
Least and Greatest Fixpoints
in Game Semantics

Pierre Clairambault
pclairam@pps.jussieu.fr

PPS — Université Paris 7

Abstract. We show how solutions to many recursive arena equations
can be computed in a natural way by allowing loops in arenas. We then
equip arenas with winning functions and total winning strategies. We
present two natural winning conditions compatible with the loop con-
struction which respectively provide initial algebras and terminal coal-
gebras for a large class of continuous functors. Finally, we introduce an
intuitionistic sequent calculus, extended with syntactic constructions for
least and greatest fixed points, and prove it has a sound and (in a certain
weak sense) complete interpretation in our game model.

1 Introduction

The idea to model logic by game-theoretic tools can be traced back to the work
of Lorenzen [21]. The idea is to interpret a formula by a game between two
players O and P, O trying to refute the formula and P trying to prove it. The
formula A is then valid if P has a winning strategy on the interpretation of A.
Later, Joyal remarked [17] that it is possible to compose strategies in Conway
games [8] in an associative way, thus giving rise to the first category of games and
strategies. This, along with parallel developments in Linear Logic and Geometry
of Interaction, led to the more recent construction of compositional game models
for a large variety of logics [5,23,18] and programming languages [15,3,22,4].

We aim here to use these tools to model an intuitionistic logic with induction
and coinduction. Inductive/coinductive definitions in syntax have been defined
and studied in a large variety of settings, such as linear logic [6], λ-calculus [1]
or Martin-Löf’s type theory [9]. Motivations are multiple, but generally amount
to increasing the expressive power of a language without paying the price of
exponential modalities (as in [6]) or impredicativity (as in [1] or [9]). However,
less work has been carried out when it comes to the semantics of such construc-
tions. Of course we have the famous order-theoretic Knaster-Tarski fixed point
theorem [25], the nice categorical theory due to Freyd [11], set-theoretic mod-
els [9] (for the strictly positive fragment) or PER-models [20], but it seems they
have gone through the current trend of intensional models without notice. We fix
this issue here, showing that (co)induction admits a nice game-theoretic model
which arises naturally if one enriches McCusker’s [22] work on recursive types
with winning functions inspired by parity games [24].

In Section 2, we first recall the basic definitions of the Hyland-Ong-Nickau
setting of game semantics. Then we sketch McCusker’s interpretation of recursive
types, and show how most of these recursive types can be modelled by means
of loops in the arenas. For this purpose, we define a class of functors called
open functors, including in particular all the endofunctors built out of the basic
type constructors. We also present a mechanism of winning functions inspired by
[16], allowing us to build a category Gam of games and total winning strategies.
In section 3, we present µLJ , the intuitionistic sequent calculus with least and
greatest fixpoints that we aim to model. We briefly discuss its proof-theoretic
properties, then present its semantic counterpart: we show how to build initial
algebras and terminal coalgebras to most positive open functors. Finally, we use
this semantic account of (co)induction to give a sound and (weakly) complete
interpretation of µLJ in Gam.

2 Arena Games

2.1 Arenas and Plays

We recall briefly the now usual definitions of arena games, introduced in [15].
More detailed accounts can be found in [22,13]. We are interested in games with
two participants: Opponent (O, the environment) and Player (P, the program).
Possible plays are generated by directed graphs called arenas, which are semantic
versions of types or formulas. Hence, a play is a sequence of moves of the ambient
arena, each of them being annotated by a pointer to an earlier move — these
pointers being required to comply with the structure of the arena. Formally, an
arena is a structure A = (MA, λA,`A) where:

– MA is a set of moves,
– λA : MA → {O,P} × {Q,A} is a labelling function indicating whether a

move is an Opponent or Player move, and whether it is a question (Q) or an
answer (A). We write λOPA for the projection of λA to {O,P} and λQAA for
its projection on {Q,A}. λA will denote λA where the {O,P} part has been
reversed.

– `A is a relation between MA + {?} to MA, called enabling, satisfying:
• ? ` m =⇒ λA(m) = OQ;
• m `A n ∧ λQAA (n) = A =⇒ λQAA (m) = Q;
• m `A n ∧m 6= ? =⇒ λOPA (m) 6= λOPA (n).

In other terms, an arena is a directed bipartite graph, with a set of distinguished
initial moves (m such that ? `A m) and a distinguished set of answers (m such
that λQAA = A) such that no answer points to another answer. We now define
plays as justified sequences over A: these are sequences s of moves of A, each
non-initial move m in s being equipped with a pointer to an earlier move n in
s, satisfying n `A m. In other words, a justified sequence s over A is such that
each reversed pointer chain sφ(0) ← sφ(1) ← . . . ← sφ(n) is a path on A, viewed
as a directed bipartite graph.

