
Trimming Visibly Pushdown Automata

Mathieu Caralp, Pierre-Alain Reynier, Jean-Marc Talbot

Laboratoire d’Informatique Fondamentale de Marseille

UMR 7279, Aix-Marseille Université & CNRS, France

Abstract

We study the problem of trimming visibly pushdown automata (VPA). We first describe a polynomial time proce-

dure which, given a visibly pushdown automaton that accepts only well-nested words, returns an equivalent visibly

pushdown automaton that is trimmed. We then show how this procedure can be lifted to the setting of arbitrary VPA.

Furthermore, we present a way of building, given a VPA, an equivalent VPA which is both deterministic and trimmed.

Last, our trimming procedures can be applied to weighted VPA.

Keywords: Visibly Pushdown Automata, Trimming

1. Introduction

Visibly pushdown automata (VPA) are a particular class of pushdown automata defined over an alphabet split into

call, internal and return symbols [2, 3] 1. In VPA, the stack behavior is driven by the input word: when reading a

call symbol, a symbol is pushed onto the stack, for a return symbol, the top symbol of the stack is popped, and for an

internal symbol, the stack remains unchanged. VPA have been applied in research areas such as software verification

(VPA allow one to model function calls and returns, thus avoiding the study of data flows along invalid paths) and

XML documents processing (VPA can be used to model properties over words satisfying a matching property between

opening and closing tags).

Languages defined by visibly pushdown automata enjoy many properties of regular languages such as (effective)

closure by Boolean operations and these languages can always be defined by a deterministic visibly pushdown au-

tomaton. However, VPA do not have a unique minimal form [1]. Instead of minimization, one may consider trimming

as a way to deal with smaller automata. Trimming a finite state automaton amounts to removing useless states, i.e.

states that do not occur in some accepting computation of the automaton: every state of the automaton should be both

reachable from an initial state, and co-reachable from a final state. This property is important from both a practical

and a theoretical point of view. Indeed, most of the algorithmic operations performed on an automaton will only be

relevant on the trimmed part of this automaton. Removing useless states may thus avoid the study of irrelevant paths

in the automaton, and speed up the analysis. From a theoretical aspect, there are several results holding for automata

provided they are trimmed. For instance, the boundedness of finite-state automata with multiplicities can be char-

acterized by means of simple patterns for trimmed automata (see [14, 9]). Similarly, Choffrut introduced in [8] the

twinning property to characterize sequentiality of (trimmed) finite-state transducers. This result was later extended

to weighted finite-state automata in [6]. Both of these results have been extended to visibly pushdown automata and

transducers in [7] and [10] respectively, requiring these objects to be trimmed.

While trimming finite state automata can be done easily in linear time by solving two reachability problems in

the graph representing the automaton, the problem is much more involved for VPA (and for pushdown automata in

general). Indeed, in this setting, the current state of a computation (called a configuration) is given by both a “control”

state and a stack content. A procedure has been presented in [12] for pushdown automata. It consists in computing, for

Email addresses: mathieu.caralp@lif.univ-mrs.fr (Mathieu Caralp), pierre-alain.reynier@lif.univ-mrs.fr

(Pierre-Alain Reynier), jean-marc.talbot@lif.univ-mrs.fr (Jean-Marc Talbot)
1These automata were first introduced in [5] as “input-driven automata”.

Preprint submitted to Elsevier March 17, 2014

each state, the regular language of stack contents that are both reachable and co-reachable, and using this information

to constrain the behaviors of the pushdown automaton in order to trim it. This approach has however an exponential

time complexity.

Contributions. In this work, we present a procedure for trimming visibly pushdown automata. The running time of

this procedure is bounded by a polynomial in the size of the input VPA. We first tackle the case of VPA recognizing

only so-called well-nested words, i.e. words which have no unmatched call or return symbols. This class of VPA is

called well-nested VPA, and denoted by wnVPA. We actually present a construction for reducing wnVPA, i.e ensuring

that every run starting from an initial configuration can be completed into an accepting run. Symmetrically, we define a

construction for co-reduction acting in a dual fashion. Combination of both constructions yields a trimming procedure.

In a second step, we address the general case. To do so, we present a construction which modifies a VPA in order to

obtain a wnVPA. This construction has to be reversible, in order to recover the original language, and to be compatible

with the trimming procedure. In addition, we also design this construction in such a way that it allows to prove the

following result: given a VPA, we can effectively build an equivalent VPA which is both deterministic and trimmed.

Moreover, when considering deterministic inputs, we prove that there is no trimming procedure running in polynomial

time while preserving determinism. Finally, we show that our constructions can be applied to weighted VPA.

Organization of the paper. In Section 2 we introduce definitions. We address the case of well-nested VPA in Section 3

and the general case in Section 4. We consider the issue of determinization in Section 5 and the extension to weighted

VPA in Section 6. Last, a summary of our results is presented in Section 7.

Related models. VPA are tightly connected to several models:

Context-free grammars: it is well-known that pushdown automata are equivalent to context-free grammars. This

observation yields the following procedure for trimming pushdown automata 2. One can first translate the automaton

into an equivalent context-free grammar, then eliminate from this grammar variables generating the empty language or

not reachable from the start symbol, and third convert the resulting grammar into the pushdown automaton performing

its top-down analysis. This construction has a polynomial time complexity but, in this form, it does not apply to VPA.

Indeed, the resulting pushdown automaton may not satisfy the condition of visibility as the third step may not always

produce rules respecting the constraints on push and pop operations associated with call and return symbols.

Tree automata: by the standard interpretation of XML documents as unranked trees, VPA can be understood as

acceptors of unranked tree languages. It is shown in [2] that they actually do recognize precisely the set of regular

(ranked) tree languages, using the encoding of so-called stack-trees, which is similar to the first-child next-sibling

encoding. Trimming ranked tree automata is standard (and can be performed in linear time), and one can wonder

whether this approach could yield a polynomial time trimming procedure for VPA. Actually, going through tree

automata would not ease the construction of a trimmed VPA. Indeed, trimming the first-child next-sibling encoding

of a wnVPA, and then translating back the result into a wnVPA yields an automaton which is reduced but not trimmed

(this is intuitively due to the fact that the first-child next-sibling encoding realizes a left-to-right traversal of the tree).

Moreover, this construction does not ensure a bijection between accepting runs, a property that is useful when moving

to weighted VPA.

Nested word automata [3]: this model is equivalent to that of VPA. One could thus rephrase our constructions in

this context, and obtain the same results.

2. Definitions

2.1. Preliminaries

Words and well-nested words. A structured alphabet Σ is a finite set partitioned into three disjoint sets Σc, Σr and

Σι, denoting respectively the call, return and internal alphabets. We denote by Σ˚ the set of words over Σ and by ε

the empty word.

The set of well-nested words Σ˚
wn is the smallest subset of Σ˚ such that ε P Σ˚

wn and for all a P Σι, c P Σc, r P Σr

and all u, v P Σ˚
wn, au P Σ˚

wn and curv P Σ˚
wn.

2We thank Géraud Sénizergues for pointing us this construction.

2

Given a family of elements e1, e2, . . . , en, we denote by Πn
i“1

ei the concatenation e1e2 . . . en. The length of a

word u is denoted by |u|. For a tuple e “ pf1, . . . , flq, we define for all i P t1, . . . , lu the projection πipeq as fi. We

extend this notion of projection to sequences as πip
śn

k“1
ekq “

śn
k“1

πipekq

Visibly pushdown automata (VPA). Visibly pushdown automata are a restriction of pushdown automata in which the

stack behavior is imposed by the input word. On a call symbol, the VPA pushes a symbol onto the stack, on a return

symbol, it must pop the top symbol of the stack, and on an internal symbol, the stack remains unchanged. The only

exception is that some return symbols may operate on the empty stack.

Definition 2.1 (Visibly pushdown automata). A visibly pushdown automaton (VPA) on finite words over Σ is a

tuple A “ pQ, I, F,Γ, δq where Q is a finite set of states, I Ď Q is the set of initial states, F Ď Q is the set of final

states, Γ is a finite stack alphabet and δ “ δc Y δr Y δK
r Y δι is the (finite) transition relation with δc, δr, δK

r and δι four

disjoint sets, with δc Ď Q ˆ Σc ˆ Γ ˆ Q, δr Ď Q ˆ Σr ˆ Γ ˆ Q, δK
r Ď Q ˆ Σr ˆ tKu ˆ Q, and δι Ď Q ˆ Σι ˆ Q.

For a transition t “ pq, α, γ, q1q from δc, δr or δK
r or t “ pq, α, q1q in δι, we denote by sourceptq and targetptq the

states q and q1 respectively, and by letterptq the symbol α.

A stack is a word from Γ˚ and we denote by K the empty word on Γ. A configuration κ of a VPA is a pair

pq, σq P Q ˆ Γ˚.

Definition 2.2. A run of A on a word w “ α1 . . . αl P Σ˚ over a finite (and possibly empty) sequence of transitions

ptkq1ďkďl from a configuration pq, σq to a configuration pq1, σ1q is a finite sequence of symbols and configurations

ρ “ pq0, σ0qΠl
k“1

pαkpqk, σkqq such that pq, σq “ pq0, σ0q, pq1, σ1q “ pql, σlq, and, for each 1 ď k ď l, there exists

γk P Γ such that either:

• tk “ pqk´1, αk, γk, qkq P δc and σk “ σk´1γk, or

• tk “ pqk´1, αk, γk, qkq P δr and σk´1 “ σkγk, or

• tk “ pqk´1, αk,K, qkq P δK
r and σk´1 “ σk “ K, or

• tk “ pqk´1, αk, qkq P δι and σk “ σk´1.

