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Abstract. Robustness of timed systems aims at studying whether infinitesimal
perturbations in clock values can result in new discrete behaviors. A model is
robust if the set of discrete behaviors is preserved under arbitrarily small (but
positive) perturbations. We tackle this problem for Time Petri Nets (TPNs for
short) by considering the model of parametric guard enlargement which allows
time-intervals constraining the firing of transitions in TPNs to be enlarged by a
(positive) parameter.
We show that TPNs are not robust in general and checking if they are robust
with respect to standard properties (such as boundedness, safety) isundecidable.
We then extend the marking class timed automaton construction for TPNs to a
parametric setting, and prove that it is compatible with guard enlargements.We
apply this result to the (undecidable) class of TPNs which are robustly bounded
(i.e., whose finite set of reachable markings remains finite under infinitesimal
perturbations): we provide two decidable robustly bounded subclasses, and show
that one can effectively build a timed automaton which is timed bisimilar even
in presence of perturbations. This allows us to apply existing results for timed
automata to these TPNs and show further robustness properties.

1 Introduction

Formal methods can be used to specify and verify properties of complex real-life sys-
tems. For instance, safety-critical systems with several interacting components have
been studied by modeling them as networks of timed automata [1] (TA), time Petri
nets [13] (TPN) and so on. However, the usual semantics of many of these classical
models rely on hypotheses which may not be met at the implementation level, such as
the infinite precision of clocks or instantaneous mode transitions. Obviously, the se-
mantics of these systems is idealized : first, in implementations of timed systems, clock
values are discretized, which may lead to approximations ofreal clock values. Sec-
ond, in distributed systems, the clocks of two different processes may evolve at slightly
different rates. As a result, the extreme precision of the models leads to unexpected out-
comes when there is even a slight imprecision at the level of implementation. A solution
to handle this problem is to introduce perturbations in the models, and then study imple-
mentability issues for these systems. This means providingtools to verify properties of
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models under perturbation, but also develop robust models of systems, that is, preserve
some good properties even in the presence of small perturbations. For timed automata,
a model of guard enlargement has been extensively studied inthe last decade [14, 3, 4,
8, 5, 15]. In [9], it is proven that this model of perturbationcovers the both issues of dis-
cretization and drift of clocks, by reducing the implementability problem to the analysis
of the enlarged semantics.

In this paper, we tackle the problem of robustness under small perturbations in the
distributed and timed setting of time Petri nets (TPNs) [13]. TPNs associate time inter-
vals to transitions representing “guards” within which thetransition must fire once it
is enabled and our aim is to study the effect of small enlargement of intervals. In this
work, we address mainly two problems. The first is therobust boundednessproblem,
which consists in deciding, for a given bounded TPN, whetherthere exists a positive
enlargement for which the set of reachable markings is finite. The second problem con-
sidered in this paper isrobust untimed language preservation, which consists in decid-
ing whether there exists a positive enlargement for which the untimed language remains
unchanged. As mentioned, robustness issues have been well studied for TA. Hence, a
possible way to address the robustness problem for TPNs is totranslate TPNs to TA,
and reuse existing techniques. However, we show in this paper that results on TA do
not always extend to TPN. For instance, robust safety, that is avoidance of some bad
configuration under perturbation, is decidable in TAs, but not for TPNs. The objectives
of this paper are to consider robustness issues for TPNs, andto study to what extent
results proven for TA can be applied on TPN.

We first show that the phenomenon of accumulation of perturbations, which Puri
exhibited in TA in [14], also occurs in TPN, but in a slightly different way. In a TPN,
firing of transitions which are not causally related may occur systematically at distinct
dates in a non-perturbed model, and after accumulation of some delays, become con-
current in the perturbed model. This has two consequences: first, reachable markings of
a net may change under perturbation. Second, a bounded net may become unbounded
under perturbation. This is a significant difference from the TA model which is defined
over a finite set of locations which does not change under perturbation. We show an ex-
ample of a TPN whose unbounded perturbed semantics cannot becaptured by a finite
timed automaton. We then use this example to prove that the two problems we consider
are undecidable. There are several translations from TPN toTA [10, 6, 12, 7]. We study
which of these translations can be used to lift robustness results on TA to the model of
TPN. In particular, we prove that the marking class timed automaton construction of [7]
is compatible with guard enlargement, in the sense that the property of timed bisimu-
lation is preserved when guards are enlarged by the same parameter in the TA and in
the TPN. We use this result to exhibit subclasses of bounded TPNs for which robust
boundedness and language preservation are decidable.

The paper is organized as follows: Section 2 defines the models used. Section 3
introduces our perturbation model for TPNs, and the robust boundedness and language
preservation problems. Section 4 shows that many robustness issues are undecidable
for TPNs. Section 5 presents a robust translation from TPNs to TA, i.e. compatible with
guard enlargement. Sections 6 and 7 build on this result to exhibit decidable subclasses
of TPNs, before conclusion.
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2 Preliminaries

Let Σ be a finite alphabet,Σ∗ is the set of finite words overΣ. We also useΣε =
Σ ∪ {ε} with ε (the empty word) not inΣ. The setsN, Q≥0 andR≥0 are respectively
the sets of natural, non-negative rational and non-negative real numbers. An interval
I of R≥0 is aQ≥0-interval iff its left endpoint belongs toQ≥0 and its right endpoint
belongs toQ≥0 ∪ {∞}. We setI↓ = {x | x ≤ y for somey ∈ I}, the downward
closureof I. We denote byI(Q≥0) the set ofQ≥0-intervals ofR≥0. A valuationv over
a finite setX is a mapping inRX

≥0. We note0 the valuation which assigns to every
clock x ∈ X the value0. For any valued ∈ R≥0, the valuationv + d is defined by
(v + d)(x) = v(x) + d, ∀x ∈ X.