The role of pointers is to allow reopenings in plays. Indeed, a path on A may
be (slightly naively) understood as a linear play on A, and a justified sequence
as an interleaving of paths, with possible duplications of some of them. This
intuition is made precise in [14]. When writing justified sequences, we will often
omit the justification information if this does not cause any ambiguity. v will
denote the prefix ordering on justified sequences. If s is a justified sequence on
A, |s| will denote its length.

Given a justified sequence s on A, it has two subsequences of particular
interest: the P-view and O-view. The view for P (resp. O) may be understood
as the subsequence of the play where P (resp. O) only sees his own duplications.
In a P-view, O never points more than once to a given P-move, thus he must
always point to the previous move. Concretely, P-views correspond to branches
of Böhm trees [15]. Practically, the P-view psq of s is computed by forgetting
everything under Opponent’s pointers, in the following recursive way:

– psmq = psqm if λOPA (m) = P ;
– psmq = m if ? `A m and m has no justification pointer;
– ps1ms2nq = psqmn if λOPA (n) = O and n points to m.

The O-view xsy of s is defined dually. Note that in some cases — in fact if s
does not satisfies the visibility condition introduced below — psq and xsy may
not be correct justified sequences, since some moves may have pointed to erased
parts of the play. However, we will restrict to plays where this does not happen.
The legal sequences over A, denoted by LA, are the justified sequences s on
A satisfying the following conditions:

– Alternation. If tmn v s, then λOPA (m) 6= λOPA (n);
– Bracketing. A question q is answered by a if a is an answer and a points

to q. A question q is open in s if it has not yet been answered. We require
that each answer points to the pending question, i.e. the last open question.

– Visibility. If tm v s and m is not initial, then if λOPA (m) = P the justifier
of m appears in ptq, otherwise its justifier appears in xty.

2.2 The cartesian closed category of Innocent strategies

A strategy σ on A is a prefix-closed set of even-length legal plays on A. A
strategy is deterministic if only Opponent branches, i.e. ∀smn, smn′ ∈ σ, n =
n′. Of course, if A represents a type (or formula), there are often many more
strategies on A than programs (or proofs) on this type. To address this issue we
need innocence. An innocent strategy is a strategy σ such that

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ LA ∧ psaq = ptaq =⇒ tab ∈ σ

We now recall how arenas and innocent strategies organize themselves into
a cartesian closed category. First, we build the product A×B of two arenas A
and B:

MA×B = MA +MB

λA×B = [λA, λB]
`A×B = `A + `B

We mention the empty arena I = (∅, ∅, ∅), which will be terminal for the
category of arenas and innocent strategies. We mention as well the arena ⊥ =
(•, • 7→ OQ, (?, •)) with only one initial move, which will be a weak initial object.
We define the arrow A⇒ B as follows:

MA⇒B = MA +MB

λA⇒B = [λA, λB]

m `A⇒B n⇔


m 6= ? ∧m `A n
m 6= ? ∧m `B n
? `B m ∧ ? `A n
m = ? ∧ ? `B n

We define composition of strategies by the usual parallel interaction plus
hiding mechanism. If A, B and C are arenas, we define the set of interactions
I(A,B,C) as the set of justified sequences u over A, B and C such that u�A,B ∈
LA⇒B , u�B,C ∈ LB⇒C and u�A,C ∈ LA⇒C . Then, if σ : A⇒ B and τ : B ⇒ C,
we define parallel interaction:

σ||τ = {u ∈ I(A,B,C) | u�A,B ∈ σ ∧ u�B,C ∈ τ}

Composition is then defined as σ; τ = {u�A,C | u ∈ σ||τ}. It is associative and
preserves innocence (a proof of these facts can be found in [15] or [13]). We also
define the identity on A as the copycat strategy (see [22] or [13] for a definition)
on A ⇒ A. Thus, there is a category Inn which has arenas as objects and
innocent strategies on A⇒ B as morphisms from A to B. In fact, this category
is cartesian closed, the cartesian structure given by the arena product above and
the exponential closure given by the arrow construction. This category is also
equipped with a weak coproduct A+B, which is constructed as follows:

MA+B = MA +MB + {q, L,R}
λA+B = [λA, λB , q 7→ OQ,L 7→ PA,R 7→ PA]

m `A+B n⇔


m,n ∈MA ∧m `A n
m, n ∈MB ∧m `B n
m = ? ∧ n = q
(m = q ∧ n = L) ∨ (m = q ∧ n = R)
(m = L ∧ ? `A n) ∨ (m = R ∧ ? `B n)

