
Transducers, Logic and Algebra for Functions of Finite Words

Emmanuel Filiot, Université Libre de Bruxelles

and Pierre-Alain Reynier, Aix-Marseille Université

The robust theory of regular languages is based on three important pillars: computation (automata), logic,

and algebra. In this paper, we survey old and recent results on extensions of these pillars to functions from

words to words. We consider two important classes of word functions, the rational and regular functions,
respectively defined by one-way and two-way automata with output words, called transducers.

1. INTRODUCTION

Important connections between computation, mathematical logic, and algebra have been
established for regular languages of finite words. The class of regular languages corresponds
to the class of languages recognized by finite automata, to the class of languages definable in
monadic second-order logic (MSO) with one successor [Büchi 1960; Elgot 1961; Trakhtenbrot
1961], and to the class of languages whose syntactic monoid, a canonical monoid attached
to every language, is finite (see for instance [Straubing 1994]). While automata are well-
suited to study the algorithmic properties of regular languages, the algebraic view has
provided effective characterizations of regular languages and its subclasses. Most notably,
the problem of deciding whether a regular language is first-order definable amounts to
checking whether its syntactic monoid, which is computable from any finite automaton
recognizing the language, is aperiodic, which is decidable. See [Diekert et al. 2008] for a
survey on first-order definable languages, and [Straubing 1994] for generalizations to other
monoid varieties and fragments of MSO. In this paper, we want to survey some old and
recent results that extend the three main pillars of language theory to functions of finite
words.

At the computational level, word functions are defined by transducers, which extend
automata with outputs on their transitions. They can be seen as Turing machines with a
read-only input tape initially filled with the input word, and a write-only output tape on
which to write the output word. We will consider two important classes of transducers: one-
way and two-way transducers. For both classes, the output head is assumed to move only to
the right, and for the class of one-way transducer, the input head is also restricted to move
to the right. This yields the class of rational functions, long studied in the literature [Berstel
and Boasson 1979], and the strictly more expressive class of regular functions, which has
received more attention in the recent years.

At the logical level, we consider MSO transducers, as defined by Courcelle in the more
general context of graph transformations [Courcelle 1994]. MSO transducers are based on
MSO for words, and the main idea is to define the output word by some MSO interpretation
on the input word. We present results establishing connections between one-way and two-
way transducers and classes of MSO transducers.

At the algebraic level, we present a notion of syntactic congruence for functions introduced
by Choffrut, which is of finite index iff the function is sequential, i.e. can be defined by some
input-deterministic one-way transducer. We also present a generalization of this algebraic
characterization to rational functions, a result due to Reutenauer and Schützenberger. We
give an application of the latter characterization to the first-order definability problem for
rational functions. For the more general class of regular functions, no algebraic characteri-
zation is known, but we present preliminary results towards it.

The paper is simply organized along the three pillars: transducers, logic, and algebra. We
conclude with some extensions of the presented results and further research directions.

ACM SIGLOG News 1 January YYYY, Vol. V, No. N

q ε

b | b

a | ε

q0 q1q2 q3 εq4ε
σ | bσ

σ | σ

b | ε

b | b

σ | aσ

σ | σ

a | ε

a | a

Fig. 1. One-way transducers T0 and T1 realizing fdel and fsw respectively, where σ ∈ {a, b}.

2. TRANSDUCERS

In this paper we assume Σ to be a finite alphabet and denote by Σ∗ the set of finite words
over Σ, and by ε the empty word. A transduction f is a relation on Σ∗. In this paper, we will
be particularly interested in (partial) functions and for such objects, we denote by dom(f)
their domain.

Example 2.1. In this paper, we will use three running examples, the functions fdel, fsw
and fmir, over the alphabet Σ = {a, b}. The function fdel erases the letters a of an input
word: e.g. fdel(abba) = bb. The function fsw puts the last symbol in a first position (’sw’
stands for ’swap’). It is defined by fsw(ε) = ε and for all u ∈ Σ∗ and σ ∈ Σ, by fsw(uσ) = σu.
Finally, the function fmir copies an input word u and concatenates it with its mirror image
u, i.e. fmir(u) = uu for all u ∈ Σ∗. E.g. fmir(ab) = abba.

2.1. One-way transducers

One-way transducers are Turing machines with two left-to-right tapes. The first tape is
read-only and contains the input word while the second tape is write-only and contains
the output word. For example, to realize the function fdel for Example 2.1 by a one-way
transducer, the machine will simply go through the input word, from left to right, and, for
each input symbol σ, copy σ on the output tape iff σ is different from a.

Formally, a one-way transducer1 is a tuple T = (Q, I, F,∆, t) where Q is a finite set of
states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, ∆ ⊆ Q × Σ × Σ∗ ×Q
is a finite set of transitions, and t : F → Σ∗ is a terminal output function. A transition

γ = (p, a, w, q) ∈ ∆ of T is represented as p
a|w−−→ q. Intuitively it means that if the transducer

is in state p, and the next input letter is a, then it may go to state q and write the word w
on the output tape. W.l.o.g., we assume that for all p, q ∈ Q, a ∈ Σ, there exists at most one
w ∈ Σ∗ such that (p, a, w, q) ∈ ∆. The class of these transducers is denoted NFT, standing
for non-deterministic finite-state transducers.

Given a word u = a1 . . . an ∈ Σ∗, a run of T from p to q on u is a sequence of states
ρ = (qi)i=0..n such that q0 = p, qn = q and, for each i ∈ {1, . . . , n}, there is a transition

of the form qi−1
ai|wi−−−→ qi in ∆. We say that a run ρ = (qi)i=0..n is accepting if q0 ∈ I and

qn ∈ F . The output of such an accepting run ρ on u, denoted by outu(ρ), is defined as the
concatenation of the words produced by the transitions and the image of state qn by the
terminal function t, i.e. the finite word w1 . . . wnt(qn) ∈ Σ∗.

The transduction defined (or realized) by T is the relation JT K composed of the pairs
(u,w) such that there exists an accepting run ρ of T on u satisfying w = outu(ρ).

1More generally, a transducer is defined as a finite automaton over the monoid Σ∗ × Σ∗. Our definition
corresponds to real-time transducers in the literature [Berstel and Boasson 1979]. For transductions which
are functions, real-time transducers and transducers coincide in expressiveness, therefore we just call them
transducers in this paper, as this paper is about functions.

