
1

Full Abstraction for theQuantum Lambda-Calculus

PIERRE CLAIRAMBAULT, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

MARC DE VISME, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Quantum programming languages permit a hardware independent, high-level description of quantum algo-

rithms. In particular, the quantum λ-calculus is a higher-order language with quantum primitives, mixing

quantum data and classical control. Giving satisfactory denotational semantics to the quantum λ-calculus is a
challenging problem that has attracted significant interest. In the past few years, both static (the quantum

relational model) and dynamic (quantum game semantics) denotational models were given, with matching

computational adequacy results. However, no model was known to be fully abstract.

Our first contribution is a full abstraction result for the games model of the quantum λ-calculus. Full
abstraction holds with respect to an observational quotient of strategies, obtained by summing valuations of

all states matching a given observable. Our proof method for full abstraction extends a technique recently

introduced to prove full abstraction for probabilistic coherence spaces with respect to probabilistic PCF.

Our second contribution is an interpretation-preserving functor from quantum games to the quantum

relational model, extending a long line of work on connecting static and dynamic denotational models. From

this, it follows that the quantum relational model is fully abstract as well.

Altogether, this gives a complete denotational landscape for the semantics of the quantum λ-calculus, with
static and dynamic models related by a clean functorial correspondence, and both fully abstract.

Additional Key Words and Phrases: Quantum Programming, Full Abstraction, Game Semantics

1 INTRODUCTION
Quantum computation promises to have a huge impact in computing. Algorithms like Shor’s [Shor

1997] or Grover’s [Grover 1996] challenge our traditional view of algorithmics and complexity, and

applications exploiting quantum features in cryptography [Gisin et al. 2002] are already deployed.

The field is moving fast, with large companies investing massively in the race for quantum hardware.

To accompany this trend, researchers have developed programming languages for quantum

computing. The quantum λ-calculus [Selinger and Valiron 2006] is a paradigmatic such language,

marrying quantum computation with classical control. Finding denotational semantics for the

quantum λ-calculus has attracted a lot of attention, and over the years, models were given for

various fragments [Delbecque 2011; Hasuo and Hoshino 2017; Malherbe 2013; Malherbe et al. 2013;

Selinger and Valiron 2008]. An adequate denotational semantics for the full language was finally

achieved six years ago by Pagani, Selinger and Valiron [Pagani et al. 2014] and presented at POPL’14.

Their model enriches the relational model [Ehrhard 2012] with annotations from the category CPM
of completely positive maps, a natural mathematical framework for (first-order) quantum computing

– in this paper, we shall refer to their model as the quantum relational model. Finally, Clairambault,

de Visme and Winskel presented another adequate model of the full language [Clairambault et al.

2019], enriching the game semantics of [Castellan et al. 2019] with annotations from CPM.

In denotational semantics, the gold standard for the match between a language and its semantics

is full abstraction [Milner 1977], meaning that the equivalence induced by the model captures

exactly observational equivalence: two terms have the same denotation if and only if they cannot

be distinguished within the syntax. Over the decades, fully abstract models have been given for a

Authors’ addresses: Pierre Clairambault, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France, Pierre.

Clairambault@ens-lyon.fr; Marc de Visme, Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France, Marc.

de-Visme@ens-lyon.fr.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

1:2 Pierre Clairambault and Marc de Visme

myriad of languages – game semantics [Abramsky et al. 2000; Hyland and Ong 2000] contributing

its fair share. For quantum programming, Selinger and Valiron have proved that (a linear version

of) the quantum relational model is fully abstract for the linear fragment of the quantum λ-calculus
[Selinger and Valiron 2008]. But for the full language, full abstraction remains open.

Until recently, there were few examples of full abstraction results for languages with quantitative

features such as probabilities or quantum effects. Indeed, most tools traditionally used to construct

fully abstract models struggle with quantitative aspects. Most full abstraction results are achieved

by showing that a significant fragment of the model – representative of its dynamic behaviour but

finite in some way – is definable in the syntax: for instance, almost all full abstraction results in game

semantics proceed in this way. For a quantitative language this seems hard to do: the mathematical

space used is larger, with non-trivial interactions between the control flow and quantitative aspects.

The task of capturing precisely the image of the interpretation seems daunting.

Fortunately, a new methodology to prove full abstraction for quantitative languages emerged

recently. The same year as the first adequate denotational model for the quantum λ-calculus, also
in POPL’14, Ehrhard, Tasson and Pagani presented a proof that probabilistic coherence spaces are
fully abstract for probabilistic PCF [Ehrhard et al. 2014]. Their method is striking by its originality:

they showed that from terms with distinct interpretations one could extract – by feeding them

to test terms weighted by formal parameters – characteristic power series, then exploit regularity

properties of analytic functions to separate these series, hence the terms. These two POPL’14 papers

raise the question: could a similar method achieve full abstraction for the quantum λ-calculus?

Contributions. In this paper, we give a positive answer to this question.

Our first contribution is to prove that the games model of [Clairambault et al. 2019] is fully

abstract for the quantum λ-calculus. Of course, full abstraction does not hold up to the very

intensional equivalence on strategies considered in [Clairambault et al. 2019]. Instead, we prove

it with respect to an observational quotient, obtained by summing the valuations of all states of a

strategy leading to a given observable outcome. Our proof of full abstraction is strongly inspired

by [Ehrhard et al. 2014], however the construction is heavily impacted by the presence of quantum

effects. To extract characteristic power series compositionally, we must extend the model so that

states of configurations carry formal polynomials over CPM maps, rather than merely CPM maps.

Furthermore, given two terms whose interpretation yield distinct CPM maps on a given observable

state, we must first find adequate quantum measurements to be performed by test terms before we

are reduced to the probabilistic case. Then, we can conclude as in [Ehrhard et al. 2014].

Our second contribution is to connect the two adequate models of the quantum λ-calculus, the
quantum relational model of [Pagani et al. 2014] and the game semantics model of [Clairambault

et al. 2019]; via an interpretation-preserving functor from games to quantum relations. From our

interpretation-preserving functor, it follows that the quantum relational model is also fully abstract.

Related work on the relational collapse. This quantum relational collapse extends an active line of

research on linking dynamic models such as games with static ones such as the relational model.

Very early on, researchers have investigated the relationship between game semantics and

relational semantics, noting in particular that the natural time-forgetting operation from games to

relations is not functorial
1
[Baillot et al. 1997]. This has to do with the dynamic aspect of games

which makes them sensitive to deadlocks in compositions, unlike relational semantics. However,

for deterministic innocent strategies – which capture semantically pure programs [Hyland and Ong

1
In fact, there is a functor from deterministic sequential games to relations [Hyland and Schalk 1999], but it is not monoidal

so it does not preserve the interpretation. It may be refined into a monoidal functor [Calderon and McCusker 2010], but

with respect to a new monoidal structure incompatible with the usual relational interpretation of the λ-calculus.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:3

2000], it was proved by Melliès [Melliès 2005, 2006] (in asynchronous games) and Boudes [Boudes

2009] that no deadlocks can arise during composition, making the collapse functorial.

These collapse results require innocence – or at least a substitute ensuring that composition is

deadlock-free. But beyond the sequential deterministic case, there was for a long time no adequate

notion of innocence [Harmer and McCusker 1999]. This changed only a few years ago, with two

notions of non-deterministic innocent strategies (using concurrent games [Castellan et al. 2014] and

sheaves [Tsukada and Ong 2015]). These two models depart from traditional game semantics in

ways that are technically very different, but conceptually similar: they both record more intensional

behavioural information. This change of perspective recently allowed a quantitative extension of

the relational collapse [Castellan et al. 2018] for a probabilistic language, using concurrent games.

Concurrent games are a family of game semantics initiated in [Abramsky and Melliès 1999], with

intense activity in the past decade prompted by a new non-deterministic generalization based on

event structures [Rideau and Winskel 2011]. Building on notions from concurrency theory, they are

a natural fit for the semantics of concurrent programs [Castellan and Clairambault 2016; Castellan

and Yoshida 2019]. It is perhaps more surprising that their adoption has a strong impact even

when studying sequential programs such as the quantum λ-calculus: they offer a fine-grained

causal presentation of the behaviour of programs that contrasts with the temporal presentation
of traditional games models. This has far-reaching consequences. For the present paper, both our

collapse theorem and the congruence of the observational quotient required for full abstraction

rely on a visibility condition, a substitute for innocence ensuring a deadlock-free composition –

visibility bans certain impure causal patterns, leveraging the expressiveness of concurrent games.

Thus, our constructions rely heavily on the fact that the model of [Clairambault et al. 2019]

was developed within concurrent games. Our collapse theorem follows in the footsteps of the

probabilistic collapse [Castellan et al. 2018], which we generalize to the quantum case.

Outline. In Section 2 we introduce the quantum λ-calculus and give some preliminaries on the

mathematics of quantum computation. In Section 3 we describe our variant of the games model of

[Clairambault et al. 2019], differing notably in that we allow annotations by polynomials over CPM,

and in that we adapt an exhaustivity discipline due to Melliès to ban arbitrary weakening. In Section

4 we define the observational quotient, and prove the associated convergence and congruence

properties. Finally, in Section 5, we prove full abstraction for games, then give the functorial collapse

to the quantum relation model for which we deduce full abstraction.

2 QUANTUM λ-CALCULUS AND PRELIMINARIES
We start by introducing the quantum λ-calculus [Pagani et al. 2014]. To allow us later on to build

the test terms weighted by formal parameters, we will extend the language with those.

2.1 The ParametrizedQuantum λ-calculus
2.1.1 Syntax and Types. The types of the quantum λ-calculus are given by:

A,B ::= qbit | 1 | A ⊗ B | A ⊕ B | Aℓ | A ⊸ B | !(A ⊸ B)

The type qbit represents qubits, the quantum equivalent of bits and atomic pieces of quantum

data. We also have a unit type 1 along with tensors (whose inhabitants are pairs), sums and finite

lists (with, as a particular case, the type of integers nat = 1
ℓ
). We do not have an explicit primitive

for classical bits, but those can be easily recovered as syntactic sugar via bit = 1 ⊕ 1. There are two

function types: !(A ⊸ B) represents functions that may be used any number of times, and A ⊸ B
represents functions that have to be used exactly once. As in [Pagani et al. 2014], applications of

the exponential modality ! are restricted to function types. This restriction forbids the unrealistic

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 Pierre Clairambault and Marc de Visme

(A linear)

!Γ,x : A ⊢ x : A !Γ,x : !A ⊢ x : A

!Γ ⊢ v : A ⊸ B

!Γ ⊢ v : !(A ⊸ B) !Γ ⊢ skip : 1

Γ,x : A ⊢ t : B

Γ ⊢ λxA. t : A ⊸ B

!Γ,∆ ⊢ t : A ⊸ B !Γ,Ω ⊢ u : A

!Γ,∆,Ω ⊢ t u : B

!Γ,∆ ⊢ t : 1 !Γ,Ω ⊢ u : A

!Γ,∆,Ω ⊢ t ; u : A

!Γ,∆ ⊢ t : A !Γ,Ω ⊢ u : B

!Γ,∆,Ω ⊢ t ⊗ u : A ⊗ B

!Γ,∆ ⊢ t : A ⊗ B !Γ,Ω,x : A,y : B ⊢ u : C

!Γ,∆,Ω ⊢ letxA ⊗ yB = t inu : C

!Γ,∆ ⊢ t : A1 ⊕ A2 !Γ,Ω,x : Ai ⊢ ui : C

!Γ,∆,Ω ⊢ match t with (xA1
: u1 | x

A2
: u2) : C

Γ ⊢ t : A

Γ ⊢ inl (t) : A ⊕ B

Γ ⊢ u : B

Γ ⊢ inr (t) : A ⊕ B

Γ ⊢ t : 1 ⊕ (A ⊗ Aℓ)

Γ ⊢ t : Aℓ

!Γ, f : !(A ⊸ B),x : A ⊢ t : B ∆, !Γ, f : !(A ⊸ B) ⊢ u : C

∆, !Γ ⊢ letrec f A⊸B xA = t inu : C

Γ ⊢ split : Aℓ ⊸ 1 ⊕ (A ⊗ Aℓ) !Γ ⊢ meas : qbit ⊸ bit !Γ ⊢ new : bit ⊸ qbit

U unitary of arity n

!Γ ⊢ U : qbit⊗n ⊸ qbit⊗n

Fig. 1. Typing rules for the quantum λ-calculus

type !qbit of replicable qubits. Note however that !(1 ⊸ qbit) makes perfect sense: its elements

are functions which may be called arbitrarily many times, and which at each call generate a new

independent qubit. Types of the form !(A ⊸ B) are non-linear, while all the others are linear.
We now introduce the grammar of terms.

t ,u ::= x | λxA. t | t u | skip | t ; u | t ⊗ u | letxA ⊗ yB = t inu | inl t | inr t
| match t with (xA : u1 | y

B
: u2) | split | letrec f A⊸B xA = t inu | new | meas | U

Apart from the last three constructors, this describes a simply-typed λ-calculus with unit, tensor,

sums, lists, and recursive definitions. Hopefully any ambiguities concerning the syntax should be

cleared up by the typing rules. In particular, though there are no constructors for lists, those may

be defined as syntactic sugar, by [] = inl skip and t :: u = inr (t ⊗ u). Also as syntactic sugar we

have tt = inl skip, ff = inr skip, and if M thenN1 elseN2 may be defined as matchM with (x1 :

N1 | y
1
: N2). In the course of the paper, we sometimes use additional syntactic sugar, provided it

is unambiguous how it should be defined within the quantum λ-calculus.
The last three constructors are quantum primitives. The first, new : bit ⊸ qbit, prepares a

new qbit based on a given bit. The second, meas : qbit ⊸ bit, performs a measurement. Finally,

U : qbit⊗n ⊸ qbit⊗n (where qbit⊗n is the iterated tensor qbit ⊗ . . . ⊗ qbit) stands for any unitary
map of arity n – the language includes a primitive for every unitary. The mathematical meaning of

these will be reviewed in Section 2.2, where we recall some quantum preliminaries.

Before we go on to typing, we give the grammar of values.

v,w ::= x | λxA. t | v ⊗w | inl v | inr v | skip | split | meas | new | U

Typing judgements have the form Γ ⊢ t : A with Γ a context, i.e. a list of declarations of distinct
variables x1 : A1, . . . ,xn : An . We say that Γ is non-linear iff it has the form x1 : !A1, . . . xn : !An ;

we may then write !Γ to emphasize this. Most typing rules are displayed in Figure 1. To these we

add an exchange rule allowing us to permute variable declarations in contexts – having an explicit

exchange helps in writing a clean definition of the denotational semantics.

In this paper we will rely heavily on the adequate model of the quantum λ-calculus introduced
in [Clairambault et al. 2019]. With respect to that paper, our version of the quantum λ-calculus
differs in that its !-free fragment is linear rather than affine. We make this choice merely to ease the

link with the model of [Pagani et al. 2014], which relies on linearity. Note that the adequacy result

of [Clairambault et al. 2019] also applies to the present variant: each program typable with a linear

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:5

discipline is obviously typable with an affine discipline. We omit the (call-by-value) operational

semantics, which we will only link to through the adequacy result of [Clairambault et al. 2019].

For example programs in the quantum λ-calculus, the reader is directed to [Pagani et al. 2014].

2.1.2 Parametrized Extension. Drawing inspiration from [Ehrhard et al. 2014], the proof of full

abstraction will rely on an extension of the language. Typing judgments have the form Γ ⊢P M : A,
where P is a set of formal parameters taken from a fixed countable set disjoint from other syntactic

constructs – P is the set of parameters that may appear inM . We add the new typing rule

Γ ⊢P M : A

Γ ⊢P X ·M : A
(X ∈ P)

for each X ∈ P. Other typing rules leave the annotation by P unchanged.

Intuitively, parameters range over real numbers in [0, 1]. Given α ∈ [0, 1] and ⊢ M : A, there is

Γ ⊢ α ·M : A

a term acting likeM with probability α and otherwise diverging (in [Ehrhard et al. 2014], formal

parameters could only be instantiated with rationals as their language only allows as primitive

probabilistic choice weighted with rational coefficients – in contrast, our language contains a

constant for arbitrary unitary transforms, and α · M can be defined for any α ∈ [0, 1]. This
distinction does not change much as far as the full abstraction argument is concerned.). For

M1, . . . ,Mn homogeneously typed and α1, . . . ,αn with

∑
1≤i≤n αi ≤ 1, we write

∑
1≤i≤n αi · Mi

for the weighted sub-probabilistic sum, which is definable in the language. If Γ ⊢P M : A and

ρ ∈ [0, 1]P , we write Γ ⊢ M[ρ] : A forM with every formal parameter X replaced with ρ(X) ∈ [0, 1].
In the sequel, we will not need to extend the operational semantics of the quantum λ-calculus in

the presence of formal parameters. We shall however extend game semantics [Clairambault et al.

2019] with those, in a way that is compatible with substitution of formal parameters with scalars.

2.2 Quantum Preliminaries
Pure quantum states, as stored in a quantum store when executing programs, are usually represented

as normalized vectors in a finite-dimensional Hilbert space – in this paper all Hilbert spaces will

be finite-dimensional, so we will drop the “finite-dimensional” qualifier and leave it implicit. For

example, qubits are represented as normalized vectors in the Hilbert space C2: it is customary to

write those α |0⟩ + β |1⟩ ∈ C2, with (|0⟩, |1⟩) the canonical basis of C2 as a C-vector space.
As quantum measurement is probabilistic, the evaluation of quantum programs naturally yields

probability (sub)distributions of pure states, which, rather than simply vectors in Hilbert spaces,

will be certain linear maps operating on Hilbert spaces – one then speaks of mixed quantum states.
Such mixed states play a central role for the denotational semantics of the quantum λ-calculus;
accordingly we describe below some of the associated mathematical structure.

2.2.1 Hilbert spaces. Let Hilb be the category of Hilbert spaces and linear maps, which is

well-known to be symmetric monoidal; write ⊗ for its tensor product and I for its unit, which
is simply the space C of complex numbers. It is further compact closed: any Hilbert space H

H K
f

ηL ϵL

Fig. 2. Partial trace

has a dual H ∗ = Hilb(H , I), with a unit ηH : I → H ∗ ⊗ H and a co-
unit ϵH : H ⊗ H ∗ → I . Via this compact closed structure Hilb admits

a partial trace (to form a traced monoidal category [Joyal et al. 1996]).

Given f : H ⊗ L → K ⊗ L in Hilb, its partial trace is a map TrL(f) :
H → K , obtained as in Figure 2. If f : L → L, its (complete) trace is

tr(f) = TrI (I ⊗ f) : I → I so a scalar factor, matching the usual trace of

the matrix of f . Indeed, Hilb(L,L) is isomorphic to L∗ ⊗ L whose vectors

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 Pierre Clairambault and Marc de Visme

we can think of as matrices. A unitary map is f : H → K in Hilb which is invertible with inverse

f −1 = f † : K → H , given by its conjugate transpose.

2.2.2 Positive operators. An operator is a linear map with the same domain and codomain.

An operator f : H → H in Hilb is positive if it is hermitian, i.e f = f †, and its eigenvalues are

non-negative real numbers. Write Op(H), and Pos(H), for the set of operators, respectively positive

operators, on H . We equip Op(H) with an order, the Löwner order (see e.g. [Selinger 2004]), by
f ≤L д iff д − f ∈ Pos(H). Those ρ ∈ Pos(H) for which tr(ρ) ≤ 1 are the subdensity operators.
Subdensity operators represent mixed quantum states, quantum states closed under probability

(sub)distributions. For instance, subdensity operators on C2 represent mixed quantum states on

one qubit: a pure qubit α |0⟩ + β |1⟩ appears as
(
|α |2 αβ
αβ |β |2

)
. Here |α |2 and |β |2 are reals and sum to 1,

one may think of |α |2 as the probability of measuring ff, of |β |2 as that of measuring tt, and the

other coefficients as required to express the behaviour of the state under unitary transforms. More

generally, a pure state expressed as a map f : I → H in Hilb yields f̂ = f f † ∈ Pos(H) a density

operator that can be also represented as a density matrix. So, subdensity operators can represent

pure states – but unlike those, they are also stable under convex (sub-probabilistic) sums.

2.2.3 Completely positive maps. Whereas positive operators can represent mixed states,

H ∗

ϵK
K

f
H ∗

ηH
K

Fig. 3. Construction of f

completely positive maps express transformations that take mixed states

to mixed states. The category CPM again has Hilbert spaces as objects,

but now a map f ∈ CPM(H ,K) is a linear map f : H ∗ ⊗ H → K∗ ⊗ K

in Hilb such that its correspondent f : H ∗ ⊗ K → H ∗ ⊗ K , got by

compact closure (Figure 3), is positive. The 1-1 correspondence f 7→ f
between completely positive maps and positive operators is known as

the Choi-Jamiolkowski isomorphism.

CPM inherits from Hilb its compact closed structure. It is helpful

conceptually and technically to regard f ∈ CPM(H ,K) inCPM as taking

operators on H to operators on K , so as f : Op(H) → Op(K) in Hilb. A linear map f : Op(H) →

Op(K) is positive if it takes positive operators to positive operators. Those f : Op(H) → Op(K)
arising from completely positive maps are those for which f ⊗ idL is positive for any idL : Op(L) →
Op(L). If a completely positive map f further satisfies tr(f (A)) ≤ tr(A) it is called a superoperator,
which capture physically realisable operations.

We can describe a map in CPM, regarded as a map between operators, as mapping matrices

to matrices linearly. For instance the measurement of a value 0 or 1 of a qubit in C2 is described,
respectively, by the two superoperators meas0,meas1 ∈ CPM(C2, I) where

meas0 :
(
a b
c d

)
7→ a and meas1 :

(
a b
c d

)
7→ d .

Symmetrically, the two superoperators new0, new1 ∈ CPM(I ,C2) represent initialization:

new0 : a 7→

(
a 0

0 0

)
and new1 : d 7→

(
0 0

0 d

)
.

Finally, for f : H → K a unitary, the superoperator f̂ ∈ CPM(H ,K) takes д ∈ Op(H) to f д f †.

2.2.4 Parametrized completely positive maps. Tomatch the extension of the language with formal

parameters, we will rely on quantum annotations themselves extended with formal parameters –

again, this methodology is the same as in [Ehrhard et al. 2014] in the probabilistic case.