2.3 Recursive types and Loops

Let us recall briefly the interpretation of recursive types in game semantics, due
to McCusker [22]. Following [22], we first define an ordering E on arenas as
follows. For two arenas A and B, AEB iff

MA ⊆MB

λA = λB�MA

`A = `B ∩ (MA + {?} ×MA)

This defines a (large) dcpo, with least element I and directed sups given by the
componentwise union. If F : Inn → Inn is a functor which is continuous with
respect to E, we can find an arena D such that D = F (D) in the usual way by
setting D =

⊔∞
n=0 F

n(I). McCusker showed[22] that when the funtors are closed
(i.e. their action can be internalized as a morphism (A ⇒ B) → (FA ⇒ FB)),
and when they preserve inclusion and projection morphisms (i.e. partial copycat
strategies) corresponding to E, this construction defines parametrized minimal
invariants [11]. Note that the crucial cases of these constructions are the functors
built out of the product, sum and function space constructions.

We give now a concrete and new (up to the author’s knowledge) description of
a large class of continuous functors, that we call open functors. These include
all the functors built out of the basic constructions, and allow a rereading of
recursive types, leading to the model of (co)induction.

Open arenas. Let T be a countable set of names. An open arena is an arena
A with distinguished question moves called holes, each of them labelled with
an element of T. We denote by �X the holes annotated by X ∈ T. We will
sometimes write �+

X to denote a hole of Player polarity, or �−X to denote a
hole of Opponent polarity. If A has holes labelled by X1, . . . , Xn, we denote it
by A[X1, . . . , Xn]. By abuse of notation, the corresponding open functor we are
going to build will be also denoted by A[X1, . . . , Xn] : (Inn× Innop)n → Inn.

Image of arenas. If A[X1, . . . , Xn] is an open arena, If B1, . . . , Bn and B′1, . . . , B
′
n

are arenas (possibly open as well), we build a new arena A(B1, B
′
1, . . . , Bn, B

′
n)

by replacing each occurrence of �+
Xi

by Bi and each occurrence of �−Xi by B′i.
More formally:

MA(B1,B′1,...,Bn,B
′
n) = (MA \ {�X1 , . . . ,�Xn}) +

n∑
i=1

(MBi +MB′i
)

λA(B1,B′1,...,Bn,B
′
n) = [λA, λB1 , λB′1 , . . . , λBn , λB′n]

m `A(B1,B′1,...,Bn,B
′
n) p⇔



m `A �+
Xi
∧ ? `Bi p

m `A �−Xi ∧ ? `B′i p
? `Bi m ∧�+

Xi
`A p

? `B′i m ∧�
−
Xi
`A p

m `Bi p
m `B′i p
m `A p

Note that in this definition, we assimilate all the moves sharing the same hole
label �Xi and with the same polarity. This helps to clarify notations, and is
justified by the fact that we never need to distinguish moves with the same hole
label, apart from when they have different polarity.

Image of strategies. If A is an arena, we will, by abuse of notation, denote by IA
both the set of initial moves of A and the subarena of A with only these moves.

Let A[X1, . . . , Xn] be an open arena, B′1, B1, . . . , B
′
n, Bn and C ′1, C1, . . . , C

′
n, Cn

be arenas. Consider the application ξ defined on moves as follows:

ξ(x) =
{
�Xi if x ∈

⋃
i∈{1,...,n} (IB′i ∪ IBi ∪ IC′i ∪ ICi)

x otherwise

and then extended recursively to an application ξ∗ on legal plays as follows:

ξ∗(sa) =
{
ξ∗(s) if a is a non-initial move of Bi, B′i, Ci or C ′i
ξ∗(s)ξ(a) otherwise

ξ∗ erases moves in the inner parts of B′i, Bi, C
′
i, Ci and agglomerates all the initial

moves back to the holes. This way we will be able to compare the resulting play
with the identity on A[X1, . . . , Xn]. Now, if σi : Bi → Ci and τi : C ′i → B′i are
strategies, we can now define the action of open functors on them by stating:

s ∈ A(σ1, τ1, . . . , σn, τn)⇔


∀i ∈ {1, . . . , n}, s�Bi⇒Ci

∈ σi
∀i ∈ {1, . . . , n}, s�C′

i
⇒B′

i
∈ τi

ξ∗(s) ∈ idA[X1,...,Xn]

Proposition 1 For any A[X1, . . . , Xn], this defines a functor A[X1, . . . , Xn] :
(Inn× Innop)n → Inn, which is continuous with respect to E.

Proof (Proof sketch). Preservation of identities and composition are rather di-
rect. A little care is needed to show that the resulting strategy is innocent: this
relies on two facts: First, for each Player move the three definition cases are
mutually exclusive. Second, a P-view of s ∈ A(σ1, τ1, . . . , σn, τn) is (essentially)
an initial copycat appended with a P-view of one of σi or τi, hence the P-view
of s determines uniquely the P-view presented to one of σi, τi or idA[X1,...,Xn].

