Γ ` γ = γ′ : ∆, then Fγ ◦ ϕΓ = ϕ∆ ◦ JγK
If Γ ` a = a′ : A, then {ψA}(JaK) = Fa[ϕΓ]

Since it also follows that ϕΓ.A = ρ−1 ◦ ϕ+
Γ ◦ ψA we conclude that (ϕ,ψ) is a pseudo

cwf-transformation. For space reasons we only present the proofs of the first two items and
refer the reader to the long version of the paper [4] for the other two.

Empty context. F preserves terminal objects, thus we let φ1 : J1K = 1C ∼= F1.
Context extension. By induction, we have ψA : JAK ∼=Γ FA[ϕΓ]. We define ϕΓ.A as the

following composition of isomorphisms:

ϕΓ.A = JΓ.AK ψA−−→ JΓK.FA[ϕΓ] 〈ϕΓ,q〉−−−−→ FΓ.FA
ρ−1

Γ,A−−−→ F (Γ.A)

Type substitution. Let Γ ` γ : ∆ and ∆ ` A. By induction we get ϕ∆ ◦ JγK = Fγ ◦ ϕΓ and
ψA : JAK ∼=∆ FA[ϕ∆]. Since T is a functor, Tγ is a functor from T∆ to TΓ thus,

T(JγK)(ψA) : JA[γ]K ∼=Γ FA[ϕ∆ ◦ γ] = FA[Fγ][ϕΓ]

by induction hypothesis on γ. So we define

ψA[γ] = T(ϕΓ)(θA,γ) ◦T(JγK)(ψA) : JA[γ]K ∼=JΓK (F (A[γ]))[ϕΓ]

Using the previous case we can get a simpler equation for ϕΓ.A[γ]:

ϕΓ.A[γ] = 〈ϕΓ ◦ p, q[ρ ◦ ϕ∆·A ◦ γ ↑ A]〉 : JΓ.A[γ]K→ F (Γ.A[γ])

Base type. By definition, F is equipped with αF : JoK ∼= F (o). We define ψo = α−1
F : JoK ∼=

F (o) in TyC(1).

TLCA’15

10 Undecidability of Equality in the Free Locally Cartesian Closed Category

Uniqueness of (ϕ,ψ)

Let (ϕ′, ψ′) : J·K → F be another pseudo cwf-transformation in CwFo. We prove the
following by induction:

If Γ `, then ϕΓ = ϕ′Γ
If Γ ` A, then ψA = ψ′A

Empty context. There is a unique morphism between the terminal objects J1K and F1, so
ϕ1 = ϕ′1.

Context extension. Assume by induction ϕΓ = ϕ′Γ and ψA = ψ′A. By the coherence law
of pseudo cwf-transformations, we have ϕ′Γ.A = ρ−1 ◦ ϕ′Γ

+ ◦ ψ′A from which the equality
ϕ′Γ.A = ϕΓ.A follows.

Type substitution. Assume we have ∆ ` A and Γ ` γ : ∆, and consider ψA[γ] and ψ′A[γ].
By definition of pseudo cwf-transformations, one has T(ϕ′Γ)(θ−1

A,γ) ◦ψ′A[γ] = T(Fγ)(ψ′A).
Since we know ϕΓ = ϕ′Γ we know ϕ′Γ is an isomorphism and thus ψ′A[γ] depends only on
ϕ′Γ and ψ′A from which it follows that ψ′A[γ] = ψ′A[γ].

Base type. The definition of 2-cells in CwFo entails ψ′o = α−1
F : JoK→ F (JoK).

4 A free lccc

4.1 From cwfs to lcccs
We now extend our cwf-calculus with extensional I-types, N1,Σ, and Π and prove that it
yields a free cwf supporting these type formers. To show that this yields a free lccc we apply
the biequivalence [6] between lcccs and democratic cwfs supporting these type formers.

