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Abstract. Robustness of timed systems aims at studying whether infinitesimal
perturbations in clock values can result in new discrete behaviors. Aenied
robust if the set of discrete behaviors is preserved under arbitramifyfl gbut
positive) perturbations. We tackle this problem for Time Petri Nets (TRiXs f
short) by considering the model of parametric guard enlargementvetiiows
time-intervals constraining the firing of transitions in TPNs to be enlarged by a
(positive) parameter.

We show that TPNs are not robust in general and checking if theyodmest
with respect to standard properties (such as boundedness, safetdgisidable.

We then extend the marking class timed automaton construction for TPNs to a
parametric setting, and prove that it is compatible with guard enlargen#ats.
apply this result to the (undecidable) class of TPNs which are robusthydwsaoli
(i.e., whose finite set of reachable markings remains finite under irsfimgs
perturbations): we provide two decidable robustly bounded subclassdshow

that one can effectively build a timed automaton which is timed bisimilar even
in presence of perturbations. This allows us to apply existing results fodtime
automata to these TPNs and show further robustness properties.

1 Introduction

Formal methods can be used to specify and verify properfiesraplex real-life sys-
tems. For instance, safety-critical systems with severaracting components have
been studied by modeling them as networks of timed autonijtérp), time Petri
nets [13] (TPN) and so on. However, the usual semantics ofyroathese classical
models rely on hypotheses which may not be met at the impl&atien level, such as
the infinite precision of clocks or instantaneous mode tt@ams. Obviously, the se-
mantics of these systems is idealized : first, in implemé@natof timed systems, clock
values are discretized, which may lead to approximationseaf clock values. Sec-
ond, in distributed systems, the clocks of two differentogsses may evolve at slightly
different rates. As a result, the extreme precision of thdet®leads to unexpected out-
comes when there is even a slight imprecision at the levahpfémentation. A solution
to handle this problem is to introduce perturbations in tloeglets, and then study imple-
mentability issues for these systems. This means providiolg to verify properties of
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models under perturbation, but also develop robust modalgsbems, that is, preserve
some good properties even in the presence of small pertoimsator timed automata,
a model of guard enlargement has been extensively studibe ilast decade [14, 3, 4,
8,5,15]. In[9], itis proven that this model of perturbaticovers the both issues of dis-
cretization and drift of clocks, by reducing the implemdility problem to the analysis

of the enlarged semantics.

In this paper, we tackle the problem of robustness underl gragtlirbations in the
distributed and timed setting of time Petri nets (TPNs) [T#Ns associate time inter-
vals to transitions representing “guards” within which thensition must fire once it
is enabled and our aim is to study the effect of small enlagyerof intervals. In this
work, we address mainly two problems. The first is thibust boundednegzoblem,
which consists in deciding, for a given bounded TPN, whethere exists a positive
enlargement for which the set of reachable markings is fifitbe second problem con-
sidered in this paper i®bust untimed language preservatjarhich consists in decid-
ing whether there exists a positive enlargement for whiehutitimed language remains
unchanged. As mentioned, robustness issues have beertwddidsfor TA. Hence, a
possible way to address the robustness problem for TPNstianslate TPNs to TA,
and reuse existing techniques. However, we show in thisrghpé results on TA do
not always extend to TPN. For instance, robust safety, thavoidance of some bad
configuration under perturbation, is decidable in TAs, litfor TPNs. The objectives
of this paper are to consider robustness issues for TPNstoasididy to what extent
results proven for TA can be applied on TPN.

We first show that the phenomenon of accumulation of pertimhs, which Puri
exhibited in TA in [14], also occurs in TPN, but in a slightliffdrent way. In a TPN,
firing of transitions which are not causally related may o&ystematically at distinct
dates in a non-perturbed model, and after accumulationrogstelays, become con-
current in the perturbed model. This has two consequencssréachable markings of
a net may change under perturbation. Second, a bounded gdiename unbounded
under perturbation. This is a significant difference from T& model which is defined
over a finite set of locations which does not change undeugsation. We show an ex-
ample of a TPN whose unbounded perturbed semantics canmaipered by a finite
timed automaton. We then use this example to prove that the@tablems we consider
are undecidable. There are several translations from TAK {40, 6, 12, 7]. We study
which of these translations can be used to lift robustnesgdteeon TA to the model of
TPN. In particular, we prove that the marking class time@a#ton construction of [7]
is compatible with guard enlargement, in the sense that ribggepty of timed bisimu-
lation is preserved when guards are enlarged by the sammetaain the TA and in
the TPN. We use this result to exhibit subclasses of bound®dsTor which robust
boundedness and language preservation are decidable.