Definition 1 (Timed Transition System (TTS)).A timed transition systemoverΣε is
a transition systemS = (Q, q0,→), whereQ is the set of states,q0 ∈ Q is the initial

state, and the transition relation→ consists of delay movesq
d
−→ q′ (with d ∈ R≥0),

and discrete movesq
a
−→ q′ (with a ∈ Σε). Moreover, we require standard properties of

time-determinism, additivity and continuity for the transition relation→.

TTSs describe systems combining discrete and continuous evolutions. They are
used to define and compare semantics of TPNs and TA. With theseproperties, arun

of S can be defined as a finite sequence of movesρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→

q2 . . .
an−−→ qn+1 where discrete actions and delays alternate, and which starts in the

initial configuration. To such a run corresponds a worda0 . . . an overΣε; we say that
this word is accepted byS. The language ofS is the set of words accepted byS.

Definition 2 (Time Petri Nets (TPN)).A time Petri netN overΣε is a tuple(P, T, •(.),
(.)

•
,m0, Λ, I) whereP is a finite set ofplaces, T is a finite set oftransitionswith

P ∩ T = ∅, •(.) ∈ (NP )T is thebackwardincidence mapping,(.)• ∈ (NP )T is the
forward incidence mapping,m0 ∈ NP is theinitial marking,Λ : T → Σε is thelabel-
ing functionandI : T 7→ I(Q≥0) associates with each transition afiring interval. We
denote byα(t) (resp.β(t)) the lower bound (resp. the upper bound) of intervalI(t).

Semantics.Introduced in [13], Time Petri nets (TPNs) associate a time interval to each
transition of a Petri net. Aconfigurationof a TPN is a pair(m, ν), wherem is amarking
in the usual sense,i.e. a mapping inNP , with m(p) the number of tokens in placep.
A transitiont is enabledin a markingm if m ≥ •t. We denote byEn(m) the set of
enabled transitions inm. The second component of the pair(m, ν) is a valuation over
En(m) which associates to each enabled transition its age,i.e. the amount of time that
has elapsed since this transition was last enabled. We choose the classical semantics (see
for instance [2]) defined as follows. An enabled transitiont can be fired ifν(t) belongs
to the intervalI(t). The result of this firing is as usual the new markingm′ = m−•t+t•.
Moreover, some valuations are reset. We say that transitiont′ is newly enabledby firing
of t from markingm, and write↑enabled(t′,m, t) iff:

t′ ∈ En(m− •t+ t•) ∧ ((t′ 6∈ En(m− •t)) ∨ t = t′)
Reset valuations correspond to newly enabled clocks. Thus,firing a transition is not
an atomic step and the transition currently fired is always reset. The setADM(N ) of
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(admissible) configurationsconsists of the pairs(m, ν) such thatν(t) ∈ I(t)↓ for every
transitiont ∈ En(m). Thus time can progress in a marking only when it does not leave
the firing interval of any enabled transition. The semanticsof a TPNN = (P, T, •(.),
(.)

•
,m0, Λ, I) is a TTSJN K = (Q, q0,→) whereQ = ADM(N ), q0 = (m0,0) and→

is defined by:

- delay moves:(m, ν)
d
−→ (m, ν + d) iff ∀t ∈ En(m), ν(t) + d ∈ I(t)↓,

- discrete moves:(m, ν)
Λ(t)
−−−→ (m − •t + t•, ν′) iff t ∈ En(m) is s.t.ν(t) ∈ I(t),

∀t′ ∈ En(m−•t+t•), ν′(t′) = 0 if ↑enabled(t′,m, t) andν′(t′) = ν(t) otherwise.

The (untimed) language ofN is defined as the untimed language ofJN K and is
denoted byL(N ). The reachability set ofN , denotedReach(N ), is the set of markings
m ∈ NP such that there exists a reachable configuration(m, ν). A bounded TPNis a
TPNN such thatReach(N ) is finite.

Timed automata:First defined in [1], the model of timed automata associates aset of
non-negative real-valued variables calledclockswith a finite automaton. LetX be a
finite set of clocks. We writeC(X) for the set ofconstraintsoverX, which consist of
conjunctions of atomic formulae of the formx ⊲⊳ c for x ∈ X, c ∈ Q≥0 and⊲⊳∈ {<,

≤,≥, >}. We also define the proper subsetCub(X) of upper boundsconstraints overX
where⊲⊳∈ {<,≤}.