We denote by RunwpAq the set of runs of A over the word w and by RunpAq the set of runs of A. Note that a run

for the empty word is simply any configuration. We write ρ : pq, σq
w

ÝÑ pq1, σ1q when there exists a run ρ over w from

pq, σq to pq1, σ1q. We may omit the superscript w when irrelevant. For this run ρ, we denote by firstpρq the configura-

tion pq, σq and by lastpρq the configuration pq1, σ1q. Given two runs ρi “ κi
0Π

ℓi
k“1

pαi
kpκi

kqq for i P t1, 2u, we define

the concatenation ρ1ρ2 of these runs, provided that lastpρ1q “ firstpρ2q, as ρ1ρ2 “ κ1
0Π

ℓ1
k“1

pα1

kκ
1

kqΠℓ2
k“1

pα2

kκ
2

kq.

Initial and final configurations are configurations of the form pq,Kq with q P I and pq, σq with q P F respectively.

A run is initialized if it starts in an initial configuration and it is accepting if it is initialized and ends in a final

configuration. We denote by ARunwpAq the set of accepting runs of A over the word w. A word is accepted by A iff

there exists an accepting run of A on it. The language of A, denoted by LpAq, is the set of words accepted by A.

A configuration κ is reachable from a configuration κ1 if there exists a word u in Σ˚ such that κ1 u
ÝÑ κ; in this

case we say also that κ1 is co-reachable from κ. We say that a configuration κ1 is reachable if there exists an initial

configuration κi such that κ1 is reachable from κi and co-reachable if there exists an final configuration κf such that

κ1 is co-reachable from κf .

Definition 2.3. A VPA A “ pQ, I, F,Γ, δq is deterministic if I is a singleton and the following conditions hold:

• if pp, c, γ, qq, pp, c, γ1, q1q P δc then γ “ γ1 and q “ q1,

• if pp, a, qq, pp, a, q1q P δι or pp, r,K, qq, pp, r,K, q1q P δK
r or pp, r, γ, qq, pp, r, γ, q1q P δrt then q “ q1.

A VPA A is said to be well-nested if LpAq Ď Σ˚
wn. The class of well-nested VPA is denoted by wnVPA.

Remark 2.1. If A is well-nested then its final configurations pf, σq (with f a final state) are reachable only if σ “ K.

3

2.2. (Co)-reduced and trimmed VPA

Definition 2.4. Let A be a VPA. Let us consider the three following conditions :

(1) every reachable configuration is co-reachable.

(2) every configuration co-reachable from some reachable and final configuration is reachable.

(3) for every state q, there exists an accepting run going through a configuration pq, σq.

We say that the automaton A is reduced if it fulfills conditions p1q and p3q, and co-reduced if it fulfills conditions p2q
and p3q. It is trimmed if it is both reduced and co-reduced. It is weakly reduced if it fulfills condition p1q and weakly

co-reduced if it fulfills condition p2q.

κi κf

κ

ñ

κi κf

κκ1
i

Figure 1: If κ is co-reachable from a final configuration

κf , κf being reachable from an intial configuration κi,

then κ is reachable from an initial configuration κ1

i.

Observe in Figure 1 that condition p2q looks more compli-

cated than the property stating that every co-reachable config-

uration is reachable. Indeed, unlike in finite state-automata,

the presence of a stack requires one to focus on reachable final

configurations, and not to consider arbitrary final configuration.

However, we will see that for wnVPA, this condition is equiva-

lent to the simpler one.

Observe that condition p3q simply corresponds to the re-

moval of states that are useless, which can easily be done in

polynomial time:

Proposition 2.1. ([4]) Let A “ pQ, I, F,Γ, δq be a VPA. For any state q P Q, one can build in polynomial time from

A two finite state automata Bq and Cq over the alphabet Γ such that LpBqq “ tσ P Γ˚ | pq, σq is reachable in Au
and LpCqq “ tσ P Γ˚ | pq, σq is co-reachable in Au.

The property of being co-reduced can be rephrased when considering wnVPA:

Proposition 2.2. Let A “ pQ, I, F,Γ, δq be a wnVPA such that for all state f P F there exists an accepting run

leading to the configuration pf,Kq. Then A is weakly co-reduced if and only if every configuration co-reachable from

some configuration pf,Kq with f P F is reachable.

PROOF. By Remark 2.1 and the assumption on A in the proposition, the set of reachable final configurations of A is

tpf,Kq | f P F u. l

3. Trimming well-nested VPA

In this section, given a wnVPA A, we present the construction of a wnVPA trimwnpAq, which recognizes the same

language, and in addition is trimmed. First we define the reduced wnVPA reducepAq which is equivalent to A. Next

we will present coreducepAq and lastly we will combine these two procedures in order to produce trimwnpAq.

3.1. Construction of wreducepAq and reducepAq

For a wnVPA A, we describe the construction of the weakly reduced VPA wreducepAq. The VPA reducepAq is

simply obtained by removing useless states of wreducepAq using Proposition 2.1. In fact, if LpBqq X LpCqq “ H
then q can be removed because there is no accepting run going through a configuration pq, σq in A.

Consider a wnVPA A “ pQ, I, F,Γ, δq. We define WN as the set tpp, qq P QˆQ | Dpp,Kq Ñ pq,Kq P RunpAqu.

This set can be computed in quadratic time as the least one satisfying

• tpp, pq | p P Qu Ď WN,

• if pp, p1q P WN and pp1, p2q P WN, then pp, p2q P WN

• if pp, qq P WN, and Dpq, i, q1q P δι, then pp, q1q P WN

4

• if pp, qq P WN and Dpp1, c, γ, pq P δc, pq, r, γ, q1q P δr, then pp1, q1q P WN

Definition 3.1. Given a wnVPA A “ pQ, I, F,Γ, δq, we define the wnVPA wreducepAq “ pQ1, I 1, F 1,Γ1, δ1q with

Q1 “ WN, I 1 “ WNX pI ˆF q, F 1 “ tpf, fq | f P F u, Γ1 “ ΓˆQ, and δ1 defined by its restrictions on call, return 3

and internal symbols respectively (namely δ1
c, δ1

r and δ1
ι):

• δ1
c “

"

ppp, qq, c, pγ, qq, pp1, q1qq
pp, qq, pp1, q1q P Q1, pp, c, γ, p1q P δc
Dr P Σr, Ds P Q, pq1, r, γ, sq P δr and ps, qq P Q1

*

• δ1
r “ t ppq1, q1q, r, pγ, qq, pp, qqq | pp, qq P Q1, pq1, r, γ, pq P δr u

• δ1
ι “ t ppp, qq, a, pp1, qqq | pp, qq, pp1, qq P Q1, pp, a, p1q P δι u

pp, σq

pp1, σ.γq pq1, σ.γq

ps, σq pq, σq

c

w1

r

w2

Figure 2: Construction of call transitions.

Intuitively, the states (and the stack) of wreducepAq extend those of A with an additional state of A. This extra

component is used by wreducepAq, when simulating a run of the VPA A, to store the target state that the run should

reach to pop the symbol on top of the stack. The source states of return transitions are of the form pq, qq to ensure

that the target state is reached when popping the top of the stack. To obtain a weakly reduced VPA, we require for the

call transitions the existence of a matching return transition that allows one to reach the target state. This condition is

depicted on Figure 2, and we give an example of the construction in Figure 3.

1 2 3

c{γ

r{γ

c1{γ1

c2{γ2

r{γ2

r{γ1

1, 1 2, 2

3, 3

2, 3
c{γ, 1

r{γ, 1
r{γ2, 3

r{γ1, 2

c1{γ1, 2

c2{γ2, 3 r{γ1, 3

c1{γ1, 3

Figure 3: On the left a VPA A, on the right reducepAq. There exists an initialized run of A over cc2 which cannot be completed into an accepting

run. This run is no longer present in reducepAq.

For the rest of this subsection, we assume fixed some wnVPA A “ pQ, I, F,Γ, δq and denote Awred the wnVPA

wreducepAq.

The VPA Awred satisfies that :

Lemma 3.1. For all w P Σ˚
wn and all ρ1 : ppp, qq,Kq

w
ÝÑ ppp1, q1q,Kq P RunpAwredq, we have q “ q1.

PROOF. By induction on the structure of w; we show the property for w “ ε for the base case. The induction step

is done over w “ cw1rw2 and w “ aw1 with w1, w2 P Σ˚
wn, c P Σc, r P Σr and a P Σι assuming the property on

w1, w2. l

We now relate accepting runs of A and of Awred: we define a mapping Φwred from RunpAwredq to RunpAq. For any

run ρ1 “ ppp0, q0q, σ0qΠk
i“1

pαipppi, qiq, σiqq of Awred, we let Φwredpρ1q be the run pp0, π1pσ0qqΠk
i“1

pαippi, π1pσiqqq.

Lemma 3.2. For all w P Σ˚ and all runs ρ P RunwpAwredq, we have Φwredpρq P RunwpAq.