The paper is organized as follows: Section 2 defines the madedd. Section 3
introduces our perturbation model for TPNs, and the robosthidedness and language
preservation problems. Section 4 shows that many robusiesses are undecidable
for TPNs. Section 5 presents a robust translation from TBN#{ i.e. compatible with
guard enlargement. Sections 6 and 7 build on this resulthibixdecidable subclasses
of TPNs, before conclusion.



2 Preliminaries

Let X be a finite alphabety* is the set of finite words oveFE. We also useX. =

X' U {e} with ¢ (the empty word) not ir¥Z. The setsN, Q> andR>( are respectively
the sets of natural, non-negative rational and non-negaéal numbers. An interval
I of R>¢ is aQsp-interval iff its left endpoint belongs td)>( and its right endpoint
belongs toQx>o U {oc}. We setl¥ = {z | < yfor somey € I}, thedownward
closureof I. We denote by (Qx() the set ofQ>-intervals ofR>. A valuationv over

a finite setX is a mapping inR<,. We note0 the valuation which assigns to every
clockz € X the value0. For any valuel € R, the valuationv + d is defined by
(v+d)(z) =v(z)+d, Vz € X.

Definition 1 (Timed Transition System (TTS)).A timed transition systeraver Y. is
a transition systeny' = (@, qo, —), WhereQ is the set of stateg, € Q is the initial

state, and the transition relation> consists of delay moveqsi ¢ (with d € Rxg),
and discrete moveg % ¢’ (with a € X.). Moreover, we require standard properties of
time-determinism, additivity and continuity for the traim relation —.

TTSs describe systems combining discrete and continuonisitens. They are
used to define and compare semantics of TPNs and TA. With firegerties, aun

ai

of S can be defined as a finite sequence of mgves qg o, a2 ¢ G, ¢ —
g ... 2 g,41 Where discrete actions and delays alternate, and whicts stathe
initial configuration. To such a run corresponds a wagd. . a,, over X; we say that
this word is accepted by. The language of is the set of words accepted ISy

Definition 2 (Time Petri Nets (TPN)).A time Petri nef\' overX. isatuple(P, T, *(.),
(.\)*,mo, A, I) where P is a finite set ofplaces T is a finite set oftransitionswith
PNT =0, ) € (NP)T is thebackwardincidence mapping(.)* € (N)7 is the
forwardincidence mappingn, € N” is theinitial marking,A : T — X. is thelabel-
ing functionandI : T — Z(Qx) associates with each transitionfiing interval We
denote byx(t) (resp.S(t)) the lower bound (resp. the upper bound) of interi@l).

Semantics.Introduced in [13], Time Petri nets (TPNs) associate a timerizal to each
transition of a Petri net. Aonfigurationof a TPN is a pai{m, v), wherem is amarking
in the usual senseée. a mapping inN*, with m(p) the number of tokens in plage
A transitiont is enabledin a markingm if m > *t. We denote byEn(m) the set of
enabled transitions im. The second component of the pé&it, v) is a valuation over
En(m) which associates to each enabled transition its iagehe amount of time that
has elapsed since this transition was last enabled. We ello@slassical semantics (see
for instance [2]) defined as follows. An enabled transiti@an be fired ifv(¢) belongs
to the intervall (¢). The result of this firing is as usual the new marking= m—*t+t*.
Moreover, some valuations are reset. We say that trangitismewly enabledy firing
of ¢ from markingm, and writetenabledt’, m, t) iff:

teEn(m—°t+t)A((t' ZEn(m —*t))vt=1t)
Reset valuations correspond to newly enabled clocks. Tirugy a transition is not
an atomic step and the transition currently fired is alwagetteThe seADM(N) of



(admissible) configurationsonsists of the pairén, v) such that/(t) € I(¢)* for every
transitiont € En(m). Thus time can progress in a marking only when it does notleav
the firing interval of any enabled transition. The semantica TPNA = (P, T, *(.),
()%, mo, A, I)isaTTS[N] = (Q, qo, —) WhereQ = ADM(N), o = (mq, 0) and—

is defined by:

- delay moves:(m,v) % (m, v + d) iff ¥t € En(m), v(t) + d € I(t)*,

- discrete moves:(m, v) A, (m —*t+t*,V)iff t € En(m)is s.t.w(t) € I(¢),

Vt' € En(m—*t+t*), v/ (t') = 0if tenabledt’, m,t) andv’(t') = v(t) otherwise.

The (untimed) language of/ is defined as the untimed language[#f] and is
denoted byC(N). The reachability set of/, denotecReach(\), is the set of markings
m € NP such that there exists a reachable configurationv). A bounded TPNs a
TPNN such thaReach(N) is finite.