ForH a Hilbert space and P = {X1, . . . ,Xn} a finite set of parameters, we write Pos(H)[P] for the

set of multivariate polynomials with coefficients in Pos(H). More precisely, a monomial is a finite

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:7

multiset of parameters in P – write M(P) for this set. A multivariate polynomial is a function
M(P) → Pos(H) associating to each monomial a coefficient in Pos(H), and which has finite
support: there is a finite number of monomials with a non-zero coefficient. We denote multivariate

polynomials as formal sums, in expressions such as (with α , β ,γ ∈ Pos(H) and X,Y,Z ∈ P)

α + βX2Y + γXY + δZ ∈ Pos(H)[P],

where e.g. α is associated with the trivial monomial and β with the monomial X2Y, omitting

monomials with null coefficient. Multivariate polynomials support a sum, defined pointwise.

Likewise, given two Hilbert spaces H ,K , the set CPM[P](H ,K) comprises multivariate polyno-

mials with coefficients in CPM(H ,K). Given P =
∑

i ∈I αimi ∈ CPM[P](H ,K) andQ =
∑

j ∈J βjm
′
j ∈

CPM[P](K ,L), their composition is defined through polynomial multiplication, as in:

Q ◦ P =
∑

(i, j)∈I×J

(βj ◦ αi)(mim
′
j) ∈ CPM[P](H ,L)

where the product of monomialsmim
′
j is the sum of multisets. This definition follows the expansion

of composition of polynomials, relying implicitely on linearity of composition in CPM. This makes

CPM[P] a category with objects Hilbert spaces, morphisms from H to K the set CPM[P](H ,K),
composition as above and identity on H the polynomial with only non-zero coefficient id

CPM
H ∈

CPM(H ,H), attached to the trivial monomial. The tensor P1 ⊗ P2 ∈ CPM[P](H1 ⊗ H2,K1 ⊗ K2) of

P1 ∈ CPM[P](H1,K1) and P2 ∈ CPM[P](H2,K2) is defined analogously, relying on the product of

monomials and the monoidal product of CPM. Just as CPM, CPM[P] is compact closed.

The formal parameters in CPM[P] reflect those in our extended language; and similarly they

can be substituted for values in [0, 1]. Ifm is a monomial (on parameters P) and ρ ∈ [0, 1]P , define
the substitutionm[ρ] = ΠX∈Pρ(X)m(X) ∈ [0, 1]. If P =

∑
i ∈I αimi is in Pos(H)[P], define

P[ρ] =
∑
i ∈I

(mi [ρ])αi ∈ Pos(H)

and likewise for P ∈ CPM[P](H ,K). Substitution defines a strict compact closed functor −[ρ] :
CPM[P] → CPM: it commutes with all operations involved in the compact closed structure.

3 PARAMETRIZED QUANTUM GAME SEMANTICS
Though our games model is mostly the same as [Clairambault et al. 2019], it differs in two respects.

Firstly, for the connection with the quantum relational model of Section 5.3 to work, we need our

games model to enforce linearity strictly for the !-free fragment. To that end we adapt the payoff
mechanism introduced by Melliès in [Melliès 2005] to achieve full completeness for linear logic.

Secondly, to match formal parameters in the syntax, our quantum annotations will no longer be

in CPM, but in CPM[P] for some finite set P. Though this difference might look significant, the

construction of [Clairambault et al. 2019] unfolds in much the same way in CPM and CPM[P] as it

relies mostly on the compact closed structure of the category of annotations.

By lack of space, our exposition is unfortunately rather succinct. The reader is directed to

[Clairambault et al. 2019] for a more slow-paced presentation of the model.

3.1 Linear Exhaustive Games
In this subsection, we present linear exhaustive games. In most aspects, this is the same category of

games and strategies as introduced in [Rideau and Winskel 2011] and detailed in [Castellan et al.

2017]. To this, we add a mechanism to express which strategies are strictly linear, in the sense that

they consume all available linear resources. Though our terminology evokes [Murawski and Ong

2003], their method is too tied to sequential games. Instead we adapt the constructions of Melliès

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 Pierre Clairambault and Marc de Visme

(1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

λ+

(λ, λ)−

()+ ()+ ()+

()− ()−

Fig. 4. The ev. str. for (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1.

(1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

λ+#nnt(λ, λ)−%oou()+
� &&-()−

� ((/()+
� &&-()−

� &&-()+

Fig. 5. A strategy on (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

[Melliès 2005; Melliès and Tabareau 2010], which also bears similarity with the technique based on

realizability developed in [Dal Lago and Laurent 2008] for a similar purpose.

3.1.1 Games and exhaustive strategies. Our games and strategies are certain event structures.

Definition 3.1. An event structure (es) is (E, ≤E ,ConE) where E is a set of events partially
ordered by ≤E the causal dependency relation, and ConE is a nonempty consistency relation

consisting of finite subsets of E. These are subject to the following additional axioms:

[e]E =def {e
′ | e ′ ≤E e} is finite for all e ∈ E,

{e} ∈ ConE for all e ∈ E,
Y ⊆ X ∈ ConE implies Y ∈ ConE , and

X ∈ ConE & e ≤E e ′ ∈ X implies X ∪ {e} ∈ ConE .

All event structures are assumed countable, with an injection from events to natural numbers left

implicit. An event structure with polarities (esp) also has a polarity function polE : E → {−,+}.

We often drop E in ≤E ,ConE , [e]E when clear from the context. When introducing an event in

the presence of polarities, we might annotate it to set its polarity, as in e+, e−.
The relation e ′ ≤E e expresses that e causally depends on the earlier occurrence of event e ′. That

a finite subset of events is consistent conveys that its events can occur together by some stage in

the evolution of the process. Event structures come with a notion of state: a (finite) configuration
is a finite x ⊆ E which is consistent, i.e. x ∈ ConE , and down-closed, i.e. for all e ∈ x , for all e ′ ≤E e
we have e ′ ∈ x as well. We write C (E) for the set of all configurations of E. We also write e _E e ′,
called immediate causal dependency iff e <E e ′ with no event strictly in between.

In our interpretation, a game presents all computational actions available in a call-by-value

evaluation on a certain type, along with their (in)compatibilities and their causal dependencies.

For example, Figure 4 displays the event structure for the type (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1. It is read

from top to bottom, with dotted lines representing immediate causal dependency – when drawing

games and strategies for/on a type, we always attempt to draw events under the corresponding

type component. Under call-by-value evaluation, the first available action is λ+, corresponding
to the program under consideration evaluating to a λ-abstraction. The evaluation environment

may then feed a value, which consists in two λ-abstractions (λ, λ)− (as the argument is a tensor of

functions). The program may then return (with ()+ on the right), or feed an argument to either or

both of the two functions (with moves ()+ on the left) which may then return (with moves ()−).
A game is an esp with further components guaranteeing exhaustivity.

Definition 3.2. A game is (A,κA) where (1) A is an esp which is race-free, i.e. if x ,x ∪ {a+
1
},x ∪

{a−
2
} ∈ C (A), then x ∪ {a1,a2} ∈ C (A); (2) κA : C (A) → {−1, 0,+1} is a payoff function.

The payoff function κA partitions C (A) in three sets. We write EA = {x ∈ C (A) | κA(x) = 0}, and

we think of those as exhaustive configurations, representing completed computations matching the

resource constraints. For instance, in the game arising as the interpretation of (1 ⊸ 1)⊗(1 ⊸ 1) ⊸ 1,

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:9

only the full configuration is exhaustive (we will see in Section 5.3 that exhaustive configurations

match points of the web in the relational model). But strategies can also reach non-exhaustive

configurations, because (1) game semantics display the non-exhaustive intermediate stages leading

eventually to a final exhaustive state; and (2) computation might terminate on a non-exhaustive

configuration if Opponent does not behave exhaustively, e.g. performs weakenings. Configurations

x ∈ C (A) such that κA(x) = +1 are those non-exhaustive configurations where however the

responsibility of non-exhaustiveness can be assigned to Opponent. Likewise, in configurations

x ∈ C (A) such that κA(x) = −1, the responsibility of non-exhaustiveness is assigned to Player.

For strategies, we first recall the notion from [Castellan et al. 2017; Rideau and Winskel 2011].

Definition 3.3. A strategy on game A is an es S , with a labelling function σ : S → A, which is:

(1) Rule-abiding. For any x ∈ C (S), σ x ∈ C (A),
(2) Local injectivity. If s, s ′ ∈ x ∈ C (S) and σ s = σ s ′, then s = s ′.
(3) Receptive. If x ∈ C (S) and σ x extends with negative a− ∈ A, i.e. a < σ x and σ x ∪{a} ∈ C (A),

then there is a unique s ∈ S such that σ s = a and x ∪ {s} ∈ C (S).
(4) Courteous. If s1 _S s2, then either σ s1 _A σ s2, or polA(σ s1) = − and polA(σ s2) = +.

A strategy specifies which events of the game it is prepared to play, and under which additional

causal constraints. To deal with non-determinism it is convenient to separate the set of events of

the strategy from that of the game, because the same event in the game may occur several times in

the strategy under incompatible non-deterministic branches. In a strategy σ : S → A, we think of

S as the strategy and σ as the labelling map annotating each event of S with the corresponding

event in the game. Conditions (1) and (2) amount to σ being a map of event structures, and
conditions (3) and (4) ensure that a strategy must acknowledge all Opponent moves, and may

only add further causal constraints from Opponent moves to Player moves. Figure 5 represents a

strategy (that of λ f 1⊸1 ⊗ д1⊸1.д (f skip), with a slight abuse of notations) on the game of Figure

4. When representing strategies we display the event structure S , but with an event s labelled as

σ s ∈ A. We show immediate causal links in S as _ and in A as dotted lines.

If σ : S → A is a strategy, any s ∈ S inherits a polarity from A: by pol(s) we mean polA(σs).
A configuration x ∈ C (S) is +-covered if all its maximal events (for ≤S) have positive polarity.

Intuitively, +-covered configurations correspond to “stopping states” of the strategy.

Definition 3.4. A strategy σ : S → A is exhaustive iff ∀x ∈ C (S) +-covered, we have κA(σx) ≥ 0.

In other words, “σx is exhaustive, or it is Opponent’s fault”. If A is a game, then its dual A⊥
is

obtained by reversing polarities and setting κA⊥ = −κA, all other components unchanged.

Exhaustivity resembles winning conditions [Clairambault et al. 2012], in which one assigns to

each configuration a status: winning (+1) or losing (-1), but not neutral (0). For σ : S → A, in
settings with winning conditions [Clairambault et al. 2012] we think of some τ : T → A⊥

as a

counter-strategy – it is then impossible to have both σ and τ be winning. In contrast here we can

have both σ and τ exhaustive, in which case if x ∈ C (S) and y ∈ C (T) are +-covered such that

σx = τy, then σx ∈ EA. Closed interactions between exhaustive strategies must be exhaustive.

3.1.2 ⋆-autonomous structure. We explore the compositional structure of games and strategies.

If A and B are esp, their simple parallel composition, written A ∥ B, has events the tagged
disjoint union {1} ×A ∪ {2} × B and other components inherited – we write any x ∈ C (A ∥ B) as
xA ∥ xB accordingly. For games, this yields two distinct operations A ⊠ B (notation chosen to avoid

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 Pierre Clairambault and Marc de Visme

collision with ⊗) and A` B. For those, we first define operations ⊠ and ` on {−1, 0,+1} as

⊠ −1 0 +1

−1 −1 −1 −1

0 −1 0 +1

+1 −1 +1 +1

` −1 0 +1

−1 −1 −1 +1

0 −1 0 +1

+1 +1 +1 +1

and then set κA⊠B (xA ∥ xB) = κA(xA) ⊠ κB (xB) and κA`B (xA ∥ xB) = κA(xA)` κB (xB).
In particular, EA⊠B = EA`B = {xA ∥ xB | xA ∈ EA & xB ∈ EB }, in bijection with EA × EB . The

operations ⊠ and ` are dual, i.e. (A⊠ B)⊥ = A⊥ ` B⊥
. We write � for the game with no events and

κ�(∅) = 0 – it is a unit for both ⊠ and `. An exhaustive strategy from A to B is an exhaustive

strategy σ : S → A⊥ ` B; occasionally written σ : A +→ B keeping S anonymous.

From σ : A +→ B and τ : B +→ C we wish to define τ ⊙ σ : A +→ C resulting from their interaction –

this relies on the following definition. Fix exhaustive strategies σ : S → A⊥ ∥ B and τ : T → B⊥ ∥ C .

Definition 3.5. Configurations xS ∈ C (S) and xT ∈ C (T) are causally compatible iff (1) σ xS =
xA ∥ xB and τ xT = xB ∥ xC , and (2) the induced composite bijection φ

xS ∥ xC
σ ∥xC
� xA ∥ xB ∥ xC

xA ∥τ −1
� xA ∥ xT

is secured, i.e. the relation (c,d) ◁ (c ′,d ′) ⇔ (c ≤S ∥C c ′ ∨d ≤A∥T d ′) on (the graph of) φ is acyclic.

A causally compatible (xS ,xT) isminimal iff it is minimal amongst causally compatible pairs

with the same projections on A and B, ordered by the product of the inclusions.

Causally compatible pairs are the expected states of the interaction between σ and τ – the

matching condition expresses that configurations agree on the interface, and securedness that they

do not impose incompatible causal constraints; in other words they synchronize without deadlock.
To define composition, we rely on the following proposition.

Proposition 3.6. There is a strategy τ ⊙ σ : T ⊙ S → A⊥ ` C , unique up to isomorphism,
such that there is an order-isomorphism between minimal causally compatible pairs (xS ,xT) and
configurations z ∈ C (T ⊙ S) (we write z = xT ⊙ xS to emphasize this correspondence), and such that
writing σ xS = xA ∥ xB and τ xT = xB ∥ xC , we then have (τ ⊙ σ) (xT ⊙ xS) = xA ∥ xC .
Moreover, τ ⊙ σ : A +→ C is exhaustive.

Here, isomorphism between strategies σ : S → A and σ ′
: S ′ → Ameans a bijection φ : S � S ′

preserving and reflecting all structure, making the obvious triangle commute.

We now define the identities, the copycat strategies. For x ,y configurations of a game A we write

x ⊆− y iff x ⊆ y and pol(y \ x) ⊆ {−}; and symmetrically for x ⊆+ y.

Proposition 3.7. For a game A there is a unique exhaustive ccA : CCA → A⊥ ` A with events
CCA = A⊥ ∥ A, ccA the identity, and configurations all xA ∥ yA such that xA ⊇+ xA ∩ yA ⊆− yA.

Copycat is neutral for composition, up to iso. If σ1 : S1 → A⊥
1
` B1 and σ2 : S2 → A⊥

2
` B2, their

tensor σ1 ⊠σ2 : S1 ∥ S2 → (A1 ⊠A2)
⊥` (B1 ⊠B2) is defined as the obvious relabeling, and likewise

for σ1 ` σ2 – both functorial up to iso. Finally, these data form a linearly distributive category with

negation [Cockett and Seely 1997], which is equivalent to a ⋆-autonomous category.

Corollary 3.8. Games and exhaustive strategies form a ⋆-autonomous category.

3.2 ParametrizedQuantum Annotations
The enrichment with quantum annotations closely follows [Clairambault et al. 2019], with the

distinction that valuations are in CPM[P] for some set P of formal parameters, rather than in

CPM. The model aims to reflect the principle of classical control, quantum data: classical control is
embodied by a strategy, over which sits annotations representing quantum data.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:11

H(a1)
∗ H(b1)

∗

H(a1) H(b1).
. . . f . . .

H(an)
∗ H(bq)

∗

H(an) H(bq)

H(a′
1
)∗ H(b ′

1
)∗ϵH(a′

1
) ηH(b′

1
)

H(a′
1
) H(b ′

1
).

.
H(a′p)

∗
H(b ′r)

∗
ϵH(a′p) ηH(b′r)H(a′p) H(b ′r)

Fig. 6. Expansion /yA,yB (f)

H(a1)
∗ H(b1)

∗

H(a1) H(b1).
.

H(an)
∗ H(bq)

∗

H(an) H(bq)
f

ηH(a′
1
) ϵH(b′

1
)

.

.
ηH(a′p) ϵH(b′r)

Fig. 7. Reduction .xA,xB (f)

3.2.1 Quantum games and strategies. Firstly, in our games, each event will contribute a Hilbert

space. If the event comes from a type component with no quantum data (such as bit or 1), this
Hilbert space will be trivial (i.e. the one-dimensional Hilbert space I = C). However, if the event
comes from qbit⊗n , then the associated Hilbert space will have dimension 2

n
.

Definition 3.9. A quantum game (A,κA,HA) consists of a game, together with HA : A → Hilb
associating, to any event in A, a Hilbert space.

Each finite set x ⊆ A carries a Hilbert space HA(x) =
⊗

a∈x HA(a) – in particular HA(∅) = I .
Our earlier constructions on games are easily extended to quantum games, by statingHA⊥ (a) =
HA(a)

∗
(the dual space), and HA⊠B = HA`B associates (1,a) to HA(a) and (2,b) to HB (b), so e.g.

HA⊠B (xA ∥ xB) = HA(xA) ⊗HB (xB). For example, the type qbit will be interpreted as the quantum
game with only one (positive) event, written q+, with κ(∅) = −1 and κ({q+}) = 0; andH(q+) = C2.
We now define quantum strategies. As they must form a category, we directly define what is a

strategy from one game to another. If σ : S → A⊥ ` B is a plain strategy for quantum games A and

B, then each x ∈ C (S) projects as σx = xA ∥ xB for xA ∈ C (A) and xB ∈ C (B). The configuration
x ∈ C (S) expresses the current state in the control flow, i.e. the classical part of computation. To

this, we must add quantum data. For that, we observe that xA and xB induce Hilbert spacesHA(xA)
and HB (xB); so we can adjoin quantum data as a valuation Q�

σ (x) ∈ CPM(HA(xA),HB (xB)).
However, quantum data is not completely decorrelated from classical control – a condition is

used to tame how much the quantum valuation can change locally throughout computation. This

condition, though strictly speaking unnecessary to obtain a model, is what lets us keep coefficients

finite in the basic model construction, which will play a crucial role in the full abstraction proof.

The condition appears below (the notations /and .will be introduced after the definition).

Definition 3.10. ForA and B quantum games, a quantum strategy fromA to B is an exhaustive

strategy σ : S → A⊥`B with a valuation Q�
: (x ∈ C (S)) → CPM[P](HA(xA),HB (xB)) satisfying:

• Normalised: Q�(∅) = idI ∈ CPM[P](I , I),
• Oblivious: If x ⊆− y with σy = yA ∥ yB , then Q�(y) = /yA,yB (Q�(x)),
• Monotone: For y ⊆+ x1, · · · ,xn , dQ� [y;x1, . . . ,xn] ∈ CPM[P](yA,yB), where

dQ� [y;x1, . . . ,xn] = Q�(y) −
∑

∅,I ⊆{1, ...,n }

(−1) |I |+1 .yA,yB (Q
�(xI)) ,

with Q�(xI) = Q�(
⋃

i ∈I xi) when the union is a configuration and the zero map otherwise.

The difficulty in constraining how the quantum valuations can change locally, is that the ambiant

Hilbert space is not invariant: it grows as new moves are played, opening up new qubits. This

impacts axioms oblivious and monotone: for the former, the condition may be thought of as asking

that if x ⊆− y in C (S), the valuation on y is that of x extended to y by tracing out the new spaces

opponed up by Opponent moves – this is the purpose of the operation /. For the latter, different
xI s correspond to different augmentations of the spacesHA(yA) andHB (yB), as the positive moves

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 Pierre Clairambault and Marc de Visme

may have opponed new qubits as well. These new spaces are traced out in the sum, bringing each

term down to CPM[P](HA(yA),HB (yB)) – this is the purpose of the operation ..
At first ignoring parameters in P, if xA ∥ xB ⊆ yA ∥ yB ∈ C (A⊥ ∥ B), the expansion

/yA,yB (f) ∈ CPM[P](HA(yA),HB (yB))

of f ∈ CPM(HA(xA),HB (xB)) to yA,yB is defined as in Figure 6 (with xA = {a1, . . . ,an},xB =
{b1, . . .bq},yA \xA = {a′

1
, . . . ,a′p } andyB \xB = {b ′

1
, . . . ,b ′r }) using the compact closed structure of

Hilb. This is then extended toCPM[P]monomial permonomial. For f ∈ CPM[P](HA(yA),HB (yB)),
its reduction .xA,xB (f) ∈ CPM[P](HA(xA),HB (xB)) is defined likewise (Figure 7).

The sum in the definition of dQ� [y;x1, . . . ,xn] is performed monomial per monomial, so this

amounts to the condition in [Clairambault et al. 2019] applied separately for each monomial. This

adapts and extends the inclusion-exclusion principle used for probabilistic strategies [Winskel

2015], the reader is directed to [Clairambault et al. 2019] for more details and intuitions. Using the

compact closed structure of CPM, any Q�(x) ∈ CPM(H(xA),H(xB)) can be reorganised as a map

in CPM(H(σx)−,H(σx)+), from the Hilbert space corresponding to the negative events to those

for the positive events. It is then proved in [Clairambault et al. 2019] that it is in fact a superoperator.

3.2.2 Categorical structure. We extend the structure of Section 3.1.2 to quantum games.

Proposition 3.11. Let σ : S → A⊥ ` B and τ : T → B⊥ `C be two quantum strategies. Setting

Q�
τ ⊙σ (xT ⊙ xS) = Q�

τ (xT) ◦ Q
�
σ (xS) ∈ CPM[P](HA(xA),HC (xC))

for every xT ⊙ xS ∈ C (T ⊙ S) makes τ ⊙ σ a quantum strategy.

So the valuation of composed states amounts to composition in CPM[P]. Likewise, the tensor of

σ1 : S1 → A⊥
1
`B1 and σ2 : S2 → A⊥

2
`B2, σ1 ⊠σ2 and σ1 `σ2 are made into quantum strategies by

Q�
σ1⊠σ2 (x1 ∥ x2) = Q�

σ1`σ2 (x1 ∥ x2) = Q�
σ1 (x1) ⊗ Q�

σ2 (x2), using the monoidal structure of CPM[P].

Finally, we need to equip copycat ccA : CCA → A⊥ ∥ Awith a quantum valuation. As composition

of quantum strategies relies on composition in CPM[P], we expect the quantum valuation of

copycat to rely on the identities in CPM[P], i.e. those in CPM. Indeed, for balanced configurations

of the form x ∥ x ∈ C (CCA), we setQ
�
ccA (x ∥ x) = idH(x) : H(x)

CPM
→ H(x). In general, configurations

of copycat are x ∥ y where x ⊇+ x ∩y ⊆− y; i.e. a balanced x ∩y ∥ x ∩y ∈ C (CCA) with a negative

extension to x ∥ y. By obliviousness, the definition is forced to be

Q�
ccA (x ∥ y) = /x,y (idH(x∩y)) : H(x)

CPM
→ H(y) .