Example. Consider the open arena A[X] = �X ⇒ �X . For any arena B, we
have A(B) = B ⇒ B and for any σ : B1 → C1 and τ : C2 → B2, we have
A(σ, τ) = τ ⇒ σ : (B2 ⇒ B1)→ (C2 ⇒ C1), the strategy which precomposes its
argument by τ and postcomposes it by σ.

Loops for recursive types. All these open functors are continuous, therefore hav-
ing a parametrized minimal invariant obtained by the infinite expansion of the
arena. However, for a large subclass of the open functors, this parametrized min-
imal invariant can be expressed in a simple way by replacing holes with a loop
up to the initial moves. Suppose A[X1, . . . , Xn] is an open functor, and i is such
that �Xi appears only in non-initial, positive positions in A. Then we define an
arena µXi.A as follows:

MµXi.A = (MA \�Xi)
λµXi.A = λA�MµXi.A

m `µXi.A n⇔
{
m `A n
m `A �Xi ∧ ? `A n

A simple argument ensures that the obtained arena is isomorphic to the one
obtained by iteration of the functor. For this issue we take inspiration from
Laurent [19] and prove a theorem stating that two arenas are isomorphic in the
categorical sense if and only if their set of paths are isomorphic. A path in A
is a sequence of moves a1, . . . , an such that for all i ∈ {1, . . . , n − 1} we have
ai `A ai+1. A path isomorphism between A and B is a bijection φ between
the set of paths of A and the set of paths on B such that for any non-empty
path p on A, φ(ip(p)) = ip(φ(p)) (where ip(p) denotes the immediate prefix of
p). We have then the theorem:

Theorem 1 Let A and B be two arenas. They are categorically isomorphic if
and only if there is a path isomorphism between their respective sets of paths.

Now, it is clear by construction that, if A[X] is an open functor, the set
of paths of D =

⊔∞
n=0A

n(I) and of µX.A are isomorphic, therefore when
A[X] is closed and preserves inclusions and projections, µX.A defines as well
a parametrized minimal invariant for A[X]. But in fact, we have the following
fact:

Proposition 2 If A[X] is an open functor, then it is closed and preserves in-
clusions and projections. Hence µX.A is a parametrized minimal invariant for
A[X].

This interpretation of recursive types as loops preserves finiteness of the
arena, and as we shall see, allows to easily express the winning conditions nec-
essary to model induction and coinduction.

2.4 Winning and Totality

A total strategy on A is a strategy σ : A such that for all s ∈ σ, if there is a
such that sa ∈ LA, then there is b such that sab ∈ σ. In other words, σ has a
response to any legal Opponent move. This is crucial to interpret logic because
the interpretation of proofs in game semantics always gives total strategies: this
is a counterpart in semantics to the cut elimination property in syntax. To model
induction and coinduction in logic, we must therefore restrict to total strategies.
However, it is well-known that the class of total strategies is not closed under
composition, because an infinite chattering can occur in the hidden part of the
interaction. This is analogous to the fact that in λ-calculus, the class of strongly
normalizing terms is not closed under application: δ = λx.xx is a normal form,
however δδ is certainly not normalizable. This problem is discussed in [2,16] and
more recently in [7]. We take here the solution of [16], and equip arenas with
winning functions: for every infinite play we choose a loser, hence restricting to
winning strategies has the effect of blocking infinite chattering.

The definition of legal plays extends smoothly to infinite plays. Let LωA denote
the set of infinite legal plays over A. If s ∈ LωA, we say that s ∈ σ when for all
s @ s, s ∈ σ. We write LA = LA+LωA. A game will be a pair A = (A,GA) where
A is an arena, and GA is a function from infinite threads on A (i.e. infinite legal

plays with exactly one initial move) to {W,L}. The winning function GA extends
naturally to potentially finite threads by setting, for each finite s:

GA(s) =
{
W if |s| is even ;
L otherwise.

Finally, GA extends to legal plays by saying that GA(s) = W iff GA(t) = W for
every thread t of s. By abuse of notation, we keep the same notation for this
extended function. The constructions on arenas presented in section 2.2 extend
to constructions on games as follows:

– GA×B(s) = [GA,GB] (indeed, a thread on A×B is either a thread on A or a
thread on B) ;

– GA+B(s) = W iff all threads of s�A are winning for GA and all threads of s�B
are winning for GB .

– GA⇒B(s) = W iff if all threads of s�A are winning for GA, then GB(s�B) = W .