Timed automata:First defined in [1], the model of timed automata associatest @f
non-negative real-valued variables callddckswith a finite automaton. LeX be a
finite set of clocks. We writ€ (X)) for the set ofconstraintsover X, which consist of
conjunctions of atomic formulae of the formpa ¢ for x € X, ¢ € Q> andxe {<,
<,>,>}. We also define the proper sub&gt(X) of upper boundsonstraints oveX
wherexie {<, <}.

Definition 3 (Timed Automata (TA)). Atimed automatord over X, is a tuple(L, ¢y,
X, E, Inv) whereL is a finite set oflocations ¢, € L is theinitial location X is a
finite set ofclocks Inv € C,,(X)% assigns arinvariantto each location and C
L x C(X) x X. x 2X x L is a finite set ofedgesAn edgee = (£,v,a,R, /') € E
represents a transition from locatiatto location?’ labeled by with constrainty and
resetkR C X.

Semantics.For R C X, the valuatiorw[R] is the valuation/’ such that'(z) = v(x)
whenz ¢ R andv/(z) = 0 otherwise. Finally, constraints @f(X) are interpreted
over valuations: we write = v when the constraint is satisfied by. The semantics
ofaTAA = (L, 4, X, E, Inv) is the TTS[A] = (Q, g0, =) Wwhere@ = {({,v) €
L x (Rs0)* | v | Inv(€)}, g0 = (o, 0) and— is defined by:

- delay moves:(¢,v) 4 (,v+d)if d € R>¢ andv + d |= Inv(¢);
- discrete moves:(¢,v) % (¢,v') if there exists some = (£,v,a, R, /') € E s.t.
v =y andv’ = v[R)].

The (untimed) language of is defined as that dfA] and is denoted by (A).
Timed (bi)-simulation:

LetS = (Q,q0,—) andS’ = (Q’, ¢}, —') be two TTSs. ArelatiorR C @ x @’
is atimed simulationf and only if, (g0, ¢;,) € R and for everyy € X, UR>¢, ¢1 € @,
¢, € Q" suchthatq,q)) € R, if ¢ = g0, then there existg, such thay; = ¢, and
(g2, ¢5) € R. We will say thatS” simulatesS and writeS < S’ when such a relatioR
among states of and.S’ exists. If in additior’R ~! is a timed simulation relation from
S’ to S, then we say thaR is a timed bisimulation. We say thatand .S’ aretimed
bisimilar when such a relatioR among states of and.S’ exists, and write5' ~ S’.



3 Perturbations in TPN

Perturbations in timed automata [3, 4, 8[We start by fixing a parametes € R>,.
Given a constraing € C(X), we define itsA-enlargement as the constraint obtained
by replacing any atomic formulae of the formulaex< ¢ for x € X, ¢ € N and
e {<,<,>,>}, by the formulaer < ¢ + A if e {<, <}, and by the formulae
xxc— Aif e {>,>}. Now, given a timed automatan, we denote byd 4 the TA
obtained by replacing every constraint by iésenlarged version (both in guards and
invariants). This model of perturbation verifies the follogr monotony property: for
TA Aand anyA < A’ € R, we have[Aa] < [Aa]. Inthe sequel, we will use the
following result Reach(.A») denotes the locations of reachable if.AA]):

Proposition 1 ([5]). Let.4 be a timed automaton angi be a subset of locations of.
One can decide whether there exigts Q- such thaReach(AA) NS = 0.

Introducing perturbations in TPNsOur goal is to consider a similar model of pertur-
bation for Time Petri nets. Given an inteniak Z(Qx(), we denote by 4 the interval
obtained by replacing its lower bourdby the boundnax(0,« — A), and its upper
boundg by the bound3 + A. Given a TPNV, we denote by\W 4 the TPN obtained by
replacing every interval by the intervall ,. We can then easily prove that the desired
monotony property holds, entailing that if the system vesifh safety property for some
perturbationd, it will also verify this property for anyd < Ay:

Lemma 1. LetA be a TPN andA < A’ € Rx(. We havgNa] < [Na/].

3.1 Problems considered

We now define robustness problems on TPNs in a way which isistens with the
monotony property stated above.

Robust Boundedness:Given a bounded TPW/, does there existi € Q- such that
N is bounded?

Robust Untimed language preservation: Given a bounded TPNW/, does there exist
A € Q-p such thatC(Na) = L(N)?

We call a TPNN robustly boundedf there existsA € Q- such that\V, is bounded.
This problem is strongly related to the problem of robusesafsking, given a bounded
TPN .\ with set of places?, and a markingn € N”, whether there existd € Q-
s.t.,Reach(N ) does not covern. In fact, our undecidability and decidability results
for robust boundedness will easily extend to this problepweler, the situation differs
for robust untimed language preservation and so we treaptbblem separately.

3.2 Examples of non-robust TPNs

Consider the example in Figure 1(a). Due to the open intenelurgency condition
(according to the semantics of TPN$ has to fire at most 2 time units after enabling),
any enlargement of guards would result in reaching placehich is not reachable in
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(a) The TPNAG. (b) The TPNA.

