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Abstract

Visibly pushdown transducers (VPTs) are visibly pushdown automata extended with
outputs. They have been introduced to model transformations of nested words, i.e. words
with a call/return structure. As trees and more generally hedges can be linearlized into
(well) nested words, VPTs are a natural formalism to express tree transformations eval-
uated in streaming. This paper aims at characterizing precisely the expressive power of
VPTs with respect to other tree transducer models.

1 Introduction

Visibly pushdown machines [1], automata (VPA) or transducers, are pushdown machines such
that stack behavior is synchronized with the structure of the input word. Precisely, the input
alphabet is partitioned into call and return symbols. When reading a call symbol the machine
must push a symbol onto the stack, and when reading a return symbol it must pop a symbol
from the stack.

Visibly pushdown transducers (VPTs) [9, 10, 5, 11] extend visibly pushdown automata [1]
with outputs. Each transition is equipped with an output word that is appended to the output
tape whenever the transition is triggered. A VPT thus transforms an input word into an output
word obtained as the concatenation of all the output words produced along a successful run
on that input. VPTs are strict subclass of pushdown transducers and strictly extend finite
state transducers. Several problems that are undecidable for PTs are decidable for VPTs,
most notably: functionality (in PTime), k-valuedness (in NPTime) and functional equivalence
(ExpTime-c) [5]. VPTs are closed by regular look-ahead which makes them a robust class of
transformations [6].

Unranked trees and more generally hedges can be linearized into well-nested words over
a structured alphabet (such as XML documents). VPT are therefore a suitable formalism to
express hedge transformations. In particular, they can express operations such as node deletion,
renaming and insertion. As they process the linearization from left to right, they are also an
adequate transformation model in a streaming context, as shown in [4]. VPTs output strings,
therefore on well-nested inputs they define hedge-to-string transformations, and if the output
strings are well-nested too, they define hedge-to-hedge transformations.

In this paper, we characterize the expressive power of VPTs w.r.t. their ability to express
hedge-to-string (H2S), and hedge-to-hedge (H2H) transformations. To do so, we define a top-
down model of hedge-to-string transducers, inspired by classical top-down tree transducers.
They correspond to parameter-free linear order-preserving macro forest transducers that output
strings [8]. We define a syntactic restriction of H2S that captures exactly VPTs, and show that
if the VPTs runs on binary encodings of hedges, then they have exactly the same expressive
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power of H2S. We show that those results still hold when both models are restricted to hedge-
to-hedge transformations. Based on those results, we compare VPTs with classical ranked tree
transducers, such as top-down tree transducers [2] and macro tree transducers [3].

2 Transducer Models for Nested Words and Hedges

Words and Nested Words The set of finite words over a (finite) alphabet Σ is denoted by
Σ∗, and the empty word is denoted by ε. A structured alphabet is a pair Σ = (Σc,Σr) of disjoint
alphabets, of call and return symbols respectively. Given a structured alphabet Σ, we always
denote by Σc and Σr its implicit structure, and identify Σ with Σc ∪ Σr.

A nested word is a finite word over a structured alphabet. The set of well-nested words over
a structured alphabet Σ is the least set, denoted by WΣ, that satisfies (i) ε ∈ WΣ, (ii) for all
w,w′ ∈ WΣ, ww′ ∈ WΣ (closure under concatenation), and (iii) for all w ∈ WΣ, c ∈ Σc, r ∈ Σr,
cwr ∈ WΣ. E.g. on Σ = ({c1, c2}, {r}), the nested word c1rc2r is well-nested while rc1 is not.
Finally, note that any well-nested word w is either empty or can be decomposed uniquely as
w = cw1rw2 where c ∈ Σc, r ∈ Σr, w1, w2 ∈ WΣ.

Hedges Let Λ be an alphabet. We let S(Λ) be the signature {0, ·} ∪ {a | a ∈ Λ} where 0
is a constant symbol, a ∈ Λ are unary symbols and · is a binary symbol. The set of hedges
HΛ over Λ is the quotient of the free S(Λ)-algebra by the associativity of · and the axioms
0 ·h = h · 0 = h. The constant 0 is called the empty hedge. We may write a instead of a(0) and
omit · when it is clear from the context. Unranked trees are particular hedges of the form a(h)
where h ∈ HΛ. Note that any hedge h is either empty or can be decomposed as h = a(h1) · h2.