PROOF. By induction on the structure of w. l

3As the language is well-nested, we do not consider return transitions on the empty stack.

5

The next two lemmas prove the injectivity and surjectivity of Φwred.

Lemma 3.3. For all w P Σ˚
wn, if there exists a run ρ : pp,Kq

w
ÝÑ pq,Kq in RunpAq, then there exists a run ρ1 :

ppp, qq,Kq
w

ÝÑ ppq, qq,Kq P RunpAwredq such that Φwredpρ1q “ ρ.

PROOF. By induction on the structure of w using Lemma 3.2. l

Lemma 3.4. For all w P Σ˚
wn and all ρ1

1, ρ
1
2 P RunwpAwredq, if Φwredpρ1

1q “ Φwredpρ1
2q and lastpρ1

1q “ lastpρ1
2q, then

ρ1
1 “ ρ1

2.

PROOF. By induction on the structure of w using Lemma 3.2 and Lemma 3.1. l

Theorem 3.1. Let A be a wnVPA, and let Awred “ wreducepAq and Ared “ reducepAq. Awred and Ared can be built

in polynomial time, and satisfy:

p1q for all w P Σ˚
wn, there exist bijections between ARunwpAwredq and ARunwpAq, and ARunwpAredq and ARunwpAq

and thus in particular LpAq “ LpAwredq “ LpAredq,

p2q Awred is weakly reduced, and Ared is reduced.

PROOF. We prove that when restricted to ARunwpAwredq, the mapping Φwred is bijective.

• Φwred is surjective: it is easy to verify that applying Lemma 3.3 on an accepting run of A yields an accepting

run of Awred, which is in its inverse image by the mapping Φwred.

• Φwred is injective: this is an immediate corollary of Lemma 3.4 as last states of accepting runs of Awred are of

the form pf, fq. Thus, if two accepting runs ρ1
1, ρ

1
2 have the same image by Φwred, they must verify lastpρ1

1q “
lastpρ1

2q.

We now prove that wreducepAq is weakly reduced that is, that any reachable configuration of Awred is also co-

reachable.

Let κ “ ppp, qq, σq be a reachable configuration of Awred. There exists a run ρ of Awred of the form ppi, fq,Kq Ñ κ

starting in an initial configuration ppi, fq,Kq. We show by induction on the size of the stack σ that we can reach a

final configuration from κ.

If |σ| “ 0, by Lemma 3.1, we obtain q “ f . In particular, this implies q P F . Since pp, qq P WN, there is a run

pp,Kq Ñ pq,Kq in A, thus by Lemma 3.3 we have a run ppp, qq,Kq Ñ ppq, qq,Kq of Awred. This concludes this case

as by the above observation (q P F), we have pq, qq P F 1.

We now assume for the induction that the property holds when |σ| ď n and we consider a stack σ such that

|σ| “ n ` 1. Let denote by pγ, q1q the top symbol of σ, write σ “ σ1.pγ, q1q, and consider the first position in

the run ρ that pushes this symbol onto the stack. We denote by c the associated call. More precisely, there exists a

unique decomposition of ρ as ρ : ppi, fq,Kq Ñ ppp1, q1q, σ1q
c

ÝÑ ppp2, q2q, σq Ñ ppp, qq, σq such that the run from

ppp2, q2q, σq to ppp, qq, σq is associated with a well-nested word. By Lemma 3.1, we obtain q2 “ q. Considering the

call transition associated with c, and by definition of δ1
c, there exists a return transition ppq, qq, r, pγ, q1q, ps, q1qq P δ1

r

for some letter r P Σr. In addition, as pp, qq P WN, there is a run pp,Kq Ñ pq,Kq in A, and thus by Lemma 3.3 we

have a run ppp, qq,Kq Ñ ppq, qq,Kq in Awred, and thus a run ppp, qq, σq Ñ ppq, qq, σq in Awred.

As the top symbol of σ is pγ, q1q, the above return transition can be used to reach configuration pps, q1q, σ1q whose

height is n. The result follows by induction hypothesis. l

An important feature of the construction reduce is that it preserves the co-reduction:

Proposition 3.1. Let A be a wnVPA. If A is co-reduced, then reducepAq is co-reduced as well.

PROOF. We will prove that if A is co-reduced, then Awred “ wreducepAq is co-reduced as well. Since reducepAq is

obtained by removing all the useless states of Awred, we can conclude that reducepAq is also co-reduced.

Let κ “ ppp, qq, σq and κi “ pppi, qiq,Kq be two configurations of Awred such that ppi, qiq is an initial state of

Awred and there exists in Awred two runs ρ : κ Ñ ppf, fq, σ1q and κi Ñ ppf, fq, σ1q where f is a final state of A. As

6

Awred is a wnVPA and by Remark 2.1, we have σ1 “ K. We show by induction on the size of the stack σ that κ can

be reached from an initial configuration.

If |σ| “ 0, by Lemma 3.1, q “ f . By construction of the set WN, pp,Kq Ñ pf,Kq is a run of A. Since A is

co-reduced, there exists a run pi,Kq Ñ pp,Kq with i P I . Thus by Lemmas 3.3 and 3.1 ppi, fq,Kq Ñ ppp, fq,Kq Ñ
ppf, fq,Kq is a run of Awred.

We now assume for the induction that the property holds when |σ| ď n and we consider a stack σ such that

|σ| “ n ` 1. Let us consider the first position in the run ρ that pops the top symbol from the stack. We denote by r

the associated return. More precisely, there exists a unique decomposition of ρ as follows:

ppp, qq, σq
w

ÝÑ ppq2, q2q, σq
r

ÝÑ ppp1, q1q, σ1q
w1

ÝÑ ppf, fq,Kq with w P Σ
˚
wn and σ “ σ1pγ, q1q for γ P Γ

By Lemma 3.1, q2 “ q. By Lemma 3.4, the projection of ρ is a run in A:

pp, σ̄q
w

ÝÑ pq, σ̄q
r

ÝÑ pp1, σ̄1q
w1

ÝÑ pf,Kq P RunpAq where σ̄ “ π1pσq and σ̄1 “ π1pσ1q

Since A is co-reduced, the configuration pp, σ̄q is reachable from an initial configuration of A by some run ρ1. We

decompose ρ1 so as to exhibit the call transition that pushed the top symbol of σ̄:

ρ1 : pi,Kq Ñ pp2, σ̄1q
c,γ

ÝÝÑ ps, σ̄q
w2

ÝÝÑ pp, σ̄q P RunpAq where c P Σc and w2 P Σ
˚
wn

By Lemmas 3.3 and 3.1, we deduce:

pps, qq,Kq
w2

ÝÝÑ ppp, qq,Kq
w

ÝÑ ppq, qq,Kq P RunpAwredq

and thus

pps, qq, σq
w2

ÝÝÑ ppp, qq, σq
w

ÝÑ ppq, qq, σq P RunpAwredq

Consider now the call transition on c used in the run ρ1. It is of the form t “ pp2, c, γ, sq. By the existence of the

above run in Awred, we can deduce the existence of the transition ppp2, q1q, c, pγ, q1q, ps, qqq in δ1
c. We can thus extend

the above run of Awred as follows:

ppp2, q1q, σ1q
c

ÝÑ pps, qq, σq
w2

ÝÝÑ ppp, qq, σq
w

ÝÑ ppq, qq, σq
rw1

ÝÝÑ ppf, fq,Kq P RunpAwredq

and the result follows by induction hypothesis. l

3.2. Construction of coreducepAq and wcoreducepAq

For a wnVPA A, we now describe the construction of the VPA wcoreducepAq, which is weakly co-reduced. This

construction can be seen as the application of wreduce on the dual of A which is obtained by swapping call and return

symbols and transitions, swapping initial and final states and swapping target and source of transitions. The VPA

coreducepAq is then obtained similarly as reducepAq by removing useless states of wcoreducepAq.

Definition 3.2. Given a wnVPA A “ pQ, I, F,Γ, δq, we define the wnVPA wcoreducepAq “ pQ1, I 1, F 1,Γ1, δ1q with

Q1 “ WN, I 1 “ tpi, iq | i P Iu, F 1 “ WN X pI ˆ F q, Γ1 “ Γ ˆ Q, and δ1 defined by its restrictions on call, return

and internal symbols respectively (namely δ1
c, δ1

r and δ1
ι):

• δ1
c “ tppp, qq, c, pγ, pq, pq1, q1qq | pp, qq P Q1, pq, c, γ, q1q P δcu

• δ1
r “

"

ppp, qq, r, pγ, p1q, pp1, q1qq
pp, qq, pp1, q1q P Q1, pq, r, γ, q1q P δr,

Dc P Σc, Ds P Q, ps, c, γ, pq P δc and pp1, sq P Q1

*

• δ1
ι “ tppp, qq, a, pp, q1qq | pp, qq, pp, q1q P Q1, pq, a, q1q P διu

7

As we did for wreduce, the states (and the stack) of wreducepAq extend those of A with an additional state of

A. Here this information is used to store the state q reached when the current top symbol of the stack was pushed.

To obtain a weakly co-reduced VPA we require for the return transitions the existence of a matching call transition

that allows one to go through the source state q. Similarly as wreduce and reduce, the constructions wcoreduce and

coreduce have the following properties:

Theorem 3.2. Let A be a wnVPA, and let Awcor “ wcoreducepAq and Acor “ coreducepAq. Awcor and Acor can be

built in polynomial time, and satisfy:

p1q for all w P Σ˚ there exist bijections between ARunwpAwcorq and ARunwpAq, and ARunwpAcorq and ARunwpAq
and thus in particular LpAq “ LpAwcorq “ LpAcorq,

p2q Awcor is weakly co-reduced, and Acor is co-reduced.