ACM SIGLOG News 2 Vol. V, No. N, January YYYY

An NFT T is functional if the transduction it defines is a function. The class of functional
NFT is denoted by fNFT. The class of functions realized by fNFT is called the class of
rational functions2. An NFT is sequential if the underlying input automaton, obtained
by projecting away the output words on transitions, is deterministic. Observe that such
transducers obviously recognize functions. The class of sequential NFT is denoted by SFT.
The class of functions realized by SFT is called the class of sequential functions.

Example 2.2. We describe two examples on the alphabet Σ = {a, b}. The transducer T0,
depicted on the left of Figure 1, is functional, sequential, and realizes the function fdel. Its
terminal function is constant equal to ε, and is depicted by a target free outgoing arrow.
The transducer T1, depicted on the right of Figure 1, is functional but not sequential. It
realizes the function fsw. Intuitively, the non-determinism is mandatory to guess initially
the last letter of the input word.

2.2. Two-way transducers

Two-way transducers extend one-way transducers as follows: instead of being left-to-right,
the input tape is two-way. As an example, this intuitively allows the transducer to move to
the end of the input word, and to copy it on the output tape during a right-to-left traversal.
This transformation thus maps every input word to its mirror image.

Formally, we will consider that two-way transducers take as input a word u ∈ Σ∗ sur-
rounded by left and right end-markers, denoted by ` and a, which we suppose do not belong
to the alphabet Σ. These end-markers allow the transducer to identify the beginning and
end of the input word. We denote by Σ` the alphabet Σ ∪ {`,a}. A two-way transducer is
a tuple T = (Q, I, F,∆) where Q, I and F are as in one-way transducers. ∆ is a finite set
of transitions which are elements of the form (p, a, w, q,m) ∈ Q×Σ` ×Σ∗ ×Q×{−1,+1}.
Compared with one-way transducers, transitions contain now a component m ∈ {−1,+1}
which indicates the direction of the move (left or right). We also require that transitions
reading the left end-marker always move to the right.

Note also that the definition does not include a terminal function. This function is indeed
useless for two-way transducers as it can be simulated using the right end-marker.

The class of these transducers is denoted by 2NFT, standing for two-way non-
deterministic finite-state transducers.

q0 q1 q2 q3 qf

σ | σ,+1 σ | σ,−1 σ | ε,+1

`| ε,+1 a| ε,−1 `| ε,+1 a| ε,+1

Fig. 2. A two-way transducer T2 for fmir.

A configuration of a two-way transducer T is a pair (q, i) ∈ Q × (N \ {0}) where q is a
state and i is a position on the input tape. Given an input word u = a1 . . . an ∈ Σ∗, we
will consider an execution of T on the input ` u a∈ Σ∗`. A run of T on the input u′=` u a
is a finite sequence of configurations ρ = (p1, i1) . . . (pm, im) such that i1 = 0, im = n + 2,
and for all k ∈ {1, . . . ,m− 1}, 0 ≤ ik ≤ n+ 1 and 3 (pk, u

′[ik], wk, pk+1, ik+1 − ik) ∈ ∆, for
some word wk. The output of such a run ρ on ` u a, denoted by outu(ρ), is defined as the
concatenation of the words produced by the transitions, i.e. the finite word w1 . . . wm ∈ Σ∗.

2They are called rational because they can be alternatively defined by the more general and classical notion
of rational subsets of monoids, see [Berstel and Boasson 1979].
3We use the following notation: u′[0] denotes symbol `, u′[i] with 1 ≤ i ≤ n denotes the i-th letter of u,
and u′[n+ 1] denotes symbol a.

ACM SIGLOG News 3 Vol. V, No. N, January YYYY

This run is accepting if p1 ∈ I and pm ∈ F . This means that for all the configurations
but the last one, the reading head should be on a letter of the input u′. For the run to be
accepting, the last configuration must correspond to the reading head being immediately
after the end of the input word (im = n+ 2).

As for NFT, the transduction defined by T is the relation JT K composed of the pairs
(u,w) such that there exists an accepting run ρ of T on ` u a satisfying w = outu(ρ).

As for one-way transducers, we will be interested in the subclasses of transducers func-
tional and sequential transducers, denoted respectively by f2NFT and 2SFT, and defined
respectively as the transducers whose semantics is a function, resp. the transducers whose
underlying input (two-way) automaton is deterministic. The class of functions realized by
f2NFT is called the class of regular functions. This terminology comes from the equivalence
with a logical formalism, so-called MSO transducers, that will be presented in the next
section.

Example 2.3. Consider the transducer T2 for fmir depicted on Figure 2. It maps every
input word u to uū, where ū denotes the mirror image of u. The left and right end-markers
are important here to allow the transducer to identify the beginning and end of the input
word.

v
a
lu

e
d
n
e
ss

expressiveness

SFT fNFT 2SFT =f2NFT

NFT 2NFT

⊂

⊂

⊂ ⊂

⊂

sequential
functions

rational
functions

regular
functions

PTime
[Choffrut 1977]

[Weber and Klemm 1995]
[Béal et al. 2003]

PTime
[Schützenberger 1975]

[Gurari and Ibarra 1983]
[Béal et al. 2003]

decidable
[Culik and Karhumaki 1987]

undecidable
[Baschenis et al. 2015]

decidable
[Filiot et al. 2013]

Fig. 3. A landscape of transducers of finite words.

2.3. Landscape of transducer classes

Figure 3 gives the inclusion relations existing between the six classes of transducers we
have defined so far. Let us first comment on these inclusions. Relations trivially extend
functions. Rational functions strictly contain sequential functions, strictness being witnessed
by the transduction fsw. Regular functions strictly contain rational ones, as witnessed by
fmir. Last, unlike for one-way transducers, in presence of two-wayness, functional non-
determinism does not increase expressive power (equality between f2NFT and 2SFT), as
shown in [Engelfriet and Hoogeboom 2001]. This equivalence is effective.

We also depict on this picture the decidability status of several subclasses decision prob-
lems. For instance, we have proven in [Filiot et al. 2013] that it is decidable, given a f2NFT,
whether there exists an equivalent one-way transducer. This decidability result is indicated
on the edge from f2NFT to fNFT. Concerning this result, the overall complexity of our

ACM SIGLOG News 4 Vol. V, No. N, January YYYY

decision procedure is non-elementary, and a recent work provided a 2ExpSpace procedure
for the subclass of sweeping transducers [Baschenis et al. 2015]. Other decidability and
undecidability results are depicted on the other edges in a similar way.