Hedges over Λ can be naturally encoded as well-nested words over the structured alphabet
Λs = (Λc,Λr) where Λc and Λr are new alphabets respectively defined by Λc = {ca | a ∈ Λ} and
Λr = {ra | r ∈ Λ}. This correspondence is given via a morphism lin : HΛ → WΛs

inductively
defined by: lin(0) = ε and lin(a(h1).h2) = calin(h1)ralin(h2). E.g. for Λ = {a, b}, we have
lin(ab(ab)) = caracbcaracbrbrb.

Conversely, any well-nested word over a structured alphabet Σ can be encoded as an hedge
over the product alphabet Σc×Σr, via the mapping hedge :WΣ → HΣc×Σr defined as hedge(ε) =
0 and hedge(cw1rw2) = (c, r)(hedge(w1))·hedge(w2) for all (c, r) ∈ Σc×Σr and all w1, w2 ∈ WΣ.

Binary Trees We consider here an alphabet Λ augmented with some special symbol ⊥. We
define the set of binary trees BΛ as a particular case of unranked trees over Λ∪{⊥}. Binary trees
are defined recursively as: (i) ⊥ ∈ BΛ, and (ii) for all f ∈ Λ, if t1, t2 ∈ BΛ then f(t1 t2) ∈ BΛ.

There is a well-known correspondance between hedges and binary trees by means of an
encoding called the first-child next-sibling encoding. This encoding is given by the mapping
fcns defined as: (i) fcns(0) = ⊥, (ii) fcns(f(h1)h2) = f(fcns(h1) fcns(h2)) for all h1, h2 in HΛ.

The strong relationship between hedges and well-nested words can be considered when re-
stricted to binary trees: we define BWΛs

the set of binary well-nested words over the structured
alphabet (Λc ∪ {⊥c},Λr ∪ {⊥r}) as the least set satisfying: (i) ⊥c⊥r ∈ BWΛs and (ii) for all
fc ∈ Λc, fr ∈ Λr, if wb

1 w
b
2 ∈ BWΛs then fc w

b
1 w

b
2 fr ∈ BWΛs . Note that the morphism lin

applied on binary trees from BΛ yields binary nested words in BWΛs
.

Finally, we can define the first-child next-sibling encoding of hedges as binary trees, directly
on linearizations; consider a structured alphabet Σ extended as Σ⊥ = (Σc ∪ {⊥c},Σr ∪ {⊥r}).
For all well-nested words w over Σ, we define fcns(w) over the alphabet Σ⊥ recursively as (i)
fcns(cw1rw2) = c fcns(w1) fcns(w2) r for all w1, w2 ∈ WΣ and (ii) fcns(ε) = ⊥c⊥r.



Visibly Pushdown Transducers Let Σ be a structured alphabet, and ∆ be an alphabet.
A visibly pushdown transducer from Σ to ∆ (the class is denoted VPT(Σ,∆)) is a tuple A =
(Q, I, F,Γ, δ) where Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of
final states, Γ the (finite) stack alphabet, ⊥ /∈ Γ is the bottom stack symbol, and δ = δc ] δr is
the transition relation where :

• δc ⊆ Q× Σc × Γ×∆∗ ×Q are the call transitions,

• δr ⊆ Q× Σr × Γ×∆∗ ×Q are the return transitions.

A configuration of A is a pair (q, σ) where q ∈ Q and σ ∈ ⊥ · Γ∗ is a stack content. Let
w = a1 . . . al be a (nested) word on Σ, and (q, σ), (q′σ′) be two configurations of A. A run
of the VPT A over w from (q, σ) to (q′, σ′) is a (possibly empty) sequence of transitions ρ =
t1t2 . . . tl ∈ δ∗ such that there exist q0, q1, . . . ql ∈ Q and σ0, . . . σl ∈ ⊥·Γ∗ with (q0, σ0) = (q, σ),
(ql, σl) = (q′, σ′), and for each 0 < k ≤ l, we have either (i) tk = (qk−1, ak, γ, wk, qk) ∈ δc and
σk = σk−1γ, and (ii) tk = (qk−1, ak, γ, wk, qk) ∈ δr, and σk−1 = σkγ. When the sequence of
transitions is empty, (q, σ) = (q′, σ′).