To prove Theorem 3.2, we proceed the same way as in the proof of Theorem 3.1. Thus we define a mapping Φwcor

from RunpAwcorq to RunpAq. For any run ρ1 “ ppp0, q0q, σ0qΠk
i“1

pαipppi, qiq, σiqq of Awcor, we let Φwcorpρ
1q be the

run pq0, π1pσ0qqΠk
i“1

pαipqi, π1pσiqqq.

PROOF. Since wcoreduce can be seen as the dual of wreduce, we can prove that Φwcor is a bijection between

ARunwpAwcorq and ARunwpAq by following the lines of the proof of property p1q of Theorem 3.1.

Due to Proposition 2.2, for wnVPA, being co-reduced is the exact dual of being reduced. Therefore, the proof of

property p2q can be done by following the lines of the proof of property p2q of Theorem 3.1. l

The co-reduction construction preserves two importants properties:

Proposition 3.2. Let A be a reduced VPA, then coreducepAq is also reduced.

PROOF. The proof of this proposition follows the lines of that of Proposition 3.1. l

Proposition 3.3. Let A be a deterministic VPA, then coreducepAq is also deterministic.

PROOF. The proof of this proposition is done by inspecting the transitions of Awcor. l

3.3. Trimming a wnVPA

We define the construction trimwn as trimwn “ coreduce ˝ reduce. Proposition 3.2 entails that the construction

coreduce preserves the reduction, and thus by Theorems 3.1 and 3.2 we obtain the following result:

Theorem 3.3. Let A be a wnVPA, and Atrim “ trimwnpAq. Atrim is trimmed and can be built in polynomial time.

Furthermore, for all w P Σ˚, there exists a bijection between ARunwpAq and ARunwpAtrimq, and thus in particular

LpAq “ LpAtrimq.

4. Trimming VPA

We now present a construction which turns a VPA A into a wnVPA over a special alphabet. In a second step, we

trim the resulting VPA using the procedure described in Section 3 for wnVPA. Last, from the resulting wnVPA we

construct a VPA over the original alphabet recognizing the language LpAq and which is still trimmed. It is not obvious

to propose procedures for transforming a VPA into wnVPA, and back, which are compatible with the notion of being

trimmed.

8

4.1. From VPA to wnVPA...

Words from Σ˚ differ from well-nested words as they admit unmatched returns and calls. We address these issues

by extending the alphabet Σ and by modyfing words from Σ˚: some new symbols are added and used to complete the

unmatched calls by adding new return symbols and to replace unmatched returns by new internal symbols.

Let Σ “ Σc Z Σr Z Σι be a structured alphabet. We introduce the structured alphabet Σext “ Σext
c Z Σext

r Z Σext
ι

defined by Σext
c “ Σc, Σext

r “ Σr Z tr̄u, and Σext
ι “ Σι Z tar | r P Σru, where r̄ and tar | r P Σru are fresh symbols.

We define inductively the mapping Ω which transforms a word over Σ into a word over Σext as follows, given

a P Σι, r P Σr, c P Σc and n P N:

• Ωpǫ, nq “ ǫ, Ωpaw, nq “ aΩpw, nq,

• Ωprw, nq “ rΩpw, n ´ 1q if n ą 0, Ωprw, 0q “ ar Ωpw, 0q,

• Ωpcw, nq “

"

cw1rΩpw2, nq if Dw1 P Σ˚
wn, w2 P Σ˚ and r P Σr such that w “ w1rw2,

cΩpw, n ` 1q r̄ otherwise.

For example, Ωprrccar, 1q “ rarccarr̄. We denote by extpwq the word Ωpw, 0q. Intuitively, this mapping

replaces every unmatched return r by the internal symbol ar and adds a suffix of the form r̄˚ in order to match every

unmatched call. We can prove by induction on the structure of w that extpwq is a well-nested word over the alphabet

Σext.

Given a word w and a natural n, Ωpw, nq is obtained from w by replacing every unmatched return r of height less

than n by the internal symbol ar and adds a suffix of the form r̄˚ in order to match every unmatched call. We extend

the functions Ω and ext to languages in the obvious way.

We define also a variant of Ω which does not add the suffix r̄˚, we call this mapping Ωι:

Ωιpw, nq “ w1 such that Ωpw, nq “ w1w2 with w1 P pΣextztr̄uq˚ and w2 P r̄˚

We also define extιpwq as Ωιpw, 0q. We extend the function Ωι to runs in the following way:

Ωιpκ0Π
l
k“1pαkκkq, nq “ κ0Π

l
k“1pα1

kκkq with Ωιpα1 . . . αl, nq “ α1
1 . . . α

1
l

Let A be a VPA, we now present the construction extend which turns a VPA over Σ into a wnVPA over Σext.

Intuitively, the construction adds a suffix to the VPA which reads words from r̄` and replaces the returns on empty

stack by internals, thus implementing the mapping ext. To achieve this, the VPA must have some specific properties,

introduced in the next definition:

Definition 4.1. Let A “ pQ, I, F,Γ, δq be a VPA. Then A is stack-compliant if there exist partitions of Q as Q “
QK Z QM and Γ as ΓK Z ΓM such that:

1. For all initialized run of A leading to a configuration pp, σq, σ “ K iff p P QK,

2. For all initialized run of A leading to a configuration pp, σq, σ P tKu Y pΓK ¨ Γ˚
Mq,

3. For all t P δr, sourceptq R F .

We can now present the construction extend, which operates on stack-compliant VPA. We will present in Subsec-

tion 4.3 the construction scompliant that allows to build stack-compliant VPA.

Definition 4.2. Let A “ pQ, I, F,Γ, δq be a stack-compliant VPA over the alphabet Σ with partitions Q “ QK ZQM

and Γ “ ΓK Z ΓM. We construct extendpAq “ pQ1, I 1, F 1,Γ1, δ1q as the wnVPA over the alphabet Σext where:

Q1 “ Q Y tf̄K, f̄Mu, I 1 “ I , F 1 “ pF X QKq Y tf̄Ku, Γ1 “ Γ, and δ1 is given by:

• δ1
c “ δc and δK1

r “ H

• δ1
r “ δr Y tpp, r̄, γ, f̄τ q | τ P tK,Mu, p P F X QM, γ P Γτu Y tpf̄M, r̄, γ, f̄τ q | τ P tK,Mu, γ P Γτu

• δ1
ι “ δι Y tpp, ar, qq | pp, r,K, qq P δK

r , p P QKu

9

Intuitively, extendpAq has two components: the first one, composed of the states of A, can read words over

pΣextztr̄uq˚ and replaces every unmatched return by internal symbols, whereas the second one, composed of the two

added states tf̄K, f̄Mu, reads words of the form r̄`. This intuition is formalized for an arbitrary VPA over the alphabet

Σext in the next definition:

Definition 4.3. Let Σ be an alphabet and A “ pQ, I, F,Γ, δq be a VPA over the alphabet Σext. We define two subsets

of Q as follows:

trappAq “ tq P Q | Dp, pp, r̄, γ, qq P δru
borderpAq “ tp R trappAq | Dt P δ such that sourceptq “ p and targetptq P trappAqu

Elements of borderpAq are called border states of A.

Border states are the only ones that allow to reach a state in trappAq from a state not in trappAq. One can verify

that in the case of the VPA extendpAq, we have trappextendpAqq “ tf̄M, f̄Ku and borderpextendpAqq “ F XQM. We

give an example of these properties in Figure 4.

1 2 3

4 5 6

c{γ
c{γ

c{γ1

r{γ
r{γ1 r{γ1

r{K

c{γ1 c{γ1

1 2 3 f̄M

f̄K4 5 6

c{γ
c{γ

c{γ1

r{γ
r{γ1 r{γ1

r̄{γ1

r̄{γ
ar r̄{γ

c{γ1 c{γ1

r̄{γ1

Figure 4: On the left, the VPA A “ pQ, I, F,Γ, δq, on the right the wnVPA Aext “ extendpAq. The dashed parts are the components of A

modified by extend. A is stack-compliant for Q “ QK ZQM and Γ “ ΓK ZΓM where QK “ t1, 4u, QM “ t2, 3, 5, 6u, ΓK “ tγu and ΓM “

tγ1u. We will see later that A is produced by the construction scompliant. Moreover we have borderpAextq “ t3u and trappAextq “ tf̄M, f̄Ku.

Let A “ pQ, I, F,Γ, δq be a stack-compliant VPA with partitions Q “ QK Z QM and Γ “ ΓK Z ΓM. We define

Aext “ extendpAq and will prove that LpAextq “ extpLpAqq.

Lemma 4.1. Let w “ α1 . . . αk P Σ˚ be a word and ρ “ κ0Π
ℓ
k“1

pαkpκkqq, with κi a configuration of A for all i,

then ρ is an initialized run of A over w if and only if extιpρq is an initialized run of Aext over extιpwq.