Fig. 1. Two TPNs exhibiting new discrete behaviors under infinitesimal pertunimstio

the non-enlarged semantics (from this, we can easily aattséixamples that are not
robustly bounded or robustly safe). In this example, thaditdomain of transitior
(the set of configuration$(po,v) | v(a’) € [1,2]}) is aneighborof the reachable
configuration(po, v(a’) = 2). By neighbor, we mean that any positive enlargement
makes transitiom fireable. This is the simplest form of non-robustness whih loe
easily checked for in bounded TPNs as one can compute a sigmbptesentation
of the reachability set (using the state-class graph coctstn [2, 12] for instance).
Further by requiring that all intervals must be closed, o avoid this situation. Now
assuming there are no transitions whose firing domain isghber of the reachability
set, one can prove that undebaunded time horizofas defined for timed automata
in [16]) any net is robust, i.e., one can pick a sufficientlyadin\ > 0 to ensure that no
new behavior occurs.

The remaining case concerns TPNs in which new behaviorsoareeighbors of the
reachability set, considered for an unbounded time horilrothis case a new behavior
cannot appear directly from a reachable configuration, lagetmust be several discrete
firings before this new behavior is withessed. Further thalmer of steps may depend
on A: the smallerA is, the larger will be the number of steps required. Inteitythe
new behavior is due to an accumulation of clock perturbaticather than a single clock
perturbation. Puri [14] gave an example of TA that exhibitsuanulations, encoded
using time between consecutive resets. However, for TRidsehcoding does not work
since the clocks are always reset when a transition is nemdpled.

We exhibit a TPN where accumulation is due to concurrencyiguie 1(b). This
example can be simplified using singleton intervals, but wacathis to show that
accumulation may arise even without singletons. With thealsemantics, the red state
in N\ is not reachable as transitiens never fireable. Indeed, one can verify that any
run of N7 which does not fire transitions, ¢», t3 or t, always fires transition (resp.

a’, b, b)attime3k+2 (resp.3k+3, 3k+1, 3k+3), for some integek. By observing the
time intervals of transitions, «’ andd’, one can deduce that to be able to fire transition
t, one has to fire simultaneously the transitiarendb, which is impossible.

Consider the nefN7) A, for some positiveA. We will prove that in this case, it is
possible to fire simultaneously transitiomgndb. In (A7), one can delay the firing
of transitiona by up to A time units. As a consequence, it is easy to verify that after



n iterations of the looma’, the timestamp of the firing of the last occurrencer@fan
be delayed by up ta - A time units. Choosing any > %, we obtain the result. In

particular, the red place is reachabl€g.ivf; ) A, for any positiveA.

3.3 Sequential TPNs

The accumulation in the above example was due to concuoepslin the TPN. When
we disallow such concurrency, we obtain a very simple clasgquential TPN#/hich
is a strict subclass of timed automata. We state their ptiegen detail here as they will
be useful in later proofs. Also this exhibits a clear way ®tidguish the relative power
of TPNs and TAs. A TPNV is sequentialf it satisfies the following property: for any
reachable configuratiofin, ), and for any transitions, ¢’ € T that are fireable from
(m,v) (i.e. such that,t’ € En(m), v(t) > «(t) andv(t’) > «(t’)), t andt’ are in
conflict, i.e. there exists a plapesuch thain(p) < *¢(p)+°*t'(p). The following lemma
states robustness properties of sequential TPNs and dagiion to timed automata.

Lemma 2. We have the following properties:

(i) Checking whether a bounded TRNis sequential is decidable.
(1) If NV is a sequential bounded TPN, then it can be translated inbmad automa-
ton which resets every clock on each transition.
(14) If N is sequential, then there exisfse Q- such thaReach(N4) = Reach(N)
andL(Na) = L(N).

Proof. Decidability follows from the construction of the state sdagraph, which is
possible as the TPN is bounded. Clearly, this can be donenia linear in the size

of the state class graph. The second and third propertiesvfétom the observation
that in a sequential TPN, each time a discrete transitiomad fieach transition that is
enabled in the new/resulting marking is newly enabled. Tallithe clocks are reset and
this implies property (ii). Further, since clocks are reffgtre is intuitively no memory

in clock values. Consideringl < 3 to ensure that exactly the same transitions are
enabled, we prove by induction on the length of runs that thdigurations reached
immediately after a discrete transition are the sanfg\ifi and in[A/4].

dn,an

Consider a rurp = (mg, o) BLECN (mi,v1) ... (Mpy s Vne1) — (M, vy)
in [Na]. We prove by induction on the length pfthat every valuation/; verifies