Definition 3 (Timed Automata (TA)). A timed automatonA overΣε is a tuple(L, ℓ0,
X,E, Inv) whereL is a finite set oflocations, ℓ0 ∈ L is the initial location, X is a
finite set ofclocks, Inv ∈ Cub(X)L assigns aninvariant to each location andE ⊆
L × C(X) × Σε × 2X × L is a finite set ofedges. An edgee = (ℓ, γ, a,R, ℓ′) ∈ E

represents a transition from locationℓ to locationℓ′ labeled bya with constraintγ and
resetR ⊆ X.

Semantics.ForR ⊆ X, the valuationv[R] is the valuationv′ such thatv′(x) = v(x)
whenx 6∈ R andv′(x) = 0 otherwise. Finally, constraints ofC(X) are interpreted
over valuations: we writev |= γ when the constraintγ is satisfied byv. The semantics
of a TA A = (L, ℓ0, X,E, Inv) is the TTSJAK = (Q, q0,→) whereQ = {(ℓ, v) ∈
L× (R≥0)

X | v |= Inv(ℓ)}, q0 = (ℓ0,0) and→ is defined by:

- delay moves:(ℓ, v) d
−→ (ℓ, v + d) if d ∈ R≥0 andv + d |= Inv(ℓ);

- discrete moves:(ℓ, v) a
−→ (ℓ′, v′) if there exists somee = (ℓ, γ, a,R, ℓ′) ∈ E s.t.

v |= γ andv′ = v[R].

The (untimed) language ofA is defined as that ofJAK and is denoted byL(A).

Timed (bi)-simulation:
Let S = (Q, q0,→) andS′ = (Q′, q′0,→

′) be two TTSs. A relationR ⊆ Q × Q′

is a timed simulationif and only if, (q0, q′0) ∈ R and for everyσ ∈ Σǫ ∪ R≥0, q1 ∈ Q,
q′1 ∈ Q′ such that(q1, q′1) ∈ R, if q1

σ
−→ q2, then there existsq′2 such thatq′1

σ
−→ q′2 and

(q2, q
′
2) ∈ R. We will say thatS′ simulatesS and writeS � S′ when such a relationR

among states ofS andS′ exists. If in additionR−1 is a timed simulation relation from
S′ to S, then we say thatR is a timed bisimulation. We say thatS andS′ are timed
bisimilar when such a relationR among states ofS andS′ exists, and writeS ≈ S′.
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3 Perturbations in TPN

Perturbations in timed automata [3, 4, 8]:We start by fixing a parameter∆ ∈ R≥0.
Given a constraintg ∈ C(X), we define its∆-enlargement as the constraint obtained
by replacing any atomic formulae of the formulaex ⊲⊳ c for x ∈ X, c ∈ N and
⊲⊳∈ {<,≤,≥, >}, by the formulaex ⊲⊳ c + ∆ if ⊲⊳∈ {<,≤}, and by the formulae
x ⊲⊳ c−∆ if ⊲⊳∈ {≥, >}. Now, given a timed automatonA, we denote byA∆ the TA
obtained by replacing every constraint by its∆-enlarged version (both in guards and
invariants). This model of perturbation verifies the following monotony property: for
TA A and any∆ ≤ ∆′ ∈ R≥0, we haveJA∆K � JA∆′K. In the sequel, we will use the
following result (Reach(A∆) denotes the locations ofA reachable inJA∆K):

Proposition 1 ([5]). LetA be a timed automaton andS be a subset of locations ofA.
One can decide whether there exists∆ ∈ Q>0 such thatReach(A∆) ∩ S = ∅.

Introducing perturbations in TPNs:Our goal is to consider a similar model of pertur-
bation for Time Petri nets. Given an intervalI ∈ I(Q≥0), we denote byI∆ the interval
obtained by replacing its lower boundα by the boundmax(0, α − ∆), and its upper
boundβ by the boundβ +∆. Given a TPNN , we denote byN∆ the TPN obtained by
replacing every intervalI by the intervalI∆. We can then easily prove that the desired
monotony property holds, entailing that if the system verifies a safety property for some
perturbation∆0, it will also verify this property for any∆ ≤ ∆0:

Lemma 1. LetN be a TPN and∆ ≤ ∆′ ∈ R≥0. We haveJN∆K � JN∆′K.

3.1 Problems considered

We now define robustness problems on TPNs in a way which is consistent with the
monotony property stated above.

Robust Boundedness:Given a bounded TPNN , does there exist∆ ∈ Q>0 such that
N∆ is bounded?

Robust Untimed language preservation:Given a bounded TPNN , does there exist
∆ ∈ Q>0 such thatL(N∆) = L(N )?

We call a TPNN robustly boundedif there exists∆ ∈ Q>0 such thatN∆ is bounded.
This problem is strongly related to the problem of robust safety asking, given a bounded
TPNN with set of placesP , and a markingm ∈ NP , whether there exists∆ ∈ Q>0

s.t.,Reach(N∆) does not coverm. In fact, our undecidability and decidability results
for robust boundedness will easily extend to this problem. However, the situation differs
for robust untimed language preservation and so we treat this problem separately.

3.2 Examples of non-robust TPNs

Consider the example in Figure 1(a). Due to the open intervaland urgency condition
(according to the semantics of TPNs,a′ has to fire at most 2 time units after enabling),
any enlargement of guards would result in reaching placep1 which is not reachable in
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• p0

p1p2

(2, 3] a[1, 2] a′

(a) The TPNN0.

