
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

ON CHARACTERISTIC FORMULAE

FOR EVENT-RECORDING AUTOMATA ∗

Omer-Landry Nguena-Timo1 and Pierre-Alain Reynier2

Abstract. A standard bridge between automata theory and logic is
provided by the notion of characteristic formula. This paper investi-
gates this problem for the class of event-recording automata (ERA),
a subclass of timed automata in which clocks are associated with ac-
tions and that enjoys very good closure properties. We first study
the problem of expressing characteristic formulae for ERA in Event-
Recording Logic (ERL), a logic introduced by Sorea to express event-
based timed specifications. We prove that the construction proposed
by Sorea for ERA without invariants is incorrect. More generally, we
prove that timed bisimilarity cannot in general be expressed in ERL
for the class of ERA, and study under which conditions on ERA it can
be. Then, we introduce the logic WTµ, a new logic for event-based
timed specifications closer to the timed logic Lν that was introduced
by Laroussinie, Larsen and Weise. We prove that it is strictly more ex-
pressive than ERL, and that its model-checking problem against ERA
is EXPTIME-complete. Finally, we provide characteristic formulae con-
structions in WTµ for characterizing the general class of ERA up to
timed (bi)similarity and study the complexity issues.

1991 Mathematics Subject Classification. 03B44,68Q60.

1. Introduction

In the untimed setting, automata and logics are central tools for the formal ver-
ification of reactive systems. While a system is usually modelled as an automaton,
the specification may be described either as a formula of a logic or as an automaton.

Keywords and phrases: Timed logic, bisimulation, event-clock automata.

∗ The second author is partly supported by the ANR project ECSPER (ANR JC09 472677).

1 LaBRI, Université Bordeaux I & CNRS, France.
2 LIF, Université Aix-Marseille & CNRS, France.

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

In the first case the correctness of the system reduces to a model checking prob-
lem, whereas in the second case it requires a comparison of the behaviour of the
two automata, and different relations can be envisaged, such as bisimilarity [16] or
language inclusion. A standard bridge between automata theory and logic is pro-
vided by the notion of characteristic formula. A characteristic formula is a formula
in a temporal logic that completely characterizes the behaviour of an automaton
modulo some chosen relation. Timed automata [3] is a well known formalism for
modelling real-time systems. They are obtained by adding real-valued variables
called clocks to finite-state automata, and contain two kind of transitions, discrete
transitions and time-elapsing transitions. For this class, a solution has first been
proposed in [12], providing characteristic formulae in the logic Lν . Then, these
results have been improved in [1], yielding characteristic formulae whose size is
linear in that of the automaton.

The class of Event-Recording Automata [4] (ERA), which forms a subclass of
timed automata, is obtained by restricting clocks to be associated with events.
This class enjoys good closure properties such as determinization and complemen-
tation. It has thus attracted attention to characterize its expressive power in terms
of some timed logic [9,15], but logics considered there are linear-time. This paper
investigates the problem of constructing characteristic formulae for the class of
event-recording automata, up to timed similarity and timed bisimilarity, using a
branching-time logic devoted to event-based timed specifications.

As ERA can be linearly translated into timed automata, results of [1] can be
used to build characteristic formulae in the logic Lν whose size is linear in that of
the ERA. However, as ERA are strictly less expressive than timed automata, our
motivation is to find a weaker logic, with a decidable satisfiability problem (the
status of the satisfiability problem for Lν is still an open problem [12]). There
exists a logic which is a natural candidate, the so-called Event-Recording Logic
(ERL), introduced by Sorea in [17]. This logic extends the mu-calculus by allowing
the use of event-clocks and has a decidable satisfiability problem. In this paper,
we prove that it is in general impossible to express timed bisimilarity for ERA
in ERL. More precisely, we identify two large subclasses of ERA which cannot
be characterized by ERL, and provide restrictions on the constants used in ERA
which yield subclasses that can be characterized by ERL.

To overcome these limitations, we consider a new timed logic for event-clocks,
called WTµ [13], and provide characteristic formulae constructions for timed sim-
ilarity and timed bisimilarity. In addition, the satisfiability problem for the frag-
ment of WTµ we use here is proved to be decidable in [13].

After recalling standard definitions in Section 2, we study in Section 3 the prob-
lem of expressing characteristic formulae for timed bisimilarity for ERA in the logic
ERL. We prove that it is in general impossible, and detail how restrictions on the
nature of constants used in ERA impact this negative result. In addition, we ex-
plain why an existing attempt, which can be found in [18], is not correct. Then,
we consider in Section 4 our new timed logic WTµ to express the characteristic
formulae. The definition of this logic is closer to the definition of Lν as it sepa-
rates quantifications over discrete successors and time successors. We prove that

TITLE WILL BE SET BY THE PUBLISHER 3

it is indeed strictly more expressive than ERL, and that its model-checking prob-
lem over ERA is EXPTIME-complete. Finally, we provide characteristic formulae
constructions in WTµ for timed (bi)similarity together with complexity issues in
Section 5. We end with a positive result for ERL: for ERA with a fixed granularity
and without invariants, it is possible to build characteristic formulae in ERL.

Part of the results presented here appeared in [14].