!
di,a1

vi(t) = 0 for all ¢t € En(m;), and that there exists a ryft = (mo,1y) ——

’
nan

(M1, 1) o (M 1y Vp1) 22 (mn, ) in [N] which only differs in the time
elapsing, but which is such that the configurations reaclfied @ach discrete action
are the same. The base cagdds lengttD) of the induction is trivial. Consider a new

step(my, V) e, (m,v) in [Na]. By definition, there exists a transitiere 7" which
verifies the following conditions:

- t € En(m,,),

— tis labeled by,

—Vt' € En(my,), v, (t') +d < B(t') + A,
—v(t)+d>a(t)— A



By induction property, we have, (¢') = 0 for all ¢’ € En(m,,). As a consequence,
we can deduce that(t) — A < d < min{S(t') | t' € En(m,)} + A. As transitions
have integral bounds, anti < 1, one can verify that this implies the inequalityt) <
min{A(t") | ' € En(my)}. We thus pickd’ = «(t), which ensures:

- Vt' € En(my,),v,(t") +d = at) < B{t'),

- v, (t)+d > alt)
As a consequence, we hay®,,, v;,) LELN (m,v') in [N]. Thanks to the property of
being sequential, we can observe that every transitiorigleatabled in the new marking
m' is newly enabled by the firing of the discrete transitioin particular, this implies
V'(¢') = 0 for every transitiont’ € En(m), and in particulan’ = v. The expected
properties orReach(N ) and£(AN4) then directly follow. 0

4 Undecidability results

We use the TPNs of Figure 1 to prove undecidability of robessnand untimed lan-
guage preservation for bounded TPNs.

Theorem 1. The problems of robust boundedness and robust untimeddgegureser-
vation are undecidable for bounded TPN.

Proof. To prove undecidability, we combine the standard constoaif a TPN from a
Minsky machine with the gadget from Figure 1 and Lemma 2 onieetigl TPNSs.

For the sake of completeness, we start by briefly recallimgMtinsky machine
reduction. A Minsky machinéV (which w.l.0.g. we assume deterministic) is defined
by a finite set of state; with 0 < ¢ < n, whereqy is the initial state and,, the

final one. There are no transition rules frggm The machine contains two countefs

andc, and transition rules corresponding either to incremematig; St g;) or

to decrementations with test to zerg (-— g; if ¢, > 0, andg; — ¢; otherwise).
As the machine is deterministic, it has a single executibis Well known that the
reachability of statey,, is undecidable, so boundednesmfandc, along the unique
execution ofM is also undecidable.

The machineM is encoded into a TPNW/,, as follows: we consider a set of places
P = {¢;} U{c1,c2}. Initial marking is{qo }. Transitions are represented on Figure 2.
We make two observations. First, A§, simulates exactly executions 8f(, N is

Qi bt qj qi t=0,12,3] Q
Ck Ck a;
t>0,[0,1]
(a) Incrementation (b) Decrementation

Fig. 2. Encoding instruction of a Minsky machinet into a TPNA/ 4.
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Fig. 3. TPN ., obtained by combining/; and N a.

bounded iff M is, and A\, covers marking{q,, } iff M reaches state,. Second, in
every reachable configuration, exactly one of the pldegsd) < i < n} contains a
token. As a consequence, the Wét, is sequential.

We then combine the TPN§; from Figure 1 andV\, as depicted on Figure 3 to
obtain the TPNN5. First note that\V; is a bounded TPN: without perturbation, tran-
sition ¢ (in A7) is never fired, and thus the set of reachable markings igfiSi¢cond,
we label transitiort ; by a and every other transition hy*. As MV is sequential, by
Lemma 2(iii) it follows that

— (1) NV is robustly bounded iffV, is bounded and
— (2) N> robustly preserves its untimed languageNff, does not cover markingp.

We note that for (2) V4 may not be bounded (i is not bounded), however the
statement still holds since Lemma 2(iii) does not requiseitbundedness assumption.
Now, from the undecidability of halting and boundedness @fidly machines, it
follows that the problems we considered are also undeadsi remark that the above
proof also shows that robust safety is undecidableyasovers marking f} iff N4
covers markingn. a0

5 A robust translation from TPN to TA

As robustness issues were first studied for timed automathseveral translations of
TPN into TA exist in literature, it is natural to study whichtbese translations are com-
patible with robustness. A way to reduce robustness prabfemTPNs to robustness
problems for TA is to show that an existing timed bisimulati@etween TPN and its TA

translation is preserved under perturbation. We now ptestanslation which verifies

this property.