PROOF. By definition, extιpwq is obtained from w by replacing every unmatched return by an internal symbol. The

construction extend implements correctly this transformation thanks to point p1q of definition of stack-compliance. l

Lemma 4.2. Let ρ be an initialized run of Aext over some word w leading to configuration pp, σq such that p is a

border state of Aext, then there exists exactly one run ρ1 over r̄|σ| such that ρρ1 is an accepting run of Aext.

PROOF. By construction of Aext, the word w does contain any occurrence of the letter r̄. Thus, by Lemma 4.1, there

exists a run ρ1 of A such that ρ “ extιpρ1q. As observed above, we have borderpAextq “ F X QM. Thus by point

p2q of definition of stack-compliance, σ P ΓK ¨ Γ˚
M, and by construction there exists a unique run of Aext which leads

from p to f̄K over r̄|σ| and pops all the symbols of the stack. l

Theorem 4.1. Let w P Σ˚ be a word, there exists a bijection between ARunwpAq and ARunextpwqpAextq, and thus

LpAextq “ extpLpAqq.

PROOF. First suppose that w is a word without unmatched calls, then extιpwq “ extpwq. Let ρ be an accepting run

of A over w leading to configuration pp, σq. extιpwq “ extpwq entails σ “ K and thus, by point p1q of the definition

of stack-compliance, we have p P F X QK. The result follows from Lemma 4.1.

Otherwise, w is a word with some unmatched calls. We define the set ERunw as ERunw “ tρ P RunextιpwqpAextq |
ρ is initialized and ends in a border stateu.

As border states of Aext arise from accepting states of A and by Lemma 4.1, for all run ρ P RunwpAq, ρ P
ARunwpAq if and only if extιpρq P ERunw. The result follows from Lemma 4.2. l

10

4.2. ... And back.

We will define the converse of the function extend, named retract, which performs the last step of the proce-

dure. However, we have to identify the trap amongst the states of the wnVPA in order to remove it and recover the

original language. This transformation is not always possible, and thus we introduce a sufficient condition, named

retractability, allowing to apply the retract procedure:

Definition 4.4. Let Σ be an alphabet and A “ pQ, I, F,Γ, δq be a VPA over the alphabet Σext. Let us consider the

following conditions:

p1q There exists a VPA B over Σ such that LpAq “ extpLpBqq,

p2q We have trappAq X I “ H,

p3q For all transitions t in δ, letterptq “ r̄ if and only if targetptq P trappAq,

p4q For all transitions t in δ such that sourceptq P trappAq, letterptq “ r̄,

p5q For each initialized run of A, which ends in a border state there exists exactly one run ρ1 over r̄` such that ρρ1 is

an accepting run.

p6q For all transitions t P δr such that sourceptq P borderpAq, letterptq “ r̄.

We say that A is retractable if it fulfills conditions p1q, . . . , p5q and strongly retractable if it is retractable and fulfills

condition p6q.

Retractability properties warrant that retract can be applied. In the sequel we will prove that our different con-

structions preserve the retractability property and thus preserve the trap: for example the trap of the wnVPA produced

by wreduce ˝ extend is of the form tpf̄K, f̄Kq, pf̄M, f̄Mqu. Note that we need the strong retractability property because

the reduce construction does not preserve the retractability. We first show that the construction extend ensures the

strong retractability:

Theorem 4.2. Let A be a stack-compliant VPA, then extendpAq is strongly retractable.

PROOF. Property p1q is a consequence of Theorem 4.1. Properties p2q, p3q, p4q are consequences of the construction,

property p5q is a consequence of Lemma 4.2 and property p6q is a consequence of point p3q of definition of stack-

compliance. l

We now define the construction retract:

Definition 4.5. Let A “ pQ, I, F,Γ, δq be a retractable wnVPA over the alphabet Σext, we define the VPA retractpAq “
pQ1, I 1, F 1,Γ, δ1q over the alphabet Σ with Q1 “ QztrappAq, I 1 “ I , F 1 “ pF ztrappAqq Y borderpAq, and

the set of transition rules δ1 “ δ1
c Z δ1

r Z δ1K
r Z δ1

ι is defined by δ1
c “ δc, δ1

r “ tt P δr | letterptq ‰ r̄u,

δ1K
r “ tpp, r,K, qq | pp, ar, qq P διu, and δ1

ι “ tt P δι | letterptq P Σιu.

This construction works as follows: it replaces all the internal transitions over ar by return transitions on empty

stack over symbol r, and removes the return transitions over r̄. Note that the final states of retractpAq are the final

states of A which are not in trappAq and the border states of A.

Lemma 4.3. Let w “ α1 . . . αk P Σ˚ be a word and ρ “ κ0Π
ℓ
k“1

pαkpκkqq, with κi a configuration of retractpAq for

all i, starting in configuration κ0 “ pp, σq, then ρ P RunwpretractpAqq if and only if Ωιpρ, |σ|q P RunΩιpw,|σ|qpAq.

PROOF. First observe that w P Σ˚ entails, by points p2q and p3q of the definition of retractability, that configurations

κi “ ppi, σiq verify the property pi R trappAq for all i. As Ωι is applied on ρ with |σ| as second argument, it replaces

the unmatched returns of w that are taken in ρ with an empty stack by internal symbols. The lemma is then proved by

an induction on the length of w. l

11

Theorem 4.3. Let A be a retractable VPA on Σext then for any word w P Σ˚, there exists a bijection between

ARunwpretractpAqq and ARunextpwqpAq, and thus in particular LpAq “ extpLpretractpAqqq.

PROOF. Let w P Σ˚ be a word and distinguish two cases. If w is a word without unmatched calls, then extpwq “
extιpwq. By Lemma 4.3 and point p2q of the definition of retractability, ext induces a bijection between the set of

initialized runs of retractpAq over w and the set of initialized runs of A over extpwq. In addition, an initialized run ρ

of retractpAq over w is accepting iff extpρq is accepting in A. Indeed, as w has no unmatched calls, the configuration

pp, σq reached by ρ verifies σ “ K, and thus p R borderpAq by point p5q of the definition of retractable. Then p is a

final state of retractpAq iff p is a final state of A. Otherwise, w is a word with some unmatched calls. We define the

set RRunw as RRunw “ tρ P RunextιpwqpAq | ρ is initialized and ends in a border stateu.

As in the previous case, we can show by point p2q of the definition of retractability and by Lemma 4.3 that extι
induces a bijection between ARunwpretractpAqq and RRunw. Thus by point p5q of the definition of retractable, we

have a bijection between ARunwpretractpAqq and ARunextpwqpAq.

Last, by point p1q of the definition of retractability, any word accepted by A is of the form extpwq for some

w P Σ˚, and thus the previous bijections imply LpAq “ extpLpretractpAqqq. l

Our construction retract preserves the trim property:

Proposition 4.1. Let A be a retractable VPA on Σext, then if A is trimmed, so is retractpAq.

PROOF. Let Aret “ retractpAq. For the reduced part, let us consider an initialized run ρ : pp,Kq
w

ÝÑ pq, σq of Aret

over w. By Lemma 4.3 ρ̂ “ extιpρq is a run of A over ŵ “ extιpwq. Observe that ρ̂ is initialized. Since A is

reduced, there exists a run ρ̂1 over w1 such that ρ̂ρ̂1 is an accepting run of A. By construction we can decompose w1

as w1 “ w1w2 with w1 P Σ˚ and w2 P r̄˚ and ρ̂1 as ρ̂1 : pq, σq
w1ÝÝÑ pq1, σ1q over w1 and ρ̂2 : pq1, σ1q

w2ÝÝÑ pp1,Kq over

w2. If w2 “ ε, then σ1 “ K and by construction q1 is a final state of Aret. By Lemma 4.3, there exists a run ρ1 such

that ρ̂1 “ Ωpρ1, |σ|q and ρρ1 is an accepting run of Aret. If w2 ‰ ε, then q1 P borderA and so q1 is a final state of

Aret. Again, by Lemma 4.3 there exists a run ρ1 such that ρ̂1 “ Ωpρ1, |σ|q and ρρ1 is an accepting run of Aret.

For the co-reduced part, let us consider two runs ρ : pp, σq
w

ÝÑ pq, σ1q and ρ1 : pi,Kq
w1

ÝÑ pq, σ1q of Aret with q a

final state and i an initial state. We distinguish two cases:

• If σ1 “ K, then by point p5q of the definition of retractability, state q cannot be in borderpAq. By definition of

Aret, this implies that q is a final state of A. By Lemma 4.3, ρ̂ “ Ωιpρ, |σ|q is a run of A over ŵ “ Ωιpw, |σ|q,

then since A as a wnVPA and is co-reduced, there exists a run ρ̂2 of A over a word ŵ2 such that ρ̂2ρ̂ is an

accepting run of A over ŵ2ŵ. Thus by Lemma 4.3 there exists a run ρ2 of Aret such that ρ̂2 “ extιpρ
2q over

w2 with ŵ2 “ extpw2q and ρ2ρ is an accepting run of Aret over w2w.