2.4. Equivalence problem

Checking whether two transducers are equivalent, i.e. whether they define the same trans-
duction, is a natural and important problem, that has been studied by several authors.
Unfortunately, this problem is already undecidable for NFT, as proven in [Griffiths 1968].
On the positive side, this problem is decidable for the classes of functional transducers
we have presented (it is actually sufficient decide whether two functional transducers have
the same domain, and then decide whether the disjoint union of the two transducers is
functional), which explains the interest for these classes. The decidability frontier lies ac-
tually beyond functional transducers, as it encompasses the class of so-called finite-valued
transducers, defined as the transducers for which there exists some natural number k such
that, for every input word, the number of outputs associated with this input word is at
most k. This decidability result has been proven for instance in [Culik II and Karhumäki
1986; Weber 1993; de Souza 2008] for finite-valued one-way transducers. In [Culik II and
Karhumäki 1986], the authors claim that the equivalence problem is even decidable for the
class of finite-valued two-way transducers.

3. LOGICS

A formalism based on monadic second-order logic (MSO) has been defined by [Courcelle
1994] to define transformations of graph structures. In this section, we cast this formalism
to word to word functions, and refer the reader to [Courcelle and Engelfriet 2012] for more
details and results about MSO transducers for general graph structures.

Words w are seen as logical structures on the domain {1, . . . , |w|} over the signature
consisting of unary predicates a(x) for each symbol of Σ, and the binary predicate x � y for
the total order on positions. Recall that MSO on words is the extension of first-order logic
with quantification over sets of positions (see [Straubing 1994] for details). It is well-known
by Büchi’s theorem that a language is MSO-definable iff it is regular. We present extensions
of this fundamental result to word functions defined by one-way and two-way transducers.

3.1. MSO transducers

The definition of MSO transducers is technical and in this paper, we rather want to define
them intuitively and with examples. We refer the interested reader to [Courcelle 1994;
Engelfriet and Hoogeboom 2001; Filiot 2015] for detailed definitions.

In an MSO transducer, the output word is defined as an MSO interpretation over a fixed
number k of copies of the input word. Therefore, the nodes of the output word are copies
1 to k of the nodes of the input word. Output nodes are denoted xc, for every copy c and
input node x. For every copy c, only the nodes satisfying a given formula φcpos(x) with one
free first-order variable x are kept. For instance, assume one takes two copies of the input
word, and in the first copy, one keeps all nodes x1 such that x is labeled a, and in the second
copy, one keeps all nodes x2 such that x is labeled b. This is specified by the two formulas
φ1
pos(x) = a(x) and φ2

pos(x) = b(x).
The output label and order predicates are defined by MSO formulas with one and two

free first-order variables respectively, interpreted over the input structure. For instance, over
the alphabet Σ = {a, b}, to set all the output labels to a, one just specifies the formulas
φca(x) = > and φcb(x) = ⊥ for all copies c. The output order predicate relates input nodes

of possibly different copies, and is therefore defined by formulas of the form φc,d� (x, y) for
any copies 1 ≤ c, d ≤ k.

ACM SIGLOG News 5 Vol. V, No. N, January YYYY

Finally, a closed MSO formula φdom defines the domain of the function. All in all, an
MSO transducer over an alphabet Σ is a tuple

T = (k, φdom, (φ
c
pos(x))1≤c≤k, (φ

c
a(x))1≤c≤k,a∈Σ, (φ

c,d
� (x, y))1≤c,d≤k)

The output structure may not be a word, but here we assume that an MSO transducer T
outputs only word structures. It is a decidable property. Note that the length of output
word of an input word of length M by an MSO transducer is bounded by kM , since one
takes a fixed number k of copies of the input word.

input

word

copy 1

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a
φ1,1
� φ1,1

� φ1,1
�

(a) Transformation fdel defined by Tdel

input

word

copy 1

copy 2

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a

a b a a b b b a

φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
�
φ1,2
�

φ2,2
�φ2,2

� φ2,2
� φ2,2

� φ2,2
� φ2,2

� φ2,2
�

(b) Transformation fmir defined by Tmir

Fig. 4. Functions defined by MSO-transducers

3.2. Examples of MSO transducers

As a first example, an MSO transducer Tdel that realizes fdel is illustrated in Fig. 4(a)
(only the successor relation is depicted). Input nodes filtered out by formulas φcpos(x) are
represented by fuzzy nodes. It is realized by the MSO transducer

Tdel=(1, φdom ≡ >, φ1
pos(x) ≡ ¬a(x), (φ1

σ(x) ≡ σ(x))σ∈Σ, φ
1,1
� (x, y) ≡ x � y)

As a second example, consider the function fmir. To realize fmir with an MSO transducer
(Fig. 4(b)), one needs two copies of an input word u. The labels are kept unchanged, however
the order is reversed for the second copy. One also sets that all nodes of the first copy are
smaller than the nodes of the second copy, as they appear before in the output word.
Therefore, fmir is realized by the transducer Tmir with k = 2 and

φdom ≡ > φcpos(x) ≡ > φca(x) = a(x) φcb(x) = b(x)

φ1,1
� (x, y) ≡ x � y φ1,2

� (x, y) ≡ > φ2,1
� (x, y) ≡ ⊥ φ2,2

� (x, y) ≡ y � x

for all copies c ∈ {1, 2}. Note that given an input word u, the order on the output word

positions is the binary relation O = {(ic, jd) | 1 ≤ c, d ≤ 2, i, j ∈ dom(u), u |= φc,d� (i, j)}.
Only the successor relation induced by O is depicted on the figure.

3.3. Büchi theorems for word functions

Regular functions. The first automata-logic connection for word transformations has been
given by Engelfriet and Hoogeboom for the class of regular functions:

ACM SIGLOG News 6 Vol. V, No. N, January YYYY

Theorem 3.1. [Engelfriet and Hoogeboom 2001] A function f is regular iff it is realized
by some MSO transducer.

In order to prove the direction from 2SFT to MSO transducers, one builds an MSO
transducer that, given an input word u, outputs a (linear) graph that represents the run of
the 2SFT on u. The converse direction is more complex, and involves an extended model
of two-way transducers which can perform ”MSO jumps” ϕ(x, y), where ϕ(x, y) is an MSO
formula that defines a function from x positions to y positions. Intuitively, the machine can
move from position x to position y providing ϕ(x, y) holds true. 2SFT with MSO jumps are
then converted, based on the Büchi theorem, into 2SFT with regular look-around. These
2SFT can move only to positions which are in the 1- neighbourhood of the current position,
but their move can be based on a regular property of the current prefix and suffix of the
word. Finally, it is shown that 2SFT with regular look-around are equivalent to 2SFT.