•

p1

•

p2

red

[2, 3] a[1, 2] a′

[0, 2]

t1

[0, 1] t2

[1, 2] b′[2, 3] b

[0, 2]

t3

[0, 1] t4[1,∞) t

(b) The TPNN1.

Fig. 1. Two TPNs exhibiting new discrete behaviors under infinitesimal perturbations.

the non-enlarged semantics (from this, we can easily construct examples that are not
robustly bounded or robustly safe). In this example, the firing domain of transitiona
(the set of configurations{(p0, ν) | ν(a′) ∈ [1, 2]}) is a neighborof the reachable
configuration(p0, ν(a′) = 2). By neighbor, we mean that any positive enlargement
makes transitiona fireable. This is the simplest form of non-robustness which can be
easily checked for in bounded TPNs as one can compute a symbolic representation
of the reachability set (using the state-class graph construction [2, 12] for instance).
Further by requiring that all intervals must be closed, one may avoid this situation. Now
assuming there are no transitions whose firing domain is a neighbor of the reachability
set, one can prove that under abounded time horizon(as defined for timed automata
in [16]) any net is robust, i.e., one can pick a sufficiently small ∆ > 0 to ensure that no
new behavior occurs.

The remaining case concerns TPNs in which new behaviors are not neighbors of the
reachability set, considered for an unbounded time horizon. In this case a new behavior
cannot appear directly from a reachable configuration, and there must be several discrete
firings before this new behavior is witnessed. Further the number of steps may depend
on∆: the smaller∆ is, the larger will be the number of steps required. Intuitively, the
new behavior is due to an accumulation of clock perturbations, rather than a single clock
perturbation. Puri [14] gave an example of TA that exhibits accumulations, encoded
using time between consecutive resets. However, for TPNs, this encoding does not work
since the clocks are always reset when a transition is newly enabled.

We exhibit a TPN where accumulation is due to concurrency in Figure 1(b). This
example can be simplified using singleton intervals, but we avoid this to show that
accumulation may arise even without singletons. With the usual semantics, the red state
in N1 is not reachable as transitiont is never fireable. Indeed, one can verify that any
run ofN1 which does not fire transitionst1, t2, t3 or t4 always fires transitiona (resp.
a′, b′, b) at time3k+2 (resp.3k+3, 3k+1, 3k+3), for some integerk. By observing the
time intervals of transitionst, a′ andb′, one can deduce that to be able to fire transition
t, one has to fire simultaneously the transitionsa andb, which is impossible.

Consider the net(N1)∆, for some positive∆. We will prove that in this case, it is
possible to fire simultaneously transitionsa andb. In (N1)∆, one can delay the firing
of transitiona by up to∆ time units. As a consequence, it is easy to verify that after
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n iterations of the loopaa′, the timestamp of the firing of the last occurrence ofa can
be delayed by up ton · ∆ time units. Choosing anyn ≥ 1

∆
, we obtain the result. In

particular, the red place is reachable in(N1)∆, for any positive∆.

3.3 Sequential TPNs

The accumulation in the above example was due to concurrent loops in the TPN. When
we disallow such concurrency, we obtain a very simple class of sequential TPNswhich
is a strict subclass of timed automata. We state their properties in detail here as they will
be useful in later proofs. Also this exhibits a clear way to distinguish the relative power
of TPNs and TAs. A TPNN is sequentialif it satisfies the following property: for any
reachable configuration(m, ν), and for any transitionst, t′ ∈ T that are fireable from
(m, ν) (i.e. such thatt, t′ ∈ En(m), ν(t) ≥ α(t) andν(t′) ≥ α(t′)), t andt′ are in
conflict, i.e. there exists a placep such thatm(p) < •t(p)+•t′(p). The following lemma
states robustness properties of sequential TPNs and their relation to timed automata.

Lemma 2. We have the following properties:

(i) Checking whether a bounded TPNN is sequential is decidable.
(ii) If N is a sequential bounded TPN, then it can be translated into a timed automa-

ton which resets every clock on each transition.
(iii) If N is sequential, then there exists∆ ∈ Q>0 such thatReach(N∆) = Reach(N )

andL(N∆) = L(N ).

Proof. Decidability follows from the construction of the state class graph, which is
possible as the TPN is bounded. Clearly, this can be done in time linear in the size
of the state class graph. The second and third properties follow from the observation
that in a sequential TPN, each time a discrete transition is fired, each transition that is
enabled in the new/resulting marking is newly enabled. Thus, all the clocks are reset and
this implies property (ii). Further, since clocks are reset, there is intuitively no memory
in clock values. Considering∆ < 1

2 to ensure that exactly the same transitions are
enabled, we prove by induction on the length of runs that the configurations reached
immediately after a discrete transition are the same inJN K and inJN∆K.