It is straightforward to check that these constructions commute with the
extension of winning functions from infinite threads to potentially infinite legal
plays. We now define winning strategies σ : A as innocent strategies σ : A
such that for all s ∈ σ, GA(s) = W . Now, the following proposition is satisfied:

Proposition 3 Let σ : A ⇒ B and τ : B ⇒ C be two total winning strategies.
Then σ; τ is total winning.

Proof (Proof sketch.). If σ; τ is not total, there must be infinite s in their parallel
interaction σ||τ , such that s�A,C is finite. By switching, we have in fact |s�A |
even and |s�C | odd. Thus GA(s�A) = W and GC(s�C) = L. We reason then by
disjunction of cases. Either GB(s�B) = W in which case GB⇒C(s�B,C) = L and
τ cannot be winning, or GB(s�B) = L in which case GA⇒B(s�A,B) = L and σ
cannot be winning. Therefore σ; τ is total.

σ; τ must be winning as well. Suppose there is s ∈ σ; τ such that GA⇒C(s) =
L. By definition of GA⇒C , this means that GA(s�A) = W and GC(s�C) = L. By
definition of composition, there is u ∈ σ||τ such that s = u�A,C . But whatever
the value of GB(u�B) is, one of σ or τ is losing. Therefore σ; τ is winning.

It is clear from the definitions that all plays in the identity are winning. It
is also clear that all the structural morphisms of the cartesian closed structure
of Inn are winning (they are essentially copycat strategies), thus this defines a
cartesian closed category Gam of games and innocent total winning strategies.

3 Fixpoints

3.1 µLJ : an intuitionistic sequent calculus with fixpoints

Formulas. S ::= S ⇒ T | S ∨ T | S ∧ T | µX.T | νX.T | X | > | ⊥
A formula F is valid if for any subformula of F of the form µX.F ′,

(1) X appears only positively in F ′,
(2) X does not appear at the root of F ′ (i.e. X appears at least under a ∨ or a
⇒ in the abstract syntax tree of F ′).

(2) corresponds to the restriction to arenas where loops allow to express recursive
types, whereas (1) is the usual positivity condition. We could of course hack
the definition to get rid of these restrictions, but we choose not to obfuscate
the treatment for an extra generality which is neither often considered in the
literature, nor useful in practical examples of (co)induction.

Derivation rules. We present the rules with the usual dichotomy.

Identity group

ax
A ` A

Γ ` A ∆,A ` B
Cut

Γ,∆ ` B

Structural group

Γ,A,A ` B
C

Γ,A ` B

Γ ` B
W

Γ,A ` B

Γ,A,B,∆ ` C
γ

Γ,B,A,∆ ` C

Logical group

Γ,A ` B
⇒r

Γ ` A⇒ B

Γ ` A ∆,B ` C
⇒l

Γ,∆,A⇒ B ` C
⊥l

Γ,⊥ ` A
>r

Γ ` >

Γ ` A Γ ` B
∧r

Γ ` A ∧B

Γ,A ` C ←−∧l
Γ,A ∧B ` C

Γ,B ` C −→∧l
Γ,A ∧B ` C

Γ ` A ←−∨r
Γ ` A ∨B

Γ ` B −→∨r
Γ ` A ∨B

Γ,A ` C ∆,B ` C
∨l

Γ,∆,A ∨B ` C

Fixpoints

Γ ` T [µX.T/X]
µr

Γ ` µX.T

T [A/X] ` A
µl

µX.T ` A
T [νX.T/X] ` B

νl
νX.T ` B

A ` T [A/X]
νr

A ` νX.T

Note that the µl, νl and νr rules are not relative to any context. In fact,
the general rules with a context Γ at the left of the sequent are derivable from
these ones (even if, for µl and νr, the construction of the derivation requires an
induction on T), and we stick with the present ones to clarify the game model.
Cut elimination on the ⇒,∧,∨ fragment is the same as usual. For the reduction

of µ and ν, we need an additional rule to handle the unfolding of formulas. For
this purpose, we add a new rule [T] for each type T with free variables. This
method can already be found in [1] for strictly positive functors: no type variable
appears on the left of an implication. From now on, T [A/X] will be abbreviated
T (A). This notation implies that, unless otherwise stated, X will be the variable
name for which T is viewed as a functor. In the following rules, X appears only
positively in T and only negatively in N :

Functors

A ` B
[T]

T (A) ` T (B)

A ` B
[N]

N(B) ` N(A)

The dynamic behaviour of this rule is to locally perform the unfolding. We give
some of the reduction rules. These are of two kinds: the rules for the elimination
of [T], and the cut elimination rules. Here are the main cases:

π

A ` B
[T](X 6∈ FV (T))

T ` T

 ax
T ` T

π

A ` B
[X]