Rational functions. Using an adequate restriction of MSO transducers, one can also prove
a Büchi theorem for rational functions. Intuitively, an MSO transducer is order-preserving
if in the graphical representation of the output, there is no right-to-left edge. For instance,
considering the transformations depicted on Figure 4, the transformation fdel satisfies this
property while the transformation fmir does not. Formally, this property requires that for

every input word u and for every c, d ∈ {1, . . . , k}, if the formula φc,d� (x, y) evaluates to true
in u, then x � y also evaluates to true. This property is decidable.

Theorem 3.2. [Bojanczyk 2014; Filiot 2015] A function f is rational iff it is realized
by some order-preserving MSO transducer.

The proof proceeds as follows: given a one-way transducer, the MSO transducer that
builds as output the run of the one-way transducer naturally satisfies the order-preserving
property. Conversely, the idea is to identify, for each position of the input word, the subword
of the output that corresponds to this position. One can then represent the transduction as
a regular language, and make use of Büchi theorem.

The power of transducer-logic connections is illustrated by the following definability prob-
lem. As shown in [Filiot et al. 2013], it is decidable whether a deterministic two-way finite
state transducer T is equivalent to a one-way functional finite state transducer. As a con-
sequence of this result and of the two previous theorems, we obtain the following corollary:

Corollary 3.3. Given an MSO-transducer, it is decidable whether it is equivalent to
some order-preserving MSO-transducer.

4. ALGEBRA

Similarly to regular languages, sequential and rational functions can be characterized by the
index finiteness of well-chosen (canonical) congruences. For the class of regular functions,
no algebraic characterizations are known but we present partial results based on algebraic
properties of the transition structure of two-way transducers (their transition monoid). For
the class of regular functions with origin information, i.e. regular functions extended with
pointers from any output position to some input position (intuitively, the input position
from which they originate), an algebraic characterization is known [Bojanczyk 2014]. We
present origin information at the end of this section.

We recall that a left (resp. right) congruence on Σ∗ is an equivalence relation ≡ such that
for all u, v ∈ Σ∗ and σ ∈ Σ, if u ≡ v then σu ≡ σv (resp. if u ≡ v then uσ ≡ vσ). For
u ∈ Σ∗, we denote by [u]≡ the class of u, or just [u] when it is clear from the context. A
congruence ≡ (left or right) has finite-index if its quotient Σ∗/≡ has finitely many classes.

In this section, we also denote by � the prefix relation on words, and by u∧v the longest
common prefix of any two words u and v. Given a language L ⊆ Σ∗ and a word u ∈ Σ∗,

ACM SIGLOG News 7 Vol. V, No. N, January YYYY

we denote by u−1L the residual of L by u, i.e. the set of words w such that uw ∈ L. When
u � v, we denote by u−1v the unique word w such that v = uw.

4.1. Sequential functions

It is well-known that any regular language is recognized by a unique minimal complete
deterministic automaton. Intuitively, for a language L, any two words u, v which behave
equivalently with respect to continuations w (uw ∈ L iff vw ∈ L) must reach the same state
in a minimal deterministic automaton. This is captured by the right congruence ≡L: u ≡L v
if for all w ∈ Σ∗, uw ∈ L iff vw ∈ L. The well-known Myhill-Nerode’s theorem states that L
is regular iff ≡L has finite index. Moreover, the index of ≡L is exactly the number of states
of the minimal complete deterministic automaton recognizing L.

In this section, we explain how to extend the characterization of regular languages to
sequential functions, an extension due to Choffrut [Choffrut 1979; Choffrut 2003]. In a
minimal sequential transducer defining a function f : Σ∗ → Σ∗, two (input) words u, v
must go to the same state if they behave the same w.r.t. dom(f) (u ≡dom(f) v), but also
w.r.t. the outputs, in the sense that the output produced when processing a continuation
w should not depend on u and v. To capture this idea, one first defines a canonical way of

producing the output, via a total function f̂ : Σ∗ → Σ∗ which, given a word u, outputs the
longest common prefix of all words f(uw) for all continuations w ∈ u−1dom(f):

f̂(u) =
∧
{f(uw) | w ∈ u−1dom(f)} where

∧
∅ is set to ε.

Then, one defines the relation ≡f by u ≡f v if the following two statements hold:

(i) u ≡dom(f) v (ii) ∀w ∈ u−1dom(f), f̂(u)−1f(uw) = f̂(v)−1f(vw)

Note that f̂(u)−1 is necessarily a prefix of f(uw), and similarly for f̂(v)−1, by definition

of f̂ . It turns out that ≡f is a right congruence, which allows one to construct a transducer
Tf for f (possibly with infinitely many states). The set of states of Tf is Σ∗/≡f

, with initial
state [ε] and set of accepting states dom(f)/≡f

. The transitions are ([u], a, w, [ua]) with

u ∈ Σ∗, a ∈ Σ and w = f̂(u)−1f̂(uσ). The terminal function is t : [u] 7→ f̂(u)−1f(u) for
u ∈ dom(f).

Note that if ≡f has finite index, then Tf is a proper sequential transducer with finitely
many states, and therefore f is sequential. The converse is also true, and one gets a Myhill-
Nerode theorem for sequential functions, due to Choffrut:

Theorem 4.1. [Choffrut 2003; Choffrut 1979] A function f : Σ∗ → Σ∗ is sequential iff
≡f has finite index.

Note that Tf is canonical. Moreover when f is sequential, then Tf is minimal, and any
sequential transducer realizing f can be uniquely mapped to Tf , through a notion of trans-
ducer morphism, e.g. defined in [Choffrut 2003]. In that sense, Tf is unique.

4.2. Rational functions

In this section, we present an algebraic characterization, as well as a canonical transducer
construction, for rational functions, due to Reutenauer and Schützenberger. This charac-
terization is based on the model of bimachines, which are essentially sequential transducers
extended with regular look-ahead. We adopt the latter view, which will hopefully allow us to
give an intuitive explanation of Reutenauer and Schützenberger’s result. This formalization
also appeared in [Boiret et al. 2012].