2. Preliminaries

Let Σ be a finite alphabet and let Σ∗ be the set of finite words over Σ. The sets
N, Q, Q≥0 and R≥0 are the sets of natural, rational, non-negative rational and
non-negative real numbers respectively. Given a real number x, ⌊x⌋ (resp. 〈x〉)
denotes its integral part (resp. its fractional part). We consider as time domain
T the set Q≥0 or the set R≥0. We consider a finite set X of variables, called
clocks. A clock valuation over X is a mapping v : X → T that assigns to each
clock a time value. The set of all clock valuations over X is denoted T

X . Let
t ∈ T. The valuation v + t is defined by (v + t)(x) = v(x) + t, ∀x ∈ X . For a
clock y ∈ X , we denote by v[y := 0] the valuation such that for each clock x ∈ X ,
(v[y := 0])(x) = 0 if x = y, and (v[y := 0])(x)= v(x) otherwise. Finally, 0 denotes
the valuation mapping every clock to 0.

In the context of event-recording automata, each clock refers to a specific action.
Then, we associate clocks with letters of an alphabet. Given an alphabet Σ, we
then denote by XΣ the set of clocks {xa | a ∈ Σ}. We may also write T

Σ to
represent the set of clock valuations TXΣ .

Given a set of clocks XΣ, we introduce two sets of clock constraints over XΣ.
The most general one, denoted by C(Σ), is defined by the grammar 1 “g ::= x ∼
c | x − y ∼ c | g ∧ g | tt” where x, y ∈ XΣ, c ∈ Q≥0, ∼ ∈ {<,≤,=,≥, >} and tt

stands for true. We also use the proper subset Cup(Σ) of upper bounds constraints
consisting only of conjunctions of constraints of the form x ≺ c with ≺∈ {<,≤}.
We allow empty conjunctions which, as usual, stand for tt. We write v |= g when
the clock valuation v satisfies the clock constraint g, using the standard semantics.
We also denote by JgK the set of clock valuations v such that v |= g holds.

The granularity of a set of clock constraints C0 ⊆ C(Σ) is defined as the pair
(d,M) ∈ N× N where d (resp. M) is the least common multiple of denominators
(resp. the maximal value) of constants appearing in clock constraints of C0. Con-
versely, we say that r ∈ Q≥0 can be produced by granularity (d,M) iff r ≤ M and
there exist p, q ∈ N such that r = p

q
and q divides d.

In addition, we also consider as granularities the pairs (∞,M) and (d,∞) which
respectively denote constants that belong to Q≥0 ∩ [0,M] and to {p

d
| p ∈ N}.

1Constraints of the form x− y ∼ c are called diagonal constraints.

4 TITLE WILL BE SET BY THE PUBLISHER

2.1. Timed Transition Systems

Timed transition systems describe systems which combine discrete and contin-
uous evolutions. They are used to define the behavior of timed systems such as
Timed Automata [3], or Event-Clock Automata [4].

Definition 2.1 (Timed Transition System (TTS)). A timed transition system over
the alphabet Σ is a transition system S = 〈Q, q0,Σ,→〉, whereQ is the set of states,
q0 ∈ Q is the initial state, and the transition relation →⊆ Q× (Σ∪T)×Q consists

of continuous (or delay) transitions q
d
−→ q′ (d ∈ T), and discrete transitions q

a
−→ q′

(a ∈ Σ).

Moreover, we require the following standard properties for TTS :
• Time-Determinism : if q

d
−→ q′ and q

d
−→ q′′ with d ∈ T, then q′ = q′′,

• 0-Delay : q
0
−→ q,

• Additivity : if q
d
−→ q′ and q′

d′

−→ q′′ with d, d′ ∈ T, then q
d+d′

−−−→ q′′,

• Continuity : if q
d
−→ q′, then for every d′ and d′′ in T such that d = d′+d′′,

there exists q′′ such that q
d′

−→ q′′
d′′

−→ q′.

With these properties, a run of S can be defined as a finite sequence of transi-

tions ρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ q2 . . .
an−−→ qn+1 where discrete and continuous

transitions alternate. To such a run corresponds the timed word w = (ai, τi)0≤i≤n

over Σ where τi =
∑i

j=0 dj is the absolute time at which ai happens, and we say

that the timed word w is accepted by S. The language of S, denoted L(S), is
defined as the set of timed words that are accepted by S.

2.2. Event-Recording Automata

We consider the restriction of Event-Clock Automata to Event-Recording Au-
tomata. In this context, for each action a ∈ Σ, the system owns a distinguished
clock denoted by xa. This clock records the amount of time that elapsed since the
last occurence of the event a. Therefore, clock xa is reset precisely when event a
occurs (we also assume that all clocks are initially equal to 0).

Definition 2.2 (Event-Recording Automata (ERA) [4]). An event-recording au-
tomaton over the alphabet Σ is a tuple A = 〈L, ℓ0,Σ, E, I〉 where:

• L is a finite set of locations,
• ℓ0 ∈ L is the initial location,
• E ⊆ L× C(Σ)× Σ× L is a finite set of edges,
• I : L → Cup(Σ) associates an upper bound constraint with each location.

We say that an ERA is without invariants if the mapping I associates tt to each
location. In this case we may remove component I from the definition of A. The
class of ERA without invariants is denoted by ERAlazy.

The granularity of an ERAA is defined as the granularity of all clock constraints
of A. Given a granularity (d,M), the class of ERA defined using only constants
that can be produced by (d,M) is denoted by ERA(d,M).