This construction is close to the marking class timed automeonstruction of [7]
but different in two aspects. First, in the TA built in [7] rfefficiency reasons the num-
ber of clocks is reduced by using clock sharing techniqug$2jf which may increase
the number of locations. For ease of presentation, we do anider this optimiza-
tion, but our results also apply for this setting. Second dbnstruction of [7] was only
stated for TPN whose underlying Petri net (i.e., the Petriof¢ained by ignoring the

4 The reduction can be adapted to avoid the uselnf labeling every other transition by and
adding a gadget which can perform arbitrarily maisy It can however not be adapted to the
setting of injective labeling, see Section 7.



timing information in the given TPN) is bounded. We presdm tonstruction in a
more general framework: we consider a TRNwhich is not necessarily bounded and
we consider as input a finite set of markings The construction is then restricted to
the setM, and we can prove that it is correct for the set of behaviot& afthich al-
ways remain within\/. In the sequel, we will instantiat®/ depending on the context.
For TPNs whose underlying PN is bounded, the constructi¢i]a$ recovered by let-
ting M be the set of reachable markings of this PN. We begin with aitiefi and a
proposition that can be infered immediately:

Definition 4. LetN = (P, T, X., *(.),(.)*,mo, A, I) be a TPN,M C N* be a set of
markings such thatw, € M, and let[N] = (Q, g0, —) be the semantics of. The
M-bounded semantics o¥, denoted[N],,, is defined as the restriction of the TTS
[NV] to the set of state§(m,v) € Q | m € M}.

Proposition 2. Let M be a set of markings of a TPN containing the initial marking.
If Reach(N') € M, then[N]x = [N].

Now, let\ = (P, T, X.,*(.),(.)*,mo, A,I) be a TPN, and/ C N¥ be a finite set
of markings such thaty € M. Themarking timed automaton @¥" over M, denoted
Ayr, is defined asdy, = (M, mg, X, Y., E, Inv), whereX = {x; | t € T}, for each
m € M, Inv(m) = Nycgnm @t < B(t), and there is an edge 20l e B iff
there exist$ € T'suchthat € En(m), m' = m—"°t+t°®, gis defined as the constraint
xy € I(t),a = A(t) andR = {z¢ | t' €tenabledt’,m,t) = true}. With this we
have the following theorem:

Theorem 2. Let A’ be a TPN,M be a finite set of markings containing the initial
marking of\/, and A,; be the marking timed automaton .&f over M. Then for all
A € Qx0, we havelNa] ar = [(Aar)al.

Proof. We prove by induction that the following relatidR is a timed bisimulation.
Let (m, v) denote a state of the TTV ]|, i.€. (m,v) € Adm(Na) withm € M.
Similarly, let (¢, v) denote a state df(.Axr) A]. We defing(m, v)R (¢, v) if and only if

m = £, andvt € En(m),v(t) = v(z,). First, initial configurations are iR. We then
have to consider how paifgm, v), (¢,v)) € R evolve with respect to different kinds
of moves:

delay moves:Letd € R>q. We have(m, v) 4 (m,v+d)iff Vt € En(m),v(t)+d <

B(t) + A. AsVt € En(m),v(x:) = v(t), this is equivalent t&/t € En(m),v(t) +

d < B(t) + A, which itself is equivalent te |= Inv(¢) + A, which is the invariant

of location? in (Axs)a. This is the condition under which there exists a delay move

(4, v) 4, (6,v+d)in [(Aar)a]- Thus the result holds for delay moves.

discrete moves:Consider a discrete moven, v) = (m’,v/) in [Na]|s. Such a dis-
crete move exists iffn, m’ € M, and there exists a transitiore 1" such that:

1. t € En(m)

2.m'=m-—"°t+1t*

3. v(t) € Ia(t) wherelA(t) denotes thed-enlargement of interval(t)
4, A(t) =a

10



5. for anyt’ € En(m’), we haver/(t') = 0 if tenabledt’,m,t) = true, and
V'(t') = v(t) otherwise.

Conditions 1-5 imply the existence of a transition SR in Ay, whereg is
defined as the constraimt € I(t), andR as the set of clocks of newly enabled tran-
sitions. Ast € En(m), we havev(t) = v(t), and thus the transition can be fired in
[(Aar)a], and we havel, v) % (m/,v") wherev’ = v[R]. One can then check that
for any transitiont’ € En(m’), we havev'(¢') = v/(¢'). There are two cases, f is
newly enabled, then the clock valudiioth in the TA and in the TPN. Otherwisé,is
not newly enabled, and we hav&t’) = v(t') = v(t') = V/'(¥).
Conversely, considering a discrete movd(alys) o], one can similarly prove the

existence of a corresponding movefia] ;. O

Other TA constructions he construction proposed in [12] builds a state class tiaued
tomaton incrementally using a forward exploration of resdath markings of a bounded
TPN. Gardey et al [10] use a similar forward-reachabilightegique to build the reach-
able state space of TPN, where equivalence classes for ehaktions are encoded
as zones. However, as in TPN; of Figure 1, new configurations in amlarged se-
manticsmight be reached after accumulation of small delays. Henew®, reachable
markings are not necessarily obtained in one enlarged stapd configuration in the
non-enlarged semantics. Thus, forward techniques as jiQl2annot be directly ex-
tended to obtain enlarged semantics and we need a more tyntanslation which
builds an over-approximation of the reachable markingsh@fTPN) as in Theorem 2.