I Definition 13 (Democratic cwfs). A cwf C is democratic when for each context Γ there
is a type Γ̄ ∈ Ty(1) such that Γ ∼= 1.Γ̄. A pseudo cwf morphism F : C → D between
democratic cwf preserves democracy when there is an isomorphism F (Γ̄) ∼= FΓ[〈〉Γ] satisfying
a coherence diagram stated in [6] (Definition 8).

The free cwf with N1,Σ, and Π-types is democratic since the empty context can be repre-
sented by the unit type N1 and context extension by a Σ-type.

4.2 Cwfs with support for type constructors
A cwf supports a certain type former when it has extra structure and equations correspond-
ing to the to formation, introduction, elimination, and equality rules for the type former
in question. We only spell out what it means for a cwf to support and preserve exten-
sional identity types and refer the reader to [6] for the definitions wrt Σ- and Π-types. The
definition of what it means to support and preserve N1 is analogous.

I Definition 14 (Cwf with identity types). A cwf C is said to support extensional identity
types when for each a, a′ ∈ TmC(Γ, A) there is a type I(A, a, a′) ∈ TyC(Γ) satisfying the
following condition:

I(A, a, a′)[γ] = I(A[γ], a[γ], a′[γ]) for any γ : ∆→ Γ
For a ∈ TmC(Γ, A), there exists r(a) ∈ TmC(Γ, I(A, a, a)). Moreover, if c ∈ TmC(Γ, I(A, a, a′))
then a = a′ and c = r(a).

A pseudo cwf morphism F preserves identity types when

I(FA,Fa, Fa′) ∼=Γ F (I(A, a, a′)).

Simon Castellan, Pierre Clairambault, and Peter Dybjer 11

We write CwFI,Σ,Π
d for the 2-category of democratic cwfs supporting I,Σ, and Π with

morphisms preserving them, and CwFΣ,Π,I
s,d for the strict version. Note that by democracy,

any democratic cwf has a unit type representing the empty context.
Σ and Π are functorial and preserve isomorphisms:

I Lemma 15 (Functoriality of Σ). Let fA : A ∼=Γ A
′ and fB : B ∼=Γ.A B′[fA] with Γ.A ` B

and Γ.A′ ` B′. Then Σ(A,B) ∼= Σ(A′, B′) functorially: if gA : A′ ∼= A′′ and gB : B′ ∼=
B′′[gA], then Σ(gA ◦ fA, gB ◦ f+

A ◦ fB) = Σ(gA, gB) ◦ Σ(fA, fB) : Σ(A,B)→ Σ(A′′, B′′).

I Lemma 16 (Functoriality of Π). Let fA : A ∼=Γ A
′ and fB : B ∼=Γ.A B

′[fA]. Then there is
a type isomorphism Π(fA, fB) : Π(A,B) ∼=Γ Π(A′, B′) functorially.

4.3 The syntactic cwf with extensional I, N1, Σ, and Π
We extend the grammar and the set of inference rules with rules for I,N1,Σ, and Π-types:

A ::= · · · | I(a, a) | N1 | Σ(A,A) | Π(A,A)
a ::= · · · | r(a) | 01 | fst(A, a)| snd(A,A, a)| pair(A,A, a, a)| ap(A,A, a, a)| λ(A, a)

For each type we define its context:

ctx-of(I(a, a′)) = ctx-of(type-of(a)) ctx-of(Σ(A,B)) = ctx-of(A)
ctx-of(Π(A,B)) = ctx-of(A)

For each term we define its type:

type-of(fst(A, c)) = A

type-of(snd(A,B, c) = B 〈idctx-of(A), fst(A, c)〉 type-of(r(a)) = I(a, a)
type-of(pair(A,B, a, b)) = Σ(A,B) type-of(λ(A, c)) = Π(A, type-of(c))
type-of(pair(A,B, a, b)) = Σ(A,B) type-of(ap(A,B, c, a)) = B 〈idctx-of(A), a〉

4.3.1 Inference rules
Rules for I-types:

Γ ` a = a′ : A Γ ` b = b′ : A
Γ ` I(a, b) = I(a′, b′)