A ` B

π

A ` B

π

A ` B
[N ⇒ T]

N(A) ⇒ T (A) ` N(B) ⇒ T (B)

π

A ` B
[N]

N(B) ` N(A)

π

A ` B
[T]

T (A) ` T (B)
⇒l

N(A) ⇒ T (A), N(B) ` T (B)
⇒r

N(A) ⇒ T (A) ` N(B) ⇒ T (B)

π

A ` B
[µY.T]

µY.T (A) ` µY.T (B)

π

A ` B
[T [µY.T (B)/Y]]

T (A)[µY.T (B)/Y] ` T (B)[µY.T (B)/Y]
µr

T (A)[µY.T (B)/Y] ` µY.T (B)
µl

µY.T (A) ` µY.T (B)

We omit the rule for ν, which is dual, and for ∧ and ∨, which are simple
pairing and case manipulations. Note also that most of these cases have a coun-
terpart where T is replaced by negative N , which has the sole effect of π being
a proof of B ` A instead of A ` B in the expansion rules. With that, we can

express the cut elimination rule for fixpoints:

π1

Γ ` T [µX.T/X]
µr

Γ ` µX.T

π2

T [A/X] ` A
µl

µX.T ` A
Cut

Γ ` A

π1

Γ ` T [µX.T/X]

π2

T [A/X] ` A
µl

µX.T ` A
[T]

T [µX.T/X] ` T [A/X]
Cut

Γ ` T [A/X]

π2

T [A/X] ` A
Cut

Γ ` A
We skip once again the rule for ν, which is dual to µ. We choose consciously

not to recall the usual cut elimination rules nor the associated commutation
rules, since they are not central to our goals. µLJ , as presented above, does not
formally eliminate cuts since there is no rule to reduce the following (and its
dual with ν):

π1

T (A) ` A
µl

µX.T ` A

π2

Γ,A ` B
Cut

Γ, µX.T ` B
This cannot be reduced without some prior unfolding of the µX.T on the left.
This issue is often solved [6] by replacing the rule for µ presented here above by
the following:

T (A) ` A Γ,A ` B
µ′

Γ, µX.T ` B
With the corresponding reduction rule, and analogously for ν. We choose here
not to do this, first because our game model will prove consistency without
the need to prove cut elimination, and second because we want to preserve the
proximity with the categorical structure of initial algebras / terminal coalgebras.

3.2 The games model

We present the game model for fixpoints. We wish to model a proof system,
therefore we need our strategies to be total. The base arenas of the interpretation
of fixpoints will be the arenas with loops presented in section 2.3, to which
we will adjoin a winning function. While the base arenas will be the same for
greatest and least fixpoints, they will be distinguished by the winning function:
intuitively, Player loses if a play grows infinite in a least fixpoint (inductive)
game, and Opponent loses if this happens in a greatest fixpoint (coinductive)
game. The winning functions we are going to present are strongly influenced by
Santocanale’s work on games for µ-lattices [24]. A win open functor is a functor
T : (Gam×Gamop)n → Gam such that there is an open functor T [X1, . . . , Xn]
such that for all games A1, . . . ,A2n of base arenas A1, . . . , A2n, the base arena
of T(A1, . . . ,A2n) is T (A1, . . . , An). In other terms, it is the natural lifting of
open functors to the category of games. By abuse of notation, we denote this by
T[X1, . . . , Xn], and T [X1, . . . , Xn] will denote its underlying open functor.

Least fixed point. Let T[X1, . . . , Xn] be a win open functor such that�X1 appears
only positively and at depth higher than 0 in T [X1, . . . , Xn]. Then we define a
new win open functor µX1.T[X2, . . . , Xn] as follows:

– Its base arena is µX1.T [X2, . . . , Xn] ;
– If A3, . . . ,A2n ∈ Gam, GµX1.T(A3,...,A2n)(s) = W iff
• There is N ∈ N such that no path of s takes the external loop more that
N times, and ;

• s is winning in the subgame inside the loop, or more formally:
GT(I,I,A3,...,A2n)(s�T(I,I,A3,...,A2n)) = W .

Greatest fixed point. Dually, if the same conditions are satisfied, we define the
win open functor νX1.T[X1, . . . , Xn] as follows:

– Its base arena is µX1.T [X2, . . . , Xn] ;
– If A3, . . . ,A2n ∈ Gam, GνX1.T(A3,...,A2n)(s) = W iff
• For any N ∈ N, there is a path of s crossing the external loop more than
N times, or ;

• s is winning in the subgame inside the loop, or more formally:
GT(I,I,A3,...,A2n)(s�T(I,I,A3,...,A2n)) = W .