Consider a runρ = (m0, ν0)
d1,a1

−−−→ (m1, ν1) . . . (mn1
, νn−1)

dn,an

−−−−→ (mn, νn)
in JN∆K. We prove by induction on the length ofρ that every valuationνi verifies

νi(t) = 0 for all t ∈ En(mi), and that there exists a runρ′ = (m0, ν0)
d′

1
,a1

−−−→

(m1, ν1) . . . (mn−1, νn−1)
d′

n
,an

−−−−→ (mn, νn) in JN K which only differs in the time
elapsing, but which is such that the configurations reached after each discrete action
are the same. The base case (ρ has length0) of the induction is trivial. Consider a new

step(mn, νn)
d,a
−−→ (m, ν) in JN∆K. By definition, there exists a transitiont ∈ T which

verifies the following conditions:

– t ∈ En(mn),
– t is labeled bya,
– ∀t′ ∈ En(mn), νn(t

′) + d ≤ β(t′) +∆,
– νn(t) + d ≥ α(t)−∆
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By induction property, we haveνn(t′) = 0 for all t′ ∈ En(mn). As a consequence,
we can deduce thatα(t) − ∆ ≤ d ≤ min{β(t′) | t′ ∈ En(mn)} + ∆. As transitions
have integral bounds, and∆ < 1

2 , one can verify that this implies the inequalityα(t) ≤
min{β(t′) | t′ ∈ En(mn)}. We thus pickd′ = α(t), which ensures:

– ∀t′ ∈ En(mn), ν
′
n(t

′) + d′ = α(t) ≤ β(t′),
– ν′n(t) + d′ ≥ α(t)

As a consequence, we have(mn, νn)
d′,a
−−→ (m, ν′) in JN K. Thanks to the property of

being sequential, we can observe that every transition thatis enabled in the new marking
m′ is newly enabled by the firing of the discrete transitiont. In particular, this implies
ν′(t′) = 0 for every transitiont′ ∈ En(m), and in particularν′ = ν. The expected
properties onReach(N∆) andL(N∆) then directly follow. ⊓⊔

4 Undecidability results

We use the TPNs of Figure 1 to prove undecidability of robustness and untimed lan-
guage preservation for bounded TPNs.

Theorem 1. The problems of robust boundedness and robust untimed language preser-
vation are undecidable for bounded TPN.

Proof. To prove undecidability, we combine the standard construction of a TPN from a
Minsky machine with the gadget from Figure 1 and Lemma 2 on sequential TPNs.

For the sake of completeness, we start by briefly recalling the Minsky machine
reduction. A Minsky machineM (which w.l.o.g. we assume deterministic) is defined
by a finite set of stateqi with 0 ≤ i ≤ n, whereq0 is the initial state andqn the
final one. There are no transition rules fromqn. The machine contains two countersc1

andc2 and transition rules corresponding either to incrementations (qi
ck++
−−−→ qj) or

to decrementations with test to zero (qi
ck−−
−−−−→ qj if ck > 0, andqi → ql otherwise).

As the machine is deterministic, it has a single execution. It is well known that the
reachability of stateqn is undecidable, so boundednes ofc1 andc2 along the unique
execution ofM is also undecidable.

The machineM is encoded into a TPNNM as follows: we consider a set of places
P = {qi} ∪ {c1, c2}. Initial marking is{q0}. Transitions are represented on Figure 2.
We make two observations. First, asNM simulates exactly executions ofM, NM is

qi qjt++

ck

(a) Incrementation

qi

qj

ql
t=0, [2, 3]

t>0, [0, 1]

ck

(b) Decrementation

Fig. 2.Encoding instruction of a Minsky machineM into a TPNNM.
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q0 qn f

N1

ts tf

NM

Fig. 3. TPNN2 obtained by combiningN1 andNM.

bounded iffM is, andNM covers marking{qn} iff M reaches stateqn. Second, in
every reachable configuration, exactly one of the places{qi, 0 ≤ i ≤ n} contains a
token. As a consequence, the netNM is sequential.

We then combine the TPNsN1 from Figure 1 andNM as depicted on Figure 3 to
obtain the TPNN2. First note thatN2 is a bounded TPN: without perturbation, tran-
sition t (in N1) is never fired, and thus the set of reachable markings is finite. Second,
we label transitiontf by a and every other transition byε 4. As NM is sequential, by
Lemma 2(iii) it follows that

– (1)N2 is robustly bounded iffNM is bounded and
– (2)N2 robustly preserves its untimed language iffNM does not cover markingm.

We note that for (2),NM may not be bounded (ifM is not bounded), however the
statement still holds since Lemma 2(iii) does not require the boundedness assumption.

Now, from the undecidability of halting and boundedness of Minsky machines, it
follows that the problems we considered are also undecidable. We remark that the above
proof also shows that robust safety is undecidable, asN2 covers marking{f} iff NM

covers markingm. ⊓⊔

5 A robust translation from TPN to TA

As robustness issues were first studied for timed automata, and several translations of
TPN into TA exist in literature, it is natural to study which of these translations are com-
patible with robustness. A way to reduce robustness problems for TPNs to robustness
problems for TA is to show that an existing timed bisimulation between TPN and its TA
translation is preserved under perturbation. We now present a translation which verifies
this property.