Corollary 3.12. Quantum games and quantum strategies forms a ⋆-autonomous category.

3.3 Extension with Symmetry
The above can serve as canvas to interpret the !-free fragment of the quantum λ-calculus. For the
full language we must deal with replication and recursion; which as usual in concurrent games

requires us to extend games with symmetry. In essence, adding symmetry consists in replicating

the developments above in the more expressive event structures with symmetry [Winskel 2007].

Definition 3.13. A symmetry on an event structure E is a set �E comprising bijections θ : x � y
where x ,y ∈ C (E) are configurations (we write θ : x �E y if θ ∈ �E) satisfying:

• Groupoid. The set �E comprises identities and is closed under inverse and composition.

• Restriction. For any θ : x �E y and x ′ ⊆ x such that x ′ ∈ C (E), there exists a (necessarily
unique) θ ′ ⊆ θ such that θ ′ : x ′ �E y

′
;

• Expansion. For θ : x �E y and x ⊆ x ′ ∈ C (E), there exists some θ ⊆ θ ′ s.t. θ ′ : x ′ �E y
′
.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:13

We regard �E as a proof-relevant equivalence relation – we will write simply x �E y for the cor-

responding equivalence relation. The last two conditions amount to �E being a history-preserving

bisimulation. We refer to elements of �E as symmetries. It follows from “restriction” that symmetries

are order-isomorphisms (with configurations ordered by ≤E). Two events e1, e2 ∈ E are symmetric
(written e1 �E e2) iff (e1, e2) ∈ θ ∈ �E for some θ ; or equivalently if [e1] �E [e2].

Symmetry, when added to games, is the concurrent games counterpart of the equivalence

relation on plays in AJM games [Abramsky et al. 2000]. It helps us relate strategies which behave

in the same way, but only up to symmetry; which is crucial as the laws of ! in Section 3.4 only

hold up to symmetry. However, it is hard to build a notion of “behaving in the same way up

to symmetry” that is also preserved under composition. The solution of [Castellan et al. 2015,

2019] relies on the introduction of the two subsymmetries �−A and �+A – intuitively, �−A comprises

those symmetries where only Opponent has changed their copy indices, and dually for �+A. To
the conditions of [Castellan et al. 2019] we add a new requirement that any configuration has a

canonical representative, which we need for the observational quotient.

Definition 3.14. A ∼-game comprises (A,κA,HA, �A, �
+
A, �

−
A)where (1) (A,κA,HA) is a quantum

game; and (2) �A, �+A and �−A are three symmetries s.t. �+A, �
−
A ⊆ �A, satisfying the conditions of

thin concurrent games [Castellan et al. 2019]. To these we add that for all xA ∈ C (A), there is some

symmetric xA �A yA such that yA is canonical, in the sense that any symmetry θ : yA �A yA
decomposes (necessarily uniquely) as θ+ ◦ θ−, where θ+ : yA �

+
A yA and θ− : yA �

−
A yA.

Finally, we require that κA is stable under �A, and that if a �A a′, then HA(a) = HA(a
′).

Any θ : x �A y induces a unitary between H(x) and H(y) obtained by the action of θ on the

tensors H(x) =
⊗

a∈x H(a) and H(y) =
⊗

a∈y H(a); we write it H(θ) : H(x) � H(y). Earlier

constructions on games extend: �A⊥=�A, �
+
A⊥=�

−
A and �−A⊥=�

+
A. Likewise, �A⊠B=�A`B comprises

θA ∥ θB : xA ∥ xB � yA ∥ yB such that θA : xA �A yA and θB : xB �B yB .

Definition 3.15. A ∼-strategy on A is a quantum strategy σ : S → A with �S on S , subject to

• Symmetry-preservation. If θ : x �S y, then σ θ = {(σ s1,σ s2) | (s1, s2) ∈ θ } : σ x �A σ y ;
• Strong-receptivity. If θ : x �S y, if σ θ ∪ {(a−

1
,a−

2
)} : x ∪ {a1} �A y ∪ {a2}, then θ ∪ {(s1, s2)} :

x ∪ {s1} �S y ∪ {s2} where s1, s2 such that σ s1 = a1, σ s2 = a2 come from receptivity;

• Thin. If x ∈ C (S), if idx ⊆+ θ ∈ �S , then θ = idy for some y ∈ C (S);

from [Castellan et al. 2019]. Additionally, we impose compatibility of quantum valuations with

symmetry: for any θ : x �S y, writing σθ = θA ∥ θB with θA : xA �A yA and θB : xB �B yB ,

Q�
σ (y) =

�H(θB) ◦ Q
�
σ (x) ◦

�H(θA)
−1
.

We formalize what it means to “behave the same up to symmetry”. Two ∼-strategies σ : S →

A⊥ ` B and σ ′
: S ′ → A⊥ ` B are weakly isomorphic iff there is a bijection φ : S � S ′ reflecting

and preserving all structure (including symmetry and quantum valuations), and such that for all

x ∈ C (S), we have {(σs,σ ′(φs)) | s ∈ x} ∈ �A⊥`B . It is one of the mains results of [Castellan et al.

2019] that weak isomorphism is preserved under composition and the other constructions.

Corollary 3.16. For each finite set P of parameters, ∼-games and ∼-strategies up to weak isomor-
phism form a ⋆-autonomous category ∼-QCG[P].

From now on, by strategy we always mean ∼-strategy.

3.4 Interpretation
We will interpret the quantum λ-calculus with parameters in P into ∼-QCG[P]. However the

interpretation does not target ∼-QCG[P] directly, but relies on a derived structure fit for the

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 Pierre Clairambault and Marc de Visme

interpretation of call-by-value. We keep the description of this construction as brief as possible; it

is the same as in [Clairambault et al. 2019] with the addition of exhaustivity.

3.4.1 Interpretation of types. An es A has binary conflict if there is an irreflexive symmetric

binary relation #A such that for all finite X ⊆ A, X ∈ ConA iff for all a1,a2 ∈ X , we have ¬(a1#Aa2).
An espA is positive (resp. negative) iff all its minimal events have positive (resp. negative) polarity.

It is alternating iff for all a1 _A a2, we have polA(a1) , polA(a2). It is sequential if A has binary

conflict, ≤A is tree-shaped (i.e. if a1,a2 ≤A a then either a1 ≤A a2 or a2 ≤A a1) and conflict is local,

i.e. if x ,x ∪ {a1},x ∪ {a2} ∈ C (A) and x ∪ {a1,a2} < C (A) then a1 and a2 share the same antecedent.

The interpretation of types yields games that have a particular shape:

Definition 3.17. An arena is a ∼-game (A,κA,HA, �A, �
+
A, �

−
A) withA alternating and sequential.

A +-arena is a non-empty positive arena A s.t. all minimal events conflict pairwise, κA(∅) = −1,

and for all minimal a ∈ A, κA({a}) ≥ 0. A −-arena is a negative arena such that κA(∅) ≥ 0.

Types will be interpreted as +-arenas. Note that if A is a +-arena then A⊥
is a −-arena. If N is a

−-arena and H a Hilbert space, the down-shift ↓H N is the +-arena defined as N prefixed with

one new minimal positive event •, with Q(•) = H , and for x ∈ C (N), κ↓HN (x ∪ {•}) = κN (x). If
A,B are +-arenas, their sum A ⊕ B is defined as for A ⊠ B, with added conflicts between all events

of A and B and payoff function inherited – it generalizes to any arity in the obvious way.

Any+-arena decomposes (up to iso) asA =
⊕

i ∈IA ↓HA,i NA,i , forNA,i some−-arenas. Leveraging

this we define two further constructions on +-arenas, the tensor and linear arrow:

A ⊗ B =
⊕

(i, j)∈IA×IB

↓HA,i ⊗HB, j (NA,i ⊠ NB, j) A ⊸ B =↓I

(⊕
i ∈IA

↓HA,i (NA,i ⊠ B
⊥)

)⊥
.

Wewrite λ for the added minimal event ofA ⊸ B as it stands for the evaluation to a λ-abstraction.
For xA = {•i } ∪ x−A ∈ EA and xB = {•j } ∪ x−B ∈ EB , we set xA ⊗ xB = {•(i, j)} ∪ (x−A ∥ x−B) ∈ EA⊗B
– exhaustive configurations of A ⊗ B arise uniquely in this way. We also write xA ⊸ xB =
{λ, •i } ∪ (x−A ∥ xB) ∈ EA⊸B , and exhaustive configurations of A ⊸ B arise uniquely in this way.

The main type constructor left to interpret is !(A ⊸ B). We first introduce ! on −-arenas.

Definition 3.18. The bang !N of a−-arenaN has underlying esp the infinitary ∥NN , with inherited

quantum annotations. Its symmetries rely on exchanging copy indices, we direct to [Clairambault

et al. 2019] (Definition 6.3) for the definition and focus here on exhaustivity.

We set κ!N (∅) = 0 as weakening is allowed on banged resources. If x ∈ C (∥NN) is non-empty, it

is ∥i ∈I xi ∈ C (∥N N) with each xi non-empty. We then set κ!N (∥i ∈I xi) = κN (x1) ⊠ . . . ⊠ κN (x |I |)

noting that the operation ⊠ on {−1, 0,+1} introduced in Section 3.1.2 is associative.

We do not have to define ! on arbitrary +-arenas since the matching type constructor only applies

to linear functions. As the +-arenas corresponding to those has the form ↓I N for some −-arena N ,

we set !(↓I N) =↓I (!N). With this in place, we can give the interpretation of types:

J1K = ↓I � JA ⊸ BK = JAK ⊸ JBK JA ⊗ BK = JAK ⊗ JBK
JqbitK = ↓C2 � J!(A ⊸ B)K = !JA ⊸ BK JAℓK = ⊕n∈NJA⊗nK

yielding a +-arena JAK for any typeA of the quantum λ-calculus. We also write 1 for J1K =↓I �. The
rest of the paper does not involve −-arenas, so from now on, arena will always refer to +-arena.

3.4.2 Interpretation of terms. Wewill not refer to the details of the interpretation in the remainder

of the exposition, so we only sketch it briefly and refer the reader to [Clairambault et al. 2019].

The interpretation will take place in the subcategory of ∼-QCG[P] having as objects, the

arenas arising from the interpretation of types, and as morphisms from A to B the ∼-strategies

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:15

σ : S → A⊥ ` B that are negative (i.e. S is negative); up to weak isomorphism. Let us write QA[P]

for this subcategory. The monoidal product ⊠ of ∼-QCG[P] does not transport to QA[P] as it does

not preserve arenas. However, the ⊗ operation above yields a premonoidal structure [Power and
Robinson 1997] on QA[P]. The category QA[P] also has coproducts given by ⊕.

Values are interpreted in a specific subcategory QA[P]t of QA[P] with morphisms restricted

to those σ : S → A⊥ ` B which are thunkable: (1) for every minimal s−
1
∈ S , there is exactly one

s+
2
∈ S such that s1 _S s2, and s2 maps to B; (2) in that case, dQ�

σ [{s1}; {s1, s2}] = 0. In QA[P]t , ⊗

acts as a bifunctor; it is a symmetric monoidal category. The bang operation ! extends to a linear

exponential comonad [Hyland and Schalk 2003] on the full sub-smc of QA[P]t whose objects have

only one minimal event with trivial Hilbert space. To interpret functions, we use the adjunction

QA[P]t
I(−⊗A)

,,

⊢ QA[P]

A⊸−

mm

familiar from closed Freyd categories [Power and Thielecke 1999]. For recursion we introduce a

partial order on strategies with, for σ : S → A⊥ `B and σ ′
: S ′ → A⊥ `B, setting σ ⊑ σ ′

iff S ⊆ S ′

with the inclusion closed under symmetry and all components of σ and σ ′
coinciding on S . This is

a dcpo – with respect to [Clairambault et al. 2019], here we additionally observe that the lub of a

directed set of strategies is exhaustive as exhaustivity deals with finite configurations. For quantum

primitives, we provide meas : JqbitK +→ JbitK, new : JbitK +→ JqbitK and U : Jqbit⊗nK +→ Jqbit⊗nK.
Dynamically, these strategies are straightforward: when exposed to a Opponent move on the left,

they immediately play any Player move on the right. The quantum valuation of the corresponding

configuration matches the standard CPM maps matching these operations (see Section 2.2.3).

The interpretation directly relies on the structure above. For the fragment of the language

without formal parameters, the reader may find in [Clairambault et al. 2019] the full details along

with computational adequacy. To this we must add the interpretation of the introduction rule for

Γ ⊢P X ·M : A. Consider some finite set of parameters P, such that X ∈ P. If σ : S → A⊥ ` B is a

strategy in QA[P], we set X · σ to share all components with σ , except for (with x ∈ C (X))

Q�
X·σ (x) = X · Q�

σ (x)

formally multiplying the polynomial Q�
σ (x) with X.

This concludes the interpretation of the parametrized quantum λ-calculus. We do not investigate

adequacy; however it will be crucial that the interpretation commutes with substitution. For any
ρ ∈ [0, 1]P , the strict compact closed functor −[ρ] : CPM[P] → CPM extends to a functor

−[ρ] : QA[P] → QA in the obvious way, preserving all operations on strategies. It follows that:

Proposition 3.19. Let Γ ⊢P M : A, and ρ ∈ [0, 1]P . Then, JMK[ρ] = JM[ρ]K.

4 OBSERVATIONAL QUOTIENT
The interpretation of the quantum λ-calculus in QA is not directly fully abstract, for a variety of

reasons. Firstly, as usual and as emphasized earlier, game semantics display intermediate steps of

computation which are not directly observable – to address that, we need to only compare strategies

on their exhaustive configurations. Secondly, and more importantly, a strategy may realize one

exhaustive configuration in potentially infinitely many ways: one must sum all these realizations.

4.1 The Observational Sum
For now, let us omit formal parameters and work with QA. We will reinstate them in Section 4.3.2.

Let σ : S → A⊥ ` B be a morphism in QA. Intuitively, to capture the observable behaviour
of σ , for any exhaustive xA ∥ xB ∈ EA⊥`B we would like to extract from σ its weight. Setting

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 Pierre Clairambault and Marc de Visme

witσ (xA,xB) as the set of xS ∈ C (S) +-covered such that σxS = xA ∥ xB , we would like to sum

σxA,xB =
∑

xS ∈witσ (xA,xB)

Q�
σ (xS) ∈ CPM(H(xA),H(xB)) .

For the !-free fragment of the quantum λ-calculus, this would do just fine. In the presence of

recursion and symmetry, two phenomena arise that need to be handled carefully.

4.1.1 Witnesses up to symmetry. First, the setwitσ (xA,xB) above is too restrictive. In the presence
of !, one must consider the behaviour of strategies up to symmetry. Accordingly, the weight σxA,xB
should account for witnesses matching xA ∥ xB only up to symmetry. We set:

Definition 4.1. For σ : S → A⊥ ` B and xA ∥ xB ∈ EA⊥`B , the witnesses for xA ∥ xB up to
symmetry comprises the configurations xS ∈ C (S) +-covered, and such that σxS �

+
A⊥`B xA ∥ xB .

We denote this set with witσ (xA,xB).

The reader may wonder why we consider the set of witnesses such that σxS = xSA ∥ xSB is

positively symmetry to xA ∥ xB , rather than merely symmetric. This “fixes” the Opponent copy

indices: weakening positively symmetric to symmetric would bring us to count countably many

times the same configuration as Opponent changes arbitrarily their copy indices.

Given xA ∥ xB ∈ EA⊥`B , our intention is to obtain σxA,xB by summing Q�(xS) for each
xS ∈ witσ (xA,xB). But there is an issue: configurations xS ∈ witσ (xA,xB) map to xSA ∥ xSB only

positively symmetric to xA ∥ xB , not equal. So Q�(xS) ∈ CPM(H(xSA),H(xSB)), which is in general

distinct from CPM(H(xA),H(xB)). For the sum to typecheck we must provide a way to canonically

transport quantum weights between these isomorphic spaces.

Definition 4.2. Let A be a quantum arena, and x ,x ′ ∈ C (A) be such that x � x ′
. We define

γAx,x ′ =
1

|x �A x ′ |

∑
θ :x�Ax ′

�HA(θ) : CPM(HA(x),HA(x
′))

the symmetric transport from x to x ′
.

This is reminiscent of the construction of the symmetric tensor product in [Laird et al. 2013] as

the equalizer of the permutation group for n-fold tensor products, obtained as their sum. A similar

construction is also used for the exponential in [Pagani et al. 2014]. Ignoring for now convergence

issues, the weight of σ on configuration xA ∥ xB is to be defined as

σxA,xB =
∑

xS ∈witσ (xA,xB)

γ BxSB,xB
◦ Q�

σ (xS) ◦ γ
A
xA,xSS

.

In fact, themore relevant notion is theweight ofσ on symmetry classes of exhaustive configurations.
But the quantity given by the sum above is, as it turns out, not invariant under symmetry on xA,xB :
on non-canonical xA,xB , some witnesses are still accounted for several times, see Appendix A.2

for an exposition. From now on, if A is a quantum arena, we write E�A for the set of symmetry
classes of exhaustive configurations. We use x, y, etc to range over these symmetry classes. By

definition of arenas, any such equivalence class comprises at least one canonical representative –

from now on, for all x ∈ E�A we consider chosen one canonical representative, written x ∈ EA.

For σ : S → A⊥ ` B and xA ∈ E�A , xB ∈ E�B with witσ (xA, xB) finite, we set σxA,xB as σxA,xB .

4.1.2 D-completion. If the set of witnesses is not finite, it is not clear that this sum converges.

In fact, we shall see later that it does always converge, modulo a condition on strategies (visibility)
to be introduced later. However, it will be convenient to give a formal status to these sums before

they are known to converge. This may be done via D-completion [Zhao and Fan 2010].

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:17

We introduce briefly D-completion, following the presentation of [Pagani et al. 2014]. Given a

partially ordered set (P , ≤), a subset S is Scott-closed if it is down-closed, and for every directed

I ⊆ S , if the lub ∨I exists in P , then ∨I ∈ S . A monotone function f : P → Q between partially

ordered sets is Scott-continuous if it preserves all existing least upper bounds of directed subsets.

The set of all Scott-closed subsets of P forms a directed complete partial order (dcpo), and the

D-completion P of P is then defined as its smallest sub-dcpo comprising the down-closure [p] for

each p ∈ P . Then P is a dcpo, and there is a canonical Scott-continuous injection ι : P → P through

which we regard P as a subset of P . If P is a bounded directed complete partial order, then P is an

initial subset of P , i.e. the only new elements added by completion are “at infinity”.

Following [Pagani et al. 2014] we now complete CPM into a dcpo-enriched category CPM.

For any two Hilbert spaces H and K , CPM(H ,K) is partially ordered via the Löwner order. We

set CPM(H ,K) = CPM(H ,K) the corresponding D-completion. All operations in CPM are Scott-

continuous with respect to the Löwner order, and as such extend to CPM canonically. If (fi)i ∈I is

any family of completely positive maps fi ∈ CPM(H ,K), then the infinite sum
∑

i ∈I fi ∈ CPM(H ,K)
is always defined, as the lub of the directed set comprising

∑
i ∈F fi ∈ CPM(H ,K) for any F a finite

subset of I . Composition and scalar multiplication being linear and Scott-continuous, they distribute

over sums. Finally, for σ : S → A⊥ ` B in QA and xA ∈ E�A , xB ∈ E�B , we temporarily define

σxA,xB =
∑

xS ∈witσ (xA,xB)

γ BxSB,xB
◦ Q�

σ (xS) ◦ γ
A
xA,x

S
A
∈ CPM(H(xA),H(xB)) ,

although we will see shortly that (for visible strategies) only finite elements of CPM are reached.

Note that this definition only covers strategies in QA (without parameters). We postpone defining

the observational sum of strategies in QA[P] until we have convergence without parameters.

4.2 Congruence of the Observational Sum
The observational sum introduced above induces an equivalence relation on strategies: for σ :

S → A⊥ ` B and σ ′
: S ′ → A⊥ ` B, we set σ ≡ σ ′

iff for all xA ∈ E�A and xB ∈ E�B , we have

σxA,xB = σ ′
xA,xB . We shall prove that QA, considered up to ≡, is fully abstract for the quantum

λ-calculus. But for that, we must first prove that quotienting QA by ≡ yields a model, i.e. that ≡ is

preserved by all operations on strategies. The critical point is to prove that composition preserves

≡, which boils down to: for any σ : S → A⊥ ` B, τ : T → B⊥ `C , xA ∈ E�A and xC ∈ E�B , we have

(τ ⊙ σ)xA,xC =
∑

xB ∈E�B

τxB,xC ◦ σxA,xB ∈ CPM(H(xA),H(xC)) (1)

This is a very challenging property to prove, involving subtle manipulations of games with

symmetry in combination with manipulations of the quantum valuations. Intuitively (but slightly

misleadingly, see Section 4.2.2), see Appendix A.5), we must establish a bijection between witnesses

xT ⊙ xS ∈ witσ (xA, xC) on the one hand, and triples (xB ,xS ,xT) with xB ∈ E�B , xS ∈ witσ (xA, xB),
xT ∈ witτ (xB , xC) on the other hand, in such a way that the quantum valuations are preserved.

4.2.1 Deadlock-free composition. The very notation introduced in Proposition 3.6 carries, for

configurations xT ⊙ xS ∈ C (T ⊙ S), the data of xS ∈ C (S) and xT ∈ C (T) – it might seem that

the desired bijection should simply follow this. Recall that configurations xT ⊙ xS ∈ C (T ⊙ S) are
in one-to-one correspondence with pairs of configurations xS ∈ C (S) (write σxS = xSA ∥ xSB) and

xT ∈ C (T) (write τxT = xTB ∥ xTC) (1) matching on B (i.e. xSB = xTB); and (2) causally secured, in the

sense that their synchronization introduces no deadlock. The item (2) is an obstacle to our bijection,

corresponding to a fundamental difference between games models and relational-like models.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 Pierre Clairambault and Marc de Visme

Earlier work [Castellan 2017; Castellan et al. 2018, 2015] has established that the concept of

visibility, inspired from traditional game semantics [Abramsky and McCusker 1996], induces a

deadlock-free composition. It only involves the bare causal structure of strategies. If σ : S → A⊥`B
is a strategy, a grounded causal chain (gcc) in S is an immediate causal chain ρ = s0 _S s1 _S
. . ._S sn in S , such that s0 is minimal in S . We identify ρ with the set {s0, . . . , sn}, totally ordered

by ≤S . We write gcc(S) for the set of gccs in S . We define visible strategies:

Definition 4.3. A strategy σ : S → A⊥ ` B is visible iff for any ρ ∈ gcc(S), σρ ∈ C (A⊥ ∥ B).