It is straightforward to check that these are still functors, and in particular
win open functors. There is one particular case that is worth noticing: if T[X] has
only one hole which appears only in positive position and at depth greater than
0, then µX.T is a constant functor, i.e. a game. Moreover, theorem 1 implies
that it is isomorphic in Inn to T(µX.T). It is straightforward to check that this
isomorphism iT : T(µX.T) → µX.T is winning (it is nothing but the identity
strategy), which shows that they are in fact isomorphic in Gam. Then, one can
prove the following theorem:

Theorem 2 If T[X] has only one hole which appears only in positive position
and at depth greater than 0, then the pair (µX.T, iT) defines an initial algebra
for T[X] and (νX.T, i−1

T) defines a terminal coalgebra for T[X].

Proof. We give the proof for initial alebras, the second part being dual. Let (A, σ)
another algebra of T[X]. We need to show that there is a unique σ† : µX.T⇒ B
such that

T(µX.T)
T(σ†) //

iT ��

T(B)
σ

��
µX.T

σ†
// B

commutes. The idea is to iterate σ:

. . .
T3(σ)// T3(B)

T2(σ) // T2(B)
T(σ) // T(B) σ // B

and to somehow take the limit. In fact we can give a direct definition of σ†:

σ(1) = σ

σ(n+1) = Tn(σ);σ(n)

σ† = {s ∈ LµX.T⇒B | ∃n ∈ N∗, s ∈ σ(n)}

This defines an innocent strategy, since when restricted to plays of µX.T, these
strategies agree on their common domain. This strategy is winning. Indeed, take
an infinite play s ∈ σ†. Suppose s�µX.T is winning. By definition of GµX.T, this
means that there is N ∈ N such that no path of s�µX.T takes the external loop
more than N times. Thus, s ∈ LTn(I)⇒B. But this implies that s ∈ σ(n), and
σ(n) is a composition of winning strategies thus winning, therefore s is winning.
Moreover, σ† is the unique innocent strategy making the diagram commute:
suppose there is another f making this square commute. Since T(µX.T) and
µX.T have the same set of paths, iT is in fact the identity, thus we have T(f);σ =
f . By applying T and post-composing by σ, we get:

T2(f); T(σ);σ = T(f);σ = f

And by iterating this process, we get for all n ∈ N:

Tn+1(f); Tn(σ); . . . ; T(σ);σ = f

Thus:
Tn+1(f);σ(n) = f

Now take s ∈ f , and let n be the length of the longest path in s. Since T[X] has
no hole at the root, no path of length n can reach B in Tn+1(B), thus s ∈ σ(n),
therefore s ∈ σ†. The same reasoning also works for the other inclusion. Likewise,
if σ : B→ T(B), we build a unique σ‡ : B→ νX.T making the coalgebra diagram
commute.

3.3 Interpretation of µLJ

Interpretation of Formulas. As expected, we give the interpretation of valid
formulas.

J>K = I JA⇒ BK = JAK⇒ JBK
J⊥K = ⊥ JXK = �X

JA ∨BK = JAK + JBK JµX.T K = µX.JT K
JA ∧BK = JAK× JBK JνX.T K = νX.JT K

Interpretation of Proofs. As usual, the interpretation of a proof π of a sequent
A1, . . . , An ` B will be a morphism JπK : JA1K × . . . × JAnK −→ JBK. The
interpretation is computed by induction on the proof tree. The interpretation of
the rules of LJ is standard and its correctness follows from the cartesian closed
structure of Gam. Here are the interpretations for the fixpoint and functor rules:

u

w
v

π

Γ ` T [µX.T/X]
µr

Γ ` µX.T

}

�
~ = JπK; iJT K

u

w
v

π

T [A/X] ` A
µl

µX.T ` A

}

�
~ = JπK†

u

w
v

π

T [νX.T/X] ` B
νl

νX.T ` B

}

�
~ = i−1

JT K; JπK

u

w
v

π

A ` T [A/X]
νr

A ` νX.T

}

�
~ = JπK‡

u

w
v

π

A ` B
[T]

T (A) ` T (B)

}

�
~ = JT K(JπK)

We do not give the details of the proof that this defines an invariant of reduction.
The main technical point is the validity of the interpretation of the functor rule; more
precisely when the functor is a (least or greatest) fixpoint. Given that, we get the
following theorem.

Theorem 3 If π π′, then JπK = Jπ′K.

In particular, this proves the following theorem which is certainly worth noticing, be-
cause µLJ has large expressive power. In particular, it contains Gödel’s system T [12].

Theorem 4 µLJ is consistent: there is no proof of ⊥.

Proof. There is no total strategy on the game ⊥.