TITLE WILL BE SET BY THE PUBLISHER 5

We may also combine these subscripts with the exponent lazy.

Examples of ERA are depicted in Figures 1 and 2, pages 9 and 14 respectively.
Note that all these ERA are without invariants.

Without loss of generality, we assume that the clock constraints of edges are
consistent with invariants. This technical assumption ensures that the configura-
tion reached after a discrete transition is a correct configuration. More formally,
we have, for any v ∈ T

Σ:

∀(ℓ, g, a, ℓ′) ∈ E, v |= g ⇒ (v |= I(ℓ)) ∧ (v[xa := 0] |= I(ℓ′))

This property can easily be ensured by a syntactic transformation of the model.
More precisely, each edge e = (ℓ, g, a, ℓ′) is replaced by the edge e = (ℓ, g, a, ℓ′)
where g is obtained from g as follows. Consider the constraint g1 obtained by
projecting the constraint I(ℓ′) on clocks different from xa (this means that if I(ℓ′)
constrains the clock xa, then this constraint is relaxed). Then we let g be the
conjunction g ∧ I(ℓ) ∧ g1.

The semantics of an event-recording automaton A is defined in terms of a timed
transition system. Intuitively, it manipulates exactly one clock per action, which
allows to measure the time elapsed since the last occurrence of this action. The
formal definition is given by 2:

Definition 2.3 (Semantics of an ERA). Given an ERA A = 〈L, ℓ0,Σ, E, I〉, its
semantics is given by the TTS SA defined by SA = 〈Q, q0,Σ,→〉 where Q =
{(ℓ, v) ∈ L × T

Σ | v |= I(ℓ)}, q0 = (ℓ0,0), and → consists of time-elapsing and
discrete transitions: ∀(ℓ, v) ∈ Q,

Time-elapsing steps: ∀d ∈ T, we have (ℓ, v)
d
−→ (ℓ, v + d) iff v + d |= I(ℓ),

Discrete steps: ∀a ∈ Σ, we have (ℓ, v)
a
−→ (ℓ′, v′) iff there exists an edge

e = (ℓ, g, a, ℓ′) ∈ E such that v |= g and v′ = v[xa := 0].

Finally, we simply denote by L(A) the language of timed words L(SA).

In the previous definition, the set of states of the TTS SA is restricted to
valuations compatible with the invariant of the current location. In particular,
this provides continuity of invariant-staisfaction during the course of a transition.
In addition, as invariants are defined by upper bound contraints, when firing a

time-elapsing transition (ℓ, v)
d
−→ (ℓ, v+ d), all intermediate valuations v+ d′, with

d ≤ d′, do satisfy v + d′ |= I(ℓ).
We say that an ERA is deterministic whenever, for every location ℓ ∈ L, letter

a ∈ Σ and valuation v ∈ T
Σ, there exists at most one transition (ℓ, g, a, ℓ′) ∈ E

such that v |= g holds.
We assume the reader is familiar with the region construction of [3] for timed

automata. For the sake of completeness, we recall here the main definitions and
properties we will use in what follows.

2The definition slightly differs from the original definition of [4] as it assigns 0 as the initial
value of clocks. This modification allows us to simplify our constructions, but the original

framework could also be handled.

6 TITLE WILL BE SET BY THE PUBLISHER

Definition 2.4 (Clock Region). We consider a constant K ∈ N. We define the
relation ≃K over clock valuations: for two valuations v, v′ ∈ T

Σ, we have v ≃K v′

iff the following conditions hold:

(1) ∀x ∈ XΣ, if v(x) ≤ K or v′(x) ≤ K, then ⌊v(x)⌋ = ⌊v′(x)⌋,
(2) ∀x ∈ XΣ s.t. v(x) ≤ K, then 〈v(x)〉 = 0 ⇐⇒ 〈v′(x)〉 = 0,
(3) ∀x, y ∈ XΣ s.t. |v(x)−v(y)|≤K, then 〈v(x)〉≤〈v(y)〉 ⇐⇒ 〈v′(x)〉≤〈v′(y)〉.

A clock region is an equivalence class of the relation ≃K .

We let RK(Σ) be the set of clock regions for constant K. We recall that the
size of RK(Σ) is in 2O(m. logKm) where m = |Σ| (see [4]). When the constant K

is clear from the context, we denote by [v] the clock region that contains v. To
define the region automaton of an ERA A, we can assume that all the constants
occurring in its clock constraints are natural numbers (otherwise, all constants
need to be multiplied by the least common multiple of the denominators of all
rational numbers appearing in clock constraints).

Definition 2.5 (Region Automaton). Let A = 〈L, ℓ0,Σ, E, I〉 be an ERA with in-
tegral constants. Let K be some positive integer. We define the region automaton
of A for constant K, denoted by RK(A) = 〈RK(A),Σ ∪ {τ},→〉, as follows 3:

• RK(A) = {(ℓ, r) ∈ L×RK(Σ) | ∃v ∈ r s.t. v |= I(ℓ)}

• (ℓ, r)
τ
−→ (ℓ, r′) ⇐⇒ ∃δ ∈ T s.t. (ℓ, v)

δ
−→ (ℓ, v′) in SA, r=[v] and r′=[v′]

• ∀a ∈ Σ, (ℓ, r)
a
−→ (ℓ, r′) ⇐⇒ ∃(ℓ, v)

a
−→ (ℓ, v′) in SA s.t. r=[v] and r′=[v′]

It is well known that if K is larger than the largest integer constant that appears
in the clock constraints of A, then RK(A) is time abstract bisimilar [3] to SA.