Gccs mapping correctly to the game are strongly related with the traditional game semantical

notion of P-views [Castellan et al. 2015], capturing branches of sequential purely functional programs.

One can read visibility as stating that all gccs are “valid P-views”, so that overall the strategy

may be regarded as patching together all these P-views, expressing how they branch causally,

non-deterministically, and merge causally. Visible strategies include both sequential and parallel

interpretations of pure functional programs [Castellan et al. 2015]. Furthermore, we have:

Lemma 4.4. let σ : S → A⊥ ` B, τ : T → B⊥ ` C be visible strategies. Take xS ∈ C (S) with
σxS = xSA ∥ xSB and xT ∈ C (T) with τxT = xTB ∥ xTC , and θ : xSB �B xTB . Then, the induced

φ : xS ∥ xTC
σ ∥xTC
≃ xSA ∥ xSB ∥ xTC

xSA ∥θ ∥xTX
� xSA ∥ xTB ∥ xTC

xSA ∥τ
≃ xSA ∥ xT

is secured – in other words, for θ = idxB , condition (2) of Proposition 3.6 is redundant.

A proof appears in Appendix A.1. Conceptually, this is strongly connected with Melliès’ observa-

tion that innocent strategies in asynchronous games are positional [Melliès 2006]. Technically, this

generalizes the deadlock-free lemma of [Castellan et al. 2018], covering the case of synchronization

up to symmetry. Visible strategies are stable under all relevant constructions. From now on we

consider that all strategies are visible – the categories QA,QA[P] now assume visibility as well.

4.2.2 Synchronization up to symmetry. With deadlocks put aside, we now examine the main

issue in proving congruence. Given (visible) strategies σ : S → A⊥ ` B, τ : T → B⊥ ` C , and
xA ∈ E�A , xC ∈ E�C , we first fix xB ∈ E�B and examine the sum

τxB,xC ◦ σxA,xB =
∑

xS ∈witσ (xA,xB)

∑
xT ∈witτ (xB,xC)

γCxTC ,xC
◦ Q�

τ (xT) ◦ γ
B
xSB,x

T
B
◦ Q�

σ (xS) ◦ γ
A
xA,x

S
A
.

using that γ B
xB,x

T
B
◦ γ B

xSB,xB
= γ B

xSB,x
T
B
. Unfolding the definition of γ in the middle, we are brought

to consider a sum ranging over xS ∈ witσ (xA, xB), xT ∈ witτ (xB , xC), with a mediating symmetry

θB : xSB �B xTB . In fact, a crucial aspect of games with symmetry [Castellan et al. 2019] is that in

this case, it is always possible to find symmetric yS ∈ C (S) and yT ∈ C (T) matching on the nose.

Lemma 4.5. Let σ : S → A⊥ ` B, τ : T → B⊥ `C be strategies. Consider furthermore xS ∈ C (S)
with σxS = xSA ∥ xSB , xT ∈ C (T) with τxT = xTB ∥ xTC , and θ : xSB �B xTB .
Then, there are φS : xS �S yS , φT : xT �T yT such that σyS = yA ∥ yB and τyT = yB ∥ yC match

on B on the nose, along with θC : yC �C xTC and θA : xSA �A yA such that

Q�
τ (xT) ◦

�H(θ) ◦ Q�
σ (xS) =

�H(θC) ◦ Q
�
τ (yT) ◦ Q

�
σ (yS) ◦

�H(θA) .

This puts together Lemma 3.23 of [Castellan et al. 2019], preservation of quantum valuations

under symmetry, and Lemma 4.4. This goes in the right direction, giving a qualitative equivalence
between pairs of configurations of σ and τ matching up to symmetry and pairs matching on the

nose. However, to prove congruence one must refine it to a quantitative correspondence. This is

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:19

1 ⊸ 1

λ+
14uu�

()−

� &&- � ((/ �))0 � **1()+
1

2
·X ()+

1

4
·X2 ()+

1

8
·X3 . . . ()+

1

2
n ·Xn . . .

Fig. 8. The interpretation of letrec f 1⊸1 x1 = X · (1
2
· skip + 1

2
· (f x)) in : 1 ⊸ 1

quite subtle, using in an essential way the hypothesis that each symmetry class of configurations

has a canonical representative. Details are omitted by lack of space, but appear in Appendix A.5.

With this we can prove Equation 1, from which it follows that ≡ is stable under composition. It

is easy to prove that the other constructions on strategies preserve ≡ as well. Hence:

Proposition 4.6. There is a categoryQA/≡whose objects are interpretation of types and morphisms
from A to B are strategies σ : S → A⊥ ` B, considered up to ≡.

4.3 Convergence of the Observational Sum
With the help of Equation 1 we can prove that the observational sum always converges in CPM.

4.3.1 Convergence forQA. As it stands, the quantum games model already has good convergence

properties. Indeed we mentioned in Section 3.2.1 that quantum annotations, reorganized as CPM

maps from (spaces generated by) negative events to (spaces generated by) positive events, yield

superoperators. This convergence is also embodied by the following simpler property:

Lemma 4.7. Let σ : S → 1
⊥ ∥ 1 in QA. Then, σ{()} ∥ {()} ∈ [0, 1].

This is an immediate consequence of the monotone condition for quantum strategies, which in

the absence of quantum spaces boils down to the conditions on probabilistic strategies [Winskel

2015]. Using this, we prove convergence by exploiting that we can “trace out” any strategy:

Proposition 4.8. For any σ : A +→ B inQA and xA ∈ E�A , xB ∈ E�B , σxA,xB ∈ CPM(H(xA),H(xB)).

Proof. To prove this, we show that there is a constant NxA,xB ∈ N and quantum strategies

βA ∈ QA(1,A) βB ∈ QA(B, 1)

such that for any f ∈ CPM(H(xA),H(xB)), writing tr(f) for .∅, ∅ f ∈ CPM(I , I),

tr(f) ≤ NxA,xB (βB)xB, {()} ◦ f ◦ (βA){()},xA .

Because all objects inQA are generated by types, we may define βA and βB with the syntax of the

quantum λ-calculus – those are βA = ⇑AxA
and βB = ⇓BxB

to be defined in Section 5.1, with all formal

parameters set to 1. See Appendix B.2 for a proof that these satisfy this property. Instantiating this

with σxA,xB ∈ CPM(H(xA),H(xB)), we obtain

tr(σxA,xB) ≤ NxA,xB (βB)xB, {()} ◦ σxA,xB ◦ (βA){()},xA

but by Equation 1, (βB)xB, {()} ◦σxA,xB ◦ (βA)xA, {()} is a term in the sum (βB ⊙ σ ⊙ βA){()}, {()} , which
is in [0, 1] by Lemma 4.7. So tr(σxA,xB) ≤ NxA,xB , therefore σxA,xB must be finite. □

4.3.2 Convergence forQA[P]. Wenow aim to prove a similar convergence property for strategies

in QA[P], in the presence of formal parameters. However, an issue immediately arises: for σ : S →

A⊥ ` B in QA[P] with xA ∈ E�A , xB ∈ E�B , it is not the case that σxA,xB ∈ CPM[P](H(xA),H(xB)).
Figure 8 illustrates the issue (a purely probabilistic example suffices) – the figure uses wiggly

lines to indicate that all events occurring in the third row are in pairwise conflict with each other.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 Pierre Clairambault and Marc de Visme

There are infinitely many witnesses for the exhaustive configuration x = {λ+, ()−, ()+}, yielding
σx =

∑+∞
n=1

1

2
n Xn where σ is the strategy of Figure 8 – while each witness contributes a polynomial,

the infinite sum may involve infinitely many monomials. Therefore, in general, when summing all

witnesses we must move from multivariate polynomials to multivariate power series.

For H ,K in Hilb, a CPM(H ,K)-valued power series with parameters in P = {X1, . . . ,Xn} is∑
i ∈I

fiX
αi,1
1
. . . Xαi,nn

a formal sum with I countable, and for all i ∈ I , fi ∈ CPM(H ,K). Its domain of convergence
is the set of ρ ∈ [0, 1]P such that the sum

∑
i ∈I fiρ(X1)

αi,1 . . . ρ(Xn)αi,n converges in CPM(H ,K).
Observe that if the sum converges with the summands being added in some order, then it absolutely
converges. This is because through the Choi-Jamiolkowski we are summing positive operators, on

which the trace is a norm; and if the sum converges, so does the trace. In this way, all infinite sums

considered in this paper are invariant under reordering of the summands.

We write CPM{P}(H ,K) for the set of CPM(H ,K)-valued power series with parameters in

P = {X1, . . . ,Xn} whose domain of convergence is [0, 1]n .

Proposition 4.9. If σ : S → A⊥ ` B is a strategy in QA[P], xA ∈ E�A and xB ∈ E�B , then

σxA,xB ∈ CPM{P}(H(xA),H(xB)) .

Proof. For each monomial mi = Xαi,1
1
. . . Xαi,nn , the coefficient fi is the sum of all coefficients

attached tomi in Q�
σ (xS) for some xS ∈ witσ (xA, xB). Writing ρ1(Xi) = 1 for all Xi , fi is obtained as

a limit of finite sums, all of which are less (for the Löwner order) than (σ [ρ1])xA,xB . By Proposition

4.8, (σ [ρ1])xA,xB is in CPM(H(xA),H(xB)). Hence, fi ∈ CPM(H(xA),H(xB)).
Now, for ρ ∈ [0, 1]P we have σxA,xB [ρ] = (σ [ρ])xA,xB ∈ CPM(H(xA),H(xB)) by Prop. 4.8. □

The category CPM{P} has objects Hilbert spaces, morphisms power series in CPM{P}(H ,K).
Composition is defined as that of CPM[P]. The proof of Equation 1 applies transparently, showing

that for σ : S → A⊥ ` B and τ : T → B⊥ `C in QA[P], xA ∈ E�A , xC ∈ E�C ,

(τ ⊙ σ)xA,xC =
∑

xB ∈E�B

τxB,xC ◦ σxA,xB ∈ CPM{P}(H(xA),H(xC)) . (2)

Now, we are equipped to attack the full abstraction proof.

5 FULL ABSTRACTION FOR GAMES AND QUANTUM RELATIONS
Let us motivate the constructions to come, aiming for full abstraction. Assume we have two terms

⊢ M,N : A for some type A, which have a different interpretation in QA/≡. This means that there

is some x ∈ E�JAK such that JMKx , JN Kx. We must use this information to separate M and N , by

producing a context C[−] which will somehow extract fromM and N their behaviour on x.

5.1 Testing Terms
Performing the extraction is the purpose of the testing terms. We start by presenting the intuition

behind their construction, in the probabilistic case. For any p,q ∈ [0, 1], considerMp,q defined as

f : !(1 ⊸ bit) ⊢ if f (skip) then (if f (skip) then (p · skip) else (q · skip)) else⊥ : 1

where divergence⊥ is definable through recursion. Figure 9 displays, on the left of each composition,

the only two exhaustive configurations of JMp,qK. The valuation of the configurations appears as a

subscript for both last moves. We omit the copy indices coming from the ! to avoid clutter.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:21

©«

!(1 ⊸ bit) ⊢ 1

λ−.ss{()+
� ((/tt−&oov()+
� ((/ff−

� ''.()+(q)

ª®®®®®®®®®¬
⊙

©«

!(1 ⊸ bit)

λ+

.ss{
=yy�

()−

� &&-

()−

� &&-tt+
(X
2
)

ff+
(Y
2
)

ª®®®®®®®®®¬
=

©«

1

()+
(
q
4
XY)

ª®®®®®®®®®¬

©«

!(1 ⊸ bit) ⊢ 1

λ−.ss{()+
� ((/tt−&oov()+
� ((/tt−

� ''.()+(p)

ª®®®®®®®®®¬
⊙

©«

!(1 ⊸ bit)

λ+

.ss{
=yy�

()−

� &&-

()−

� &&-tt+
(X
2
)

tt+
(X
2
)

ª®®®®®®®®®¬
=

©«

1

()+
(
p
4
X2)

ª®®®®®®®®®¬
Fig. 9. Computing JT K ⊙ JMp,qK ≡ ()+

(
q
4
XY+ p

4
Y2)

⇓1
{()}(v) = v ⇑1

{()} = skip

⇓A⊕B
xA ∥∅

(v) = matchv with (yA : ⇓AxA (y) | w
B
: ⊥) ⇑A⊕B

xA ∥∅
= inl (⇑AxA)

⇓A⊕B
∅∥xB

(v) = matchv with (yA : ⊥ | wB
: ⇓BxB (w)) ⇑A⊕B

∅∥xB
= inr (⇑BxB)

⇓A⊗B
xA⊗xB (v) = letyA ⊗wB = v in (⇓AxA (y) ⊗ ⇓BxB (w)) ⇑A⊗B

xA⊗xB = ⇑AxA ⊗ ⇑BxB

⇓A⊸B
xA⊸xB (f) = ⇓BxB (f (⇑

A
xA)) ⇑A⊸B

xA⊸xB = λyA. ⇓AxA (y); ⇑
B
xB

⇓
!(A⊸B)
∥i∈I (xi)

(f) = ⇓A⊸B
x1 (f); . . . ; ⇓A⊸B

x |I | (f) ⇑
!(A⊸B)
∥i∈I (xi)

= λyA.
∑

i ∈I
1

|I |Xi · ⇑
A⊸B
xi y

⇓A
ℓ

xn+1⊗...⊗x1 (t :: u) = ⇓Axn+1 (t); ⇓
Aℓ

xn ⊗...⊗x1 (u) ⇑A
ℓ

xn ⊗...⊗x1 = [⇑Axn , . . . , ⇑
A
x1]

⇓A
ℓ

{()}([]) = skip ⇓A
ℓ

{()}(t :: u) = ⊥ ⇓A
ℓ

xn+1⊗...⊗x1 ([]) = ⊥

Fig. 10. Testing and generating terms for the classical fragment

How can one build a context that separates the two? Clearly, there is no purely deterministic

context that separatesM
0, 1

2

andM
0, 1

3

because they only differ on a configuration (shown at the left

hand side of Figure 9) where the argument function behaves non-uniformly. To separate them, one

can instead use a probabilistic function T = λx . X
2
· tt + Y

2
· ff for well-chosen X,Y ∈ [0, 1].

5.1.1 Classical testing terms. In general, given x ∈ E�A on which two terms M and N differ,

one can build a term that can replay x withM and N , targetting the distinguishing behaviour. In

particular, if x has multiple calls to a function, the corresponding test will feature an adequately

weighted probabilistic sum over the behaviours performed by the context in the different copies of

that call in x, so that the test will be able to interact with tested terms as prescribed by x.
Let us now show how these testing terms are defined for classical types, postponing for now the

quantum case. For any classical type A and x ∈ EJAK, we define mutually inductively two terms

v : A ⊢ ⇓Ax (v) : 1 ⊢ ⇑Ax : A ,

the testing term ⇓Ax (v) (with free variable v : A) and the generating term ⇑Ax (we leave implicit

the annotation of ⊢ with the set of formal parameters in typing judgments). The definition is given

in Figure 10. These testing terms for classical types are conceptually close to those of [Ehrhard

et al. 2014]; they differ mainly in that our language is call-by-value whereas probabilistic PCF

is call-by-name. Our notation is inspired from that used in normalization by evaluation [Dybjer

and Filinski 2000], which uses analogous combinators. Generation on type !(A ⊸ B) involves a
probabilistic sum, each clause weighted by a fresh parameter to be instantiated later.

If M,N : A differ on symmetry class x with representative x , ⇓Ax will replay x with M and N ,

yielding configurations of ⇓Ax (M) and ⇓Ax (N) of ground type with distinct weights. For instance,

the terms λ f .M
0, 1

2

and λ f .M
0, 1

3

only differ through the valuation they assign to the configuration

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:22 Pierre Clairambault and Marc de Visme

x where the argument returns tt once, and ff once. The matching testing term is

⇓
!(1⊸bit)⊸1

x = λд!(1⊸bit)⊸1.д ⇑!(1⊸bit)
{()}⊸{tt} ∥ {()}⊸{ff}

= λд!(1⊸bit)⊸1.дT

where, up to simple conversion, T = X
2
· tt + Y

2
· ff is the term above. Composition between λ f .M

and ⇓
!(1⊸bit)⊸1

x amounts to composition betweenM and T – the left hand side of Figure 9 shows a

configuration of that composition successfully replaying the configuration of interest.

However, there is a complication. Although the testing termT is designed to replay one particular

configuration, it might successfully interact withMp,q in other ways too. For instance, we show in

the right hand side of Figure 9 another successful composition ofMp,q and T , where the two calls

toT select the same branch and both return tt. This composition also contributes to the probability

of convergence ofMp,q T , which is
q
4
XY+ p

4
Y2

for all p,q,X,Y ∈ [0, 1]. If X and Y are chosen poorly,

T might fail to distinguish terms. For instance, if X = Y = 1

2
, T fails to separate M 1

2
, 1
3

and M 1

3
, 1
2

as the second term compensates for the difference in the first. In their proof of full abstraction

for probabilistic PCF, Ehrhard, Tasson and Pagani postpone the choice of X,Y, considering them
instead as formal parameters. Valuations then become power series in these formal parameters.

Say we wish to extract from M : A its valuation on x ∈ EJAK. The valuation of J⇓Ax MK on {()}
is a power series, resulting from a sum over all successful interactions between JMK and J⇓Ax K:
one visiting exactly x , and possibly many others. But the one visiting x is the only one visiting

exactly once all components of the probabilistic sums in ⇓Ax , i.e. the only one comprising all formal

parameters exactly once. For instance, in our example above, the valuation ofMp,q on x is
q
4
, the

coefficient of
q
4
XY+ p

4
Y2

associated with the monomial where each parameter appears exactly once.
Let us now formalize this. Following [Ehrhard et al. 2014], if P is a power series, then the P-

skeleton of P is the coefficient of the monomial comprising each parameter of P exactly once.

Then, we have, for any type A and writing FPA(x) for the set of parameters occurring in ⇓Ax :

Proposition 5.1. For any x ∈ EJAK, y ∈ E�JAK; the FPA(x)-skeleton of J⇓Ax Ky is non-zero iff x ∈ y.

See Appendix B.3 for a proof. From that and Equation 1, forM,N : A and x ∈ E�JAK s.t. JMKx ,
JN Kx, the FPA(x)-skeleton of J⇓Ax MK{()} is JMKx × α where α is the FPA(x)-skeleton of J⇓Ax K, and
likewise for JN Kx. So J⇓Ax MKx and J⇓Ax N Kx are power series differing in at least one coefficient. In

the corresponding situation for probabilistic PCF, the authors of [Ehrhard et al. 2014] apply a result

in analysis yielding ρ ∈ [0, 1]FPA(x) which separates them, hence ⇓Ax [ρ] a separating test.

5.1.2 Quantum testing terms. We now give testing and generation terms for quantum datatypes.

For qbit, we should define a testing term v : qbit ⊢ ⇓qbit
{q} (v) : 1 and a generation term ⇑

qbit
{q} : qbit.

Let us start by considering two terms v : qbit ⊢ M,N : 1 of the quantum λ-calculus. Their
interpretation in games yields JMK{q} ∥ {()}, JN K{q} ∥ {()} ∈ CPM(C2, I) which to any operator f ∈

Op(C2) associates someд ∈ Op(C), i.e. a scalar factor inC. But to test equality of maps inCPM(C2, I),
it suffices to test them on hermitian operators, i.e. those f ∈ Op(C2) such that f is equal to its

conjugate transpose f †. HermitiansHerm(C2) onC2 form a 4-dimensionalR-vector space, admitting

as basis the four positive Hermitian operators represented by the matrices(
1 0

0 0

) (
0 0

0 1

)
1

2

(
1 1

1 1

)
1

2

(
1 i
−i 1

)
.

We write h1, h2, h3, h4 ∈ CPM(I ,C2) for the corresponding completely positive maps. By con-

struction, two f ,д ∈ CPM(C2, I) are equal iff f ◦ hi = д ◦ hi for i ∈ {1, . . . , 4}. Besides, the hi are
definable, in the sense that there are ⊢ H1, . . . ,H4 : qbit such that JHiK{q} = hi .

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:23

We must give one term ⇑
qbit
{q} : qbit which will cover these four tests. We define it as

⊢
1

4

Z1 · H1 +
1

4

Z2 · H2 +
1

4

Z3 · H3 +
1

4

Z4 · H4 : qbit

where Z1, . . . ,Z4 are fresh parameters. We write J⇑qbit
{q} K{q} = hZ1, ...,Z4

∈ CPM[Z1, . . . ,Z4](I ,C
2),

which through substitutions ρ : {Z1, . . . ,Z4} → {0, 1} covers all the hi .
We must also define the testing term ⇓

qbit
{q} . For that, we observe that for each i ∈ {1, . . . , 4},

the dual h†i ∈ CPM(C2, I) of hi (obtained via the dagger operation on CPM [Selinger 2007] – or

equivalently, via the functorial action (−)∗ : CPMop → CPM coming from the compact closure

of CPM, followed by the canonical isomorphisms C2 � (C2)∗ and C � C∗), may also be defined

through terms v : qbit ⊢ H †
i (v) : 1 such that JH †

i K{q} ∥ {()} = h†i ; and we set v : qbit ⊢ ⇓qbit
{q} : 1 as

v : qbit ⊢
1

4

V1 · H
†
1
(v) +

1

4

V2 · H
†
2
(v) +

1

4

V3 · H
†
3
(v) +

1

4

V4 · H
†
4
(v) : 1

with fresh parameters Vi . We write J⇓qbit
{q} ∥ {()}K{q} ∥ {()} = h†V1, ...,V4

∈ CPM[V1, . . . ,V4](C
2, I).

This completes the definition of ⇓Ax and ⇑Ax for all types. We must now extend Proposition 5.1

for this completed definition, however this requires some disambiguation.

For A a type, the parameters in ⇓Ax and ⇑Ax may come from the classical clauses, or the quantum

clauses. We reuse the notation FPA(x) to denote the parameters arising from the classical clauses

only, while QPA(x) comprises those arising from quantum clauses. Now, ifA is a type and x ∈ EJAK,

J⇓Ax Kx ∥ {()} ∈ CPM[FPA(x) ⊎ QPA(x)](H(x), I)

a polynomial with both kinds of formal parameters. We now consider its FPA(x)-skeleton to be the

“coefficient” for the monomial comprising each parameter of FPA(x) exactly once, i.e. the polynomial

P ∈ CPM[QPA(x)](H(x), I) such that P
∏

X∈FPA(x) X is exactly the restriction of J⇓Ax Kx ∥ {()} to its

monomials that comprise each parameter in FPA(x) exactly once.