Completness. When it comes to completeness, we run into the issue that the total
winning innocent strategies are not necessarily finite, hence the usual definability pro-
cess does not terminate. Nonetheless, we get a definability theorem in an infinitary
version of µLJ . Whether a more precise completeness theorem is possible is a subtle
point. First, we would need to restrict to an adequate subclass of the recursive total
winning strategies (for example, the Ackermann function is definable in µLJ). Then
again, the problem to find a proof whose interpretation is exactly the original strategy
would be highly non-trivial: if σ : µX.T ⇒ A, we have to guess an invariant B, a proof
π1 of T (B) ` B and a proof π2 of B ` A such that Jπ1K†; Jπ2K = σ. Perhaps it would
be more feasible to look for a proof whose interpretation is observationally equivalent
to the original strategy, which would be very similar to the universality result in [15].

4 Conclusion and Future Work

We have successfully constructed a games model of a propositional intuitionistic se-
quent calculus µLJ with inductive and coinductive types. It is striking that the ad-
equate winning conditions on legal plays to model (co)induction are almost identical
to those used in parity games to model least and greatest fixpoints, to the extent that
the restriction of our winning condition to paths coincides exactly with the winning
condition used in [24]. It would be worthwile to investigate this connection further:
given a game viewed as a bipartite graph along with winning conditions for infinite
plays, under which assumptions can these winning conditions be canonically lifted to
the set of legal plays on this graph, viewed as an arena? Results in this direction might
prove useful, since they would allow to import many game-theoretic results into game
semantics, and thus programming languages.

This work is part of a larger project to provide game-theoretic models to total
programming languages with dependent types, such as COQ or Agda. In those settings,
(co)induction is crucial, since they deliberately lack general recursion. We believe that
in the appropriate games setting, we can push the present results further and model
Dybjer’s Inductive-Recursive[10] definitions.

Acknowledgements. We would like to thank Russ Harmer, Stephane Gimenez and
David Baelde for stimulating discussions, and the anonymous referees for useful com-
ments and suggestions.

References

1. Andreas Abel and Thorsten Altenkirch. A predicative strong normalisation proof
for a lambda-calculus with interleaving inductive types. In TYPES, 1991.

2. S. Abramsky. Semantics of interaction: an introduction to game semantics. Se-
mantics and Logics of Computation, pages 1–31, 1996.

3. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Info.
& Comp, 2000.

4. S. Abramsky, H. Kohei, and G. McCusker. A fully abstract game semantics for
general references. In LICS, pages 334–344, 1998.

5. Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. J. Symb. Log., 59(2):543–574, 1994.

6. David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In
LPAR, pages 92–106, 2007.

7. P. Clairambault and R. Harmer. Totality in Arena Games. Submitted., 2008.
8. J.H. Conway. On Numbers and Games. AK Peters, Ltd., 2001.
9. P. Dybjer. Inductive sets and families in Martin-Löfs Type Theory and their set-

theoretic semantics: An inversion principle for Martin-Löfs type theory. Logical
Frameworks, 14:59–79, 1991.

10. Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log., 65(2):525–549, 2000.

11. P. Freyd. Algebraically complete categories. In Proc. 1990 Como Category Theory
Conference, volume 1488, pages 95–104. Springer, 1990.

12. K. Godel. Über eine bisher noch nicht bentzte Erweiterung des finiten Standpunk-
tes. Dialectica, 1958.

13. R. Harmer. Innocent game semantics. Lecture notes, 2004.
14. Russ Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics

for innocent strategies. In LICS, pages 379–388, 2007.
15. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III.

Inf. Comput., 163(2):285–408, 2000.
16. M. Hyland. Game semantics. Semantics and Logics of Computation, 1996.
17. A. Joyal. Remarques sur la théorie des jeux à deux personnes. Gaz. Sc. Math.

Qu., 1977.
18. Joachim De Lataillade. Second-order type isomorphisms through game semantics.

Ann. Pure Appl. Logic, 151(2-3):115–150, 2008.
19. Olivier Laurent. Classical isomorphisms of types. Mathematical Structures in

Computer Science, 15(5):969–1004, 2005.
20. Ralph Loader. Equational theories for inductive types. Ann. Pure Appl. Logic,

84(2):175–217, 1997.
21. P. Lorenzen. Logik und Agon. Atti Congr. Internat. di Filosofia, 1960.
22. Guy McCusker. Games and full abstraction for FPC. Inf. Comput., 160(1-2):1–61,

2000.
23. Paul-André Melliès. Asynchronous games 4: A fully complete model of proposi-

tional linear logic. In LICS, pages 386–395, 2005.
24. L. Santocanale. Free µ-lattices. J. Pure Appl. Algebra, 168(2-3):227–264, 2002.
25. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285–309, 1955.