2.3. Event-Recording Logic

Definition 2.6 (Event-Recording Logic (ERL) [17]). Let Σ be a finite alphabet,
Var be a finite set of variables, the formulae of the Event-Recording Logic over Σ
and Var are defined by the grammar:

ϕ ::= tt | ff | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [g, a]ϕ | 〈g, a〉ϕ | µX.ϕ | νX.ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var.

In the timed logic Lν [12], the formulae have their own clocks and the semantics
is then defined using a valuation for the clocks of the formula. When defining the
semantics of ERL formulae over some alphabet Σ, the clock constraints range
over event clocks associated with Σ. Then, the semantics is defined for TTS
corresponding to ERA over the same alphabet Σ, and the clock constraints are
evaluated over the valuations of the ERA. Moreover, variables of ERL formulae
are dealt with using assignment functions. Formally, an assignment function of
variables Var over the set Q is a function V : Var → P(Q). The updating notation
V[X := Q′] denotes the assignment V ′ that agrees with V on all variables except
X, where V ′(X) = Q′ ⊆ Q.

3
τ is an action not in Σ intended to represent time-elapsing.

TITLE WILL BE SET BY THE PUBLISHER 7

Definition 2.7 (Semantics of ERL). Let Σ be a finite alphabet, Var be a finite set
of variables, A = 〈L, ℓ0,Σ, E, I〉 be an ERA 4 over Σ and SA = 〈Q, q0,Σ,→〉 be its
associated TTS. Consider a formula ϕ ∈ ERL over Σ and Var and an assignment
function V of Var over Q. The semantics of ϕ for A under V, denoted JϕKAV , is
given by the set of states (ℓ, v) ∈ Q for which the formula holds, and is defined
inductively as follows:

JttKAV := Q

JffKAV := ∅
JXKAV := V(X)

Jϕ1 ∧ ϕ2K
A
V := Jϕ1K

A
V ∩ Jϕ2K

A
V

Jϕ1 ∨ ϕ2K
A
V := Jϕ1K

A
V ∪ Jϕ2K

A
V

J[g, a]ϕKAV := {(ℓ, v) ∈ Q | ∀δ ∈ T, ∀(ℓ, g′, a, ℓ′) ∈ E, v + δ |= g ∧ g′ ⇒
(ℓ′, v′) ∈ JϕKAV , where v′ = (v + δ)[xa := 0]}

J〈g, a〉ϕKAV := {(ℓ, v) ∈ Q | ∃δ ∈ T, ∃(ℓ, g′, a, ℓ′) ∈ E s.t. v + δ |= g ∧ g′ and
(ℓ′, v′) ∈ JϕKAV , where v′ = (v + δ)[xa := 0]}

JµX.ϕKAV := ∩{Q′ ⊆ Q | JϕKAV[X:=Q′] ⊆ Q′}

JνX.ϕKAV := ∪{Q′ ⊆ Q | Q′ ⊆ JϕKAV[X:=Q′]}

Using standard definitions, we say that an occurence of a variable X is bound
(resp. free) in a formula ϕ whenever it is (resp. it is not) under the scope of a
fixpoint operator µ or ν. It is easy to verify that if all variables are bound in a
formula ϕ (we say that ϕ is a sentence), then the semantics of ϕ does not depend
on the assignment function. In this case, we omit the subscript V, and given an
ERA A, and a configuration q of A, for a sentence ϕ, we write A, q |= ϕ whenever
we have q ∈ JϕKA. We also use the shortcut A |= ϕ whenever A, qA0 |= ϕ, where
qA0 denotes the initial configuration of A. Moreover, we say that a bound variable
X is guarded if it is in the scope of an operator 〈·〉 or [·]. According to [17], one
can assume that every bound variable is guarded.

Remark 2.8 (On greatest fixpoints). To express characteristic formulae, we shall
see later that we need greatest fixpoints on systems of inequations. In this case,
we will use a slightly different presentation. Given a finite set Var of variables,
we will associate to each variable X a formula D(X) over the variables Var. D is
then called a declaration, and the semantics associated with this definition is the
largest solution of the system of inequations X ⊆ D(X) for any X ∈ Var. It can be
proved (see [5] or [8]) that this presentation can be translated into an equivalent
formula with greatest fixpoints. For each variable X ∈ Var, there exists a formula
ϕD
X , with only greatest fixpoints, which has an equivalent satisfiability set. In this

setting, we will add the declaration D as subscript to the satisfaction relation |=,
and write A, q |=D X to denote A, q |= ϕD

X .

4Note that we extend the definition of [17] to ERA with invariants.

8 TITLE WILL BE SET BY THE PUBLISHER

2.4. Timed Behavioral Relations and Characteristic Formulae

We now recall the standard definitions of timed simulation and timed bisimu-
lation. These definitions are given for TTS and can thus be used for ERA.

Definition 2.9 (Timed simulation and timed bisimulation). Consider two TTS
S1 = 〈Q1, q

1
0 ,Σ,→1〉 and S2 = 〈Q2, q

2
0 ,Σ,→2〉. A timed simulation between S1

and S2 is a relation R ⊆ Q1 ×Q2 such that whenever q1Rq2 and α ∈ Σ∪T, then:

• If q1
α

−→1 q′1 then there exists q′2 ∈ Q2 such that q2
α

−→2 q′2 and q′1Rq′2.