With this clarification, Proposition 5.1 holds for the full language, with exactly the same statement:

Proposition 5.2. For any x ∈ EJAK, y ∈ E�JAK; the FPA(x)-skeleton of J⇓Ax Ky is non-zero iff x ∈ y.

The proof is by induction on A, following closely the intuition exposed in Section 5.1.1.

5.1.3 Quantum properties. We now jump to the quantum properties of the test terms.

Lemma 5.3. Let A be a type and x ∈ EJAK. Then, the FPA(x)-skeleton of J⇓Ax Kx ∥ {()} is a polynomial

PA,x ∈ CPM[QPA(x)](H(x), I)

and for all f ,д ∈ CPM(I ,H(x)), f = д iff for all ρ : QPA(x) → {0, 1}, PA,x [ρ] ◦ f = PA,x [ρ] ◦ д.

To prove this, notice that for any x ∈ EJAK, H(x) is, up to iso, some ⊗1≤i≤nC
2
where n is the

number of qubits involved in x . Through this same isomorphism, PA,x relates to

⊗1≤i≤nh†Vi
1
, ...,Vi

4

∈ CPM[QPA(x)](⊗1≤i≤nC
2, I)

as follows by induction on A and x . Now, the motivating property of h is stable under tensors

– that is, the set ⊗1≤i≤nhVi
1
, ...,Vi

4

[ρ] for all ρ : QPA(x) → {0, 1} covers a basis for all hermitian

operators on ⊗1≤i≤nC
2
, as a R-vector space. If f ,д ∈ CPM(⊗1≤i≤nC

2, I) are equal on all of them,

then they are equal. The dual property holds for ⊗1≤i≤nh†Vi
1
, ...,Vi

4

, from which the lemma follows.

See Appendix B.1 for a detailed proof.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 Pierre Clairambault and Marc de Visme

5.2 Full Abstraction
We now prove our main result. If Γ ⊢ M,N : A are two homogeneously typed terms, we say they are

observationally equivalent, written M ≡ N , iff for all context C[−] such that ⊢ C[M],C[N] : 1,

the terms C[M] and C[N] have the same probability of convergence.

Theorem 5.4. The modelQA/≡ is fully abstract for the quantum λ-calculus, i.e. for all Γ ⊢ M,N : A,

M ≡ N ⇔ JMK ≡ JN K .

Proof. In [Clairambault et al. 2019], the model is proved to be adequate with respect to an

equivalence finer than ≡, called simulation equivalence. As the two equivalences coincide on ground

type, QA/≡ is adequate, and if JMK ≡ JN K it follows from standard arguments thatM ≡ N .

For the converse, take Γ ⊢ M,N : A such that JMK . JN K. For notational simplicity we consider

Γ empty. By hypothesis, there is x ∈ E�A such that JMKx , JN Kx. By Proposition 4.9, we have

J⇓Ax (M)Kx ∈ CPM{FPA(x) ⊎ QPA(x)}(1, 1) J⇓Ax (N)Kx ∈ CPM{FPA(x) ⊎ QPA(x)}(1, 1)

which are, in other words, power series with positive real coefficients, with domain of convergence

[0, 1]FPA(x)⊎QPA(x). Then, by Equation 2 and Proposition 5.2, their FPA(x)-skeletons are

PA,x ◦ JMKx ∈ CPM[QPA(x)](1, 1) PA,x ◦ JN Kx ∈ CPM[QPA(x)](1, 1) .

so by Lemma 5.3, since JMKx , JN Kx there must be µ : QPA(x) → {0, 1} such that PA,x[µ] ◦ JMKx ,
PA,x[µ] ◦ JN Kx are different positive reals. But then, we consider

J⇓Ax [µ](M)Kx ∈ CPM{FPA(x)}(1, 1) J⇓Ax [µ](N)Kx ∈ CPM{FPA(x)}(1, 1)

and in particular, their FPA(x)-skeletons. Again by Equation 2 and Proposition 5.2, those must be

respectively PA,x[µ]◦JMKx and PA,x[µ]◦JN Kx, which are known to be different! So f = J⇓Ax [µ](M)Kx
and д = J⇓Ax [µ](N)Kx are two power series with positive real coefficients, domain of convergence

[0, 1]FPA(x), and at least one distinct coefficient. By Lemma 25 of [Ehrhard et al. 2014] applied to the

substraction f − д, there is ρ ∈ [0, 1]FPA(x) such that J⇓Ax [µ]MKx[ρ] , J⇓Ax [µ]N Kx[ρ].
We finally form T the term v : A ⊢ ⇓Ax [µ][ρ] : 1. By the above and adequacy (Theorem 6.10 in

[Clairambault et al. 2019]), T (M) and T (N) have a different probability of convergence. □

5.3 Collapse toQuantum Relations
We first recall the quantum relational model [Pagani et al. 2014].

Definition 5.5. A quantum relational space (qrs) is A = (dAa ,G
A
a)a∈ |A | where |A | is theweb of

A, for all a ∈ |A | we have an integer dAa , and a sub-group GAa of the group of permutationsS(dAa).

Intuitively, the web represents completed executions. If A is a quantum game, the web of the

corresponding qrs is | ∫ A| = E�A the set of symmetry classes of exhaustive configurations. For

x ∈ | ∫ A|, the dimension dx is simply dim(HA(x)). For the group of permutations Gx, observe first

that x �A x is a group of permutations on x. Identifying an integer d with the set {0, . . . ,d − 1}, any

θ : x �A x yields a bijection inS(Πa∈x dim(HA(a))) rearranging elements of the tuple following

θ , which in turn yields
˜θ ∈ S(dim(HA(x))), considering that dim(HA(x)) = dim(

⊗
a∈x HA(a)) =

Πa∈x dim(HA(a)) and following the bijection induced by the lexicographic ordering.

5.3.1 Constructions on qrs and compatibility with games. We now introduce some constructions

on qrs, overall defining an interpretation LAM as a qrs of all types A of the quantum λ-calculus. We

first set L1M = (1, {id})a∈{∗} and LqbitM = (2, {id})a∈{∗} . If A and B are qrs, then A∗ = A; and A ⊗B

is defined as |A ⊗ B| = |A | × |B|, d(a,b) = da · db . For G(a,b), consider first the set of permutations

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:25

on da · db whose action is induced by f ∈ Ga , д ∈ Gb via h(i, j) = (f (i),д(j)) – this set induces a

group of permutations G(a,b) on d(a,b) again through the lexicographic ordering.

For the exponential (!), we need some notations and terminology on multisets. If A is a set, let

M (A) denote multisets on A, defined as functions µ : A → N indicating, for each element a ∈ A,
its multiplicity µ(a). We write ν (µ) for its support, i.e. the set of a ∈ |A | such that µ(a) , 0. We say

that µ is finite if it has finite support. In that case, its cardinality
∑

a∈A µ(a) is also finite. We write

Mf (A) for the set of finite multisets on A, and Mk (A) for the multisets of cardinality k .
For A a qrs, the qrs !A is constructed in two steps. First, we build the symmetric tensor product

A⊙k
representing k unordered uses of the resource A. Its web is |A⊙k | =Mk (|A |). For µ ∈ Mk (|A |),

the dimension is dµ =
∏

a∈ν (µ) d
µ(a)
a . The group Gµ comprises those permutations on

∏
a∈ν (µ) d

µ(a)
a

given by, for all a ∈ ν (µ), a permutation дa ∈ S(d
µ(a)
a) acting as

дa(i0, . . . , iµ(a)−1) = (д0a(iπ (0)), . . . ,д
µ(a)−1
n (iπ (µ(a)−1)))

following some π ∈ S(µ(a)) between copies, and, for each 0 ≤ i ≤ µ(a) − 1, some дia ∈ Ga .

Finally, !A has web |!A | =Mf (|A |); and for µ ∈ Mk (|A |), dµ and Gµ are those given by A⊙k
.

We omit the qrs construction for sums (and lists), which may be found in [Pagani et al. 2014].

Altogether, these constructions define an interpretation of types of the quantum λ-calculus as qrs,
with all cases transparent except for LA ⊸ BM = LAM∗ ⊗ LBM and L!(A ⊸ B)M = !(LAM∗ ⊗ LBM).

To compare these with the corresponding arena constructions, we introduce a strong equivalence

between qrs. A renaming from qrs A toB is a pair α = (α1, (α2

a)a∈ |A |) comprising α1
: |A | → |B| a

bijection, and for each a ∈ |A |, a bijection α2

a : dAa → dBα 1(a), transportingG
A
a toGBα 1(a) by conjugacy.

Proposition 5.6. For any arenas A,B, we have renamings

r 1 : L1M � ∫J1K r ⊕A,B : (∫ A) ⊕ (∫ B) � ∫(A ⊕ B)

rqbit : LqbitM � ∫JqbitK r⊸A,B : (∫ A)∗ ⊗ (∫ B) � ∫(A ⊸ B)

r ⊗A,B : (∫ A) ⊗ (∫ B) � ∫(A ⊗ B) r !A,B : !(∫(A ⊸ B)) � ∫(!(A ⊸ B))

yielding, overall, a renaming rA : LAM � ∫JAK for every type A of the quantum λ-calculus.

Proof. Direct verification, also using that ⊗, ⊕, ! act functorially on renamings. These renamings

extend smoothly to n-ary tensors and countable sums, covering the list constructor as well. □

5.3.2 Morphisms of qrs. Now, we consider what are the morphisms between qrs, forming a

category QRS. Ignoring symmetry at first, the intension is to set simply morphisms in QRS(A,B)
to be matrices (αa,b)(a,b)∈ |A |× |B | such that, for all (a,b) ∈ |A | × |B|, αa,b ∈ CPM(Cd

A
a ,Cd

B
b).

However, these coefficients must also be invariant under symmetry. To express that, note that

each д ∈ GAa induces д̂ ∈ CPM(Cd
A
a ,Cd

A
a) in the obvious way, and just as in Definition 4.2, we set

γA,a =
1

|GAa |

∑
д∈GAa

д̂ .

where |GAa | denotes the cardinal of the group – hopefully the overload of | − | creates no confusion.

Invariance of α under symmetry is then stated as γA,a ◦ αa,b ◦ γB,b = αa,b for all (a,b) ∈ |A | × |B|.

This does not yet conclude the construction of QRS: an issue arises with composition. Consider

(αa,b)(a,b)∈ |A |× |B | and (βb,c)(b,c)∈ |B |× |C | invariant under symmetry. Their composition is to be

(β ⊙ α)a,c =
∑
b ∈ |B |

βb,c ◦ αa,b ,

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 Pierre Clairambault and Marc de Visme

however this sum is in general infinite, and there is no reason why it would always converge.

Therefore, QRS(A,B) is the D-completion of the set of those f ∈ CPM(Cd
A
a ,Cd

B
b) invariant under

symmetry, partially ordered by the Löwner order. Altogether, by this construction we obtain a

category QRS. Morphisms are composed via Equation 5.3.2, where the sum is known to converge

thanks to D-completion. Identity on A has ida,a′ set to 0 if a , a′, and γA,a otherwise. It is proved

in [Pagani et al. 2014] that QRS forms a compact closed category, with biproducts given by ⊕,

and furthermore that for any A, !A is a free commutative comonoid, altogether forming a Lafont
category [Melliès 2009]. Relying on this along with standard interpretations of quantum primitives

in CPM, there is an adequate interpretation of terms Γ ⊢ M : A as morphisms LMM ∈ QRS(LΓM, LAM).

5.3.3 FromQA toQRS. The construction ∫(−) extends to a functor ∫(−) : QA → QRS defined on
objects as above. On σ : S → A⊥ ` B, we define ∫ σ ∈ QRS(∫ A, ∫ B) simply via (∫ σ)xA,xB = σxA,xB
as in Section 4.1. Functoriality is exactly Equation 1 established in Section 4.2. Observe that ≡ is

exactly the equivalence relation on QA(A,B) induced by ∫(−): σ ≡ σ ′
iff ∫ σ = ∫ σ ′

.

Furthermore, ∫(−) preserves all the structure used in the interpretation. The interpretations in

QA and QRS are phrased in slightly different ways. In [Pagani et al. 2014], QRS is shown to be

compact closed with biproducts and a Lafont exponential. In contrast, being more intensional, QA
has the more elaborate structure described in Section 3.4.2, that we may call a linear closed Freyd
category with coproducts along with a linear exponential comonad acting on a sub-smc including the

linear arrow types. Those differences are superficial: QRS also forms a linear closed Freyd category

with QRSt = QRS with the adjunction given by duality of the compact closed structure; and every

Lafont category yields a linear exponential comonad on the linear category [Bierman 1993].

Theorem 5.7. There is a strong monoidal functor ∫(−) : QA → QRS preserving all categorical
components used in the interpretation up to coherent isomorphism. It follows that for any ⊢ M : A,
∫JMK = rA ◦ LMM (where rA is an iso lifted from the renaming of Proposition 5.6).

Proof. Preservation of identity is idempotence of γAxA,xA . The renamings of Proposition 5.6 are

lifted to isomorphisms in QRS: for instance, α = (α1, (α2

a)a∈ |A |) from A to B yields αa,b = 0 if

b , α1(a), and αa,b = α̂
2

a ∈ CPM(Cd
A
a ,Cd

B
b) otherwise. Those are natural and verify the expected

coherence conditions. Preservation of the rest of the structure follows similar lines. From this and

direct verification for the interpretation of primitives of the quantum λ-calculus, the compatibility

of the collapse ∫(−) with the interpretation also follows. □

Although the construction of QRS requires D-completion, the collapse ∫(−) only reaches finite

elements (note that in [Pagani et al. 2014] it was already proved that the interpretation of the

quantum λ-calculus in QRS only reaches finite elements). We deduce our final result:

Theorem 5.8. The interpretation of the quantum λ-calculus in QRS is fully abstract.

Proof. Since QRS is adequate, only one direction remains. Let ⊢ M,N : A be such thatM ≡ N .

Then, JMK ≡ JN K by Theorem 5.4. So, ∫JMK = ∫JN K, thus LMM = LN M by Theorem 5.7. □

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their helpful comments and suggestions.

This work is supported by ANR project DyVerSe (ANR-19-CE48-0010-01) and Labex MiLyon

(ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-

11-IDEX-0007), operated by the French National Research Agency (ANR).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:27

REFERENCES
Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (2000),

409–470. https://doi.org/10.1006/inco.2000.2930

Samson Abramsky and Guy McCusker. 1996. Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol

with active expressions. Electr. Notes Theor. Comput. Sci. 3 (1996), 2–14. https://doi.org/10.1016/S1571-0661(05)80398-6

Samson Abramsky and Paul-André Melliès. 1999. Concurrent Games and Full Completeness. In 14th Annual IEEE Symposium
on Logic in Computer Science, Trento, Italy, July 2-5, 1999. 431–442. https://doi.org/10.1109/LICS.1999.782638

Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. 1997. Timeless Games. In Computer Science Logic,
11th International Workshop, CSL ’97, Annual Conference of the EACSL, Aarhus, Denmark, August 23-29, 1997, Selected
Papers. 56–77. https://doi.org/10.1007/BFb0028007

Gavin Bierman. 1993. On intuitionistic linear logic. Ph.D. Dissertation. University of Cambridge Computer Laboratory.

Pierre Boudes. 2009. Thick Subtrees, Games and Experiments. In Typed Lambda Calculi and Applications, 9th International
Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings. 65–79. https://doi.org/10.1007/978-3-642-02273-9_7

Ana C. Calderon and Guy McCusker. 2010. Understanding Game Semantics Through Coherence Spaces. Electr. Notes Theor.
Comput. Sci. 265 (2010), 231–244. https://doi.org/10.1016/j.entcs.2010.08.014

Simon Castellan. 2017. Concurrent structures in game semantics. (Structures concurrentes en sémantique des jeux). Ph.D.
Dissertation. University of Lyon, France. https://tel.archives-ouvertes.fr/tel-01587718

Simon Castellan and Pierre Clairambault. 2016. Causality vs. Interleavings in Concurrent Game Semantics. In 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada. 32:1–32:14.
https://doi.org/10.4230/LIPIcs.CONCUR.2016.32

Simon Castellan, Pierre Clairambault, Hugo Paquet, and GlynnWinskel. 2018. The concurrent game semantics of Probabilistic

PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018. 215–224. https://doi.org/10.1145/3209108.3209187

Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. 2017. Games and Strategies as Event Structures.

LMCS 13, 3 (2017).
Simon Castellan, Pierre Clairambault, and Glynn Winskel. 2014. Symmetry in concurrent games. In Joint Meeting of

the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. 28:1–28:10. https:

//doi.org/10.1145/2603088.2603141

Simon Castellan, Pierre Clairambault, and Glynn Winskel. 2015. The Parallel Intensionally Fully Abstract Games Model of

PCF. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. 232–243.
https://doi.org/10.1109/LICS.2015.31

Simon Castellan, Pierre Clairambault, and Glynn Winskel. 2019. Thin Games with Symmetry and Concurrent Hyland-Ong

Games. Logical Methods in Computer Science 15, 1 (2019). https://lmcs.episciences.org/5248

Simon Castellan and Nobuko Yoshida. 2019. Two sides of the same coin: session types and game semantics: a synchronous

side and an asynchronous side. PACMPL 3, POPL (2019), 27:1–27:29. https://doi.org/10.1145/3290340

Pierre Clairambault, Marc de Visme, and Glynn Winskel. 2019. Game semantics for quantum programming. PACMPL 3,

POPL (2019), 32:1–32:29. https://doi.org/10.1145/3290345

Pierre Clairambault, Julian Gutierrez, and Glynn Winskel. 2012. The Winning Ways of Concurrent Games. In Proceedings of
the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. 235–244.
https://doi.org/10.1109/LICS.2012.34

J.R.B. Cockett and R.A.G. Seely. 1997. Weakly distributive categories. Journal of Pure and Applied Algebra 114, 2 (1997),

133–173.

Ugo Dal Lago and Olivier Laurent. 2008. Quantitative Game Semantics for Linear Logic. In Computer Science Logic, 22nd
International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings.
230–245. https://doi.org/10.1007/978-3-540-87531-4_18

Yannick Delbecque. 2011. Game Semantics for Quantum Data. Electr. Notes Theor. Comput. Sci. 270, 1 (2011), 41–57.

https://doi.org/10.1016/j.entcs.2011.01.005

Peter Dybjer and Andrzej Filinski. 2000. Normalization and Partial Evaluation. In Applied Semantics, International Summer
School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures. 137–192.

Thomas Ehrhard. 2012. The Scott model of linear logic is the extensional collapse of its relational model. Theor. Comput. Sci.
424 (2012), 20–45. https://doi.org/10.1016/j.tcs.2011.11.027

Thomas Ehrhard, Christine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract for proba-

bilistic PCF. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. 309–320. https://doi.org/10.1145/2535838.2535865

Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. 2002. Quantum cryptography. Reviews of modern
physics 74, 1 (2002), 145.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1016/S1571-0661(05)80398-6
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1007/BFb0028007
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.1016/j.entcs.2010.08.014
https://tel.archives-ouvertes.fr/tel-01587718
https://doi.org/10.4230/LIPIcs.CONCUR.2016.32
https://doi.org/10.1145/3209108.3209187
https://doi.org/10.1145/2603088.2603141
https://doi.org/10.1145/2603088.2603141
https://doi.org/10.1109/LICS.2015.31
https://lmcs.episciences.org/5248
https://doi.org/10.1145/3290340
https://doi.org/10.1145/3290345
https://doi.org/10.1109/LICS.2012.34
https://doi.org/10.1007/978-3-540-87531-4_18
https://doi.org/10.1016/j.entcs.2011.01.005
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1145/2535838.2535865

1:28 Pierre Clairambault and Marc de Visme

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. 212–219.

Russell Harmer and Guy McCusker. 1999. A Fully Abstract Game Semantics for Finite Nondeterminism. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. 422–430. https://doi.org/10.1109/LICS.1999.782637

Ichiro Hasuo and Naohiko Hoshino. 2017. Semantics of higher-order quantum computation via geometry of interaction.

Ann. Pure Appl. Logic 168, 2 (2017), 404–469. https://doi.org/10.1016/j.apal.2016.10.010

J. M. E. Hyland and C.-H. Luke Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285–408.
https://doi.org/10.1006/inco.2000.2917

Martin Hyland and Andrea Schalk. 1999. Abstract Games for Linear Logic. Electr. Notes Theor. Comput. Sci. 29 (1999),

127–150. https://doi.org/10.1016/S1571-0661(05)80312-3

Martin Hyland and Andrea Schalk. 2003. Glueing and orthogonality for models of linear logic. Theor. Comput. Sci. 294, 1/2
(2003), 183–231. https://doi.org/10.1016/S0304-3975(01)00241-9

André Joyal, Ross Street, and Dominic Verity. 1996. Traced monoidal categories. InMathematical Proceedings of the Cambridge
Philosophical Society, Vol. 119. Cambridge University Press, 447–468.

Jim Laird, Giulio Manzonetto, and Guy McCusker. 2013. Constructing differential categories and deconstructing categories

of games. Inf. Comput. 222 (2013), 247–264. https://doi.org/10.1016/j.ic.2012.10.015

Octavio Malherbe. 2013. Categorical models of computation: partially traced categories and presheaf models of quantum
computation. Ph.D. Dissertation. University of Ottawa.