Cassez et al [6] propose a different syntactic translatiomfunbounded TPNs by
building a timed automaton for each transition, and therclyonizing them using a
supervisor. The resulting timed automaton is bisimilahi® ¢riginal model, but states
contain variables, and hence the automaton may have an ndéduumber of loca-
tions. It may be possible to extend this approach to addadmsstness problems, but as
we focus on bounded TPNs, we leave this for future work.

6 Robustly bounded TPNs

This section focuses on the class of robustly bounded TPX3h@orem 1, we know

that checking membership in this class is undecidable. \&@segmt two decidable sub-
classes, as well as a semi-decision procedure for the whass. 8Ve first consider the
subclass of TPNs whosederlying Petri nets bounded:

Proposition 3. The set of TPN whose underlying net is bounded is a decidabidass
of robustly bounded TPNs. Further, for each pétof this class, one can construct a
finite timed automatont such thaffAV 4] ~ [AA] forall A > 0.

The decidability follows from that of boundedness for (ored) Petri nets [11]. The
second part of the above proposition follows from Theorem 2.

We now exhibit another subclass of robustly bounded TPNswhioderlying Petri
nets can be unbounded. In fact, this class is incomparalbitetiné above defined sub-
class. The following technical result is central in our azmh:

11



Lemma 3. Let N be a TPN, andV/ be a finite set of markings. Determining whether
there existsA > 0 such thatReach(N4) C M is decidable.

Proof. Call M = M U {m’ | 3m € M,t € T,m’ = m — *t + t*} the (finite) set of
markings reachable from/ in at most one-step in the underlying Petri net. gt be
the marking timed automaton of over M, and letA > 0. We claim:

Reach(Na) € M <= Reach((Az;)a) C M

To prove this equivalence, we consider successively theirmwtications. For the di-
rect implication, suppose theeach(Na) C M. By Proposition 2 and Theorem 2, we
obtain [Na] ~ [(Az;)al. This yields the result as there is a bijection between tran-
sitions of [N 4] and those of (A3;) a]. Conversely, suppose theeach((A37)a) €

M. By contradiction, suppose th&each(NMa) ¢ M. Thus, there exists a rum =

(Mo, 0) 2% (my, 1) ... 2% (mi, vy) Of [Na] such thatn,, & M. W.Lo.g., we
assume thatr; € M for anyi < n. This entails thatn; € M for all i. But then, as we
have[[NA]}lﬁ ~ [(Az7)a] by Theorem 2, this entails that the “same” rualso exists
in [(Az7)a]. This is a contradiction witReach((Az;)a) € M.

Now, determining whether there exists > 0 such that the right hand side of the
previous equivalence holds is decidable thanks to Praposit O

We consider the following subclass of bounded TPNs:

Definition 5. A bounded TPNV is called Reach-RobustReach(N4) = Reach(N)
for someA > 0. We denote bRR the class of Reach-Robust TPNs.

RR is the class of bounded TPNs whose set of reachable marlgrigvariant under

some guard enlargement. It is easy to see that these netsbargtly bounded. More
interestingly, checking membership in this class is ddaligla.e., given a bounded TPN
N we can decide if there is a positive guard enlargement untdarvthe set of reach-
able markings remains unchanged. This follows from Lemmby3instantiating the

finite set of markings\/ with Reach(/\/):

Theorem 3. RR is a decidable subclass of robustly bounded TPNs.
We can now address properties of the general class of rgthmihded TPN.

Lemma 4. The set of robustly bounded TPNs is recursively enumeratbdeeover,
given a robustly bounded TPN', we can build effectively a timed automatdnsuch
that there existgl, > 0 for which,V0 < A < A, [Na] = [AA]-

Proof. Observe that a TP is robustly bounded iff there exists a finite set of markings
M and someA > 0 such thaReach(N,) C M. Thus by naively enumerating tiset

of finite sets of markings and applying the algorithm of LemBnat each step of the
enumeration, we obtain a semi-decision procedure (to chiezkbership) for the class
of robustly bounded TPNs. For the second result, observeifth is known to be
robustly bounded, then this semi-decision procedure teates and computes a finite
set of markingsM and there is a valug\ly, such thatReach(N,,) € M. Therefore,
forany A < Ag, Reach(Na) € M. By Proposition 2, this entailgNVa] |y = [Na]-

In addition, by Theorem 2, we ha\&/a]|x ~ [(Anr)a] where Ay, is the marking
timed automaton of the TP'. Thus we have'0 < A < A, [Na] =~ [(Am)a]. O
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[0,1]

Fig.4. A TPN which is in RR but not LR

This result allows us to transfer existing robustness te$oit timed automata to TPNs.
We will illustrate the use of this property in the followingcion.

