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Abstract. Timed automata (TA) are widely used to model real-time systems, and
UPPAAL is one of the most popular model-checker for this framework which has
been successfully applied over numerous industrial case studies. Diagonal con-
straints are a natural extension of TA, that does not increase expressive power, but
gives conciseness. Unfortunately the classical forward algorithm for reachability
analysis cannot be used to deal directly with diagonal constraints. Thus the cur-
rent method implemented consists in removing them on-the-fly, which implies
a complexity blow-up. In [8], a counter-example guided refinement algorithm
has been proposed. In this paper, we present its implementation, and give some
benchmarks on a variant of Fischer’s protocol.
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1 Introduction

Timed Automata.The development of reactive, critical or embedded systems requires
the use of formal verification methods, such as model checking. It is often necessary
to consider quantitative informations on time elapsing in the model description and
timed automata (TA) have been proposed by Alur and Dill [1] tomodel such real-
time systems. Many tools have been developed to analyze these systems, among them
UPPAAL [10] has become one of the most popular, because of its efficiency, and its
numerous extensions which allow an easier building of the model.

Reachability analysis.Reachability properties are the basis of most verification tech-
niques. For checking those properties, a symbolic representation of configurations (called
zones) is used to perform a forward on-the-fly analysis. To ensure termination, an ab-
straction operator is used, which leads to the computation of an over-approximation of
the set of reachable states. This approximation, correct for diagonal-free TA, is however
not enough precise in presence of diagonal constraints: locations of TA with diagonal
constraints may be found reachable by the algorithm while they are not!

Diagonal constraints.Classical timed automata [1] consider simple constraintsx ∼ c

anddiagonal constraints x − y ∼ c. From [1, 4] we know that diagonal constraints
can be removed from TA, with an exponential cost. It has been shown in [7] that this
over-cost is unavoidable, since TA with diagonal constraints can be exponentially more
concise than TA without. Moreover, scheduling problems aremodeled using diagonal
constraints (see [9]). Thus, the design of efficient algorithms in presence of diagonal
constraints is relevant.



2 Theoretical framework

As explained before, standard forward algorithm uses an abstraction operator for en-
forcing termination, it thus computes an over-approximation of the set of reachable
states. This approximation is sound if there is no diagonal constraints [6]. Unfortu-
nately, it is no more the case when allowing diagonal constraints. Refer to [5, 2] for
more details on this topic.

A first solution. Since we know how to build from a TA with diagonal constraintsan
equivalent TA without diagonal constrains, a first solutionconsists in removing, in a
first preprocessing step, every diagonal constraint appearing in the TA, and then apply
the classical algorithm. In order to do it more efficiently, [3] proposed a way to simulate
the resulting TA on-the-fly,i.e. during the reachability analysis of the automaton. This
method is the algorithm currently implemented in UPPAAL. The drawback is again that
the cost of the new reachability analysis may be exponentially higher.

A “CEGAR” solution. In order to avoid this over-cost, we proposed in [8] a new method
based on the paradigm of counter-example guided abstraction refinement (CEGAR).
Essentially, we want to remove as few diagonal constraints as possible. Indeed, since
false positives are very seldom, our algorithm will in most cases (when diagonal con-
straints do not generate false positives) make no more work than the classical algorithm.
In the worst case, it will behave roughly as the algorithm proposed in [3], as the exper-
iments will show. The global behavior is depicted on Figure 1.
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Fig. 1. Refinement-based method

3 UPPAAL

UPPAAL is a tool box for validation and verification of real-time systems. It consists
of two main parts: a graphical user interface and a model-checker engine. Since its
first release in 1995, the tool has acquired a strong maturityand has been applied in
many case studies. A complete presentation of the tool can befound on its webpage
(http://www.uppaal.com). The work presented in this paperis only related to the model-
checker engine. Thus, we present very briefly the GUI here (see Figure 2). It consists of
three parts: first, the system editor allows to design easilyany complex system. Second,
the user can simulate any finite trace with the simulator, such as counter-examples pro-
duced by the verification engine. Last, the verifier is devoted to the call to verification
functions. The user defines there the queries and launches the verification engine.



Fig. 2. Overview of UPPAAL: Fischer’s protocol.

4 Experiments

We provide here different benchmarks to establish the efficiency of our new algorithm.
There are two kinds of tests, depending of whether our algorithm needs to refine the
model or not. Time is measured in seconds, and space in Mbytes.

Fischer’s protocol. We first present a modified version of Fischer’s protocol, which
uses diagonal constraints, depicted on Figure 2. A similar model has been proposed
in [11]. It is easy to verify that the protocol ensures mutualexclusion,i.e. concurrent
access to the critical section (locationcs) if and only if we haveA < B. We thus want
to verify that, for valuesA = 1 andB = 2, there is at most one process in critical
section. The results are summarized in first half of Table 1. This model produces no
false positives, thus our algorithm avoids the combinatorial explosion due to removing
diagonal constraints (it indeed removes no diagonal!).

Fischer UPPAAL with refinement Existing UPPAAL

Nb of processes #D Time Space #D Time Space
2 0 0.01 1.4 4 0.01 1.4
3 0 0.02 1.4 6 0.42 38.3
4 0 11.6 40.4 8 560.8 50.2

A1||A2||A3 UPPAAL with refinement Existing UPPAAL

Query #D Time Space #D Time Space
ϕ{1} 1 67.8 45.4 3 165.3 48.2
ϕ{1,2} 2 115.5 46.6 3 164.8 47.8
ϕ{1,2,3} 3 176.5 49.3 3 165.6 48.3

Table 1.Results for the two models.

An example with false positives.The only known example which produces false pos-
itives, and thus requires to “remove” some diagonal constraints is the counter-example
found in [5]. In order to obtain larger models, we add a parameter to this automaton,
and synchronize the resulting models. Such a model is depicted on Figure 3. For these
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Fig. 3. AutomatonApid of [5] with an additional parameterpid.

experiments, we consider the synchronizationA1||A2||A3 of three automata. Depend-
ing on the query, we have to remove some diagonal constraints(see column#D). We
consider queriesϕS , whereS is a set of processes, which ask whether some process
in S can reach location Bad. In the worst case (last line), we remove every diagonal
constraints. It is worth noticing that even in this case, ouralgorithm behaves as the
algorithm proposed in [3].
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