Γ ` a = a′ : A
Γ ` r(a) = r(a′) : I(a, a′)

Γ ` c : I(a, a′)
Γ ` a = a′ : type-of(a)

Γ ` c : I(a, a′)
Γ ` c = r(a) : I(a, a′)

Γ ` a : A Γ ` a′ : A ∆ ` γ : Γ
Γ ` I(a, a′)[γ] = I(a[γ], a′[γ])

Rules for N1:

` N1 ` 01 : N1

` a : N1
` a = 01 : N1

TLCA’15

12 Undecidability of Equality in the Free Locally Cartesian Closed Category

Rules for Σ-types:

Γ ` A = A′ Γ.A ` B = B′

Γ ` Σ(A,B) = Σ(A′, B′)
Γ ` A = A′ Γ ` c = c′ : Σ(A,B)

Γ ` fst(A, c) = fst(A′, c′) : A

Γ ` A = A′ Γ.A ` B = B′ Γ ` c = c′ : Σ(A,B)
Γ ` snd(A,B, c) = snd(A′, B′, c′) : B 〈idΓ, fst(A, c)〉

Γ ` A = A′ Γ.A ` B = B′ Γ ` a = a′ : A′ Γ ` b = b′ : B 〈idΓ, fst(A, c)〉
Γ ` pair(A,B, a, b) = pair(A′, B′, a′, b′) : Σ(A,B)

Γ ` A Γ.A ` B Γ ` a : A′ Γ ` b : B 〈idΓ, fst(A, c)〉
Γ : fst(A, pair(A,B, a, b)) = a : A

Γ ` A Γ.A ` B Γ ` a : A′ Γ ` b : B 〈idΓ, fst(A, c)〉
Γ : snd(A,B,pair(A,B, a, b)) = b : B 〈idΓ, fst(A, c)〉

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B[〈idΓ, fst(A, c)〉]
Γ ` c = pair(A,B, fst(A, c), snd(A,B, c)) : Σ(A,B)

Γ ` A Γ.A ` B ∆ ` γ : Γ
Γ ` Σ(A,B)[γ] = Σ(A[γ], B[γ+])

Γ ` A Γ ` c : Σ(A,B) ∆ ` γ : Γ
Γ ` fst(A, c)[γ] = fst(A[γ], c[γ]) : A

Γ ` A Γ.A ` B Γ ` c : Σ(A,B) ∆ ` γ : Γ
Γ ` snd(A,B, c)[γ] = snd(A[γ], B[γ+], c[γ]) : B[〈γ, fst(A, c)[γ]〉]

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B[〈idΓ, fst(A, c)〉] ∆ ` γ : Γ
Γ ` pair(A,B, a, b)[γ] = pair(A[γ], B[γ+], a[γ], b[γ]) : Σ(A,B)[γ]

Rules for Π-types:

Γ ` A = A′ Γ.A ` B = B′

Γ ` Π(A,B) = Π(A′, B′)
Γ ` A = A′ Γ.A ` b = b′ : B

Γ ` λ(A, b) = λ(A′, b′) : Π(A,B)

Γ ` A = A′ Γ.A ` B = B′ Γ ` c = c′ : Π(A,B) Γ ` a = a′ : A
Γ ` app(A,B, c, a) = app(A′, B′, c′, a′) : B[〈id, a〉]

Γ ` c : Π(A,B) Γ ` a : A
Γ ` app(A,B, λ(A, b), a) = b[〈id, a〉] : B[〈id, a〉]

Γ ` c : Π(A,B)
Γ ` λ(app(c[p], q)) = c : Π(A,B)

Γ ` A Γ.A ` B ∆ ` γ : Γ
∆ ` Π(A,B)[γ] = Π(A[γ], A[γ+])

Γ ` c : Π(A,B) ∆ ` γ : Γ
∆ ` λ(b)[γ] = λ(b[γ+]) : Π(A,B)[γ]

Γ ` c : Π(A,B) Γ ` a : A ∆ ` γ : Γ
∆ ` app(c, a)[γ] = app(c[γ], a[γ]) : B[〈γ, a[γ]〉]

Simon Castellan, Pierre Clairambault, and Peter Dybjer 13

4.3.2 The syntactic cwf supporting I, N1, Σ, and Π
It is straightforward to extend the definition of the term model T with I,N1,Σ , and Π-types,
to form a cwf T I,N1,Σ,Π supporting these type constructors. As we already explained it is
democratic.