• If σ1 ‰ K, then by construction, q P borderpAq. By Lemma 4.3, ρ̂ “ Ωιpρ, |σ|q and ρ̂1 “ extιpρ
1q are runs of

A over Ωιpw, |σ|q and extιpw
1q respectively. Observe that ρ̂1 is initialized. Then by point p5q of the definition

of retractability there exists exactly one run ρ̄ over r̄` such that ρ̂1ρ̄ is an accepting run of A and so ρ̂ρ̄ is also a

run of A. Since A is co-reduced there exists a run ρ̂2 of A over a word ŵ2 such that ρ̂2ρ̂ρ̄ is an accepting run of

A. By Lemma 4.3, there exists a run ρ2 of Aret such that ρ̂2 “ extιpρ
2q over w2 with ŵ2 “ extpw2q. Thus by

Lemma 4.3, ρ2ρ is an accepting run of Aret over w2w. l

We prove that the constructions reduce preserves the strong retractability and coreduce preserves the retractability:

Proposition 4.2. Let A be a strongly retractable VPA, then Ared “ reducepAq is strongly retractable.

PROOF. We let A “ pQ, I, F,Γ, δq and Ared “ pQ1, I 1, F 1,Γ1, δ1q. First note that by construction:

For all pp, qq P Q1, if pp, qq P trappAredq then p P trappAq (1a)

For all pp, qq P Q1, if pp, qq P borderpAredq then p P borderpAq (1b)

Equation (1a) is a consequence of the construction reduce. Concerning Equation (1b), to prove that p P borderpAq,

the fact that p R trappAq follows from point p3q of Definition 2.4 applied on pp, qq, and the fact that there exists a

transition on r̄ from p to trappAq follows from the construction reduce.

12

Condition p1q of the definition of retractibility is obvious since LpAq “ LpAredq. Conditions p2q, p3q and p4q can

be easily proved using Equation (1a), and condition p6q can be proved using Equation (1b).

To prove condition p5q, we consider an initialized run ρ of Ared over some word w leading to configuration

ppq, qq, σq such that pq, qq P borderpAredq. By Lemma 3.2, ρ1 “ Φwredpρq is a run of A leading to configuration

pq, π1pσqq. As q P borderpAq (by Equation (1b)) and A is retractable, π1pσq is not empty and so on for σ. Thus we

can decompose ρ as follows:

ρ : ppi, fq,Kq
w1

ÝÑ ppp1, q1q, σ1q
c

ÝÑ ppp, qq, σq
w2

ÝÝÑ ppq, qq, σq

with w1 P Σ˚, w2 P Σ˚
wn, c P Σc and σ “ σ1 ¨ pγ, q1q for some γ P Γ. In addition, by definition of reduced, there

exists a transition pq, r, γ, q2q P δr. Since q P borderpAq, by condition p6q of retractability we have r “ r̄, thus there

exists a transition ppq, qq, r̄, pγ, q1q, pq2, q1qq P δ1
r and so ρ1 : ppq, qq, σq

r̄
ÝÑ ppq2, q1q, σ1q is a run of Ared. Since Ared

is reduced, we can complete the initialized run ρρ1 into an accepting run. By condition p1q of retractability, accepted

words are of the form Σ˚r̄˚. Thus there exists a run ρ̄ “ ppq2, q1q, σ1q
r̄|σ1|

ÝÝÝÑ ppf, fq,Kq such that ρρ1ρ̄ is an accepting

run of Ared. Last, unicity of the extension of ρ follows from the bijection Φwred. l

Proposition 4.3. Let A be a retractable VPA, then Acor “ coreducepAq is retractable.

PROOF. We let A “ pQ, I, F,Γ, δq and Acor “ pQ1, I 1, F 1,Γ1, δ1q. First note that by construction:

For all pp, qq P Q1, if pp, qq P trappAcorq then q P trappAq (2a)

For all pp, qq P Q1, if pp, qq P borderpAcorq then q P borderpAq (2b)

Equations (2a) and (2b) can be proved similarly as Equations (1a) and (1b).

Condition p1q of the definition of retractability is obvious since LpAq “ LpAcorq. Conditions p2q, p3q and p4q can

be easily proved using Equation (2a).

To prove condition p5q, we first state the following property which easily follows from the definition of coreduce:

for all initialized run ρ of Acor leading to some configuration ppp, qq, σq, let ρ1 be the run Φwcorpρq of A leading to the

configuration pq, σ̄q with σ̄ “ π1pσq, if there exists a transition pq, r, γ, q1q P δr such that the run ρ1rpq1, σ̄1q exists in

A with σ̄ “ σ̄1γ, then there exists a transition ppp, qq, r, pγ, p1q, pp1, q1qq P δ1
r such that the run ρr ppp1, q1q, σ1q exists

in Acor, with π1pσ1q “ σ̄1.

Then, condition p5q easily follows from this property, Equation (2b) and the fact that A is retractable. Unicity

follows from the bijection Φwcor. l

4.3. The construction scompliant

We have seen in Subsection 4.1 how to transform a VPA into a wnVPA by means of the construction extend.

However, extend requires as an input a stack-compliant VPA. In this section, we propose a construction scompliant

that transforms any VPA into an equivalent stack-compliant one.

We first give an intuition on the construction and then show how it relates to the partitions of states and stack

symbols from the definition of stack-compliance (Definition 4.1). Our construction first distinguishes three kinds

of states: states for which the stack is empty, states stating that the top of the stack will be later popped and states

stating that the top of the stack will remain in the stack. Stacks are used to retain correct information in the states and

therefore will be of one of the following forms: the empty stack, or stacks composed of symbols that have to remain

in the stack over which some symbols intended to be popped.

We now present the construction scompliant. We first define the set of special symbols T “ tK,J, ˝u.

Definition 4.6. Given a VPA A “ pQ, I, F,Γ, δq, we define the VPA scompliantpAq “ pQ1, I 1, F 1,Γ1, δ1q, with

Q1 “ pQ ˆ T q, I 1 “ I ˆ tKu, F 1 “ F ˆ tK, ˝u, Γ1 “ Γ ˆ T , and δ1 is given by:

• δ1
c “ tppp, τq, c, pγ, τq, pq, τ 1qq | pp, c, γ, qq P δc and either τ 1“J or pτ 1“ ˝ ^ τ‰Jqu

• δ1
r “ tppp,Jq, r, pγ, τq, pq, τqq | pp, r, γ, qq P δru

13

• δK1
r “ tppp,Kq, r,K, pq,Kqqq | pp, r,K, qq P δru

• δ1
ι “ tppp, τq, a, pq, τqq | pp, a, qq P διu

The semantics of this construction is as follows: suppose that an initialized run reaches a state pp, τq, then the

form of the stack depends on τ . If τ “ K then the stack is empty. If τ “ ˝ then the symbols in the stack will never be

popped. Finally, if τ “ J, then the stack is composed at the bottom of some symbols which will never be popped and

on top of them some symbols that will be popped before reaching a final state. We give an example of this construction

in Figure 5.

1

2

r{γ r{K

c{γ 1,K 1,J 1, ˝

2,K 2,J 2, ˝

c{γ,K
c{γ,K

c{γ, ˝

r{γ,K
r{γ,J r{γ, ˝

r{K

c{γ,J
c{γ, ˝

Figure 5: On the left, a VPA A, on the right the VPA scompliantpAq.

Let us now give some basic properties of the construction scompliant:

Lemma 4.4. Let A be a VPA and ρ : ppp, τq, σq
w

ÝÑ ppp1, τ 1q, σq be a run of scompliantpAq over a well nested word

w, then τ “ τ 1.

PROOF. By induction on the structure of w. l

For each symbol τ P T we define the set Sτ as follows:

SK “ tKu SJ “ pΓ ˆ tKuq ¨ pΓ ˆ t˝uq˚ ¨ pΓ ˆ tJuq˚ S˝ “ pΓ ˆ tKuq ¨ pΓ ˆ t˝uq˚

We now state how, in configurations of runs of scompliantpAq, states are compliant with the stacks.

Lemma 4.5. Let A be a VPA and ρ “ ppp0, τ0q, σ0qΠk
i“1

pαipppi, τiq, σiqq be a run of scompliantpAq. If σ0 P Sτ0 ,

then for all i P t1, . . . , ku, σi P Sτi .

PROOF. By induction on the length of ρ. l

Definition 4.7. Let A be a VPA and ρ “ ppq0, τ0q, σ0qΠk
i“1

pαippqi, τiq, σiqq be a run of scompliantpAq, then ρ is a

stack-compliant run if σ0 P Sτ0 and τk ‰ J.

Intuitively, in the previous definition, the constraint τk ‰ J entails every symbol of the stack will never be popped

before reaching a final configuration. This is formalized in the next lemma.

Lemma 4.6. Let A be a VPA and ρ : ppp, τq, σq
w

ÝÑ ppp1, τ 1q, σ1q be a stack-compliant run of scompliantpAq with

w P Σ˚ and σ ‰ K. Then we can decompose w as w1rw2 with w1 P Σ˚
wn and r P Σr if and only if τ “ J.

PROOF. From left to right, if τ ‰ J, suppose that we can decompose w as w1rw2. By Lemma 4.4 we can also

decompose ρ as follows:

ρ : ppp, τq, σq
w1ÝÝÑ ppq, τq, σq

r
ÝÑ ppq1, τ2q, σ2q

w2ÝÝÑ ppp1, τ 1q, σ1q

τ cannot be equal to ˝ because there is no transition t P δ1
r such that sourceptq “ pq, ˝q and letterptq P Σr. τ is also

different from K because by Lemma 4.5, σ P Sτ but σ ‰ K. Contradiction.