Rational functions with infinite syntactic congruence. Let us see why the finiteness of ≡f fails
at characterizing rational (but non-sequential) functions. Over Σ = {a, b}, consider the

ACM SIGLOG News 8 Vol. V, No. N, January YYYY

function fsw of Example 2.1. The congruence ≡dom(fsw) has only one class Σ∗. The function

f̂sw is constant equal to ε: for any u ∈ Σ∗, f̂sw(u) � (fsw(ua) ∧ fsw(ub)) = au ∧ bu = ε.

Therefore, for all u, v ∈ Σ∗ and all w ∈ Σ∗, f̂sw(u)−1fsw(uw) = f̂sw(u)−1(v)fsw(vw) iff
fsw(uw) = fsw(vw) iff u = v. Therefore, ≡fsw has infinite index.

Now, consider the following two restrictions on dom(fsw): lasta = {ua | u ∈ Σ∗} and
lastb = {ub | u ∈ Σ∗}, then the function fsw is sequential on these two restricted domains.
This suggests that modulo some information about the suffix (whether it ends with a or b
in this case), the function is sequential. Unlike the latter example, the suffix information
needed to be sequential may change along an input word. Consider for instance the iterated
version of fsw that we denote f∗sw, which is defined over the alphabet ∆ = Σ ∪ {#} by:

f∗sw : u1#u2# . . .#un 7→ fsw(u1)#fsw(u2)# . . .#fsw(un) where ui ∈ Σ∗ and n ≥ 0

To realize f∗sw in a sequential way, a transducer needs to know, when reading a symbol
σ ∈ {a, b}, if it is the last letter of a block in {a, b}+, and otherwise whether the last
letter of this block is an a or a b. Modulo this look-ahead information, the function f∗sw is
sequential.

Sequentiality modulo regular look-ahead. Let us formalise the notion of sequentiality modulo
(regular) look-ahead information. A look-ahead information L is a partition of Σ∗ assumed
to be the quotient of Σ∗ by a left congruence of finite index, denoted by ≡L. We denote by
[u]L the class of a word u. The look-ahead extension is the function eL : Σ∗ → (Σ × L)∗

defined for all u = σ1 . . . σn ∈ Σ∗ by eL(u) = (σ1, [σ2 . . . σn]L)(σ2, [σ3 . . . σn]L) . . . (σn, [ε]L).
A function f : Σ∗ → Σ∗ is sequential modulo L (or L-sequential) if the function denoted
f [L] : (Σ× L)∗ → Σ∗ defined on eL(dom(f)) by f [L](eL(u)) = f(u), is sequential.

Note that a function f over an alphabet Σ is sequential iff it is {Σ∗}-sequential. As a
second example, the function f∗sw is L-sequential for L = {end, lasta, lastb} where end =
ε + #∆∗, and for σ ∈ {a, b}, lastσ = (a + b)∗σ(ε + #∆∗). The function f∗sw[L] is realized
by the sequential transducer of Fig. 5. Note that this transducer also checks that the look-
ahead annotations are correct, i.e. it ensures that the domain is exactly eL(dom(f∗sw)). For
instance, whenever the information end is read, the transducer moves to state q#, from
which only # can be read. This ensures that the annotation by look-ahead information end
is correct. The only way to access state qa is when reading the look-ahead information lasta,
and the only way to leave qa is when reading (a, end), thus ensuring that the last letter of
the block is indeed a. Since the transducer is sequential, has domain eL(dom(f∗sw)), and the
look-ahead annotation is unique for each word, projecting away the look-ahead information
on this transducer yields an unambiguous transducer realizing f∗sw.

A canonical look-ahead. It is known [Elgot and Mezei 1965] that any rational function f :
Σ∗ → Σ∗ equals the composition of two functions r : Σ∗ → ∆∗ and ` : ∆∗ → Σ∗ for some
intermediate alphabet ∆, i.e. f = `◦r, where ` is sequential and r is right-sequential, i.e. the
function m ◦ r ◦m is sequential, where m is the function that mirrors input words. In other
words, r can be realized by a sequential transducer that processes input words backwards
and produces output words backwards. Moreover, T can be chosen to be letter-to-letter,
i.e. produce exactly one output symbol per input symbol, and hence T is nothing else than
an automaton that computes some look-ahead information (the output symbols). We can
rephrase this decomposition result in terms of L-sequentiality:

Theorem 4.2. [Elgot and Mezei 1965] f is rational iff it is L-sequential for some L of
finite index.

The strong result of Reutenauer and Schützenberger is precisely to show that, in the
latter proposition, L can be chosen in a canonical way, that depends only on f , denoted
Lf . The idea is to identify suffixes u and v that have only a bounded “difference” on the

ACM SIGLOG News 9 Vol. V, No. N, January YYYY

q0qa qb

q#

(σ, lasta) | σ (σ, lastb) | σ

(#, lastb) | #b(#
, la
sta

) |
#a

(#, end) | #

(a
, e
nd

) |
ε (b, end) | ε

(σ, lasta) | aσ

(#, lasta) | #a

(σ, lastb) | bσ

(#, lastb) | #b

(β, end) | β

Fig. 5. Sequential transducer realizing f∗sw[L], where σ ∈ {a, b} and β ∈ {a, b,#}.

outputs f(wu) and f(wv) for all w such that wu,wv ∈ dom(f). To quantify this effect, they
use the notion of delay distance between words, defined by d(t1, t2) = |t1|+ |t2| − 2|t1 ∧ t2|.
In other words, this distance only counts what remains when the longest common prefix of
t1 and t2 has been cut out. Then, two words u, v are equivalent for ≡Lf

if (i) for all w ∈ Σ∗,
wu ∈ dom(f) iff wv ∈ dom(f), and (ii) the set {d(f(wu), f(wv)) | wu,wv ∈ dom(f)} is
finite. It turns out that ≡Lf

is a left congruence, and it is of finite index when f is rational.

Example 4.3. As an example, consider again the function f∗sw defined before. The
look-ahead given before is actually the canonical one, i.e. Lf∗

sw
= {end, lasta, lastb}.

Indeed, let σ, β ∈ {a, b}, u, v ∈ {a, b}∗ and u′, v′ ∈ end. Then, any w such that
wuσu′ ∈ dom(f∗sw) and wvβv′ ∈ dom(f∗sw) is of the form w1w2 where w1 ∈ ∆∗#
and w2 ∈ Σ∗. Then, {d(f∗sw(w1w2uσu

′), f∗sw(w1w2vβv
′)) | w1 ∈ ∆∗#, w2 ∈ Σ∗} =

{d(f∗sw(w1)σw2uf
∗
sw(u′), f∗sw(w1)βw2vf

∗
sw(v′)) | w1 ∈ ∆∗#, w2 ∈ Σ∗}, which is finite iff

β = σ. This gives the two classes lasta and lastb. Similarly, it is possible to check that all
words in the set end are equivalent.