We want to show that T I,N1,Σ,Π is free, not only in the 2-category of cwfs support-
ing I,Σ,Π but in the subcategory of the democratic ones. (Democracy entails that N1 is
also supported.) It is straightforward to extend the interpretation functor and prove its
uniqueness. It is also easy to check that it preserves democracy.

I Theorem 17. T I,N1,Σ,Π is the free democratic cwf supporting I,Σ,Π on one object.

4.4 Bifreeness of T I,N1,Σ,Π

We now prove the key result:

I Theorem 18. T I,N1,Σ,Π is the bifree democratic cwf supporting I,Σ,Π on one object.

This means that T I,N1,Σ,Π is bi-initial in the 2-category CwFI,Σ,Π,o
d where objects are demo-

cratic cwfs which support I,Σ,Π, and a base type o, and where morphisms preserve these
type formers up to isomorphism.

4.4.1 Existence
We resume our inductive proof from Section 3.4 with the cases for I,N1,Σ, and Π.
Unit type. Since F preserves democracy and terminal object it follows that 1.F (N1) =

1.F (1̄) ∼= F1 ∼= 1̄.
Identity type. Assume Γ ` a, a′ : A. By induction, we have ψA : JAK ∼=JΓK FA[ϕΓ]. We

know I-types preserve isomorphisms in the indexed category (Lemma 10, page 35 of [6])
yielding (over JΓK):

ψI(a,a′) : JI(a, a′)K ∼= IC(FA[ϕΓ], {ψA}(JaK), {ψA}(Ja′K))
= IC(FA[ϕΓ], F (a)[ϕΓ], F (a′)[ϕΓ])

.
Σ-types. Assume we have Γ ` A and Γ.A ` B. By induction we have the isomorphisms

ψA : JAK ∼=Γ FA[ϕΓ] and ψB : JBK ∼=Γ.A FB[ϕΓ.B]. We let

ψΣ(A,B) = Γ.Σ(A,B) Σ(ψA,ψB)−−−−−−→ Γ.Σ(FA[ϕΓ], FB[ρ−1 ◦ ϕ−1
Γ

+])
T(ϕΓ)(s−1

A,B
)

−−−−−−−−→ Γ.F (Σ(A,B))[ϕΓ]

ψΣ(A,B) can be related to ϕΓ.A.B :

ψΣ(A,B) = T(ϕΓ)(s−1
A,B) ◦ Σ(ψA, ψB)

= ϕ−1
Γ

+ ◦ s−1
A,B ◦ ϕΓ

+ ◦ χ−1 ◦ ψ+
A ◦ ψB ◦ χA,B

= ϕ−1
Γ

+ ◦ s−1
A,B ◦ χA,B ◦ ϕΓ

++ ◦ ψ+
A ◦ ψB ◦ χA,B

= ϕ−1
Γ

+ ◦ ρ ◦ F (χA,B) ◦ ρ−1 ◦ ρ−1+ ◦ ϕΓ
++ ◦ ψ+

A ◦ ψB ◦ χA,B
= ϕ−1

Γ
+ ◦ ρ ◦ F (χ−1

A,B) ◦ ρ−1 ◦ ϕ+
Γ.A ◦ ψB ◦ χA,B

= ϕ−1
Γ

+ ◦ ρ ◦ F (χ−1
A,B) ◦ ϕΓ.A.B ◦ χA,B

From that calculation, we deduce ϕΓ.Σ(A,B) = F (χ−1
A,B) ◦ ϕΓ.A.B ◦ χA,B .