Octavio Malherbe, Philip Scott, and Peter Selinger. 2013. Presheaf Models of Quantum Computation: An Outline. In

Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky - Essays Dedicated to Samson
Abramsky on the Occasion of His 60th Birthday. 178–194. https://doi.org/10.1007/978-3-642-38164-5_13

Paul-André Melliès. 2005. Asynchronous Games 4: A Fully Complete Model of Propositional Linear Logic. In 20th IEEE
Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings. 386–395. https:

//doi.org/10.1109/LICS.2005.6

Paul-André Melliès. 2006. Asynchronous games 2: The true concurrency of innocence. Theor. Comput. Sci. 358, 2-3 (2006),
200–228. https://doi.org/10.1016/j.tcs.2006.01.016

Paul-André Melliès and Nicolas Tabareau. 2010. Resource modalities in tensor logic. Ann. Pure Appl. Logic 161, 5 (2010),
632–653. https://doi.org/10.1016/j.apal.2009.07.018

Paul-André Melliès. 2009. Categorical semantics of linear logic. Panoramas et syntheses 27 (2009), 15–215.
Robin Milner. 1977. Fully Abstract Models of Typed lambda-Calculi. Theor. Comput. Sci. 4, 1 (1977), 1–22.
Andrzej S. Murawski and C.-H. Luke Ong. 2003. Exhausting strategies, joker games and full completeness for IMLL with

Unit. Theor. Comput. Sci. 294, 1/2 (2003), 269–305. https://doi.org/10.1016/S0304-3975(01)00244-4

Michele Pagani, Peter Selinger, and Benoît Valiron. 2014. Applying quantitative semantics to higher-order quantum

computing. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. 647–658. https://doi.org/10.1145/2535838.2535879

John Power and Edmund Robinson. 1997. Premonoidal Categories and Notions of Computation. Mathematical Structures in
Computer Science 7, 5 (1997), 453–468. https://doi.org/10.1017/S0960129597002375

John Power and Hayo Thielecke. 1999. Closed Freyd- and kappa-categories. In ICALP’99 (LNCS), Vol. 1644. Springer.
Silvain Rideau and Glynn Winskel. 2011. Concurrent Strategies. In LICS ’11, June 21-24, 2011, Toronto, Canada. 409–418.
Peter Selinger. 2004. Towards a quantum programming language. Mathematical Structures in Computer Science 14, 4 (2004),

527–586. https://doi.org/10.1017/S0960129504004256

Peter Selinger. 2007. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract). Electr. Notes
Theor. Comput. Sci. 170 (2007), 139–163. https://doi.org/10.1016/j.entcs.2006.12.018

Peter Selinger and Benoît Valiron. 2006. A lambda calculus for quantum computation with classical control. Mathematical
Structures in Computer Science 16, 3 (2006), 527–552. https://doi.org/10.1017/S0960129506005238

Peter Selinger and Benoît Valiron. 2008. On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended

Abstract). Electr. Notes Theor. Comput. Sci. 210 (2008), 123–137. https://doi.org/10.1016/j.entcs.2008.04.022

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

SIAM J. Comput. 26, 5 (1997), 1484–1509. https://doi.org/10.1137/S0097539795293172

Takeshi Tsukada and C.-H. Luke Ong. 2015. Nondeterminism in Game Semantics via Sheaves. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. 220–231.

Glynn Winskel. 2007. Event Structures with Symmetry. Electr. Notes Theor. Comput. Sci. 172 (2007), 611–652. https:

//doi.org/10.1016/j.entcs.2007.02.022

Glynn Winskel. 2015. On Probabilistic Distributed Strategies. In Theoretical Aspects of Computing - ICTAC 2015 - 12th Inter-
national Colloquium Cali, Colombia, October 29-31, 2015, Proceedings. 69–88. https://doi.org/10.1007/978-3-319-25150-9_6

Dongsheng Zhao and Taihe Fan. 2010. Dcpo-completion of posets. Theor. Comput. Sci. 411, 22-24 (2010), 2167–2173.

https://doi.org/10.1016/j.tcs.2010.02.020

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1109/LICS.1999.782637
https://doi.org/10.1016/j.apal.2016.10.010
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1016/S1571-0661(05)80312-3
https://doi.org/10.1016/S0304-3975(01)00241-9
https://doi.org/10.1016/j.ic.2012.10.015
https://doi.org/10.1007/978-3-642-38164-5_13
https://doi.org/10.1109/LICS.2005.6
https://doi.org/10.1109/LICS.2005.6
https://doi.org/10.1016/j.tcs.2006.01.016
https://doi.org/10.1016/j.apal.2009.07.018
https://doi.org/10.1016/S0304-3975(01)00244-4
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1016/j.entcs.2008.04.022
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1016/j.entcs.2007.02.022
https://doi.org/10.1016/j.entcs.2007.02.022
https://doi.org/10.1007/978-3-319-25150-9_6
https://doi.org/10.1016/j.tcs.2010.02.020

Full Abstraction for theQuantum Lambda-Calculus 1:29

A CONGRUENCE OF THE OBSERVATIONAL QUOTIENT
In this appendix, we give a detailed proof of the congruence property, i.e. preservation under

composition of the observational sum. The proof is rather subtle, applying a number of steps.

A.1 Deadlock-free composition
Performing a functorial relational collapse requires us to link the composition of strategies, which

is sensitive to dealocks, with relational composition, which is not. Recall first from the main text

the defining property for composition.

Proposition A.1 (Proposition 3.6). There is a strategy τ ⊙ σ : T ⊙ S → A⊥ `C , unique up to

isomorphism, such that there is an order-isomorphism between minimal causally compatible pairs
(xS ,xT) and configurations z ∈ C (T ⊙ S) (we write z = xT ⊙ xS to emphasize this correspondence),
and such that writing σ xS = xA ∥ xB and τ xT = xB ∥ xC , we then have (τ ⊙ σ) (xT ⊙ xS) = xA ∥ xC .

Recall that above, causal compatibility of xS ∈ C (S) and xT ∈ C (T)means that (1) σxS = xA ∥ xB
and τxT = xB ∥ xC share the same configuration on B, and (2) the induced composite bijection

φ : xS ∥ xC
σ ∥xC
≃ xA ∥ xB ∥ xC

xA ∥τ
≃ xA ∥ xT

is secured, i.e. (l , r) ◁ (l ′, r ′) defined as (l ≤S ∥C l ′) ∨ (r ≤A ∥T r ′) on the graph of φ, is acyclic.
For the relational collapse, it is crucial that when strategies are visible, the securedness assumption

of causal compatibility actually becomes redundant. This phenomenon was first noticed in Castel-

lan’s PhD [Castellan 2017], and used to a similar effect in the probabilistic setting of [Castellan et al.

2018]. For completeness, we present here a detailed argument adapted to the present definitions.

We start by recalling a few prerequisite notions related to visibility. Let A,B be positive arenas, and

σ : S → A⊥`B be a visible negative strategy. We first define the notion of justifier of moves in S . If
σs is minimal inA, it has no justifier. If it is minimal in B, then there is a unique minimal s0 ∈ S such

that s0 ≤S s , which must be such that σs0 is minimal in A; we set s0 = just(s). Finally, otherwise,
because A and B are arenas, σs has a unique predecessor in A⊥ ∥ B, hence there must be a unique

s ′ ≤S s mapping to this predecessor, write just(s) = s ′. Then, visibility entails the following lemma.

Lemma A.2. Let A,B be positive arenas and σ : S → A⊥ ` B be a visible strategy. Let s <S s ′ be
events of S . Then just(s ′) is comparable with s .

Proof. If σs ′ is minimal in B, this is clear. Otherwise, since s < s ′ there exists a gcc ρ of S such

that s and s ′ occur in ρ. By visibility of σ , the justifier just(s ′) occurs in ρ. Since ρ is a total-order,

just(s ′) must be comparable to s . □

Using that, we can prove the deadlock-free property. Though the statement is slightly more

general, the proof is essentially the same as in [Castellan 2017], adapted here to the present context.

Lemma A.3. let A,B,C be positive arenas, and σ : S → A⊥ ` B, τ : T → B⊥ ` C be winning
negative visible strategies. Take xS ∈ C (S) with σxS = xSA ∥ xSB and xT ∈ C (T) with τxT = xTB ∥ xTC ,
and θ : xSB �B xTB .
Then, the induced bijection

φ : xS ∥ xTC
σ ∥xTC
≃ xSA ∥ xSB ∥ xTC

xSA ∥θ ∥xTX
� xSA ∥ xTB ∥ xTC

xSA ∥τ
≃ xSA ∥ xT

is secured.

Proof. Recall that securedness of φ amounts to the relation on the graph of φ defined as

(l , r) ◁ (l ′, r ′)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:30 Pierre Clairambault and Marc de Visme

whenever l <xS ∥xTC
l ′ or r <xSA ∥xT r ′, is acyclic. To establish that, we recall the concept of justifier

on which the proof relies. Because A,B,C are arenas, they are in particular tree-shaped, and so

any event has at most one immediate predecessor. We define the justification relation on the graph

of φ in the following way (there is a slight abuse of terminology when we say: "(l , r) maps to a

non-minimal move in. . . ", since if l and r map to B, they only map to moves related via θ . But since
θ is an order-isomorphism, the cases above remain unambiguous):

• If (l , r) maps to a non-minimal move in A ∥ B ∥ C , then there is a unique just(l , r) ∈ φ
mapping to its immediate predecessor.

• If (l , r) maps to a minimal event in C , then it has the form (c, t) with t ∈ T . Then there

is a unique t0 ∈ T minimal in T such that t0 ≤ t . Necessarily t0 ∈ xT , so that there is

just(l , r) = (l ′, t0) ∈ φ. Necessarily, just(s, t) then maps to a minimal event in B.
• If (l , r) maps to a minimal event in B, then it has the form (s,a) with s ∈ S . Then there

is a unique s0 ∈ S minimal in S such that s0 ≤ s . Necessarily s0 ∈ xS , so that there is

just(l , r) = (s0, r
′) ∈ φ. Necessarily, just(s, t) then maps to a minimal event in A.

• If (l , r) maps to a minimal event in A, then it has no justifier.

By construction, we always have just(l , r) ◁ (l , r). In particular, any (l , r) has a sequence of

justifiers eventually stopping at (l0, r0) ◁ (l , r) which must map at a minimal event in A.
Suppose now that ◁ is not secured, i.e. there is a cycle ((l1, r1), . . . , (ln , rn)) with

(l1, r1) ◁ (l2, r2) ◁ . . . ◁ (ln , rn) ◁ (l1, r1)

Let us first give a measure on such cycles. The length of a cycle as above is n. For (l , r) in the

cycle, its depth is the length of the (necessarily unique) chain of justifiers yielding (l0, r0) mapping

to a minimal event in A – in particular, the depth of (l0, r0) mapping to a minimal event in A is 0.

Then, the depth of the cycle above is the sum

d =
∑

1≤i≤n

depth(li , ri) .

Cycles are well-ordered by the lexicographic ordering on (n,d); let us now consider a cycle which

is minimal for this well-order. Note: in this proof, all arithmetic computations on indices are done

modulo n (the length of the cycle).

Since ≤S ∥C and ≤A∥T are transitive we can assume that l2k ≤ l2k+1 and r2k+1 ≤ r2k+2 for all k (if

not then we can shorten the cycle, contradicting minimality). But then it follows by minimality

that polS ∥C (l2k) = − and polS ∥C (l2k+1) = + so that the cycle is alternating. Indeed, assume

(l+
2k+1, r

−
2k+1) ◁φ (l+

2k+2, r
−
2k+2) ◁φ (l2k+3, r2k+3)

with r2k+1 ≤A∥T r2k+2 and l2k+2 ≤S ∥C l2k+3. The causal dependency r2k+1 ≤A ∥T r−
2k+2 decomposes

into r2k+1 ≤A∥T r _A ∥T r−
2k+2, with by courtesy (A ∥ τ) r _A ∥B ∥C (A ∥ τ) r2k+2. As the arenas are

alternating, this entails that polA ∥T (r) = +. There must be some (l , r) ∈ φ, with polS ∥C (l) = −. But

then, because θ is an order-isomorphism, we must have (σ ∥ C)l ≤A∥B ∥C (σ ∥ C) l2k+2, so l ≤S l2k+2
as well, therefore we can replace the cycle fragment above with

(l2k+1, r2k+1) ◁ (l
−, r+) ◁ (l2k+3, r2k+3)

which has the same length. Additionally, by construction we have (l , r) = just(l+
2k+2, r

−
2k+2) so the

new cycle has strictly smaller depth, absurd. By the dual reasoning, events with odd index must

have polarity as in (l+
2k+1, r

−
2k+1) as well.

Now, the cycle cannot contain events that are minimal in A, i.e. have no justifier. Indeed, by

hypothesis any (l , r) ∈ φ mapping to a minimal event in A is such that l and r are respectively
minimal in S ∥ C and A ∥ T , so (l , r) is minimal for ◁ and cannot appear in a cycle. Therefore, all

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:31

synchronized events in a cycle must have a justifier. Likewise, the cycle cannot contain events that

are minimal in B. Indeed, consider (l , r) ∈ φ minimal in B. Then, pairs below (l , r) for ◁ have the
form (s,a) where s ∈ S and a ∈ A; for such events ◁ trivializes to <S and is acyclic.

Now, we arrive to the core of the reasoning. Since l−
2k <S ∥C l+

2k+1, writing (l , r) = just(l2k+1, r2k+1),
we have that l = just(l2k+1) as well (since l2k+1 is positive in S ∥ C , it cannot be minimal in C , in
the two other cases we have l = just(l2k+1) as needed). By Lemma A.2, l = just(l2k+1) is comparable

with l2k in S ∥ C (by visibility of σ). If just(l2k+1) = l2k then since l2k is negative, either it is minimal

in A, but we have already seen this is absurd, or this is an immediate dependency in the game in

which case r2k <A ∥T r2k+1 as well. This gives r2k−1 <A ∥T r2k+2 hence (lk , rk) and (lk+1, rk+1) can be

removed without breaking the cycle, contradicting its minimality. So just(l2k+1) is comparable with

l2k , yet distinct. Similarly, just(r2k+2) must comparable with r2k+1 but distinct.
Assume that we have l2k < just(l2k+1) for some k . Since just(l2k+1) < l2k+1 and just(r2k+1) <

r2k+1 < r2k+2 we can replace the cycle fragment

(l2k , r2k) ◁φ (l2k+1, r2k+1) ◁φ (l2k+2, r2k+2)

with the cycle fragment

(l2k , r2k) ◁φ (just(l2k+1), just(r2k+1)) ◁φ (l2k+2, r2k+2)

which has the same length but smaller depth, absurd. So wemust have just(l2k+1) < l2k . Similarly, we

must have just(r2k+2) < r2k+1 for all k . So we have that for all k , just(l2k+1) < l2k with polS ∥C (l2k) =
−. By courtesy and the fact that arenas are alternating, this has to factor as

just(l2k+1) <S ∥C just(l2k)
+ _S ∥C l−

2k

By the dual reasoning, we have that just(r2k+2) <A∥T just(r2k+1) (note that just(l2k+1) , just(l2k)
and just(r2k+1) , just(r2k+2) as they have different polarities). So we always have just(l2k+1) <S ∥C
just(l2k) and just(r2k+2) <A∥T just(r2k+1). That means that we can replace the full cycle

(l1, r1) ◁ (l2, r2) ◁ . . . ◁ (ln , rn) ◁ (l1, r1)

with the cycle

just(l1, r1) ◁ just(l2, r2) ◁ . . . ◁ just(ln , rn) ◁ just(l1, r1)

which has the same length but smaller depth, absurd. □

Observe that the winning mechanism plays absolutely no role in the proof. Since all the strategies

we consider satisfy the conditions of this lemma, this means that we can drop the securedness con-

dition in the definition of composition, bringing us one significant step closer relating composition

of strategies with quantum relational composition.

A.2 Canonical representatives of symmetry classes
Let σ : S → A⊥ ` B be a quantum strategy, and xA ∈ E�A , xB ∈ E�B . We wish to define σxA,xB ,
the weight of σ on symmetry classes xA, xB . For that, we will pick particular representatives

xA ∈ xA, xB ∈ xB and sum all the valuations of relevant configurations of S which, in a sense to be

made formal, map to xA, xB .
In [Castellan et al. 2019], it is proved that symmetries φS : xS �S yS such that σφS is positive are

necessarily identities (Lemma 3.28 of [Castellan et al. 2019]). From that, it seems natural to consider

the set wit�σ (xA, xB) of +-covered configurations xS ∈ C (S) such that, writing σxS = xSA ∥ xSB , we

have xA �
−
A xSA and xSB �

+
B xB . However, the right set of witnesses over which to sum is slightly

more subtle. To understand why, consider the following example.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:32 Pierre Clairambault and Marc de Visme

Example 1. Consider the game B having moves

{⊖i | i ∈ N} ∪ {⊕i, j | i, j ∈ N}

with ≤B given by reflexive pairs along with pairs ⊖i ≤ ⊕i, j for all i, j ∈ N, and all finite sets consistent.
Its symmetry comprises all order-isomorphisms between configurations. Its positive symmetry comprises
all order-isomorphisms that preserve the initial (negative) move. Its negative symmetry comprises all
order-isomorphisms that that θ (⊕i, j) = ⊕i′, j for some i ′ ∈ N, i.e. they preserve the j component of the
positive move.

Consider the strategy τ playing on B⊥ pictured below

⊕1

_���

⊕h(i)

_���
⊖1,i

5 66?

⊖h(i), j

with h : N→ N some injective function. The strategy σ satisfies all conditions to be a strategy with
symmetry in the sense of [Castellan et al. 2019]. It is, in fact, a deterministic strategy with only one
possible behaviour up to symmetry. However, imagine that we fix as representative for a symmetry
class in B⊥ the following configuration:

xB =
⊕1

_���

⊕2

_���
⊖1,1 ⊖2,2

.

Now, let us look at all configurations of σ that map to xB up to positive symmetry. There are exactly
two, drawn below.

⊕1

_���

⊕h(1)

_���
⊖1,1

4 55?

⊖h(1),2

⊕1

_���

⊕h(2)

_���
⊖1,2

4 55?

⊖h(1),1

This is confusing, because the two configurations appear to be carrying the exact same behaviour, so
it is not clear why this would need to be counted twice. It is not difficult to reproduce a similar example
sticking to types and terms of the (quantum-free fragment of the) quantum λ-calculus, showing that
counting this twice is not compatible with the account given by the quantum relational model.

Instead, let us say we pick the following distinct configuration to represent the same symmetry class
of the game:

x′B =
⊕1

_���

⊕2

_���
⊖1,1 ⊖2,1

.

Now, there is only exactly one configuration of σ that maps to x′B up to positive symmetry:

⊕1

_���

⊕h(1)

_���
⊖1,1

4 55?

⊖h(1),1

Indeed, ⊖1,1 above could not be replaced by some other ⊖1,i : if i fails to be 1, then there is no
sub-configuration of xB which is positively symmetric to ⊕1 _ ⊖1,i .

It is surprising – but true nonetheless – that the number of configurations x ∈ C (S) matching a

configuration of the game up to positive symmetry is not invariant under symmetry. For certain

representatives, witnessing configurations may be accounted for multiple times, requiring a re-

normalization. Instead, we noticed that for any symmetry class xB ∈ E�B in a quantum arena, there

is always (at least) one particular representative – like x′B above – ensuring that the correponding

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:33

witnesses are only counted once. Looking at the example above, the difference between xB and

x′B appears to be that in x′B – and in contrast with xB , events following the two positive minimal

events share the same copy index, so permuting the two minimal events leaves the remainder of

the configuration unchanged. Since in thin concurrent games we do not have direct access to copy

indices, we instead capture this property indirectly in the following definition.

Definition A.4. Let A be a game with symmetry, and xA ∈ C (A). We say that xA is canonical if
any θ : xA �A xA decomposes uniquely as

xA
θ−
�−A xA

θ+
�+A xA ,

with in particular xA in the middle.

In other words, endo-symmetries of canonical configurations decompose as endo-symmetries,

positive and negative. Of course we already know that all endosymmetries (like all symmetries)

decompose as the composite of a positive and negative symmetries (see Lemma 3.19 of [Castellan

et al. 2019]). But there is a priori no reason that the decomposition should have the same config-

uration in the middle. This is in fact not always the case: for instance, picking the problematic

configuration xB of the example above, we have the decomposition

⊕1

_���

⊕2

_���
⊖1,1 ⊖2,2

�−B

⊕1

_���

⊕2

_���
⊖1,2 ⊖2,1

�+B

⊕2

_���

⊕1

_���
⊖2,2 ⊖1,1

where rather than drawing the symmetries, we suggest them by considering that they preserve

the position of events in the diagrams. If we wish to avoid the problem mentioned above, we must

project strategies only on canonical representatives of symmetry classes. But for that, we need to

be sure that such canonical representatives always exist.

Definition A.5. A game with symmetry A is representable if for all x ∈ C (A), there exists

x �A x ′
canonical.

An arena is representable if its underlying game with symmetry is representable. We show that

all our game and arena constructions preserve representability. For constructions not involving

symmetry, it is clear; the only non-trivial case is for the ! of a −-arena.

Lemma A.6. If N is a representable −-arena, then !N is representable.

Proof. Let x ∈ C (!N). By definition, it has the form x =∥i ∈I xi , where xi ∈ C (N). Let us

partition I as

I =
⊎
k ∈K

Ik

such that for all i, j ∈ I , we have xi �N x j iff there is some k ∈ N such that i, j ∈ K . For each
i ∈ I , write f (i) ∈ K for the corresponding component of the partition. For each k ∈ K , we fix
some д(k) ∈ K . Since N is representable, there is some xд(k) �N canon(xд(k)) with canon(xд(k))
canonical. But then, for each j ∈ K we replace x j with canon(xд(k)); or more formally: x ′ =∥i ∈I
x ′
i ∈ C (!N) with x ′

i = canon(xд(f (i))). We clearly have x �!N x ′
; indeed, for each i ∈ I , we have

xi �N xд(f (i)) �N canon(xд(f (i))). Furthermore, x ′
is canonical. Indeed, consider now any symetry

θ : ∥i ∈I x
′
i �!N ∥i ∈I x

′
i .

By definition, there is π : I → I a permutation, and for all i ∈ I a symmetry θi : x
′
i �N x ′

π (i).

But by construction, this means that we had xi �N xπ (i) as well, so i,π (i) belong to the same

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:34 Pierre Clairambault and Marc de Visme

component of the partition and д(f (i)) = д(f (π (i))). Therefore, by construction, x ′
i = x ′

π (i). But x
′
i

is canonical, so θi decomposes as

x ′
i

θ−i
�−N x ′

i

θ+i
�+N x ′

i .

Setting θ−(i, e) = (π (i),θ−i (e)) and θ
+(i, e) = (i,θ+i (e)), we have the required decomposition of θ ,

showing that x ′
is canonical, as required. □

From now on, all the games involved are assumed to be representable. We fix once and for all that

for all x a symmetry class in a game, the chosen representative x is assumed to be representable.

A.3 Polarization of γ
Let σ : S → A⊥ ` B be a quantum strategy, and let xA ∈ E�A and xB ∈ E�B . Recall that the weight of

σ on xA, xB is defined as the sum

σxA,xB =
∑

xS ∈witσ (xA,xB)

γxSB,xB
◦ Q�

σ (xS) ◦ γxA,xSA
∈ CPM(H(xA),H(xB)) .