The output of ρ is the word w ∈ ∆∗ defined as the concatenation w = w1 . . . wl when the
sequence of transitions is not empty and ε otherwise. Initial (resp. final) configurations are pairs
(q,⊥) with q ∈ I (resp. with q ∈ F ). A run is accepting if it starts in an initial configuration
and ends in a final configuration. The transducer A defines a relation from nested words to
words defined as the set of pairs (u,w) ∈ Σ∗ × ∆∗ such that there exists an accepting run
on u producing w as output. From now on, we confuse the transducer and the transduction
it represents. Note that since we accept by empty stack and there is no return transition on
empty stack, A accepts only well-nested words, and thus is included into WΣ ×∆∗.

Hedge-to-string Transducers We present a model of hedge-to-string transducers (H2S)
that run directly on hedges. They can be understood as parameter-free macro forest transducers
(MFT) [8] which produce strings.

Let Λ and ∆ be two finite alphabets. An hedge-to-string transducer from Λ to ∆ (the class
is denoted H2S(Λ,∆)) is a tuple T = (Q, I, δ) where Q is a set of states, I ⊆ Q is a set of initial
states and δ is a set of rules of the form: 1

q(0)→ ε q(f(x1) · x2)→ w1q1(x1)w2q2(x2)w3

where q, q1, q2 ∈ Q, f ∈ Λ and w,w1, w2, w3 ∈ ∆∗.

The semantics of T is defined via mappings JqK : HΛ → 2∆∗ for all q ∈ Q as follows:

JqK(0) =

{
{ε} if q(0)→ ε ∈ δ
∅ otherwise

JqK(f(h) · h′) =
⋃

q(f(x1)·x2)→w1q1(x1)w2q2(x2)w3
w1 · Jq1K(h) · w2 · Jq2K(h′) · w3

The transduction of a H2S T = (Q, I, δ) is defined as the relation {(h, s) | ∃q ∈ I, s ∈
JqK(h)}. When s ∈ JqK(h) for some H2S T , we may say that the computation of the H2S T on
the hedge h leads to q producing s.

We say that T is tail-recursive whenever in any rule, we have w3 = ε. We denote by H2Str
the class of tail-recursive H2S.

1We consider linear and order-preserving rules only.



Example 1. Let Λ be a finite alphabet. Consider T1 ∈ H2S(Λ,Λ) defined by Q = I = {q, q′}
and the following rules:

q(0)→ ε q′(0)→ ε q(f(x1) · x2)→ q′(x1)q(x2)f

T1 defines the mirror image on strings (viewed as a particular case of hedges).

Example 2. Let Λ be a finite alphabet and Λs be its structured version. We define T2 ∈
H2S(Λ,Λs) which can embed any subhedge under a new symbol #. Formally, the transducer
builds the linearization of the resulting hedge. T2 is defined by Q = {q0, q1, q2}, I = {q0} and δ
defined as the following set of rules: (observe that T2 ∈ H2Str)

qi(0)→ ε ∀i ∈ {0, 1, 2} q0(f(x1) · x2)→ cfq0(x1)rfq0(x2)
q0(f(x1) · x2)→ c#cfq2(x1)rfq1(x2) q1(f(x1) · x2)→ cfq2(x1)rfq1(x2)
q1(f(x1) · x2)→ cfq2(x1)rfr#q0(x2) q2(f(x1) · x2)→ cfq2(x1)rfq2(x2)

For instance, the input tree f(abcd) can be translated into lin(f(a#(bc)d)) or into lin(f(#(ab)#(cd))).

Hedge-to-hedge Transducers We consider now transducers running on hedges but pro-
ducing (representations of) hedges as well-nested words. We define them as restrictions of the
two models we have considered so far.

We assume the output alphabet ∆ to be structured as (∆c,∆r). We define a H2S(Λ,∆) to
be an hedge-to-hedge transducer (H2H(Λ,∆)) if any right hand-side w1q1(x1)w2q2(x2)w3 of its
transition rules satisfies w1w2w3 ∈ W∆. We denote H2Htr the class of H2H that are additionally
tail-recursive.

Using the direct relationship between well-nested words and hedges, we may define hedge-
to-hedge transducers by means of a restriction in the definition of VPT: this restriction asks
the nesting level of the input and the output words to be synchronized, that is the nesting level
of the output just before reading a call (on the input) must be equal to the nesting level of the
output just after reading the matching return (on the input). This simple syntactic restriction
yields a subclass of VPTs [5]. This synchronization is enforced syntactically on stack symbols,
these symbols being shared by matching call and return transitions.