From right to left, if τ “ J, suppose we cannot decompose w as w1rw2, then w “ w0c1w1 ¨ ¨ ¨ cnwn, for n P Ně0,

ci P Σc and wi P Σ˚
wn for all i P t0, . . . nu. We can decompose ρ as follows:

ρ : ppp0, τ0q, σ0q
w0ÝÝÑ ppp1

0, τ
1
0q, σ1

0q
c1ÝÑ ppp1, τ1q, σ1q

w1ÝÝÑ ¨ ¨ ¨
cnÝÑ pppn, τnq, σnq

wnÝÝÑ ppp1
n, τ

1
nq, σ1

nq

14

with ppp, τq, σq “ ppp0, τ0q, σ0q and ppp1, τ 1q, σ1q “ ppp1
n, τ

1
nq, σ1

nq. By definition of transitions of scompliantpAq,

if τ 1
i “ J then τi`1 “ J, and by Lemma 4.4 we have τi “ τ 1

i , thus since τ “ τ0 “ J we can conclude that

τ 1 “ τ 1
n “ J. This is a contradiction because ρ is a stack-compliant run and τ 1 must be different from J. l

In the rest of this subsection, we let A “ pQ, I, F,Γ, δq be a VPA and Asc “ pQ1, I 1, F 1,Γ1, δ1q be the VPA

scompliantpAq. We are now going to prove the following theorem:

Theorem 4.4. Let A be a VPA, then Asc “ scompliantpAq can be built in polynomial time and:

• For all word w P Σ˚ there exists a bijection between ARunwpAq and ARunwpAscq, and so LpAq “ LpAscq.

• Asc is stack-compliant.

We define a mapping Φsc from the runs of Asc to the runs of A. For any run ρ1 “ ppq0, τ0q, σ0qΠk
i“1

pαippqi, τiq, σiqq
of Asc, we let Φscpρ

1q be the run pq0, π1pσ0qqΠk
i“1

paipqi, π1pσiqqq.

Proposition 4.4. For any stack-compliant run ρ1 of Asc, ρ “ Φscpρ
1q is a run of A.

PROOF. By induction on the length of ρ1. l

Lemma 4.7. The mapping Φsc from the stack-compliant runs of scompliantpAq to the runs of A is bijective.

PROOF. By induction on the length of the stack-compliant runs (the induction step is defined by adding a configuration

at the beginning of the run of the hypothesis), using Proposition 4.4 and Lemmas 4.6 and 4.5. l

PROOF (THEOREM 4.4). For the first point note that any run ρ P ARunpAscq is a stack-compliant run of Asc. Thus

by Proposition 4.4 and Lemma 4.7, ρ is an accepting run of Asc over w if and only if Φscpρq is an accepting run of

A over w. For the second point, conditions p1q and p2q of stack-compliance are a consequence of Lemma 4.5, with

Q1
M “ pQ ˆ t˝uq Y pQˆ tJuq Q1

K “ pQˆ tKuq, Γ1
M “ pΓˆ t˝uq Y pΓˆ tJuq and Γ1

K “ pΓˆ tKuq. Condition p3q
is a direct consequence of the construction. l

4.4. Trimming VPA

We consider the construction trim defined by trimpAq “ retract ˝ trimwn ˝ extend ˝ scompliantpAq, and state its

main properties:

Theorem 4.5. Let A be a VPA on the alphabet Σ, and let Atrim “ trimpAq. The VPAAtrim can be built in polynomial

time, and satisfies:

p1q there is a bijection between ARunpAq and ARunpAtrimq, and so LpAq “ LpAtrimq,

p2q Atrim is trimmed.

PROOF. We can prove this result using theorems and propositions summarized in the table of Section 7. l

5. Deterministic trimmed VPA

We have proven in the previous section that it is always possible, given a VPA, to build an equivalent VPA (i.e.

recognizing the same language) which is trimmed. In addition, in the original paper of Alur and Madhusudan, it was

proven that it is always possible to build an equivalent VPA that is deterministic. In this section, we prove that it

is possible to build an equivalent VPA that is both trimmed and deterministic. This is not an immediate corollary

of the two previous results, as the construction reduce introduces some non-determinism and the construction of a

deterministic VPA given in [2] does not preserve the co-reduction.

We do not show the determinization procedure for VPA, we refer the reader to [2] for details. Given a VPA A as

input, we denote by detpAq the result of this procedure. Note that its complexity is O
´

2n
2

¯

, where n denotes the

number of states of the input VPA. This procedure enjoys the following two properties:

15

Lemma 5.1 ([2]). Let A be a VPA. Let w P Σ˚, and w1 be the longest well-nested suffix of w. The (unique) run of

detpAq on the word w reaches the state pR,Sq defined by:

• R “ tp P Q | D pi,Kq
w

ÝÑ pp, σq P RunpAq with i an initial state of Au

• S “ tpp, qq P Q ˆ Q | D pp,Kq
w1

ÝÑ pq,Kq P RunpAqu

Lemma 5.2 ([2]). Let w P Σ˚. If there exists an initialized run ρ1 of detpAq on w (not necessarily accepting), then

there exists an initialized run ρ of A on w.

We refine this construction by removing the useless states from detpAq (according to property p3q of Defini-

tion 2.4), this last phase can be done in polynomial time. We denote by determinize the whole process.

5.1. Determinization preserves reduction and retractability

It is obvious that Lemmas 5.1 and 5.2 are preserved by determinize and that this procedure is correct in the

following sense [2]:

Theorem 5.1 ([2]). Let A be a VPA. determinizepAq is a deterministic VPA, and LpAq “ LpdeterminizepAqq.

We prove now that the construction determinize preserves the properties of being weakly reduced and of being

retractable. In the sequel, we let A be a VPA and denote by Adet the VPA determinizepAq.

Proposition 5.1. If A is weakly reduced, then determinizepAq is weakly reduced.

PROOF. Let ρ1 be an initialized run of Adet. We have to prove that ρ1 can be completed into an accepting run of Adet.

Let us denote by w1 the word associated with the run ρ1.

By Lemma 5.2, there exists an initialized run ρ of A on the word w1. As A is weakly reduced, the run ρ can be

completed by a run ρ2 into an accepting run of A, on some word w2. As a consequence, we have w1w2 P LpAq. By

the correction of the determinization procedure, we have w1w2 P LpAdetq. Thus there exists an accepting run ρ2 of

Adet on this word. As Adet is deterministic, the prefix of ρ2 on w1 must be exactly ρ1. This proves the result. l

Proposition 5.2. If A is retractable, then determinizepAq is retractable.

PROOF. We denote by Q1 the states of Adet. First note that by Lemma 5.1:

For all pS,Rq P Q1, if pS,Rq P trappAdetq then Dq P R such that q P trappAq (3a)

For all pS,Rq P Q1, if pS,Rq P borderpAdetq then Dq P R such that q P borderpAq (3b)

For the properties of Definition 4.4: property p1q is obvious since LpAdetq “ LpAq. Properties p2q ´ p4q are a

consequence of Equation (3a). For the property p5q, let us define the initialized run ρ of Adet over some word w with

lastpρq “ ppS,Rq, σq such that pS,Rq is a border state of Adet. There exists a run ρ1 of A over w with lastpρq “ pp, σ1q,

p P R. By Equation (3b), p is a border state. Thus by definition of retractable, there exists a run ρ̄ of A over r̄k such

that ρ1ρ̄ is an accepting run of A for k P N. As a consequence, we have wr̄k P LpAq. By the correction of the

determinization procedure, we have wr̄k P LpAdetq. Thus there exists an accepting run ρ2 of Adet on this word. As

Adet is deterministic, the prefix of ρ2 on w is exactly ρ. This proves the result. l

5.2. Construction of a deterministic trimmed VPA

We consider the following composition of the different constructions presented before:

det-trim “ retract ˝ coreduce ˝ determinize ˝ reduce ˝ extend ˝ scompliant

We claim that this composition allows one to build an equivalent VPA that is both deterministic and trimmed:

Theorem 5.2. Let A be a VPA. The VPA det-trimpAq is deterministic, trimmed, and satisfies LpAq “ Lpdet-trimpAqq.

PROOF. We can prove this result using theorems and propositions summarized in the table of Section 7. l

16

5.3. A lower bound for deterministic inputs

One can wonder whether a deterministic VPA can be trimmed with a polynomial time complexity, preserving its

deterministic nature. The answer to this question is negative, and we now prove that there is no construction which

allows to trim a deterministic VPA in polynomial time preserving determinism. First we recall this well-known result:

Theorem 5.3. [13] Let k be an integer such that k ą 0 and Tk be a deterministic finite state automaton over the

alphabet Γ “ tγ1, γ2u such that LpTkq “ pγ1 ` γ2q˚γ1pγ1 ` γ2qk´1, then Tk have at least 2k states.

Let Σ “ Σc Y Σr Y Σι be a structured alphabet such that Σc “ tc1, c2u, Σr “ tru, Σι “ tau and Γ “ tγ1, γ2u.