We will start this development by proving that this expression is the same as∑
xS ∈witσ (xA,xB)

γ+xSB,xB
◦ Q�

σ (xS) ◦ γ
−

xA,x
S
A
∈ CPM(H(xA),H(xB))

where

γ+xSB,xB
=

1

|xSB �
+
B xB |

∑
θ :xSB�

+
BxB

�HB (θ)

is defined like γxSB,xB
but restricted to positive symmetries, and likewise for γ−

xA,x
S
A
. For that, we

must prove further lemmas relative to symmetry.

Lemma A.7. Let A be a game with symmetry, and x �+A y with y canonical. Then, any θ : x �A y
decomposes uniquely as θ− ◦ θ+, where θ+ : x �+A y and θ− : y �−A y.

Dually, if x �−A y with x canonical, any θ : x �A y decomposes uniquely as θ−◦θ+ with θ− : x �−A y,
and θ+ : x �+A x .

Proof. Let us prove the former. Take x �+A y with y canonical. Fix some φ : x �+A y. Now, take
θ : x �A y. By Lemma 3.19 of [Castellan et al. 2019], θ decomposes uniquely as θ− ◦ θ+, where
θ+ : x �+A z and θ− : z �−A y for some z ∈ C (A). But then, φ ◦ θ−1+ : z �+A y and θ− : z �−A y, from
which y = z follows since y is canonical.

The other case is symmetric. □

Wewill also need some other basic notations and facts about canonical configurations. Ifx ∈ C (A),
we write |x | for the number of endosymmetries on x . As it is clear that this number is invariant

under symmetry, we will also write |x| for x ∈ E�A . Likewise, if x ∈ C (A), we write |x |− for the

number of negative endosymmetries and |x |+ for the number of positive endosymmetries. Unlike

for |x |, this is not invariant under symmetry. But |x |+ is invariant under positive symmetry: if

x �+A y, then |x �+A y | = |x |+ = |y |+. Likewise, |x |− is invariant under negative symmetry. Finally, if

x ∈ C (A) is canonical, then by definition it is clear that |x | = |x |− · |x |+ (this fails to hold in general).

Lemma A.8. For σ : S → A⊥ ` B a quantum strategy, xA ∈ E�A and xB ∈ E�B , let us write

• X(σ , xA, xB) the set of (xS ,θA,θB) such that xS ∈ witσ (xA, xB), θA : xA �A xSA, θB : xSB �B xB ;
• Y(σ , xA, xB) the set of (yS ,φ+B ,φ

−
A) with yS ∈ witσ (xA, xB), φ

−
A : xA �

−
A y

S
A and φ+B : ySB �

+
B xB .

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:35

Then, there is a function F : X(σ , xA, xB) → Y(σ , xA, xB); such that�H(θB) ◦ Q
�
σ (xS) ◦

�H(θA) = �H(φ+B) ◦ Q
�
σ (yS) ◦

�H(φ−A) .

whenever (yS ,φ+B ,φ
−
A) = F (xS ,θA,θB).

Proof. Let us take (xS ,θA,θB) ∈ X(σ , xA, xB). By Lemma 3.19 of [Castellan et al. 2019], θA and

θB decompose uniquely as

θA = θ
−
A ◦ θ+A, θB = θ

+
B ◦ θ−B

with θ+A : xSA �
+
A zA, θ

−
A : zA �

−
A xA, θ

−
B : xSB �

−
B zB and θ+B : zB �

+
B xB . By Lemma B.4 of

[Castellan et al. 2019], there is φS : xS �S yS andψB : zB �
+
B y

S
B ,ψA : zA �

−
A y

S
A such that, writing

σφS = φ
S
A ∥ φSB ,

φSB = ψ
+
B ◦ θ−B , φSA = ψ

−
A ◦ θ+A .

We may now set F (xS ,θA,θB) = (yS ,θ
−
A ◦ (ψ−

A)
−1,θ+B ◦ (ψ+B)

−1). The verification with respect to

quantum valuations is immediate from preservation of quantum valuations under symmetry. □

The key ingredient of our simplification of the coalesced sum is a quantitative analysis of the

function F above, in particular counting the antecedents of a possible output.

Lemma A.9. Let σ : S → A⊥ ` B be a quantum strategy, and let xA ∈ E�A and xB ∈ E�B . Consider
furthermore (yS ,φ+B ,φ

−
A) ∈ Y(σ , xA, xB).

Then, (yS ,φ+B ,φ
−
A) has exactly |xA |+ · |xB |− antecedents in X(σ , xA, xB).

Proof. From each antecedent of (yS ,φ
+
B ,φ

−
A) we can extract a positive endosymmetry on xA

and a negative endosymmetry on xB . Indeed, such an antecedent consists in (xS ,θA,θB) where

θA : xSA �A xA and θB : xSB �A xB . By Lemma A.7, those decompose as

θA = Θ+A ◦ Θ−
A, θB = Θ−

B ◦ Θ+B

where Θ−
A : xSA �

−
A xA, Θ

+
A : xA �A xA, Θ

+
B : xSB �

+
B xB and Θ−

B : xB �
−
B xB . To (xS ,θA,θB), we simply

associate Θ+A and Θ−
B .

Reciprocally, for any (yS ,φ
+
B ,φ

−
A) ∈ Y(σ , xA, xB), and Θ+A : xA �

+
A xA, Θ

−
B : xB �

−
B xB , we can

construct some (xS ,θA,θB) antecedent for (yS ,φ
+
B ,φ

−
A). By Lemma 3.19 of [Castellan et al. 2019],

we may redecompose Θ−
B ◦ ψ+B as θ+B ◦ θ−B , for θ

−
B : ySB �

−
B zB and θ+B : zB �

+
B xB . Likewise, we

may redecompose Θ+A ◦ ψ−
A as θ−A ◦ θ+A, for θ

+
A : ySA �

+
A zA and θ−A : zA �

−
A xA. By Lemma B.4 of

[Castellan et al. 2019], there is φS : yS �S xS and Ξ+B : zB �
+
B xSB , Ξ

−
A : zA �

−
A xSA such that, writing

σφS = φ
S
A ∥ φSB , we have φ

S
B = Ξ+B ◦ θ−B and φSA = Ξ−

A ◦ θ+A. Then,

(xS , (Θ
+
A)

−1 ◦ θ−A ◦ (Ξ−
A)

−1, (Θ−
B)

−1 ◦ θ+B ◦ (Ξ+B)
−1)

is an antecedent for (yS ,φ
+
B ,φ

−
A): re-performing the construction yields ΩS : yS �S x ′

S , and then

ΩS ◦ φ
−1
S : xS �S x ′

S whose image in A⊥ ∥ B is easily shown to be positive, concluding by Lemma

3.28 of [Castellan et al. 2019] following similar lines as above.

Finally, that these transformations are inverse of one another is a direct verification using Lemma

3.28 of [Castellan et al. 2019] and the uniqueness of the decomposition of symmetries, again with a

similar reasoning as above. □

With that, we are finally equipped to prove the desired simplification.

Lemma A.10. Let σ : S → A⊥ ` B be a quantum strategy, and let xA ∈ E�A and xB ∈ E�B . Then,

σxA,xB =
∑

xS ∈witσ (xA,xB)

γ+xSB,xB
◦ Q�

σ (xS) ◦ γ
−

xA,x
S
A
∈ CPM(H(xA),H(xB)) .

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:36 Pierre Clairambault and Marc de Visme

Proof. We calculate.

σxA,xB =
∑

xS ∈witσ (xA,xB)

γxSB,xB
◦ Q�

σ (xS) ◦ γxA,xSA

=
1

|xA | · |xB |

∑
xS ∈witσ (xA,xB)

∑
θB :xSB�BxB

∑
θA :xA�Ax

S
A

�H(θB) ◦ Q
�
σ (xS) ◦

�H(θA)

=
1

|xA | · |xB |

∑
(xS ,θA,θB)∈X(σ ,xA,xB)

�H(θB) ◦ Q
�
σ (xS) ◦

�H(θA)

=
|xA |+ · |xB |−
|xA | · |xB |

∑
(yS ,φ−

A,φ
+
B)∈Y(σ ,xA,xB)

�H(φ+B) ◦ Q
�
σ (yS) ◦

�H(φ−A)

=
1

|xA |− · |xB |+

∑
yS ∈witσ (xA,xB)

∑
φ−
A :xA�

−
Ax

S
A

∑
φ+B :x

S
B�
+
BxB

�H(φ+B) ◦ Q
�
σ (yS) ◦

�H(φ−A)

=
∑

xS ∈witσ (xA,xB)

γ+xSB,xB
◦ Q�

σ (xS) ◦ γ
−

xA,x
S
A
.

where we have used linearity and Scott-contunuity of composition and scalar multiplication

to distribute them over the sums. We also used Lemma A.9 in the fourth line, then used that

|xB | = |xB |− · |xB |+ as xB is canonical (and likewise for A). □

A.4 Synchronization up to symmetry.
We now set to prove the congruence lemma. For this purpose we need to relate composition of

configurations on the nose, and up to symmetry. The problem of relating these two notions of

composition is at the heart of the developments of [Castellan et al. 2019] and is studied in depth

there. In particular, let us recall the following result (Lemma 3.23 in [Castellan et al. 2019]).

Lemma A.11 (Weak bipullback property). Let σ : S → A and τ : T → A⊥ be pre-∼-strategies.
Let xS ∈ C (S) and xT ∈ C (T) and θ : σxS �A τxT , such that the composite bijection

xS
σ
≃ σxS

θ
�A τxT

τ
≃ xT

is secured. Then, there exist yS ∈ C (S) and yT ∈ C (T) causally compatible, along with θS : xS �S yS
and θT : yT �T xT , such that τθT ◦ σθS = θ . Moreover, yS ,yT are unique up to symmetry.

In our situation of interest, for fixed xB ∈ E�B , xT ∈ wit�τ (xB , xC), xS ∈ wit�σ (xA, xB) and θ : xSB �B
xTB , we instantiate this lemma with pre-∼-strategies σ ∥ (C⊥)− : S ∥ (C⊥)− → A⊥ ∥ B ∥ C⊥

and

A− ∥ τ : A− ∥ T → A ∥ B⊥ ∥ C , and symmetry

xSA ∥ xSB ∥ xTC
xSA ∥θ ∥xTC
�A ∥B ∥C xSA ∥ xTB ∥ xTC .

Since we are interested in the composition of visible strategies, by Lemma A.3 the securedness

condition of the weak bipullback lemma comes for free. Therefore, by Lemma A.11, there are

θS ∥ θ+C : xS ∥ xTC �S ∥(C⊥)− yS ∥ yC θ−A ∥ θT : yA ∥ yT �A− ∥T xSA ∥ xT

causally compatible, i.e. σ yS = yA ∥ yB and τ yT = yB ∥ yC , the induced bijection is secured; and

(θ−A ∥ τθT) ◦ (σθS ∥ θ+C) = xSA ∥ θ ∥ xTC .

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:37

In particular, writing σθS = θ
S
A ∥ θSB and τθT = θ

T
B ∥ θTC , this implies that

θSA = (θ−A)
−1 θTB ◦ θSB = θ θ+C = (θTC)

−1 .

Now, assume furthermore that A,B and C are quantum arenas, and that σ and τ are quantum

strategies. Then, by preservation of quantum valuations under symmetry, we have:

Q�
σ (yS) =

�H(θSB) ◦ Q
�
σ (xS) ◦

�H(θSA)
−1

Q�
τ (yT) =

�H(θTC)
−1

◦ Q�
τ (xT) ◦

�H(θTB) .

Putting everything together, we can calculate:

Q�
τ (xT) ◦

�H(θ) ◦ Q�
σ (xS) =

�H(θTC) ◦ Q
�
τ (yT) ◦

�H(θTB)
−1

◦ �H(θ) ◦ �H(θSB)
−1

◦ Q�
σ (yS) ◦

�H(θSA)

= �H(θ+C)
−1

◦ Q�
τ (yT) ◦ Q

�
σ (yS) ◦

�H(θ−A)
−1
.

In summary, we have proved:

Lemma A.12. Let A,B,C be quantum arenas and σ : S → A⊥ ` B, τ : T → B⊥ ` C be visible
quantum strategies with symmetry. Then, for all xS ∈ C (S) with σxS = xSA ∥ xSB , for all xT ∈ C (T)

with τxT = xTB ∥ xTC , for all θ : xSB �B xTB , the data of θS : xS �S yS , θT : yT �T xT (writing
σyS = yA ∥ yB and τyT = yB ∥ yC), θ+C : xTC �C+ yC and θ−A : yA �A−

xSA; as provided by Lemma
A.11 additionally satisfies

Q�
τ (xT) ◦

�H(θ) ◦ Q�
σ (xS) =

�H(θ+C)
−1

◦ Q�
τ (yT) ◦ Q

�
σ (yS) ◦

�H(θ−A)
−1
.

A.5 Quantitative synchronization up to symmetry
In order to prove congruence, we must strengthen the above to a quantitative analysis of synchro-
nization up to symmetry.

Lemma A.13. Fix xA ∈ E�A , xB ∈ E�B and xC ∈ E�C . Then, the construction of Lemma A.11 can be
strengthened into a one-to-one correspondence between

(i) Tuples (xS ,xT ,θ+B ,θ
−
B) where xS ∈ wit�σ (xA, xB), xT ∈ wit�τ (xB , xC), θ

+
B : xSB �

+
B xB and

θ−B : xB �
−
B xTB ;

(ii) Triples (yS ,yT ,ΘB) where ΘB : yB �B xB , yS ∈ wit�σ (xA,yB) and yT ∈ wit�τ (yB , xC) such that
σS = yA ∥ yB and τyT = yB ∥ yC .

Proof. (i)→(ii). To construct the first half of this correspondence, we show that given the data

for (i), there is a unique choice in the data for (ii) such that there are

ψS ∥ ψ+C : xS ∥ xTC �S ∥(C⊥)− yS ∥ yC ψ−
A ∥ ψT : yA ∥ yT �A− ∥T xSA ∥ xT

such that θ+B ◦ (ψ S
B)

−1 = (θ−B)
−1 ◦ψT

B = ΘB – writing σψS = ψ
S
A ∥ ψ S

B and likewise for T . We will

use, later on, that in this case, the induced bijection between yS ∥ yC and yA ∥ yT is automatically

secured by Lemma A.3, and the pair (yS ,yT) is a minimal causally compatible pair as yS and yT are

+-covered. So, we have yT ⊙ yS ∈ C (T ⊙ S) by Proposition 3.6.

Existence. For this data, the constructions above (in particular, Lemma A.11) give yB ∈ xB and

yS ∈ wit�σ (xA,yB) yT ∈ wit�τ (yB , xC)

such that (ψ−
A ∥ τψT) ◦ (σψS ∥ ψ+C) = xSA ∥ θB ∥ xTC , writing θB = θ−B ◦ θ+B . In other words,

θB = ψ
T
B ◦ψ S

B , i.e. θ
+
B ◦ (ψ S

B)
−1 = (θ−B) ◦ψ

T
B , which we set as ΘB : yB �B xB .

Uniqueness. Take y ′B ∈ xB , y ′S ∈ witσ (xA,y
′
B),y

′
T ∈ witτ (y ′B , xC) such that σy ′S = y ′A ∥ y ′B ,

τy ′T = y
′
B ∥ y ′C , and such that there are also

φS ∥ φ+C : xS ∥ xTC �S ∥(C⊥)− y ′S ∥ y ′C φ−A ∥ φT : y ′A ∥ y ′T �A− ∥T xSA ∥ xT

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:38 Pierre Clairambault and Marc de Visme

such that θ+B ◦ (φSB)
−1 = (θ−B)

−1 ◦ φTB = Θ′
B . In particular, we have

φS ◦ψ
−1
S : yS �S y

′
S φ−1T ◦ψT : yT �T y

′
T

such that, through direct calculations with our hypotheses,

σ (φS ◦ψ
−1
S) = (φ−A)

−1 ◦ψ−
A ∥ (φTB)

−1 ◦ψT
B : yA ∥ yB �A− ∥B y ′A ∥ y ′B

τ (φ−1T ◦ψT) = φSB ◦ (ψ S
B)

−1 ∥ φ+C ◦ (ψ+C)
−1

: yB ∥ yC �B ∥C+ y ′B ∥ y ′C

but (φTB)
−1 ◦ ψT

B = φ
S
B ◦ (ψ S

B)
−1
; since φTB ◦ φSB = ψ

T
B ◦ ψ S

B by hypothesis. By construction of the

symmetry of composition [Castellan et al. 2019], this means that

(φ−1T ◦ψT) ⊙ (φS ◦ψ
−1
S) : yT ⊙ yS �T ⊙S y

′
T ⊙ y ′S ,

but furthermore this symmetry of the composition projects to

(φ−A)
−1 ◦ψ−

A ∥ φ+C ◦ (ψ+C)
−1

: yA ∥ yC �
+
A⊥ ∥C y ′A ∥ y ′C

so (φ−1T ◦ ψT) ⊙ (φS ◦ ψ−1
S) is the identity by Lemma 3.28 of [Castellan et al. 2019]; hence yS =

y ′S ,yT = y
′
T , φ

−1
T ◦ ψT = idyT and φS ◦ ψ−1

S = idyS . For symmetric reasons, ψ−1
T ◦ φT = idyT and

ψ−1
S ◦ φS = idyS , henceψT = φT andψS = φS . Therefore, we also have ΘB = Θ′

B .

(ii)→(i). Let us now give the construction in the other direction. Take ΘB : yB �B xB , yS ∈

wit�σ (xA,yB) and yT ∈ wit�τ (yB , xC) such that σS = yA ∥ yB and τyT = yB ∥ yC . By Lemma 3.19 of

[Castellan et al. 2019], ΘB decomposes uniquely into

yB
Θ−
B
�−B zB

Θ+B
�+B xB .

By Lemma B.4 of [Castellan et al. 2019], there is a unique φS : yS �S xS such that σφS = φ
−
A ∥

(φ+B ◦Θ
−
B), where φ

−
A : yA �

−
A xSA, and φ

+
B : zB �

+
B xSB . In particular, xS ∈ wit�σ (xA, xB). Symmetrically,

ΘB decomposes uniquely into

yB

Ξ+B
�+B z ′B

Ξ−
B
�−B xB .

Again by Lemma B.4 of [Castellan et al. 2019], there is a unique ψT : yT �T xT such that

τψT = (ψ−
B ◦ Ξ+B) ∥ ψ

+
C , whereψ

+
C : yC �

+
C xTC , andψ

−
B : z ′B �

−
B xTB . In particular, yT ∈ wit�τ (xB , xC).

Finally, we define θ+B and θ−B respectively as the two compositions

xSB
φ+B
�B zB

Θ+B
�B xB xB

(Ξ−
B)

−1

�B z ′B
ψ −
B
�B xTB .

Now, we must prove that these two constructions are inverse of each other.

(i)→(ii)→(i). Consider xS ∈ wit�σ (xA, xB), xT ∈ wit�τ (xB , xC), θ
+
B : xSB �

+
B xB , and θ

−
B : xB �

−
B xTB .

To these, we associate by Lemma A.11 some yB ∈ xB and

yS ∈ wit�σ (xA,yB) yT ∈ wit�τ (yB , xC)

such that (ψ−
A ∥ τψT) ◦ (σψS ∥ ψ+C) = xSA ∥ θB ∥ xTC . In other words, θB = ψ

T
B ◦ψ S

B , i.e. θ
+
B ◦ (ψ S

B)
−1 =

(θ−B) ◦ψ
T
B , which we set as ΘB : yB �B xB . We now apply the construction back. For that, we first

decompose ΘB in two different ways as shown below.

xB
θ−B

xSB

θ+B ..

ψ S
B

00

(φ+B)
−1

// zB

Θ+B ??

z ′B

Ξ−
B__

ω−
B // xTB

yB
Θ−
B

__

Ξ+B

??

ψT
B

>>

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:39

By Lemma B.4 of [Castellan et al. 2019], there is a unique φS : yS �S x ′
S such that σφS = φ

−
A ∥

(φ+B ◦ Θ−
B), where φ

−
A : yA �

−
A x ′

A
S
, and φ+B : zB �

+
B x ′

B
S
. Now, we consider φS ◦ψS : xS �S x ′

S and,

projecting it, we notice that

σ (φS ◦ψS) = φ−A ◦ψ−
A ∥ φ+B ◦ Θ−

B ◦ψ S
B

= φ−A ◦ψ−
A ∥ φ+B ◦ (Θ+B)

−1 ◦ θ+B

which is in �+A⊥ ∥B , hence xS = x ′
S and φS ◦ ψS = idxS by Lemma 3.28 of [Castellan et al. 2019].

Projecting this latter equality to B, we have in particular that the dashed arrow on the left in the

diagram above makes the two square halves commute. The same argument applied on the side ofT
gives us ωT : yT �T xT such that τωT = (ω−

B ◦Ξ
+
B) ∥ ω

+
C , where ω

+
C : yC �

+
C xTC , and ω

−
B : z ′B �

−
B xTB .

Finally, the construction redefines θ+B and θ−B as the two compositions

xSB
φ+B
�B zB

Θ+B
�B xB xB

(Ξ−
B)

−1

�B z ′B
ω−
B
�B xTB

which, as appears in the diagram, are equal to the original θ+B and θ−B .
(ii)→(i)→(ii). Follows directly from the uniqueness in the construction of (i)→(ii). □

A.6 Proof of congruence
We are now in position to wrap up the proof. In the following manipulations, besides rewriting

the sum according to bijections introduced in separate lemmas, we use again linearity and Scott-

continuity of composition and scalar multiplication to distribute them over sums.