Let A = (Q, I, F,Γ, δ) ∈ VPT(Σ,∆). Then A is well-nested if for all (q, c, γ, w, q′) ∈ δc and
(p, r, γ′, w′, p′) ∈ δr, γ = γ′ implies that ww′ ∈ W∆.

We denote by wnVPT the class of well-nested VPTs.

Hedge-to-binary tree Transducers We consider here transducers running on hedges and
producing (representations of) binary trees as binary well-nested words. We define them as
restrictions of hedge-to-hedge transducers.

Let ∆⊥ = (∆⊥c ,∆
⊥
r ) be a structured output alphabet such that ∆⊥c ,∆

⊥
r contain two special

symbols ⊥c,⊥r respectively. We define a H2H(Λ,∆⊥) to be an hedge-to-binary tree transducer
(H2B(Λ,∆⊥)) if any right hand-side w1q1(x1)w2q2(x2)w3 of its transition rules satisfies w1 =
cw′1, w2 = w′′1w

′
2, w3 = w′3 r for some c in ∆⊥c , r in ∆⊥r , w′1⊥c⊥rw

′′
1 and w′2⊥c⊥rw

′
3 in BW∆⊥ .

Hedge-to-binary tree transducers are closed to linear and order-preserving top-down ranked
tree transducers. They will serve us to compare the expressiveness of H2H to this latter class
of transducers defined on the first-child next-sibling encoding of input and output hedges.



3 Some Results on Expressiveness

In the sequel, we will assume that input hedges accepted by transducers are non-empty. This
restriction is done without loss of generality. We depict below the results we obtained:

VPT ≡ H2Str ( VPT ◦ fcns ≡ H2S
(Lemma 3) (Lemma 2) (Lemma 5)

( (

fcns−1 ◦ H2B ( wnVPT ≡ H2Htr ( wnVPT ◦ fcns ≡ H2H
(Lemma 1) (Lemma 4) (Lemma 2) (Lemma 6)

3.1 Definitions of expressiveness

Let Σ be a structured alphabet and ∆ be a finite alphabet. We denote by T (WΣ,∆
∗) the set of

transductions fromWΣ to ∆∗. First observe that the semantics of a transducer A ∈ VPT(Σ,∆)
is an element of T (WΣ,∆

∗). Second, given a transducer T ∈ H2S(Σc × Σr,∆), we have
that T ◦ hedge ∈ T (WΣ,∆

∗). Hence, up to the mapping hedge, we can thus compare the
expressiveness of a subclass C1 of VPT(Σ,∆) and of a subclass C2 of H2S(Σc×Σr,∆), by their
interpretation as transductions from WΣ to ∆∗.

Formally, given A ∈ VPT(Σ,∆) and T ∈ H2S(Σc×Σr,∆), we say that A and T are equiva-
lent, denoted A ≡ T , whenever A = T ◦hedge. Given a subclass C1 of VPT(Σ,∆) and a subclass
C2 of H2S(Σc×Σr,∆), we say that C1 is more expressive than C2 (resp. less expressive), denoted
C1 ⊇ C2 (resp. C1 ⊆ C2), whenever we have:

• for every T ∈ C2, there exists A ∈ C1 such that A ≡ T

• for every A ∈ C1, there exists T ∈ C2 such that A ≡ T , respectively

Last, we write C1 ≡ C2 whenever C1 and C2 are expressively equivalent meaning that both
C1 ⊇ C2 and C1 ⊆ C2 hold.

3.2 Comparing expressiveness

We first recall in the framework we proposed here a known expressiveness result [10] comparing
H2H and H2B.

Lemma 1. Let ∆ = (∆c,∆r) and ∆⊥ = (∆c ∪ {⊥c},∆r ∪ {⊥r}) be two structured alphabets.

1. For any T ∈ H2B(Λ,∆⊥), there exists T ′ ∈ H2H(Λ,∆) such that T ′ = fcns−1 ◦ T .

2. There exists T ′ ∈ H2H(Λ,∆) such that no T ∈ H2B(Λ,∆⊥) satisfies T ′ = fcns−1 ◦ T .

Proof. For Point (1), it is enough to apply fcns−1 to the right-hand side of transition rules of
T (keeping sub-expressions (q(xi) unchanged) to obtain T ′. For Point (2), for any well-nested
word u let us define its size |u| as the number of symbols occurring in it and its height ||u|| of a
well-nested word u as: (i) ||u|| = 0 if u = ε and (ii) ||cvrw|| = max(1 + ||v||, ||w||) if u = cvrw.
Definitions for size and height can be defined on hedges h accordingly by considering size and
heigth of lin(h). The following facts can easily be proved: (Fact 1) One can devise a trasducer
T ′ flatten its input into a sequence (T ′(f(h1)h2) = cfrf T