We can now state Reutenauer and Schützenberger’s result:

Theorem 4.4. [Reutenauer and Schützenberger 1991] Let f : Σ∗ → Σ∗. The following
three statements are equivalent:

(1) f is rational,
(2) Lf has finite index and f is Lf -sequential,
(3) Lf and ≡f [Lf] have finite index.

When f is given by a transducer, a canonical sequential transducer for f [Lf] can be
constructed effectively. Projecting its input symbols on Σ (i.e. discarding the look-ahead
information), one gets a canonical unambiguous transducer Tf realizing f .

Bimachines. The latter theorem was originally presented based on the notion of bimachines.
A bimachine is made of a right deterministic automaton R reading input words from right
to left, a deterministic automaton L, and an output function ω which takes states of L,
states of R and symbols in Σ as arguments, and produces a word. The output produced
at position i in a word w = σ1 . . . σn is ω(l, σi, r) where l is the state of L reached after
processing the prefix σ1 . . . σi (if it exists), and r is the state of R reached after reading the
suffix σi . . . σn. Reutenauer and Schützenberger’s result is precisely to show that for any
rational function f , there exists a canonical right automaton Rf , a left automaton L[Rf]
(which is canonical once the right automaton is fixed), and an output function ω, which

ACM SIGLOG News 10 Vol. V, No. N, January YYYY

defined a canonical bimachine for f . Translated in the look-ahead framework, Rf defines
the look-ahead information Lf , and by taking the product of Rf and L[Rf], one obtains a
sequential transducer realizing f [Lf].

4.3. First-order definable functions

If only first-order formulas are allowed in the definition of (order-preserving) MSO-
transducers, one gets the subclass of (order-preserving) FO-transducers. A function is
(order-preserving) first-order definable if it is definable by an (order-preserving) FO-
transducer. First-order definable languages L are characterized by languages having aperi-
odic syntactic congruence4 ≡L, which yields a decision procedure for automata: minimize
the automaton and check the aperiodicity of its transition congruence. We present similar
results for rational functions and partial results for functions definable by two-way trans-
ducers.

The transition congruence ≡A of an automaton A is defined by u ≡A v if for all states

p, q, it holds p
u−→ q iff p

v−→ q. The transition congruence of a transducer is the transition
congruence of its underlying (input) automaton, and a transducer is aperiodic if its tran-
sition congruence is aperiodic. It is known that a rational function f is order-preserving
first-order definable iff it is realized by some aperiodic transducer [Filiot et al. 2016]. More-
over, a function f is realizable by some aperiodic transducer iff the canonical left congruence
Lf and the right congruence ≡f [Lf] are both aperiodic, which is decidable when f is given
by some transducer. Therefore, one gets the following theorem:

Theorem 4.5. [Lhote 2015; Filiot et al. 2016] It is decidable whether a transducer de-
fines an order-preserving first-order function.

The problem of deciding whether a transducer is equivalent to some aperiodic and func-
tional one has been generalized to arbitrary congruence varieties in [Filiot et al. 2016]. It is
shown in this case that the congruences Lf and ≡f [Lf] may not be in the varieties, even if
some transducer realizing the function is, but at least one pair of congruences L and ≡f [L]

is in the variety, where those pairs are taken in a finite computable set of congruences.
No such results are known for functions definable by deterministic two-way transducers,

mainly because for such functions the existence of a canonical device is still open. Nev-
ertheless, the notion of transition congruence can be extended to two-way automata and
therefore to two-way transducers. Roughly, it identifies words with the same state behaviors,
where the behaviors are either left-to-right, right-to-left, left-to-left and right-to-right. For
instance, left-to-right behaviors are exactly as for classical one-way automata, and a pair of
states (p, q) if a left-to-left behavior of a word u if there is a run that enters u from the left
in state p, and leaves u to the left in state q.

Theorem 4.6. [Carton and Dartois 2015] A function f is first-order definable iff it is
realized by some aperiodic two-way transducer.

In [Bojanczyk 2014], a transduction with origin is a function from words u to pairs (v, o),
where v is a word, and o is an origin mapping that sends any position of v to a position
of u, the position from which “it has been created”. Most transducer models, including
MSO- and FO-transducers, implicitly bear origin information. We denote by JT Ko the origin
transduction defined by a transducer. For regular transductions with origin, an algebraic
characterization is known (see [Bojanczyk 2014]), based on which first-order definability
can be decided:

4A congruence ≡ on Σ∗ is aperiodic if there exists n0 ∈ N such that for all u, v ∈ Σ∗ and n ≥ n0, un ≡ vn
iff un+1 ≡ vn+1.

ACM SIGLOG News 11 Vol. V, No. N, January YYYY

qb Y qa X q0 XY

b;
X:=Xa
Y:=Yb a;

X:=Xa
Y:=Yb

a;
X:=Xa
Y:=Yb

b;
X:=Xa
Y:=Yb

σ;
X:=Xσ
Y:=σY

Fig. 6. Two streaming string transducers.

Theorem 4.7. [Bojanczyk 2014] Given a two-way transducer T realizing a transduction
with origin JT Ko, it is decidable whether there exists an FO-transducer T ′ such that JT Ko =
JT ′Ko.

5. EXTENSIONS AND PERSPECTIVES

Functions of finite words enjoy multiple presentations by means of transducers, logic and
algebra. We have presented some old and recent results using these different tools, as well as
some nice equivalence results. In this conclusion, we present a recent alternative automaton
model, as well as some extensions to other structures than finite words.

Streaming String Transducers. Recently, an alternative model of transducers has been
introduced in [Alur and Černý 2011], named streaming string transducers (SST for short).
Intuitively, it consists in a deterministic one-way automaton extended with a finite number
of registers, valued with finite words. These registers are updated along transitions but
never tested, and they are used to define the output of a run. Two examples of SST are
depicted on Figure 6. The left SST realizes the function mapping any word of the form uσ
to σ|u|, and ε to itself, while the right SST realizes the function fmir.