TLCA’15

14 Undecidability of Equality in the Free Locally Cartesian Closed Category

Π-types. Define ψΠ(A,B) as follows

JΓ.Π(A,B)K Π(ψA,ψB)−−−−−−→ JΓK.Π(FA[ϕΓ], FB[ρ ◦ ϕΓ↑FA])

= JΓK.Π(FA,FB[ρ])[ϕΓ]
T (ϕΓ)(ξ−1

A,B
)

−−−−−−−−→ JΓK.F (Π(A,B))[ϕΓ]

4.4.2 Uniqueness
We resume the uniqueness proof from 3.4.

The unit type. It follows from the preservation of democracy of F .
Identity types. We need to show ψ′I(a,a′) = ψI(a,a′) : Γ.I(a, a′) → Γ.F (I(a, a′))[ϕΓ]. Let

A = type-of(a). By post-composing with the coherence isomorphism F (I(a, a′)) ∼=FΓ
I(FA,Fa, Fa′), we get a morphism between identity types. In an extensional type theory,
identity types are either empty or singletons, thus there is at most one morphism between
two identity types (which is an isomorphism). This implies that ψI(a,a′) = ψ′I(a,a′).

Σ-types. By induction, we assume that ϕΓ.A.B = ϕ′Γ.A.B . By naturality of ϕ′, we have
ϕ′Σ(A,B) = F (χ−1

A,B) ◦ ϕ′Γ.A.B ◦ χA,B = ϕΓ.Σ(A,B). Hence ψΣ(A,B) = ψ′Σ(A,B).
Π-types. As in the previous section, by induction we assume ϕΓ.A.B = ϕ′Γ.A.B . Let ev be

the obvious map Γ.A.Π(A,B)[p]→ Γ.A.B. Proposition 11 of [6] entails:
I Lemma 19. Assume Γ.A ` B. The only automorphism ω of Π(A,B) (in TΓ) such
that Tp(ω) : Γ.A.Π(A,B)[p] ∼= Γ.A.Π(A,B)[p] satisfies ev ◦ Tp(ω) = ev is the identity.
It remains to show that ψ−1

Π(A,B) ◦ ψ
′
Π(A,B) satisfies the condition. But we have:

F (ev) ◦ ρ−1 ◦ θΠ(A,B),p ◦ ϕΓ.A ◦ Tp(ψ′Π(A,B))

= F (ev) ◦ ρ−1 ◦ ϕΓ.A ◦ T (ϕΓ.A)(θ) ◦ Tp(ψ′Π(A,B))

= F (ev) ◦ ρ−1 ◦ ϕΓ.A ◦ ψΠ(A,B)[p]

= F (ev) ◦ ϕΓ.A.Π(A,B)[p]

= ϕ′Γ.A.B ◦ ev

By only using naturality conditions on ϕ′ and ψ′. Write τ : Γ.A.F (Π(A,B))[ϕΓ][p] →
F (Γ.A.B) for the map F (ev) ◦ ρ−1 ◦ θΠ(A,B),p ◦ϕΓ.A. Since ϕ and ψ are natural, we can
do the same reasoning, and have τ ◦ Tp(ψΠ(A,B)) = ϕΓ.A.B ◦ ev. Thus, we get:

ϕ−1
Γ.A.B ◦ τ = ev ◦ Tp(ψ−1

Π(A,B))

Using our induction hypothesis on B (ϕΓ.A.B = ϕ′Γ.A.B) we have

ev ◦ Tp(ψ−1
Π(A,B)) ◦ Tp(ψ′Π(A,B)) = ϕ−1

Γ.A.B ◦ τ ◦ Tp(ψ′Π(A,B)) = ev

as desired. Hence ψΠ(A,B) = ψ′Π(A,B).

4.5 The free lccc
Let LCC be the 2-category of lcccs. The biequivalence of [6] yields pseudofunctors:

U : CwFΣ,Π,I
d → LCC H : LCC→ CwFΣ,Π,I

d

such that UH = I and HU ∼= I. In particular there are adjunctions H a U and U a H.