A relation R is a timed bisimulation between S1 and S2 iff the relations R and
R−1 are timed simulations.

For states q1, q2, we write q1 ≺ q2 (resp. q1 ∼ q2) if and only if there exists a
timed simulation (resp. a timed bisimulation) R with q1Rq2.

Finally, we say that a TTS S2 simulates a TTS S1 (resp. S1 and S2 are timed
bisimilar) whenever there exists a timed simulation (resp. a timed bisimulation)
between S1 and S2 such that the pair (q10 , q

2
0) of their initial states belongs to the

relation R, and then we write S1 ≺ S2 (resp. S1 ∼ S2). We naturally extend these
notations to ERA:

Definition 2.10. Let A and B be two ERA. A simulates B (A ≺ B) iff SA ≺ SB.
A and B are timed bisimilar (A ∼ B) iff SA ∼ SB.

Note that in an ERA, invariants reduce the possible delay transitions. In a
location without invariant, any delay transition is possible, even if it leads to a
deadlock configuration. Thus, if two configurations (ℓ, v) and (ℓ′, v′) are bisimilar,
this implies that ℓ owns a non-trivial invariant iff ℓ′ does.

Definition 2.11 (Characteristic formulae). Let A be an ERA. We say that a
sentence ϕ ∈ ERL is a characteristic formula for A if and only if, according to the
behavioural relation considered, the following equivalence holds:

Timed Similarity: ∀B ∈ ERA,A ≺ B ⇐⇒ B |= ϕ

Timed Bisimilarity: ∀B ∈ ERA,A ∼ B ⇐⇒ B |= ϕ

The following standard result relates similarity with language inclusion.

Proposition 2.12. Let A1 and A2 be two ERA, we have the following implica-
tions:

(i) if A1 ≺ A2, then L(A1) ⊆ L(A2),
(ii) if A2 is deterministic and L(A1) ⊆ L(A2), then A1 ≺ A2.

3. On the use of ERL for characterizing timed
bisimilarity

As the logic ERL has been introduced to describe behaviours related to events, it
is natural to try to write in this logic characteristic formulae for timed bisimilarity
for ERA. We prove in this section that it is in general not possible to express timed

TITLE WILL BE SET BY THE PUBLISHER 9

ℓ ℓ′
0 ≤ xa ≤ 1

a

A

0 ≤ xa

a

A′

xa = 1
a

A′′

Figure 1. Three ERA A, A′ and A′′.

bisimilarity for ERA in the logic ERL. We also discuss which syntactic restrictions
have to be imposed on ERA to allow ERL to characterize timed bisimilarity.
Finally, we recall an attempt of such construction which can be found in Sorea’s
thesis [18] and detail why it is erroneous.

3.1. Impossibility Result for ERL

It would be rather easy to prove that the logic ERL cannot express timed bisim-
ilarity for ERA with invariants, as this logic cannot quantify over time elapsing
transitions independently of the firing of a discrete transition. We prove here a
stronger result by showing that the logic ERL cannot express timed bisimilarity
for two subclasses of ERAlazy. As we will see, the logic ERL lacks a way to require
the existence of a discrete transition for all the time successors satisfying some
clock constraint. We will use this remark to prove the following main result:

Theorem 3.1. The logic ERL cannot express timed bisimilarity for ERA. More

precisely, ERL cannot characterize timed bisimilarity for the classes ERAlazy
(d,∞) and

ERAlazy
(∞,M) for any d,M ≥ 1.

Proof. We consider the ERA without invariants A and A′ depicted in Figure 1.
We will prove that there exists no ERL formula characterizing A (resp. A′) up to

timed bisimilarity among the class ERAlazy

(∞,1) (resp. ERA
lazy

(1,∞)). By contradiction,

we assume that there exists a formula ϕ ∈ ERL characterizing the ERA, and then
proceed in the two following steps:

(1) use the underlying untimed structure of the ERA to transform ϕ into a
formula with a simpler structure,

(2) build an ERA which is not timed bisimilar to the original ERA, but still
satisfies ϕ.

To simplify the presentation, we assume that A and A′ are defined over the
alphabet restricted to letter a, but the result would hold for any alphabet.

(1) Simplification of the formula ϕ. Consider a formula Φ such that X is
a free variable of Φ. As usual with the Kozen’s µ-calculus, the semantics
JΦKBV of formula Φ can be viewed as a function JΦ(X)KBV : 2Q → 2Q

which maps a subset of Q into another subset of Q. According to the
definition of the semantics of ERL, it is easy to verify that such a function
is monotonic over the complete lattice 2Q. By Knaster-Tarski theorem,

10 TITLE WILL BE SET BY THE PUBLISHER

we have the following equalities:

JµX.ΦKBV =
⋃

i≥0

JΦi(ff)KBV ; JνX.ΦKBV =
⋂

i≥0

JΦi(tt)KBV

where







JΦ0(ff)KBV = JffKBV = ∅
JΦ0(tt)KBV = JttKBV = Q

JΦi+1(λ)KBV = JΦ(X)KB
V[X:=JΦi(λ)KB

V
]

with λ ∈ {ff, tt}, and i ∈ N

As mentioned before, we can assume that all variables of sentences of
ERL are guarded, i.e. are under the scope of the operator 〈·〉 or [·]. A
consequence is that when interpreting fixpoints over structures without
loops, one can restrict above infinite disjunctions and conjunctions up to
the maximal length of executions of the structure. For an ERA whose
maximal depth 5 is 1 (such as A and A′), we can replace in ϕ the fixpoint
operators by the above equations with index i ranging over the set {0, 1, 2}.
We denote by Unfold1 this operation, and by ERAdepth≤1 the set of ERA
whose maximal depth is smaller or equal to 1. Then, we have:

∀B ∈ ERAdepth≤1, B |= ϕ ⇐⇒ B |= Unfold1(ϕ) (3.1)

Thus, the outermost operators of the formula Unfold1(ϕ) belong to the set
{∨,∧, 〈·〉, [·]}. We can then transform the formula Unfold1(ϕ) in a standard

disjunctive normal form and write Unfold1(ϕ) =
∨k

i=1

∧mi

j=1 Φi,j where

every formula Φi,j has as outermost operator either 〈·〉 or [·]. Consider
now the case of the ERA A (the case of A′ is similar). As A is of maximal
depth 1 and is naturally timed bisimilar to itself, it satisfies this formula in
its initial configuration qA0 , and thus there exists i ∈ {1, . . . , k} such that
A, qA0 |= Φi,j for any j ∈ {1, . . . ,mi}. To ease the reading, we omit in the
sequel the index i. Up to a reordering of the formulae Φj , we can suppose
that there exists an index p such that a formula Φj has as outermost
operator the operator 〈·〉 if and only if j ≤ p. These last transformations
can be done similarly for A′.

(2) Construction of an ERA B. In this second part, we prove the existence
of an ERA which is not bisimilar to A (resp. to A′), but which satisfies
the ERL formula. This ERA is defined over Σ = {a} and contains exactly
two locations, denoted respectively ℓ1 and ℓ′1, such that the first one is
initial. We denote by qB0 = (ℓ1, 0) the initial configuration of B.

• Case of A. We detail the construction of an ERA B ∈ ERAlazy
(∞,1).

In the sequel, we will define a finite set of rational numbers F ⊆
Q≥0 ∩ [0, 1]. We add exactly one edge (ℓ1, gf , a, ℓ

′
1) for each f ∈ F ,

with the constraint gf defined as xa = f . It is easy to verify that A
and B are not timed bisimilar as there necessarily exists some point
in the interval [0, 1] that does not belong to F . We now detail how

5The maximal depth of an ERA denotes the length of a longest sequence of consecutive edges.

TITLE WILL BE SET BY THE PUBLISHER 11

we build the set F to ensure that B, qB0 |= ϕ. For each j ∈ {1, . . . , p},
we can write Φj = 〈gj , a〉ξj for some constraint gj and formula ξj .
By construction, we have A, qA0 |= Φj , and thus there exists a delay

δ ∈ T such that the steps qA0
δ
−→ (ℓ, δ)

a
−→ (ℓ′, 0) exist in A with

A, (ℓ′, 0) |= ξj . Note that independently of the delay after which the
a-labelled edge is fired, the configuration reached is the same. As the
constraint gj is defined with rational numbers and as the constraint of
the edge between ℓ and ℓ′ is 0 ≤ x1 ≤ 1, we can choose δj ∈ Q≥0∩[0, 1]

such that qA0
δj
−→ (ℓ, δj)

a
−→ (ℓ′, 0) with A, (ℓ′, 0) |= ξj . Finally, the

finite set of rational values F is defined as F = {δj | 1 ≤ j ≤ p}.
It remains to prove that the ERA B satisfies the formula ϕ. As the
maximal depth of B is 1, and using property (3.1), it is sufficient to
prove that for any j, we have B, qB0 |= Φj . First consider formulae Φj

for j > p. In this case the formula is of the form [gj , a]ξj . Then the
property holds because any a-labelled edge firable from qB0 in B also
exists in A, leading to identical configurations (ℓ′, 0) and (ℓ′1, 0), with
no actions available in ℓ′ and ℓ′1. Second, we consider a formula Φj

with j ≤ p. In this case, the choice of the delay δj ∈ F ensures that

the transitions qB0
δj
−→ (ℓ1, δj)

a
−→ (ℓ′1, 0) exist in B and as A, (ℓ′, 0) |=

ξj , we also have B, (ℓ′1, 0) |= ξj .

• Case of A′. We now detail the construction of an ERA B′ ∈ ERAlazy
(1,∞).

As above, we can write, for each 1 ≤ j ≤ p, Φj = 〈gj , a〉ξj for some
constraint gj and formula ξj . We denote by M the maximal constant
appearing in some constraint gj . Then, we add to B′ a single edge
(ℓ1, g, a, ℓ

′
1) with g defined as 0 ≤ xa ≤ ⌊M⌋+ 1. Note that we have

in particular M < ⌊M⌋+ 1.
It is then easy to verify that all existential formulae Φj , with j ≤ p,
are satisfied, due to the choice of M , and that all universal formulae
Φj , j > p, are satisfied because all behaviours of B′ do exist in A′.