Interestingly, it has been proven that a simple restriction of this model, so-called copyless
SST (updates should make a linear use of registers) exactly coincides with the class of
regular functions [Alur and Černý 2010]. Intuitively, this means that the model allows to
transfer the complexity of runs of two-way transducers to the updates of variables. Similarly,
a simple restriction of SST (called right-appending SST) coincides with the class of rational
functions, namely that in which updates are of the form X := Y u, where X and Y are
registers, and u is a finite word. This model has been applied to the verification of list-
processing programs [Alur and Černý 2011], and implemented [Alur et al. 2015].

Concerning first-order definable transformations, a result similar to Theorem 4.6 has been
provided for streaming string transducers in [Filiot et al. 2014; Dartois et al. 2016b], using
an adequate notion of transition monoid of an SST.

Another natural problem for this model is the notion of register complexity of a function,
i.e. the minimal number of registers needed to realize a regular function. This problem has
attracted a lot of attention recently. In [Daviaud et al. 2016], a solution is proposed for the
class of right-appending SST using a generalization of the twinning property, a tool that
has been introduced in [Choffrut 1977] to characterize sequential functions among rational
ones. In [Baschenis et al. 2016], the authors consider also a register minimization problem
but for the class of non-deterministic SST where concatenations of registers are forbidden
in the register updates.

Infinite words. The determinization problem, i.e. deciding whether a transducer defines a
sequential function, has been extended to infinite word transducers with Büchi acceptance
condition in [Béal and Carton 2002]. Correspondence between MSO and SST on infinite
strings have been shown in [Alur et al. 2012].

ACM SIGLOG News 12 Vol. V, No. N, January YYYY

Trees and nested words. Tree transducers have been studied in numerous works, in partic-
ular by Joost Engelfriet and Sebastian Maneth, and we will not give here an exhaustive list.
However, in order to echo the transducer-logic connection that we have presented in this
paper, let us mention that it has been in shown in [Engelfriet and Maneth 2003] that MSO-
definable tree transducers exactly coincide with Macro Tree Transducers that are linear-size
increase, i.e. the size of the output tree is always linear in the size of the input tree. Let us
also mention the survey [Maneth 2015] about the equivalence problem for tree transducers.

Recently, we have also considered transducers whose inputs are tree linearizations rep-
resented as nested words [Filiot et al. 2010]. We have defined so called visibly pushdown
transducers and have proven that several positive results of one-way transducers are pre-
served by this model. Recently, we have shown that MSO-definable nested word-to-word
transformations and a two-way model of visibly pushdown transducers are equivalent [Dar-
tois et al. 2016a].

Some perspectives. For the class of regular functions, we have seen logical and automata
models. An interesting and challenging research direction is to build an algebraic framework
for regular transductions.

On the logical side, MSO transducers can be transformed into two-way or streaming
transducers in non-elementary time. This blow-up is not avoidable, which raises the question
of having MSO expressive logics well-suited to define transductions, and that enjoy better
complexities.

Finally, an interesting direction, which generalizes the classical Church synthesis problem,
is that of sequential uniformisation. The problem is to decide whether from a given word
relation, one can extract a function such that (i) it has the same domain as the relation, (ii)
it is included in the relation, and (iii) it belongs to some class of functions with interesting
properties. The relation can be thought of as a set of good behaviours of a system, and the
function as the behaviour of the synthesised system. The required properties of the targeted
class of functions depend on the applications. For instance, one may target sequential func-
tions for memory efficiency. For rational relations and the class of sequential functions, this
problem is undecidable, but decidable when restricted to finite-valued rational relations or
deterministic rational relations [Filiot et al. 2016].

Acknowledgments

We thank the editorial board of ACM SIGLOG newsletter for giving us the opportunity to
present these exciting results. We would like to warmly thank Nathan Lhote for his careful
reading on the algebra section.

This work was partially supported by the French ExStream project (ANR-13- JS02-0010),
the Belgo-French PHC project VAST (35961QJ) funded by Campus France and WBI, the
ARC project Transform (Federation Wallonia-Brussels) and the Belgian FNRS CDR project
Flare. Emmanuel Filiot is research associate at F.R.S.-FNRS.

REFERENCES

Rajeev Alur and Pavol Černý. 2010. Expressiveness of streaming string transducers. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS) (LIPIcs), Vol. 8. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 1–12.

Rajeev Alur and Pavol Černý. 2011. Streaming transducers for algorithmic verification of single-pass list-
processing programs. In Proc. of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011. ACM, 599–610.

Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman. 2015. DReX: A Declarative Language for Effi-
ciently Evaluating Regular String Transformations. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. 125–137.

ACM SIGLOG News 13 Vol. V, No. N, January YYYY

Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. 2012. Regular Transformations of Infinite Strings.
In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012,
Dubrovnik, Croatia, June 25-28, 2012. 65–74.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. 2015. One-way definability of sweep-
ing transducers. In 35th International Conference on Foundation of Software Technology and Theo-
retical Computer Science, FSTTCS 2015 (LIPIcs), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 178–191.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. 2016. Minimizing resources of sweep-
ing and streaming string transducers. In In Proceedings of the 43rd International Colloquium on Au-
tomata, Languages, and Programming (ICALP’16) (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik. To appear.

Marie-Pierre Béal and Olivier Carton. 2002. Determinization of transducers over finite and infinite words.
Theor. Comput. Sci. 289, 1 (2002), 225–251.

Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. 2003. Squaring transducers:
an efficient procedure for deciding functionality and sequentiality. Theoretical Computer Science 292,
1 (2003), 45–63.

Jean Berstel and Luc Boasson. 1979. Transductions and context-free languages. Ed. Teubner (1979), 1–278.

Adrien Boiret, Aurélien Lemay, and Joachim Niehren. 2012. Learning Rational Functions. In Developments
in Language Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, August 14-17, 2012.
Proceedings (Lecture Notes in Computer Science). Springer, 273–283.

Mikolaj Bojanczyk. 2014. Transducers with Origin Information. In 41st Internationl Colloquium on Au-
tomata, Languages, and Programming (ICALP) (LNCS), Vol. 8573. Springer, 26–37.

J. R. Büchi. 1960. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik 6, 1–6 (1960), 66–92.

Olivier Carton and Luc Dartois. 2015. Aperiodic Two-way Transducers and FO-Transductions. In Computer
Science Logic (CSL) (LIPIcs), Vol. 41. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 160–174.

Christian Choffrut. 1977. Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-
Séquentielles en tant que Relations Rationnelles. Theor. Comput. Sci. 5, 3 (1977), 325–337.