′(h1)T ′(h2)). Then, |T ′(h)| = 2|h|
and ||T ′(h)|| = 1. (Fact 2) For all T in H2B(Λ,∆⊥), there exists kT in N such that for all
hedges h, ||T (h)|| ≤ kT ||h||; (Fact 3) If w ∈ W∆, ||w|| = 1 and |w| = n then ||fcns(w)|| = n.

Now, consider the family Hn|n∈N of hedges h such that ||h|| = n and |h| = 2n. For any
h ∈ Hn, |T ′(h)| = 2n+1 and ||T ′(h)|| = 1. Hence, ||fcns(T ′(h))|| = 2n+1. Assuming that T exists
yields ||fcns(T ′(h))|| = 2n+1 = ||T (h)|| ≤ kTn for some constant kT for all n. Contradiction.



It turns out that H2S are stricly more expressive than VPTs. Formally:

Lemma 2. There exists T ∈ H2S(Σc×Σr,∆) such that for all A ∈ VPT(Σ,∆), T ◦ hedge 6≡ A.

Proof. Consider the variant over the input alphabet Σc × Σr of the transducer T defined in
Example 1. It is easy to see this transducer produces an output (after an hedge application)
only on nested words from (Λc.Λr)∗. Over such input words, any VPT admits only finitely many
configurations in its accepting runs and thus, is equivalent to some finite state transducer. But
it is well known that finite state transducer can not compute the mirror image of its inputs.

Informally, this is due to the abitility that H2S have to ”complete” the output once the
current hedge is processed. This ability vanishes when tail-recursive H2S are considered.

Lemma 3. VPT(Σ,∆) ≡ H2Str(Σc×Σr,∆).

Proof (Sketch). Intuitively, to transform A ∈ VPT(Σ,∆) into T ∈ H2Str(Σc×Σr,∆), we proceed
as follows. States of T are pairs of states of A, corresponding to states reached respectively at
the beginning and at the end of the processing of an hedge. More formally, the following rule
will exist in T iff there exist a call transition on c from q to p1, a matching return on r from
p2 to q1, the hedge represented by x1 (resp. by x2) can be processed from state p1 to state p2

(resp. from q1 to q):

(p, q)((c, r)(x1) · x2)→ w1 · (p1, p2)(x1) · w2 · (q1, q)(x2)

The word w1 (resp. w2) is the output of the call transition (resp. of the return transition).
It is worth observing that this encoding directly implies the tail-recursive property of T .

The converse construction follows the same ideas. The stack is used to store the transition
used on the call symbol, to recover it when reading the return symbol.

Lemma 2 still holds even if we restrict H2S to H2H, because the transducer defining the
transduction of Example 1 is actually an H2H. Similarly, Lemma 3 also holds when restricted
to hedge-to-hedge transductions (the same constructions apply):

Lemma 4. wnVPT(Σ,∆) ≡ H2Htr(Σc×Σr,∆).

Removing the tail-recursive assumption As we have seen in the proof of Lemma 3, the
behavior of a VPT is naturally encoded by a tail-recursive H2S. Intuitively, the word w3 of rules
of H2S should be produced after having processed the whole hedge. We prove now that if we
run VPTs on the fcns encoding of hedges, then we can express any H2S-definable transduction.
Intuitively, in the fcns encoding, the return symbol of the root of the first tree of the hedge is
encountered at the end of the processing of the hedge. As a consequence, the word w3 can be
output when processing this symbol. Formally, we have:

Lemma 5. VPT(Σ⊥,∆) ◦ fcns ≡ H2S(Σc×Σr,∆).

Proof (Sketch). A construction similar to that presented in the proof of Lemma 3, based on
pairs of states of the VPT, can be used to build an equivalent H2S. It will not necessarily be
tail-recursive as the output of the return transition will be produced last. Note also that to
handle empty subtrees encoded by ⊥c⊥r, the resulting H2S may associate a non-empty output
word to leafs. It is however not difficult to simulate such rules.