We now present the family of deterministic VPAAk “ pQ, I, F,Γ, δq where Q “ tquYtqi | i P t0, . . . , kuu, I “ tqu,

F “ tqku, and δ “ δc Y δr Y δι with:

• δc “ tpq, c1, γ1, qq, pq, c2, γ2, qqu

• δr “ tpqi, r, γ, qi`1q | i P t0, . . . , k ´ 2u, γ P Γu Y tpqk´1, r, γ1, qkqu Y tpqk, r, γ, qkq | γ P Γu

• δι “ tpq, a, q0qu

It is easy to see that Ak recognizes the language Lk “ tpc1 ` c2qnac1pc1 ` c2qkrk`n`1 | n P Nu with k P N.

The VPA Ak is depicted on Figure 6. We now prove that there is no deterministic and trimmed VPA Āk such that

LpAkq “ LpĀkq for arbitrary k and the size of Āk is polynomial in the size of Ak.

q q0 q1 qk´1 qk

c1 | γ1 c2 | γ2

a

r | γ1

r | γ2

r | γ1

r | γ2

r | γ1

r | γ2

r | γ1

r | γ1 r | γ2

. . .

Figure 6: The VPA Ak .

Lemma 5.3. Let k be an integer such that k ą 0 and ρ : pq,Kq
w

ÝÑ pq1, σq be an initialized run of Ak such that

w “ w1a with w1 P Σ˚. Then there exists a run ρ1 of Ak such that ρρ1 is an accepting run of Ak if and only if

w1 P pc1 ` c2q˚c1pc1 ` c2qk´1.

PROOF. First note that by construction of Ak we have q1 “ q0. The only way to reach a final state from pq0, σq is for

σ P pγ1 ` γ2q˚γ1pγ1 ` γ2qk´1. Since the only way to push a symbol γ1 (resp. γ2) is to go through a letter c1 (resp.

c2) we can conclude that there exists a run ρ1 of Ak such that ρρ1 is accepting if and only if ρ is over a word from

pc1 ` c2q˚c1pc1 ` c2qk´1. l

Let k be an integer such that k ą 0. We define Āk as a reduced and deterministic VPA Āk “ pQ̄, Ī, F̄ , Γ̄, δ̄q over

Σ such that LpĀkq “ LpAkq.

Lemma 5.4. For all initialized run ρ : pp,Kq
w1

ÝÑ pp1, σq of Āk such that there exists a transition pp1, a, p2q P δ̄i, then

w1 P pc1 ` c2q˚c1pc1 ` c2qk´1.

PROOF. Since a is an internal symbol, pp,Kq
w1

ÝÑ pp1, σq
a

ÝÑ pp2, σq is a run of Āk over w1a. Since Āk is reduced, by

definition there exists a run ρ1 of Āk such that ρρ1 is an accepting run of Āk. By Lemma 5.3 and since LpAkq “ LpĀkq,

w1 P pc1 ` c2q˚c1pc1 ` c2qk´1. l

Lemma 5.5. The VPA Āk has at least 2k states.

17

PROOF. To prove this result, from the VPA Āk “ pQ̄, Ī, F̄ , Γ̄, δ̄q we define the finite state automaton Bk “ pQ1, I 1, F 1, δ1q
over the alphabet Σ1 “ tc1, c2u with Q1 “ tp, p1 P Q̄ | Dpp, c, γ, p1q P δ̄cu Y tp P Q̄ | Dpp, a, p1q P δ̄ιu, I 1 “ Ī ,

F 1 “ tp P Q̄ | pp, a, p1q P δ̄ιu, and δ1 “ tpp, c, p1q | pp, c, γ, p1q P δ̄cu.

First note that Bk is defined as a restriction of Āk, where the transitions of Bk are the call transitions of Āk with

the stack symbol removed. Moreover as Āk is deterministic, so is Bk. The final states of Bk are the states of Āk

which have an outgoing transition over a (and by assumption on the language of Āk, have at least one incoming call

transition). Thus by Lemma 5.4, we have LpBkq “ pc1 ` c2q˚c1pc1 ` c2qk´1.

By Theorem 5.3, Bk have 2k states. Since Bk is defined as a restriction of Āk, Ak have at least 2k states. l

Theorem 5.4. There is no procedure which allows to trim a deterministic VPA in polynomial time preserving deter-

minism.

PROOF. Direct consequence of Lemma 5.5. l

6. Application to VPA with weights

We show in this section that our trimming procedure can be applied to VPA with weights, for instance visibly push-

down transducers (see [11]) where transitions are in addition labelled with output words, and VPA with multiplicities

(N-VPA for short, see [7]), where transitions are labelled by integers.

We consider a monoid pM, ¨q which will be used to represent weights associated with transitions (for instance Σ˚

equipped with concatenation in the case of transducers and N equipped with addition for N-VPA).

Definition 6.1. A weighted visibly pushdown automaton on finite words over Σ with weights in pM, ¨q is a pair

W “ pA, λq composed of a VPA A “ pQ, I, F,Γ, δq and a mapping λ : δ Ñ M , which assigns weights to transitions

of A.

The notions of configurations and runs are lifted from VPA to weighted VPA. Given a run ρ over a sequence of

transitions η “ ptiq1ďiďk, we define the weight of ρ, denoted xρy, as xρy “ Πi“k
i“1

λptiq.

Then, the behavior of the weighted VPAW “ pA, λq is represented by the formal power serie xxW yy from Σ˚ to

multisets over M , defined by xxW yypwq “ ttxρy | ρ P ARunwpAquu.

Theorem 6.1. Let W be a weighted VPA. We can build in polynomial time a weighted VPA W 1 that is trimmed and

such that xxW yy “ xxW 1yy.

PROOF (SKETCH). By definition, the weight of a run of a weighted VPA only depends on the run of the underlying

VPA. In addition, one can verify that the bijections of runs proved for the different constructions of the paper do all

“preserve” the transitions, i.e. every transition of the VPA we build is mapped on a single transition of the original

VPA, and the bijection respects this mapping. This is clear for the construction reduce (and thus also coreduce) as

the mapping is a projection. The case of extend and retract is a bit more involved. Indeed, the construction extend

adds a unique suffix to each run, which is intuitively removed by the construction retract. Apart from that suffix, the

bijection preserves the transitions of the original VPA. l

7. In a nutshell

We summarize in the table below the results presented in this paper:

18

Algorithm Profile Requires Preserves Ensures

reduce wnVPA Ñ wnVPA Strong retractability (Proposition 4.2) Reduction (Theorem 3.1)

Co-reduction (Proposition 3.1)

coreduce wnVPA Ñ wnVPA Retractability (Proposition 4.3) Co-reduction (Theorem 3.2)

Reduction (Proposition 3.2)

Determinism (Proposition 3.3)

determinize VPA Ñ VPA Reduction (Proposition 5.1) Determinism (Theorem 5.1)

Retractability (Proposition 5.2)

extend VPA Ñ wnVPA Stack-compliance Strong retractability

(Theorem 4.2)

retract wnVPA Ñ VPA Retractability Reduction (Proposition 4.2)

Co-reduction (Proposition 4.3)

scompliant VPA Ñ VPA Stack-compliance

(Theorem 4.4)

Using these constructions we have defined the three following ones which respectively allow to trim wnVPA, to

trim VPA, and to trim and determinize VPA:

trimwn “ coreduce ˝ reduce

trim “ retract ˝ trimwn ˝ extend ˝ scompliant

det-trim “ retract ˝ coreduce ˝ determinize ˝ reduce ˝ extend ˝ scompliant

References

[1] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for Visibly Pushdown Languages. In ICALP, volume 3580 of LNCS,

pages 1102–1114. Springer, 2005.

[2] R. Alur and P. Madhusudan. Visibly Pushdown Languages. In STOC, pages 202–211, 2004.

[3] R. Alur and P. Madhusudan. Adding Nesting Structure to Words. JACM, 56(3):1–43, 2009.

[4] J.-M. Autebert, J. Berstel, and L. Boasson. Handbook of Formal Languages, Vol. 1: Word, Language, Grammar, pages 111–174. Springer-

Verlag New York, Inc., 1997.

[5] B. v. Braunmühl and R. Verbeek. Input-driven Languages are Recognized in log n Space. In FCT, volume 158 of LNCS, pages 40–51.

Springer, 1983.

[6] A. L. Buchsbaum, R. Giancarlo, and J. Westbrook. On the Determinization of Weighted Finite Automata. SIAM J. Comput., 30(5):1502–1531,

2000.

[7] M. Caralp, P.-A. Reynier, and J.-M. Talbot. Visibly Pushdown Automata with Multiplicities: Finiteness and K-Boundedness. In DLT, volume

7410 of LNCS, pages 226–238. Springer, 2012.

[8] C. Choffrut. Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-Séquentielles en tant que Relations Rationnelles. Theor.

Comput. Sci., 5(3):325–337, 1977.

[9] R. De Souza. Étude Structurelle des Transducteurs de Norme Bornée. PhD thesis, ENST, France, 2008.

[10] E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of Nested Word Transductions. In FSTTCS, volume 13 of LIPIcs, pages

312–324. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[11] E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties of Visibly Pushdown Transducers. In MFCS’10, volume 6281

of LNCS, pages 355–367. Springer, 2010.

[12] D. Girault-Beauquier. Some Results About Finite and Infinite Behaviours of a Pushdown Automaton. In Automata, Languages and Prog.,

volume 172 of LNCS, pages 187–195. Springer, 1984.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Adison-Wesley, 1979.

[14] A. Mandel and I. Simon. On Finite Semigroups of Matrices. Theor. Comput. Sci., 5(2):101–111, 1977.

19