Simon Castellan, Pierre Clairambault, and Peter Dybjer 15

I Theorem 20. UT I,N1,Σ,Π is the bifree lccc on one object, that is, it is bi-initial in LCCo.

Proof. Let C be an lccc with a chosen object oC ∈ C. By democracy oC can be viewed as a
type over the empty context in the cwf HC, thus (HC, o) is in CwFΣ,Π,I,o

d . Thus we have
a pseudo cwf functor J·K : T Σ,Π,N1,I → HC satisfying JoK ∼= oC. Hence F : UT Σ,Π,N1,I → C
in LCC because of the adjunction.

Assume we have another G : UT Σ,Π,N1,I → C. Because of the adjunction we get G∗ :
T Σ,Π,N1,I → HC. Thus by bifreeness of T Σ,Π,N1,I we have ϕ : J·K ∼= G∗, thus F ∼= G.
Moreover, any other morphism F → G yields a morphism J·K→ G∗ and is equal to ϕ. J

References
1 Henk P. Barendregt. Lambda calculi with types. In Samson Abramsky, Dov Gabbay, and

Tom Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 118–310.
Oxford University Press, 1992.

2 Jean Benabou. Fibered categories and the foundations of naive category theory. J. Symb.
Log, 50(1):10–37, 1985.

3 John Cartmell. Generalized algebraic theories and contextual categories. Annals of Pure
and Applied Logic, 32:209–243, 1986.

4 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Undecidability of equality in the
free locally cartesian closed category. 2015. (available at http://arxiv.org/abs/1504.
03995).

5 Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed cat-
egories and martin-löf type theories. In Typed Lambda Calculi and Applications - 10th
International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings,
pages 91–106, 2011.

6 Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed cate-
gories and martin-löf type theories. Mathematical Structures in Computer Science, 24(6),
2014.

7 Pierre-Louis Curien. Substitution up to isomorphism. Fundamenta Informaticae,
19(1,2):51–86, 1993.

8 Peter Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and Programs, number
1158 in Lecture Notes in Computer Science, pages 120–134. Springer, 1996.

9 Martin Hofmann. Interpretation of type theory in locally cartesian closed categories. In
Proceedings of CSL. Springer LNCS, 1994.

10 Per Martin-Löf. Constructive mathematics and computer programming. In Logic, Method-
ology and Philosophy of Science, VI, 1979, pages 153–175. North-Holland, 1982.

11 Per Martin-Löf. Substitution calculus. Notes from a lecture given in Göteborg, November
1992.

12 Erik Palmgren and Steve J. Vickers. Partial horn logic and cartesian categories. Annals of
Pure and Applied Logic, 145(3):314 – 353, 2007.

13 Robert Seely. Locally cartesian closed categories and type theory. Math. Proc. Cambridge
Philos. Soc., 95(1):33–48, 1984.

14 Thomas Streicher. Semantics of type theory. In Progress in Theoretical Computer Science,
number 12. Basel: Birkhaeuser Verlag, 1991.

15 Alvaro Tasistro. Formulation of Martin-Löf’s theory of types with explicit substitutions.
Technical report, Department of Computer Sciences, Chalmers University of Technology
and University of Göteborg, 1993. Licentiate Thesis.

TLCA’15

http://arxiv.org/abs/1504.03995
http://arxiv.org/abs/1504.03995

	Introduction
	Undecidability in Martin-Löf type theory
	A free category with families
	The 2-category of categories with families
	Syntax and inference rules for the free category with families
	Raw terms
	Inference rules
	The syntactic cwf T

	Freeness of T
	Bifreeness of T

	A free lccc
	From cwfs to lcccs
	Cwfs with support for type constructors
	The syntactic cwf with extensional I, N1, , and
	Inference rules
	The syntactic cwf supporting I, N1, , and

	Bifreeness of TI, N1,,
	Existence
	Uniqueness

	The free lccc