Finally, we have proved that there exists B ∈ ERAlazy
(∞,1) such that B |= ϕ holds

while A and B are not timed bisimilar, thus yielding a contradiction (similarly

for B′ ∈ ERAlazy
(1,∞) w.r.t. A′). Thus, ERL cannot characterize timed bisimilarity

among the subclasses ERAlazy
(∞,1) ERA

lazy
(1,∞). �

3.2. When can ERL characterize timed bisimilarity?

On the granularity of constants. Consider first ERA without invariants as we
will discuss this aspect in a second paragraph. We have proved in Theorem 3.1
that ERL cannot in general characterize ERA (without invariants) up to timed
bisimilarity. Let us discuss how the nature of constants used in ERA impacts
on this result. We consider in this paper a general model of ERA which allows
any non-negative rational number (sometimes constants are restricted to natural

12 TITLE WILL BE SET BY THE PUBLISHER

numbers). Theorem 3.1 establishes two settings in which ERL fails to characterize
timed bisimilarity:

(1) if constants allowed include (bounded) rational numbers with arbitrarily

large denominators (class ERAlazy
(∞,1)),

(2) if constants allowed include unbounded natural numbers (class ERAlazy
(1,∞)).

In particular, point (2) proves that ERL is not expressive enough for the (standard)
setting of ERA involving natural numbers only.

To complete this picture, we will prove a positive result in Subsection 5.3. We
establish that for any fixed granularity (d,M), the logic ERL can characterize the

class ERAlazy
(d,M) up to timed bisimilarity. Intuitively, this results follows from the

fact that all automata of the class ERAlazy
(d,M) share a common set of regions. Then

the ERL formula expresses timed bisimilarity based on these regions.

On the role of invariants. As ERL quantifies simultaneously on delay transitions
and on discrete transitions, it cannot distinguish two ERA which would only differ
by the possible delay transitions. To avoid this difficulty, one could introduce
a weaker definition of timed bisimilarity, in which any delay transition must be
followed by a discrete transition. We believe that such a definition would allow to
extend the results presented in the previous paragraph to ERA with invariants.

3.3. On the construction proposed in [18]

In [18], the author addresses the problem of constructing characteristic bisimi-
larity formulae for ERA with integer constants and without invariants using ERL
formulae with greatest fixpoints. We recall here the proposed construction and
explain why it fails.

Before presenting the construction, we introduce some additional notations.
Given an ERA without invariants A = 〈L, ℓ0,Σ, E〉, a location ℓ ∈ L and a letter
a ∈ Σ, we define:

• the set of a-labelled edges leaving ℓ:
Out(ℓ, a) = {(ℓ, g, a′, ℓ′) ∈ E | a = a′}

• the disjunction of clock constraints of a-labelled edges leaving ℓ:
En(ℓ, a) =

∨

{g | ∃(ℓ, g, a, ℓ′) ∈ Out(ℓ, a)}
• the set of locations reached by an a from location ℓ:

F(ℓ, a) = {ℓ′ | ∃(ℓ, g, a, ℓ′) ∈ Out(ℓ, a)}

The formulae defined in [18] are constructed as follows. One considers a vari-
able ΦA(ℓ) for each location ℓ ∈ L, and then the greatest solution of the system
associated with the declaration D defined by:

ΦA(ℓ)
D
=

∧

a∈Σ







∧

(ℓ,g,a,ℓ′)∈Out(ℓ,a)〈g, a〉Φ
A(ℓ′)

∧[En(ℓ, a), a]
(

∨

ℓ′∈F(ℓ,a) Φ
A(ℓ′)

)

∧[¬En(ℓ, a), a]ff






(3.2)

TITLE WILL BE SET BY THE PUBLISHER 13

These definitions should verify the following correctness property: for any ERA
B, one has B |=D ΦA(ℓ0) if and only if A ∼ B.

Note that the construction introduces as clock constraints formulae obtained
by disjunctions and negations. They can be rewritten in the syntax of ERL using
the property [g1 ∨ g2, a]ϕ ≡ [g1, a]ϕ ∧ [g2, a]ϕ.

Before proving that the construction is not correct, we give some intuition on
how it fails. To express bisimilarity for a finite state automaton A, the standard
approach consists in building a formula ΦA(q) for each state q of A, and con-
sidering the greatest solution of this system. Roughly, this formula verifies that
any behaviour of A can be performed, and conversely that any possible behaviour
corresponds to some of A. More formally, the standard formula for state q looks
like:

ΦA(q) =
∧

a∈Σ













∧

q
a−→q′∈A

〈a〉ΦA(q′)






∧






[a]

∨

q
a−→q′∈A

ΦA(q′)












(3.3)

This is the way characteristic formulae for bisimilarity are defined for instance
in [1, 12]. In the construction of [18], the first conjunct corresponds to the first
part of (3.3) while the two other conjuncts correspond to the second part of (3.3).
But we can see that both parts are not well encoded. In the first one, notice that
the constraint 〈g, a〉ΦA(ℓ′) implies the existence of at least one time successor in
g that corresponds to the edge while all time successors in g should be able to
fire this edge. In the second part, it is required that all a-successors occurring in
En(ℓ, a) correspond to some a-successor of ℓ. But the a-successors of ℓ may have
different clock constraints, and thus should not be all allowed in the whole set
En(ℓ, a). We will see in Section 5 that the first point can be solved using the richer
logic WTµ, and that the second point can be solved using the region construction.