7 Untimed language robustness in TPNs

We now consider the robust untimed language preservatimigm, which was shown
undecidable in general in Theorem 1. We show that for thelagbofdistinctly la-
beled bounded TPNge., labels on transitions are all distinct, and différeom &) this
problem becomes decidable.

Definition 6. A bounded TPNV is called Language-Robust £(Na) = L(N) for
someA > 0. We denote by LR the class of Language-Robust nets and_byre&p.
RR:) the subclass of LR (resp. RR) with distinct labeling.

We first compare the class RR (for which checking membershigecidable by
Theorem 3) with the class LR (where, as already noted, chgekiembership is unde-
cidable by Theorem 1). We can then observe that:

Proposition 4. (1) The classes RR and LR are incomparable w.r.t. set iraugl)
Further, the class LR is strictly contained in the class RR

Proof. We first prove one direction of (1), i.e., RR is not included_R. Consider the
TPN in Figure 4. The set of reachable markings is the samery®tturbations so the
net is in RR, but the language under perturbation sees ti@aotvhich is not seen in
the unperturbed net, so this net is not in LR. For the convérrgetion, it suffices in
the netV; of Figure 1, to label all transitions kyand then it is in LR (since untimed
language is empty) but not in RR since a new place is reachable

Now for the proof of (2) we have: iV € LR, then any wordv € L(N) corre-
sponds to a unique sequence of transitions, and hence eadsique marking aiV'.
So if LINA) = L(N) for someA > 0, thenReach(Na) = Reach(N) for the same
A. The strictness also follows easily. This inclusion iscétone can easily design a net
N in which a single transition is fireable only under enlargement, but producing no
new marking outsid&each(N). Hence, suct\V is notin LRy, butis stillin RRz. O
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Finally, we show that the problem of robust untimed langyaigservation becomes
decidable under this assumption:

Theorem 4. The class LR is decidable, i.e., checking if a distinctly labeled bouhde
TPNisin LR is decidable.

Proof. We proceed as follows. We first decide by using Theorem 3, lvelnghe given
distinctly labeled bounded né¥ is in RR (and therefore in RR. Now, by Propo-
sition 4 if the net is not in RR, then it is not in LR:. Otherwise, by Lemma 4, we
can build a timed automatad which is timed bisimilar to\/ for small perturbations.
This entails that this TA preserves its untimed languageuschall perturbations iff’
does. Thus we have reduced the problem of checking i in LR to checking if the
timed automatond constructed fromV is language-robust. This completes our proof
since this problem is decidable for timed automata. Moreifipally we want to check
thatA is in LR, i.e., if there exists\ > 0 such thatC(A) = L(AA). In [15] this exact
problem is solved for both finite and infinite words but with @stditional restriction
on the timed automata. Further, it also follows from Propasil for general timed
automata in the finite words case. That is,

Claim. Checking if a timed automataA is LR is decidable.

Proof. In [5], it is proved that checking robustness of timed autamaith respect to
any w-regular property is decidable. In particular safety prtipe are decidable, as it
is stated in Proposition 1. Given a finite timed automatgrthe (untimed) language
of A, denoted byC(A), is a regular language. We can build a finite state automaton
accepting the complement of this language, equipped with $tates. LeB be another
timed automaton, and denote Byx C the product of3 with C. It is easy to verify that
B ® C never enters a final state 6fiff the (untimed) language df is included in that
of A. As for any non-negativel we havel(A) C L(AA), we obtain thatd, ® C
does not enter the final states®fff £(.A) = L(AA). AsC is untimed, the two timed
automatad , ® C and(A® C) o are equal. Our problem thus reduces to a robust safety
problem for the automatad ® C.

This completes the proof of the theorem as detailed above. O

8 Conclusion

We summarize our results in the diagram in Figure 5 (by a @ébédundecidable class
we mean that membership in that class is decidable/unddejddn this paper, we

have launched an investigation into robustness in Time Rets with respect to guard
enlargements. We transferred several positive results fhe TA setting to TPNs and
showed that some other problems become undecidable in TERN® dinboundedness.
As future work, we would like to show positive results in arbonnded setting and we
believe that this would require a different approach and teshniques.
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Without distinct labels With distinct labels

Fig. 5.RR stands for reach-robust, LR for language-robust, UB for bedmiderlying PNs, S for
sequential bounded TPNs. Dotted lines represent undecidable antredidecidable classes.
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