We calculate:∑
xB ∈E�B

τxB,xC ◦ σxA,xB

=
∑

xB ∈E�B

©«
∑

xT ∈witτ (xB,xC)

γ+xTC ,xC
◦ Q�

τ (xT) ◦ γ
−

xB,x
T
B

ª®¬ ◦ ©«
∑

xS ∈witσ (xA,xB)

γ+xSB,xB
◦ Q�

σ (xS) ◦ γ
−

xA,x
S
A

ª®¬
=

∑
xB ∈E�B

1

|xB |− · |xB |+

∑
xT ∈witτ (xB,xC)

∑
xS ∈witσ (xA,xB)

∑
θ−B :xB�

−
Bx

T
B

∑
θ+B :x

S
B�
+
BxB

γ+xTC ,xC
◦ Q�

τ (xT) ◦
�H(θB) ◦ Q

�
σ (xS) ◦ γ

−

xA,x
S
A

where θB = θ
−
B ◦ θ+B . Now, by Lemmas A.13 and A.12, this sum is the same as∑

xB ∈E�B

1

|xB |− · |xB |+

∑
yB ∈xB

∑
ΘB :yB�BxB

∑
yS ∈witσ (xA,yB)
σyS=yA ∥yB

∑
yT ∈witσ (yB,xC)
τyT =yB ∥yC

γ+yC ,xC ◦ Q�
τ (yT) ◦ Q

�
σ (yS) ◦ γ

−
xA,yA

But now, we note that the inner sum does not actually depend on Θ, so this is the same as

∑
xB ∈E�B

|xB |

|xB |− · |xB |+

∑
yB ∈xB

∑
yS ∈witσ (xA,yB)
σyS=yA ∥yB

∑
yT ∈witσ (yB,xC)
τyT =yB ∥yC

γ+yC ,xC ◦ Q�
τ (yT) ◦ Q

�
σ (yS) ◦ γ

−
xA,yA

Now, since xB is canonical, we have as observed before the calculation that |xB | = |xB |− · |xB |+
so the above amounts to

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:40 Pierre Clairambault and Marc de Visme

∑
xB ∈E�B

∑
yB ∈xB

∑
yS ∈witσ (xA,yB)
σyS=yA ∥yB

∑
yT ∈witσ (yB,xC)
τyT =yB ∥yC

γ+yC ,xC ◦ Q�
τ (yT) ◦ Qσ (yS) ◦ γ

−
xA,yA

=
∑

yB ∈EB

∑
yS ∈witσ (xA,yB)
σyS=yA ∥yB

∑
yT ∈witσ (yB,xC)
τyT =yB ∥yC

γ+yC ,xC ◦ Q�
τ (yT) ◦ Qσ (yS) ◦ γ

−
xA,yA

Now, to conclude, we prove the following lemma.

Lemma A.14. Let σ : S → A⊥ ` B and τ : T → B⊥ ` C be quantum strategies, and xA ∈ E�A ,
xB ∈ E�B . Then, there is a one-to-one correspondence between:

• Triples (yB ,yS ,yT) with yB ∈ EB , yS ∈ witσ (xA,yB), yT ∈ witτ (yB , xC), such that σyS = yA ∥

yB and τyT = yB ∥ yC ;
• Configurations yT ⊙ yS ∈ witτ ⊙σ (xA, xC).

Proof. Observe that in the first triple, yB is actually redundant. From matching yS and yT as

indicated, by Lemma A.3 their interaction is deadlock-free and we can form their composition

yT ⊙ yS , which is still +-covered, and by construction yT ⊙ yS ∈ witτ ⊙σ (xA, xC).
In the other direction, from yT ⊙ yS ∈ witτ ⊙σ (xA, xC) we obtain yS ,yT with σyS = yA ∥ yB

and τyT = yB ∥ yT . By hypothesis, yA ∈ EA and yC ∈ EC . But we still have to prove that

yB ∈ EB . For that, we use that σ and τ are winning. Because σ is winning, yA ∥ yB ∈ WA⊥`B . If

yA ∥ yB ∈ EAperp`B , then yB ∈ EB and we are done. Otherwise, since yA ∈ EA, it is not in WA⊥ .

Therefore,yB ∈ WB . Now, since τ is winning, we know thatyB ∥ yC ∈ WB⊥`C . IfyB ∥ yC ∈ EB⊥`C
then yB ∈ EB absurd, so yB ∥ yC ∈ WB⊥`C . If yB ∈ WB⊥ , absurd. So, yC ∈ WC . But we know that

yC ∈ EC , so this is absurd as well. Hence, finally, we conclude that yB ∈ EB as required.

It is evident that these constructions are inverse of each other. □

Using this lemma, we can finally rewrite the above to∑
yT ⊙S ∈witτ ⊙σ (xA,xC)

γ+yC ,xC ◦ Q�
τ ⊙σ (yT ⊙S) ◦ γ

−
xA,yA

= (τ ⊙ σ)xA,xC .

Overall, we have proved the following result:

Proposition A.15. Let σ : S → A⊥ ` B and τ : T → B⊥ ` C be quantum strategies, and let
xA ∈ E�A , xC ∈ E�C . Then we have

(τ ⊙ σ)xA,xC =
∑

xB ∈E�B

τxB,xC ◦ σxA,xB .

Proof. Obvious, putting together the reasoning above along with Lemma A.10. □

B PROPERTIES OF TEST TERMS
In this section, we give detailed proof of the properties of the test terms. We assume the following

notations: The P-skeleton of a formal series S is written sklP(S). The classical parameters of

⇓Ax are written FPA(x). Those of ⇑Ax are written FP∗A(x). When defining ⇓Ax , we write nA(x) the

number of times ⇑
qbit
{q } or ⇓

qbit
{q } was used in the inductive definition. We assume the following

naming convention: for the i-th use of ⇑
qbit
{q } or ⇓

qbit
{q } in ⇓Ax (for 1 ≤ i ≤ nA(x)), the parameters used

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:41

are αi , βi ,γi ,δi . The quantum parameters of ⇓Ax and ⇑Ax are written QPA(x). We have QPA(x) =
{α1, β1,γ1,δ1, . . . ,αnA(x), βnA(x),γnA(x),δnA(x)}.

B.1 Distinguishing quantum data trough test terms
We first give a formal definition to the maps h and h∗, which represent the test terms and generation

terms on qbit.

Definition B.1.

hα,β,γ ,δ := z 7→ z·

(
α

4

(
1 0

0 0

)
+
β

4

(
0 0

0 1

)
+
γ

4

(
1/2 1/2

1/2 1/2

)
+
δ

4

(
1/2 i/2
−i/2 1/2

))
∈ CPM[α , β,γ ,δ](I ,C2)

We write hα,β,γ ,δ for the map of CPM[α , β ,γ ,δ]((C2)∗, I) obtained trough compact closure.

h∗α,β,γ ,δ :=

(
a b
c d

)
7→

α

4

a +
β

4

d +
γ

4

a + b + c + d

2

+
δ

4

a + ib − ic + d
2

∈ CPM[α , β ,γ ,δ](C2, I)

We write h∗α,β,γ ,δ for the map of CPM[α , β ,γ ,δ](I , (C2)∗) obtained trough compact closure.

We remark that trough the isomorphism between C2 and (C2)∗, we obtain that h and h∗ are
isomorphic, and h∗ and h are isomorphic.

Lemma B.2. Let A be a type, and x ∈ E�JAK. Up to isomorphism between C2 and (C2)∗, we have:

∃N +x ∈ N, sklFPA(x)
(
J⇓Ax K{()},x

)
=

1

N +x

⊗
1≤i≤nA(x)

h∗αi ,βi ,γi ,δi

∃N −
x ∈ N, sklFP

∗
A(x)

(
J⇑Ax Kx, {()}

)
=

1

N −
x

⊗
1≤i≤nA(x)

hαi ,βi ,γi ,δi

Moreover, all the configurations of witJ⇓Ax K(x, {()}) are symmetric, and so are all the configurations of
witJ⇑Ax K({()}, x).

Proof. Weproceed by induction on the typeA, similarly to the proof of lemma B.6. This induction

prove the expected equalities, and that there is only one equivalence class in both witJ⇓Ax K(x, {()})
and witJ⇑Ax K({()}, x).
For a −-arena N , we write ↓I N for the +-arena with an additional positive event (with trivial

Hilbert space), lesser than all the events of N . We write ↓ y (for y ∈ C(N)) for its configurations.

Conversely, for a +-arena P , we write ↑I P for the −-arena with an additional negative event

(with trivial Hilbert space), lesser than all the events of P . We write ↑ y (for y ∈ C(P)) for its
configurations.

• If A = 1 or A = qbit, it is true for N +x = N −
x = 1. There is a unique equivalence class.

• If A = B ⊕ C , then x is isomorphic to a configuration x′ of B (or C). If we take N +x = N +x′ and
N −
x = N −

x′ , and use the induction hypothesis on B (orC), we obtain the expected equality. The

number of equivalence class is preserved, so there is a unique one.

• If A = B ⊗ C , then x is isomorphic to a pair of configuration xB , xC of B and C . If we take
N +x = N +xBN

+
xC and N −

x = N −
xBN

−
xC , and use the induction hypothesis on B and C , we obtain

the expected equality. The number of equivalence class is a product, so the is a unique one.

• If A = B ⊸ C , then x is isomorphic to a pair of configuration xB , xC of B and C . If we take
N +x = N −

xBN
+
xC and N −

x = N +xBN
−
xC , and use the induction hypothesis on B and C , and the fact

that h and h∗ are related trough compact closure (and isomorphism), we obtain the expected

equality. The number of equivalence class is a product, so there is a unique one.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:42 Pierre Clairambault and Marc de Visme

• If A =!(B ⊸ C), and x = {•}, then the property is true for N +x = N −
x = 1.

• If A =!(B ⊸ C), and x =↓ | |
i ∈I

xi , we have

sklFPA(x)
(
J⇓Ax Kx, {()}

)
=

⊗
i ∈I

sklFPA(↓xi)
(
J⇓B⊸C

↓xi
K↓xi , {()}

)
We use the induction hypothesis, and we take N +x =

∏
i ∈I N

+
↓xi

, and we obtain the expected

equality for ⇓Ax . The number of equivalence class is obtained by product, so there is a unique

one.

For ⇑Ax , we consider y ∈ witJ⇑Ax K({()}, x). Using a similar reasoning than in lemma B.6, we

have y =↑↓ (y1 | | . . . | |y |I |) with J⇑Ax K(↑↓ yj) = {()},↓ xi j and {i j | 1 ≤ j ≤ |I |} = |I |. We have:

sklFP
∗
A(x)

(
QJ⇑Ax K(y)

)
=

⊗
i ∈I

1

|I |
sklFP

∗
A(↓xij)

(
QJ⇑B⊸C

↓xij
K(↑↓ yj)

)
Permutations of the |I | yield a symmetric configuration in the strategy, so there is only one

equivalence class in witJ⇑Ax K({()}, x), and we obtain:

sklFP
∗
A(x)

(
J⇑Ax K

{()},x

)
=

⊗
i ∈I

1

|I |
sklFP

∗
A(↓xi)

(
J⇑B⊸C

↓xi
K
{()},↓xi

)
By taking N −

x =
∏

i ∈I |I |N
−
↓xi

, we obtain the expected property.

• If A = Bℓ
, then x is isomorphic to x′ ∈ E�B⊗n for some n. If we take Nx = Nx′ , and use the

induction hypothesis on B⊗n
, we obtain the expected equality. The number of equivalence

classes is preserved.

□

Lemma B.3. Le A be a type, and x ∈ E�JAK. We have:

∀φ,φ ′ ∈ CPM(I ,H(x)), sklFPA(x)
(
J⇓Ax K{()},x

)
◦ φ = sklFPA(x)

(
J⇓Ax K{()},x

)
◦ φ ′ ⇐⇒ φ = φ ′

∀φ,φ ′ ∈ CPM(H(x), I),φ ◦ sklFP
∗
A(x)

(
J⇑Ax Kx, {()}

)
= φ ′ ◦ sklFP

∗
A(x)

(
J⇑Ax Kx, {()}

)
⇐⇒ φ = φ ′

Proof. We consider

⊗
1≤i≤n

h∗αi ,βi ,γi ,δi , and look at the instantiations of the parameters such that

for every 1 ≤ i ≤ n, exactly one of the {αi , βi ,γi ,δi } is instantiated to one, and the others to

zero. We obtain the maps t1 . . . t4n ∈ CPM(C2
n
, I). Those maps form a R-basis of the positive cone

CPM(C2
n
, I). So if we considerM,N two positive hermitian matrices, then ∀1 ≤ k ≤ 4

n , tk (M) =

tk (N) if and only ifM = N . Using this property and lemma B.2, we immediately have:

∀φ,φ ′ ∈ CPM(I ,H(x)), sklFPA(x)
(
J⇓Ax K{()},x

)
◦ φ = sklFPA(x)

(
J⇓Ax K{()},x

)
◦ φ ′ ⇐⇒ φ = φ ′

We proceed symmetrically for J⇑Ax Kx, {()} . □

B.2 Bounding valuations using test terms
We first introduce the notation CPM≤N (H ,K) for the set of f ∈ CPM(H ,K) such that ∀M ∈ Pos(H)

with tr(M) = 1, tr(f (M)) ≤ N . We remark that CPM≤1(H ,K) is the set of superoperators, and that:

tr(f) ≤ N =⇒ f ∈ CPM≤N (H ,K) =⇒ tr(f) ≤ N · dim(H)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:43

Lemma B.4. Let A,B two types, and xA ∈ E�JAK and xB ∈ E�JBK. We write T for the term ⇓BxB
with every parameter of QPB (xB) instantiated to 1, and G for ⇑AxA with every parameter of QPA(xA)

instantiated to 1. There exists NxA,xB ∈ N such that for every f ∈ CPM(H(xA),H(xB)), if we have:

sklFPB (xB)
(
JT KxB, {()}

)
◦ f ◦ sklFP

∗
A(xA)

(
JGK{()},xA

)
≤ 1

then we have:
f ∈ CPM≤NxA,xB (H(xA),H(xB))

Proof. We start by defining T ′
and G ′

, where we instantiate all the αi and βi to 1, and all the γi
and δi to 0. Using lemma B.2, we obtain:

sklFPB (xB)
(
JT ′KxB, {()}

)
=

1

N +xB

1

nB (xB)
trH(xB)

sklFP
∗
A(xA)

(
JG ′K{()},xA

)
=

1

N −
xA

1

nA(xA)
1H(xA)

where 1H(xA) ∈ CPM(I ,H(xA)) corresponds to the identity matrix, and trH(xB) ∈ CPM(H(xB), I) is
the CPM map that traces its input. It follows that:

sklFPB (xB)
(
JT KxB, {()}

)
≥L

1

N +xB

1

nB (xB)
trH(xB)

sklFP
∗
A(xA)

(
JGK{()},xA

)
≥L

1

N −
xA

1

nA(xA)
1H(xA)

An interesting property of 1H(xA) is that it is greater for the Löwner order than every M ∈

CPM≤1(I ,H(xA)). Indeed, if we diagonaliseM = PDP−1
, then 1−M = P(1−D)P−1

, and since every

eigen value ofM is lesser or equal to one, 1 − D is positive, so 1 −M is positive.

It follows that for everyM ∈ CPM≤1(I ,H(xA)),

tr ◦ f (M) ≤ tr ◦ f ◦ 1H(xA) ≤ NxA,xB := N +xBnB (xB)N
−
xAnA(xA)

Hence f ∈ CPM≤NxA,xB (H(xA),H(xB)). □

Proposition B.5. Let A,B two types, and xA ∈ E�JAK and xB ∈ E�JBK. We write βB for the term ⇓BxB
with every parameter instantiated to 1, and β for ⇑AxA with every parameter instantiated to 1. For every

f ∈ CPM(H(xA),H(xB)), we have:

JβBKxB, {()} ◦ f ◦ JβAK{()},xA ≤ 1

then we have tr(f) finite and
f ∈ CPM(H(xA),H(xB))

Proof. All the maps we manipulate are positives, meaning that if a sum is included in another

sum, then it is lesser for the Löwner order. The skeleton of a formal series is the coefficient of a

monomial, hence it is lesser for the Löwner order than the instantiation of this series with all the

parameters at one. It follows that, using notation from lemma B.4, we have:

sklFPB (xB)
(
JT KxB, {()}

)
◦ f ◦ sklFP

∗
A(xA)

(
JGK{()},xA

)
≤ JβBKxB, {()} ◦ f ◦ JβAK{()},xA ≤ 1

The result follows from lemma B.4. □

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:44 Pierre Clairambault and Marc de Visme

B.3 Extracting a configuration trough test terms
Lemma B.6. Let A be a type, and x, x′ ∈ E�JAK. We have:

• For y ∈ witJ⇓Ax K(x
′, {()}), if sklFPA(x)

(
QJ⇓Ax K(y)

)
, 0 then x′ = x.

• For y ∈ witJ⇑Ax K({()}, x′), if sklFP
∗
A(x)

(
QJ⇑Ax K(y)

)
, 0 then x′ = x.

Proof. We proceed by induction on the type A.

• If A = 1, then necessarily J⇓Ax K(y) = x, {()}. Same reasoning apply for ⇑Ax .

• If A = qbit, then necessarily J⇓Ax K(y) = x, {()}. Same reasoning apply for ⇑Ax .

• If A = B ⊕ C and x = xB | |�, we have

J⇓Ax K = Jv : B ⊕ C ⊢ matchv with (wB
: ⇓BxB

(w) | wC
: ⊥) : 1K =

[
J⇓BxB K ; 0

]
It follows that J⇓Ax K and J⇓BxB K have isomorphic exhaustive configurations, and the same

quantum valuations on them. Using the induction hypothesis on B, we have the expected
property.

J⇑Ax K = J⊢ ιB⊕C
1

⇑BxB
: BK = ιB⊕C

1
⊙ J⇑BxB K

It follows that J⇑Ax K and J⇑BxB K have isomorphic exhaustive configurations, and the same

quantum valuations on them. Using the induction hypothesis on B, we have the expected
property.

• If A = B ⊕ C and x = �||xC , we proceed symmetrically.

• If A = B ⊗ C and x = xB ⊗ xC , we have

J⇓Ax K = J⇓BxB K ⊗ J⇓CxC K

It follows that the configurations of J⇓Ax K are isomorphic to pair of configuration of J⇓BxB K
and J⇓CxC K, and the quantum valuation is the tensor product. Being non-zero is exactly being

non-zero on both components, so using the induction hypothesis on B and C , we have the
expected property. Same reasoning apply for ⇑Ax .

• If A = (B ⊸ C) and x = xB ⊸ xC , we have:

J⇓Ax K = Jf : B ⊸ C ⊢ ⇓CxC
(f (⇑BxB

)) : 1K = J⇓CxC K ⊙ evC,B ⊙

(
(B ⊸ C) ⊗ J⇑BxB K

)
Since the annotation of a composition is the composition of the annotations, to have the

skeleton non-zero, we need it to be non-zero on each of the component of the composition.

Hence, by induction hypothesis on B and C , we obtain the expected property.

J⇑Ax K = J⊢ λvB .⇓BxB (v); ⇑
C
xC

K = ΛB

(
J⇑CxC K ⊙ J⇓BxB K

)
Yet again, since the annotation of a composition is the composition of the annotations, to

have the skeleton non-zero, we need it to be non-zero on each of the component of the

composition.

• If A =!(B ⊸ C) and x = {•}, then necessarily J⇓Ax K(y) = x| |{()}.
• If A =!(B ⊸ C) and x =↓ | |

1≤i≤I
xi , we have

J⇓Ax K = Jf :!(B ⊸ C) ⊢ ⇓B⊸C
↓x

1

(f) ; . . . ; ⇓B⊸C
↓xn

(f) : 1K

=

(
ℓ⊗

1≤i≤n

J⇓B⊸C
↓xi

K ⊙ dB⊸C

)
⊙ c |I |B⊸C

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Full Abstraction for theQuantum Lambda-Calculus 1:45

If the skeleton of the whole is non-zero, then necessarily the skeleton of each of the |I |
component is non-zero. Using the induction hypothesis on each of the component, we have

the expected property.

J⇑Ax K = J⊢ λvB .
∑
i ∈I

1

|I |
· Xi ·

(
⇑B⊸C
↓xi

)
v :!(B ⊸ C)K

= Λ!

B

(∑
i ∈I

Xi
|I |

· evC,B ⊙

(
J⇑B⊸C

↓xi
K ⊗ B

))
We recall that the skeleton is the coefficient of the monomial which has each parame-

ter of FP∗A(x) exactly once, which include each of the Xi exactly once. We consider y ∈

witJ⇑Ax K({()}, x). We remark that y has the form ↑↓ (y1 | | . . . | |yk), where each of the yj corre-

spond to a “call” to the function. For every 1 ≤ j ≤ k , there is a unique i j ∈ I such that yj is
correspond to the i j -th branch in the game, which implies that:

QJ⇑Ax K(↑↓ yj) =
Xij
|I |

· QJ⇑B⊸C
↓xij

K(↑↓ yj)

In fact, we have:

QJ⇑Ax K(y) =
⊗
1≤j≤k

Xij
|I |

· QJ⇑B⊸C
↓xij

K(↑↓ yj)

For the skeleton to be non-zero, we need the k = |I | and {i j | 1 ≤ j ≤ k} = I , and each of the

skeleton of the components to be non-zero. If we use the induction hypothesis on each of the

component, we obtain that:

J⇑B⊸C
↓xij

K(↑↓ yj) � {()}| | ↓ xi j

Combining all of them, we obtain:

J⇑Ax K(y) � {()}| |x

• If A = Bℓ
and x = x

1
⊗ . . . ⊗ xn , we have:

J⇓Ax K = Jl : Bℓ ⊢ if length(l) then ⇓Bx
1

(l .1) ; . . . ; ⇓Bxn (l .n) else⊥ : 1K

=

[
0; . . . ; 0;

ℓ⊗
1≤i≤n

J⇓Bxi K; 0; . . .

]
For the skeleton to be non-zero, then it has to be non-zero for each of the i ∈ I . Using the

induction hypothesis, we have the expected property.

J⇑Ax K = J⊢ [J⇑Bx
1

K, . . . , J⇑Bxn K] : B
ℓK

= ιB
ℓ

n ⊙

ℓ⊗
i ∈I

J⇑Bxi K

□

Proposition B.7. For any x ∈ EJAK, y ∈ E�JAK; the FPA(x)-skeleton of J⇓Ax Ky is non-zero iff x ∈ y.

Proof. The direct implication come from lemma B.6. The reverse implication come from lemma

B.2 (the sum over all the skeleton is non-zero, and there is only one element in the sum, so it is

non-zero). □

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Quantum -Calculus and Preliminaries
	2.1 The Parametrized Quantum -calculus
	2.2 Quantum Preliminaries

	3 Parametrized Quantum Game Semantics
	3.1 Linear Exhaustive Games
	3.2 Parametrized Quantum Annotations
	3.3 Extension with Symmetry
	3.4 Interpretation

	4 Observational Quotient
	4.1 The Observational Sum
	4.2 Congruence of the Observational Sum
	4.3 Convergence of the Observational Sum

	5 Full Abstraction for Games and Quantum Relations
	5.1 Testing Terms
	5.2 Full Abstraction
	5.3 Collapse to Quantum Relations

	Acknowledgments
	References
	A Congruence of the Observational Quotient
	A.1 Deadlock-free composition
	A.2 Canonical representatives of symmetry classes
	A.3 Polarization of
	A.4 Synchronization up to symmetry.
	A.5 Quantitative synchronization up to symmetry
	A.6 Proof of congruence

	B Properties of test terms
	B.1 Distinguishing quantum data trough test terms
	B.2 Bounding valuations using test terms
	B.3 Extracting a configuration trough test terms