Conversely, the construction is a bit more complex. States of the VPT store the rule that
is applied at the previous level, and the position in this rule (beginning, middle, or end). A



special case is that of the first level, as there is no previous level. In this case, we store the
initial state we started from. This information is stored in the stack, so as to recover it and
faithfully simulate the application of the rule. The case of rules associated with leafs is handled
using the ⊥c,⊥r symbols, and dedicated rules. Details can be found in the Appendix.

Lemma 6. wnVPT(Σ⊥,∆) ◦ fcns ≡ H2H(Σc×Σr,∆).

4 Conclusion
Clearly, as H2S is a subclass of macro forest transducers (mfts) [8], VPTs are strictly less
expressive than mfts. Macro tree transducers (mtts) are transducers on ranked trees [3]. To
compare them with VPTs, which run on (linearization of) hedges, we use the first-child next-
sibling encoding. As shown in [8], linear-size increase mtts on those encodings are equivalent
to mfts. Therefore mtts are strictly more expressive than VPTs.

Top-down ranked tree transducers with the linear and order-preserving restrictions are equiv-
alent to H2B transducers on first-child next-sibling encodings. By Lemma 1, we get that they
are strictly less expressive than wnVPTs, and therefore VPTs. The arguments on the size of the
ouputs in the proof of Lemma 1 still applies when dropping that restriction (the yield transduc-
tion cannot be defined), and therefore top-down ranked tree transducers are incomparable with
VPTs. For the same reasons, bottom-up tree transducers are also incomparable with VPTs.

Finally, let us mention the uniform tree transducers introduced by Neven and Martens [7],
and inspired by the XSLT language. These transducers can duplicate subtrees, but must use
the same state to transform all the children of a node. For those reasons they are incomparable
with VPTs [10].
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A Appendix

A.1 Proof of Lemma 3 and 4

Proof. Let A = (Q, I, F,Γ, δ) ∈ VPT(Σ,∆). We define T = (Q′, I ′, δ′) ∈ H2Str(Σc×Σr,∆) as
follows:

• Q′ = {(q1, q2) ∈ Q2 | ∃w ∈ WΣ s.t. (q1,⊥)
w−→ (q2,⊥)}

• I ′ = Q′ ∩ (I × F )

• for every c ∈ Σc, r ∈ Σr, and for every states p1, p2, q1, q2, q
′
1 such that (q1, q2), (p1, p2), (q′1, q2) ∈

Q′, if there exist transitions (q1, c, γ, w1, p1) ∈ δc, (p2, r, γ, w2, q
′
1) ∈ δr, we build the rule:

(q1, q2)((c, r)(x1) · x2)→ w1 · (p1, p2)(x1) · w2 · (q′1, q2)(x2)

In addition, we also have:

(q1, q2)(0)→ ε ∈ δ′ ⇐⇒ q1 = q2

It can be shown by induction that for all well-nested word w ∈ WΣ, T has a computation over
hedge(w) leading to (q1, q2) producing w′ iff A admits a run from (q1,⊥) to (q2,⊥) over w
producing w′. Observe also that by definition T is tail-recursive.

Observe also, for the proof of Lemma 4, that if A is a wnVPT, then we have w1w2 ∈ WΣ,
and thus T ∈ H2H.

Conversely, let us consider T = (Q, I, δ) ∈ H2Str(Σc×Σr,∆). We defineA = (Q′, I ′, F ′,Γ′, δ′) ∈
VPT(Σ,∆) as follows:

• Q′ = Q

• I ′ = I

• F ′ = {q ∈ Q | q(0)→ ε ∈ δ}

• Γ′ = δ

• for every rule t = q((c, r)(x1) · x2)→ w1q1(x1)w2q2(x2) ∈ δ, we add the following rules to
δ′:

(q, c, t, w1, q1) {(q′, r, t, w2, q2) | q′ ∈ F ′}

It can be shown by induction that for all well-nested word w ∈ WΣ, B has a computation
over hedge(w) leading to q producing w′ iff A admits a run from (q,⊥) to (q′,⊥) over w
producing w′, for some q′ ∈ F ′.

Observe also, for the proof of Lemma 4, that if B ∈ H2H, then we have w1w2 ∈ WΣ, and
thus A is a well-nested VPT.