This construction is close to the marking class timed automaton construction of [7]
but different in two aspects. First, in the TA built in [7], for efficiency reasons the num-
ber of clocks is reduced by using clock sharing techniques of[12], which may increase
the number of locations. For ease of presentation, we do not consider this optimiza-
tion, but our results also apply for this setting. Second, the construction of [7] was only
stated for TPN whose underlying Petri net (i.e., the Petri net obtained by ignoring the

4 The reduction can be adapted to avoid the use ofε by labeling every other transition byb, and
adding a gadget which can perform arbitrarily manyb’s. It can however not be adapted to the
setting of injective labeling, see Section 7.
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timing information in the given TPN) is bounded. We present the construction in a
more general framework: we consider a TPNN which is not necessarily bounded and
we consider as input a finite set of markingsM . The construction is then restricted to
the setM , and we can prove that it is correct for the set of behaviors ofN which al-
ways remain withinM . In the sequel, we will instantiateM depending on the context.
For TPNs whose underlying PN is bounded, the construction of[7] is recovered by let-
ting M be the set of reachable markings of this PN. We begin with a definition and a
proposition that can be infered immediately:

Definition 4. LetN = (P, T,Σε,
•(.), (.)

•
,m0, Λ, I) be a TPN,M ⊆ NP be a set of

markings such thatm0 ∈ M , and letJN K = (Q, q0,→) be the semantics ofN . The
M -bounded semantics ofN , denotedJN K|M , is defined as the restriction of the TTS
JN K to the set of states{(m, ν) ∈ Q | m ∈ M}.

Proposition 2. LetM be a set of markings of a TPNN containing the initial marking.
If Reach(N ) ⊆ M , thenJN K|M = JN K.

Now, letN = (P, T,Σε,
•(.), (.)

•
,m0, Λ, I) be a TPN, andM ⊆ NP be a finite set

of markings such thatm0 ∈ M . Themarking timed automaton ofN overM , denoted
AM , is defined asAM = (M,m0, X,Σε, E, Inv), whereX = {xt | t ∈ T}, for each

m ∈ M , Inv(m) =
∧

t∈En(m) xt ≤ β(t), and there is an edgem
g,a,R
−−−→ m′ ∈ E iff

there existst ∈ T such thatt ∈ En(m),m′ = m−•t+t•, g is defined as the constraint
xt ∈ I(t), a = Λ(t) andR = {xt′ | t′ ∈↑enabled(t′,m, t) = true}. With this we
have the following theorem:

Theorem 2. Let N be a TPN,M be a finite set of markings containing the initial
marking ofN , andAM be the marking timed automaton ofN overM . Then for all
∆ ∈ Q≥0, we haveJN∆K|M ≈ J(AM )∆K.

Proof. We prove by induction that the following relationR is a timed bisimulation.
Let (m, ν) denote a state of the TTSJN∆K|M , i.e. (m, ν) ∈ Adm(N∆) with m ∈ M .
Similarly, let (ℓ, v) denote a state ofJ(AM )∆K. We define(m, ν)R(ℓ, v) if and only if
m = ℓ, and∀t ∈ En(m), ν(t) = v(xt). First, initial configurations are inR. We then
have to consider how pairs

(
(m, ν), (ℓ, v)

)
∈ R evolve with respect to different kinds

of moves:
delay moves:Let d ∈ R≥0. We have(m, ν)

d
−→ (m, ν+d) iff ∀t ∈ En(m), ν(t)+d ≤

β(t) + ∆. As ∀t ∈ En(m), v(xt) = ν(t), this is equivalent to∀t ∈ En(m), v(t) +
d ≤ β(t) + ∆, which itself is equivalent tov |= Inv(ℓ) + ∆, which is the invariant
of locationℓ in (AM )∆. This is the condition under which there exists a delay move

(ℓ, v)
d
−→ (ℓ, v + d) in J(AM )∆K. Thus the result holds for delay moves.

discrete moves:Consider a discrete move(m, ν)
a
−→ (m′, ν′) in JN∆K|M . Such a dis-

crete move exists iffm,m′ ∈ M , and there exists a transitiont ∈ T such that:

1. t ∈ En(m)
2. m′ = m− •t+ t•

3. ν(t) ∈ I∆(t) whereI∆(t) denotes the∆-enlargement of intervalI(t)
4. Λ(t) = a

10



5. for any t′ ∈ En(m′), we haveν′(t′) = 0 if ↑ enabled(t′,m, t) = true, and
ν′(t′) = ν(t) otherwise.

Conditions 1-5 imply the existence of a transitionm
g,a,R
−−−→ m′ in AM , whereg is

defined as the constraintxt ∈ I(t), andR as the set of clocks of newly enabled tran-
sitions. Ast ∈ En(m), we haveν(t) = v(t), and thus the transition can be fired in
J(AM )∆K, and we have(ℓ, v)

a
−→ (m′, v′) wherev′ = v[R]. One can then check that

for any transitiont′ ∈ En(m′), we havev′(t′) = ν′(t′). There are two cases, ift′ is
newly enabled, then the clock value is0 both in the TA and in the TPN. Otherwise,t′ is
not newly enabled, and we havev′(t′) = v(t′) = ν(t′) = ν′(t′).

Conversely, considering a discrete move inJ(AM )∆K, one can similarly prove the
existence of a corresponding move inJN∆K|M . ⊓⊔

Other TA constructions.The construction proposed in [12] builds a state class timedau-
tomaton incrementally using a forward exploration of reachable markings of a bounded
TPN. Gardey et al [10] use a similar forward-reachability technique to build the reach-
able state space of TPN, where equivalence classes for clockvaluations are encoded
as zones. However, as in TPNN1 of Figure 1, new configurations in anenlarged se-
manticsmight be reached after accumulation of small delays. Hence,new reachable
markings are not necessarily obtained in one enlarged step from a configuration in the
non-enlarged semantics. Thus, forward techniques as in [12, 10] cannot be directly ex-
tended to obtain enlarged semantics and we need a more syntactic translation which
builds an over-approximation of the reachable markings (ofthe TPN) as in Theorem 2.