Christian Choffrut. 1979. A Generalization of Ginsburg and Rose’s Characterization of G-S-M Mappings. In
Automata, Languages and Programming, 6th Colloquium, Graz, Austria, July 16-20, 1979, Proceedings.
88–103.

Christian Choffrut. 2003. Minimizing subsequential transducers: a survey. Theor. Comput. Sci. 292, 1 (2003),
131–143.

Bruno Courcelle. 1994. Monadic Second-Order Definable Graph Transductions: A Survey. Theor. Comput.
Sci. 126 (1994), 53–75.

Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of mathematics and its applications, Vol. 138. Cambridge
University Press.

K. Culik and J. Karhumaki. 1987. The Equivalence Problem for Single-Valued Two-Way Transducers (on
NPDT0L Languages) is Decidable. SIAM J. Comput. 16, 2 (1987), 221–230.

Karel Culik II and Juhani Karhumäki. 1986. The Equivalence of Finite Valued Transducers (On HDT0L
Languages) is Decidable. Theor. Comput. Sci. 47, 3 (1986), 71–84.

Luc Dartois, Emmanuel Filiot, Pierre-Alain Reynier, and Jean-Marc Talbot. 2016a. Two-Way Visibly Push-
down Automata and Transducers. In Proc. 31st Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’16). IEEE Computer Society. To appear.

Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. 2016b. Aperiodic String Transducers. In Proc. 20th
International Conference on Developments in Language Theory (DLT 2016) (Lecture Notes in Com-
puter Science). Springer. To appear.

Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. 2016. A Generalized Twinning Property for
Minimisation of Cost Register Automata. In Proc. 31st Annual IEEE Symposium on Logic in Computer
Science (LICS’16). IEEE Computer Society. To appear.

Rodrigo de Souza. 2008. On the Decidability of the Equivalence for k-Valued Transducers. In Developments
in Language Theory, 12th International Conference, DLT 2008, Kyoto, Japan, September 16-19, 2008.
Proceedings (Lecture Notes in Computer Science), Vol. 5257. Springer, 252–263.

Volker Diekert, Paul Gastin, and Manfred Kufleitner. 2008. A Survey on Small Fragments of First-Order
Logic over Finite Words. Int. J. Found. Comput. Sci. 19, 3 (2008), 513–548.

C. C. Elgot. 1961. Decision Problems of Finite Automata Design and Related Arithmetics. In Transactions
of the American Mathematical Society 98, 1 (1961), 21–51.

ACM SIGLOG News 14 Vol. V, No. N, January YYYY

C. C. Elgot and J. E. Mezei. 1965. On relations defined by generalized finite automata. IBM Journal of
Research and Development 9 (1965), 47–68.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001. MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2, 2 (2001), 216–254.

Joost Engelfriet and Sebastian Maneth. 2003. Macro Tree Translations of Linear Size Increase are MSO
Definable. SIAM J. Comput. 32, 4 (2003), 950–1006.

Emmanuel Filiot. 2015. Logic-Automata Connections for Transformations. In Logic and Its Applications
(ICLA). Springer, 30–57.

Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. 2016. First-order definability of rational transductions:
an algebraic approach. In Logic in Computer Science (LICS). IEEE.

Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. 2013. From Two-Way to
One-Way Finite State Transducers. In Logic in Computer Science (LICS). IEEE, 468–477.

Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. 2016. On Equivalence and Uniformi-
sation Problems for Finite State Transducers. In ICALP. To appear.

Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. 2014. First-order Definable String
Transformations. In Foundation of Software Technology and Theoretical Computer Science, (FSTTCS)
(LIPIcs), Vol. 29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 147–159.

Emmanuel Filiot, Jean-Franois Raskin, Pierre-Alain Reynier, Frédéric Servais, and Jean-Marc Talbot. 2010.
Properties of Visibly Pushdown Transducers. In Proc. 35th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS’10) (Lecture Notes in Computer Science), Vol. 6281.
Springer, 355–367. DOI:http://dx.doi.org/10.1007/978-3-642-15155-2 32

T. V. Griffiths. 1968. The Unsolvability of the Equivalence Problem for Lambda-Free Nondeterministic
Generalized Machines. J. ACM 15, 3 (1968), 409–413. DOI:http://dx.doi.org/10.1145/321466.321473

Eitan M. Gurari and Oscar H. Ibarra. 1983. A note on finite-valued and finitely ambiguous transducers.
Mathematical systems theory 16, 1 (1983), 61–66.

Nathan Lhote. 2015. Towards an algebraic characterization of rational word functions. CoRR
abs/1506.06497 (2015). http://arxiv.org/abs/1506.06497

Sebastian Maneth. 2015. A Survey on Decidable Equivalence Problems for Tree Transducers. Int. J. Found.
Comput. Sci. 26, 8 (2015), 1069–1100. DOI:http://dx.doi.org/10.1142/S0129054115400134

Christophe Reutenauer and Marcel-Paul Schützenberger. 1991. Minimization of Rational Word Functions.
SIAM J. Comput. 20, 4 (1991), 669–685.

Marcel Paul Schützenberger. 1975. Sur les relations rationnelles. In Proc. 2nd GI Conference on Automata
Theory and Formal Languages, Kaiserslautern, May 20-23, 1975 (Lecture Notes in Computer Science),
Vol. 33. Springer, 209–213.

Howard Straubing. 1994. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston,
Basel and Berlin.

Boris Avraamovich Trakhtenbrot. 1961. Finite automata and logic of monadic predicates (in Russian). Dokl.
Akad. Nauk SSSR 140 (1961), 326–329.

Andreas Weber. 1993. Decomposing Finite-Valued Transducers and Deciding Their Equivalence. SIAM J.
Comput. 22, 1 (1993), 175–202.

Andreas Weber and Reinhard Klemm. 1995. Economy of Description for Single-Valued Transducers. Infor-
mation and Computation 118, 2 (1995), 327–340.

ACM SIGLOG News 15 Vol. V, No. N, January YYYY

http://dx.doi.org/10.1007/978-3-642-15155-2_32
http://dx.doi.org/10.1145/321466.321473
http://arxiv.org/abs/1506.06497
http://dx.doi.org/10.1142/S0129054115400134

	Introduction
	Transducers
	One-way transducers
	Two-way transducers
	Landscape of transducer classes
	Equivalence problem

	Logics
	MSO transducers
	Examples of MSO transducers
	Büchi theorems for word functions

	Algebra
	Sequential functions
	Rational functions
	First-order definable functions

	Extensions and perspectives