A.2 Proof of Lemma 5 and 6

Proof. Let A = (Q, I, F,Γ, δ) ∈ VPT(Σ⊥,∆). We first define the two following sets:

X = {(p, q) ∈ Q2 | there exists a run (p,⊥)
cwr−−→ (q,⊥) in A, with c ∈ Σc, r ∈ Σr, w ∈ WΣ⊥}

X⊥ = {(p, q) ∈ Q2 | there exists a run (p,⊥)
⊥c⊥r−−−→ (q,⊥) in A}

We define B = (Q′, I ′, δ′) ∈ H2S(Σc×Σr,∆) as follows:



• Q′ = X ∪X⊥

• I ′ = X ∩ (I × F )

• for every (p, q) ∈ X⊥, and every transitions (p,⊥c, γ, w, p
′), (p′,⊥r, γ, w

′, q), we add the
following rule to δ′:

(p, q)(0)→ ww′

In addition, for every c ∈ Σc, r ∈ Σr, and for every states p, q, p1, p2, p3 such that
(p, q) ∈ X, and (p1, p2), (p2, p3) ∈ Q′, if there exist transitions (p, c, γ, w1, p1) ∈ δc,
(p3, r, γ, w3, q) ∈ δr, we build the rule:

(p, q)((c, r)(x1) · x2)→ w1 · (p1, p2)(x1) · (p2, p3)(x2) · w3

It can be shown by induction that for all well-nested word w ∈ WΣ, B has a computation
over hedge(w) leading to (q1, q2) producing w′ iff A admits a run from (q1,⊥) to (q2,⊥) over
fcns(w) producing w′.

Observe also that B does not comply with the definition of H2S as the first set of rules may
produce non-empty words. However, it is easy to transform B to ensure this property as follows:
for every rule (p, q)(0) → x, build a state (p, x, q), and add the rule (p, x, q)(0) → ε. Then,
modify the second set of rules by replacing (p, q) by (p, x, q), and introducing x at the convenient
position in the output of the rule. Note that this transformation will result in non-empty ”w2”
words.

In addition, we assumed that input words are non-empty. As a consequence, the fcns
encodings considered as input are different from the word ⊥c⊥r. This justifies that the initial
states can be taken in X only. This also implies that the removing of non-empty leaf rules
described before is correct, as every leaf rule will be applied in the context of some rule associated
with an internal node.

Last, for the proof of Lemma 6, it is easy to verify that if A is a wnVPT, then B ∈ H2H.

Conversely, let us considerB = (Q, I, δ) ∈ H2S(Σc×Σr,∆). We defineA = (Q′, I ′, F ′,Γ′, δ′) ∈
VPT(Σ⊥,∆) as follows:

• Q′ = {(q, i) | q ∈ I, i ∈ {0, 1}} ∪ {(t, i) | t ∈ δ, i ∈ {0, 1, 2}} ∪ {q⊥}

• I ′ = I × {0}

• F ′ = I × {1}

• Γ′ = Q′

• for every rule t = q((c, r)(x1) · x2) → w1q1(x1)w2q2(x2)w3 ∈ δ such that q ∈ I, we add
the two following rules to δ′:

((q, 0), c, (q, 0), w1, (t, 0)) ((t, 2), r, (q, 0), w3, (q, 1))

In addition, for every rule t = q((c, r)(x1) · x2)→ w1q1(x1)w2q2(x2)w3 ∈ δ, and for every
rule t′ = q′((c′, r′)(x1) · x2) → w′1q

′
1(x1)w′2q

′
2(x2)w′3 ∈ δ, and i ∈ {0, 1} such that q′i = q,

we add the two following rules to δ′:

((t′, i), c, (t′, i), w1, (t, 0)) ((t, 2), r, (t′, i), w3x, (t
′, i+1)) where x =

{
w′2 if i = 0
ε otherwise



Last, we consider rules associated with leafs: for every rule q(0) → ε, we add the two
following transitions: (provided that the i-th state of the rule t is q)

((t, i),⊥c, (t, i), ε, q⊥) (q⊥,⊥r, (t, i), ε, (t, i+ 1))

It can be shown by induction that for all well-nested word w ∈ WΣ, B has a computation over
hedge(w) leading to q producing w′ iff the two following properties are verified:

• if q ∈ I, then A admits a run from (q, 0) to (q, 1) over fcns(w) producing w′

• for every (t, i) ∈ δ × {0, 1, 2} such that t = p((c, r)(x1) · x2) → w1q1(x1)w2q2(x2)w3 ∈ δ
and qi = q, A admits a run from (t, i) to (t, i+1) over fcns(w) producing w′x, where x = ε
if i = 1, and x = w2 otherwise.
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