Cassez et al [6] propose a different syntactic translation from unbounded TPNs by
building a timed automaton for each transition, and then synchronizing them using a
supervisor. The resulting timed automaton is bisimilar to the original model, but states
contain variables, and hence the automaton may have an unbounded number of loca-
tions. It may be possible to extend this approach to address robustness problems, but as
we focus on bounded TPNs, we leave this for future work.

6 Robustly bounded TPNs

This section focuses on the class of robustly bounded TPNs. By Theorem 1, we know
that checking membership in this class is undecidable. We present two decidable sub-
classes, as well as a semi-decision procedure for the whole class. We first consider the
subclass of TPNs whoseunderlying Petri netis bounded:

Proposition 3. The set of TPN whose underlying net is bounded is a decidable subclass
of robustly bounded TPNs. Further, for each netN of this class, one can construct a
finite timed automatonA such thatJN∆K ≈ JA∆K for all ∆ ≥ 0.

The decidability follows from that of boundedness for (untimed) Petri nets [11]. The
second part of the above proposition follows from Theorem 2.

We now exhibit another subclass of robustly bounded TPNs whose underlying Petri
nets can be unbounded. In fact, this class is incomparable with the above defined sub-
class. The following technical result is central in our approach:

11



Lemma 3. LetN be a TPN, andM be a finite set of markings. Determining whether
there exists∆ > 0 such thatReach(N∆) ⊆ M is decidable.

Proof. Call M̃ = M ∪ {m′ | ∃m ∈ M, t ∈ T,m′ = m − •t + t•} the (finite) set of
markings reachable fromM in at most one-step in the underlying Petri net. LetA

M̃
be

the marking timed automaton ofN overM̃ , and let∆ ≥ 0. We claim:

Reach(N∆) ⊆ M ⇐⇒ Reach((A
M̃
)∆) ⊆ M

To prove this equivalence, we consider successively the twoimplications. For the di-
rect implication, suppose thatReach(N∆) ⊆ M . By Proposition 2 and Theorem 2, we
obtainJN∆K ≈ J(A

M̃
)∆K. This yields the result as there is a bijection between tran-

sitions ofJN∆K and those ofJ(A
M̃
)∆K. Conversely, suppose thatReach((A

M̃
)∆) ⊆

M . By contradiction, suppose thatReach(N∆) 6⊆ M . Thus, there exists a runρ =

(m0, ν0)
d1,t1
−−−→ (m1, ν1) . . .

dn,tn
−−−→ (mn, νn) of JN∆K such thatmn 6∈ M . W.l.o.g., we

assume thatmi ∈ M for anyi < n. This entails thatmi ∈ M̃ for all i. But then, as we
haveJN∆K

|M̃
≈ J(A

M̃
)∆K by Theorem 2, this entails that the “same” runρ also exists

in J(A
M̃
)∆K. This is a contradiction withReach((A

M̃
)∆) ⊆ M .

Now, determining whether there exists∆ > 0 such that the right hand side of the
previous equivalence holds is decidable thanks to Proposition 1. ⊓⊔

We consider the following subclass of bounded TPNs:

Definition 5. A bounded TPNN is called Reach-Robust ifReach(N∆) = Reach(N )
for some∆ > 0. We denote byRR the class of Reach-Robust TPNs.

RR is the class of bounded TPNs whose set of reachable markings is invariant under
some guard enlargement. It is easy to see that these nets are robustly bounded. More
interestingly, checking membership in this class is decidable, i.e., given a bounded TPN
N we can decide if there is a positive guard enlargement under which the set of reach-
able markings remains unchanged. This follows from Lemma 3,by instantiating the
finite set of markingsM with Reach(N ):

Theorem 3. RR is a decidable subclass of robustly bounded TPNs.

We can now address properties of the general class of robustly bounded TPN.

Lemma 4. The set of robustly bounded TPNs is recursively enumerable.Moreover,
given a robustly bounded TPNN , we can build effectively a timed automatonA such
that there exists∆0 > 0 for which,∀0 ≤ ∆ ≤ ∆0, JN∆K ≈ JA∆K.

Proof. Observe that a TPNN is robustly bounded iff there exists a finite set of markings
M and some∆ > 0 such thatReach(N∆) ⊆ M . Thus by naively enumerating theset
of finite sets of markings and applying the algorithm of Lemma3 at each step of the
enumeration, we obtain a semi-decision procedure (to checkmembership) for the class
of robustly bounded TPNs. For the second result, observe that if N is known to be
robustly bounded, then this semi-decision procedure terminates and computes a finite
set of markingsM and there is a value∆0 such thatReach(N∆0

) ⊆ M . Therefore,
for any∆ ≤ ∆0, Reach(N∆) ⊆ M . By Proposition 2, this entailsJN∆K|M = JN∆K.
In addition, by Theorem 2, we haveJN∆K|M ≈ J(AM )∆K whereAM is the marking
timed automaton of the TPNN . Thus we have∀0 ≤ ∆ ≤ ∆0, JN∆K ≈ J(AM )∆K. ⊓⊔
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t3

t4 [0, 1]

d

t5

[1,∞) c

Fig. 4.A TPN which is in RR but not LR

This result allows us to transfer existing robustness results for timed automata to TPNs.
We will illustrate the use of this property in the following section.

7 Untimed language robustness in TPNs

We now consider the robust untimed language preservation problem, which was shown
undecidable in general in Theorem 1. We show that for the subclass ofdistinctly la-
beled bounded TPNs(i.e., labels on transitions are all distinct, and different from ε) this
problem becomes decidable.

Definition 6. A bounded TPNN is called Language-Robust ifL(N∆) = L(N ) for
some∆ > 0. We denote by LR the class of Language-Robust nets and by LR6= (resp.
RR6=) the subclass of LR (resp. RR) with distinct labeling.

We first compare the class RR (for which checking membership is decidable by
Theorem 3) with the class LR (where, as already noted, checking membership is unde-
cidable by Theorem 1). We can then observe that:

Proposition 4. (1) The classes RR and LR are incomparable w.r.t. set inclusion. (2)
Further, the class LR6= is strictly contained in the class RR6=.

Proof. We first prove one direction of (1), i.e., RR is not included inLR. Consider the
TPN in Figure 4. The set of reachable markings is the same under perturbations so the
net is in RR, but the language under perturbation sees the action c which is not seen in
the unperturbed net, so this net is not in LR. For the conversedirection, it suffices in
the netN1 of Figure 1, to label all transitions byǫ and then it is in LR (since untimed
language is empty) but not in RR since a new place is reachable.

Now for the proof of (2) we have: ifN ∈ LR 6=, then any wordw ∈ L(N ) corre-
sponds to a unique sequence of transitions, and hence leads to a unique marking ofN .
So if L(N∆) = L(N ) for some∆ > 0, thenReach(N∆) = Reach(N ) for the same
∆. The strictness also follows easily. This inclusion is strict: one can easily design a net
N in which a single transitiont is fireable only under enlargement, but producing no
new marking outsideReach(N ). Hence, suchN is not in LR6=, but is still in RR6=. ⊓⊔
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Finally, we show that the problem of robust untimed languagepreservation becomes
decidable under this assumption:

Theorem 4. The class LR6= is decidable, i.e., checking if a distinctly labeled bounded
TPN is in LR is decidable.

Proof. We proceed as follows. We first decide by using Theorem 3, whether the given
distinctly labeled bounded netN is in RR (and therefore in RR6=). Now, by Propo-
sition 4 if the net is not in RR6=, then it is not in LR6=. Otherwise, by Lemma 4, we
can build a timed automatonA which is timed bisimilar toN for small perturbations.
This entails that this TA preserves its untimed language under small perturbations iffN
does. Thus we have reduced the problem of checking ifN is in LR6= to checking if the
timed automatonA constructed fromN is language-robust. This completes our proof
since this problem is decidable for timed automata. More specifically we want to check
thatA is in LR, i.e., if there exists∆ > 0 such thatL(A) = L(A∆). In [15] this exact
problem is solved for both finite and infinite words but with anadditional restriction
on the timed automata. Further, it also follows from Proposition 1 for general timed
automata in the finite words case. That is,

Claim. Checking if a timed automatonA is LR is decidable.

Proof. In [5], it is proved that checking robustness of timed automata with respect to
anyω-regular property is decidable. In particular safety properties are decidable, as it
is stated in Proposition 1. Given a finite timed automatonA, the (untimed) language
of A, denoted byL(A), is a regular language. We can build a finite state automatonC
accepting the complement of this language, equipped with final states. LetB be another
timed automaton, and denote byB ⊗ C the product ofB with C. It is easy to verify that
B ⊗ C never enters a final state ofC iff the (untimed) language ofB is included in that
of A. As for any non-negative∆ we haveL(A) ⊆ L(A∆), we obtain thatA∆ ⊗ C
does not enter the final states ofC iff L(A) = L(A∆). As C is untimed, the two timed
automataA∆ ⊗C and(A⊗C)∆ are equal. Our problem thus reduces to a robust safety
problem for the automatonA⊗ C.

This completes the proof of the theorem as detailed above. ⊓⊔

8 Conclusion

We summarize our results in the diagram in Figure 5 (by a decidable/undecidable class
we mean that membership in that class is decidable/undecidable). In this paper, we
have launched an investigation into robustness in Time Petri nets with respect to guard
enlargements. We transferred several positive results from the TA setting to TPNs and
showed that some other problems become undecidable in TPNs due to unboundedness.
As future work, we would like to show positive results in an unbounded setting and we
believe that this would require a different approach and newtechniques.
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bounded TPN

robustly bounded TPN

RR UBS

RR LR
S

UB

Without distinct labels

RR
LR

S

UB

With distinct labels

Fig. 5.RR stands for reach-robust, LR for language-robust, UB for bounded underlying PNs, S for
sequential bounded TPNs. Dotted lines represent undecidable and solidlines decidable classes.
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