We provide a counter-example exhibiting the first aspect. Consider the two
ERA A and A′′ depicted in Figure 1. It is easy to see that A and A′′ are not timed
bisimilar. Let us write the characteristic formulae for A (Σ = {a}) according to
(3.2):

ΦA(ℓ) = 〈0 ≤ xa ≤ 1, a〉[tt, a]ff ∧ [0 ≤ xa ≤ 1, a][tt, a]ff ∧ [xa > 1, a]ff

We have A′′ |=D ΦA(ℓ), which shows that the construction is not correct. More
precisely, this is due to the incompleteness of the first part of the formula of (3.2).

To illustrate the second aspect, consider the two ERA depicted in Figure 2. It
is easy to verify that B and B′ are not timed bisimilar. However, the formulae for
the ERA B according to (3.2) (with Σ = {a}) are:

ΦB(ℓ0) = 〈0 ≤ xa ≤ 1, a〉ΦB(ℓ1) ∧ 〈1 ≤ xa ≤ 2, a〉ΦB(ℓ2)
∧[0 ≤ xa ≤ 2](ΦB(ℓ1) ∨ ΦB(ℓ2)) ∧ [xa > 2, a]ff

ΦB(ℓ1) = 〈xa = 0, a〉ΦB(ℓ3) ∧ [xa = 0, a]ΦB(ℓ3) ∧ [xa > 0, a]ff
ΦB(ℓ2) = [tt, a]ff
ΦB(ℓ3) = [tt, a]ff

14 TITLE WILL BE SET BY THE PUBLISHER

ℓ0

ℓ1 ℓ2

ℓ3

0 ≤ xa ≤ 1,
a

1 ≤ xa ≤ 2,
a

xa = 0,
a

B

0 ≤ xa ≤ 2,
a

1 ≤ xa ≤ 2,
a

xa = 0,
a

B′

Figure 2. Non-bisimilarity because of overlapping edges.

One can verify that B′ |=D ΦB(ℓ0) and thus the construction fails. It is worth
noticing here that this is due to the constraint [0 ≤ xa ≤ 2](ΦB(ℓ1) ∨ ΦB(ℓ2))
which is not enough restrictive.

4. A µ-calculus for Event-Recording Automata

We present here a weak timed µ-calculus for ERA that has been introduced
in [13], and which is called WTµ. This stands for Weak Timed µ-calculus, as it
can be seen as a timed µ-calculus (as Tµ [10] or Lν [12]) devoted to the weak
class of timed systems represented by ERA. Its definition differs from ERL in that
it separates delay successors and discrete successors, as it is done for instance in
the logic Lν . We prove in this section that it is strictly more expressive than the
logic ERL and that it preserves the good model-checking properties of ERL. We
will show in the next section that it allows one to express timed (bi)similarity for
ERA.

4.1. The Logic WTµ

Definition 4.1 (Syntax). Let Σ be a finite alphabet and Var be a finite set of
variables. A formula ϕ of WTµ is generated using the following grammar:

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var.

As for the logic ERL, we use auxiliary assignment functions, and the notions of
free variable, bound variable, and sentence.

Definition 4.2 (Semantics). For a given ERA A = 〈L, ℓ0,Σ, E, I〉 with associated
TTS SA = 〈Q, q0,Σ,→〉, a given formula ϕ ∈ WTµ, and an assignment function
V : Var → P(Q), the set of states satisfying the formula, denoted by JϕKAV , is

TITLE WILL BE SET BY THE PUBLISHER 15

inductively defined as follows:

J〈a〉ϕKAV := {(ℓ, v) ∈ Q | ∃(ℓ, g, a, ℓ′) ∈ E s.t. v |= g and
(ℓ′, v′) ∈ JϕKAV , where v′ = v[xa := 0]}

J〈g〉ϕKAV := {(ℓ, v) ∈ Q | ∃δ ∈ T s.t. v + δ |= g and (ℓ, v + δ) ∈ JϕKAV }
J[a]ϕKAV := {(ℓ, v) ∈ Q | ∀(ℓ, g, a, ℓ′) ∈ E, v |= g ⇒

(ℓ′, v′) ∈ JϕKAV , where v′ = v[xa := 0]}
J[g]ϕKAV := {(ℓ, v) ∈ Q | ∀δ ∈ T, v + δ |= g ⇒ (ℓ, v + δ) ∈ JϕKAV }

JµX.ϕKAV := ∩{Q′ ⊆ Q | JϕKAV[X:=Q′] ⊆ Q′}

JνX.ϕKAV := ∪{Q′ ⊆ Q | Q′ ⊆ JϕKAV[X:=Q′]}

The cases of atomic and Boolean formulae are as in Definition 2.7. We also use
shortcuts [Σ] and 〈Σ〉 which respectively stand for

∧

a∈Σ[a] and
∨

a∈Σ〈a〉.

Note that formulae of the form [a]tt or [g]tt (with g satisfiable) are equivalent
to tt, as their semantics are defined by an implication whose right-hand side is tt.

4.2. Expressiveness

We start with the following definition:

Definition 4.3. Given two sentences ϕ and ϕ′ in ERL ∪WTµ, we say that they
are equivalent if and only if, for any ERA A, we have A |= ϕ ⇐⇒ A |= ϕ′.
We say that a logic L2 is more expressive than a logic L1 if for any sentence in
L1, there exists an equivalent sentence in L2.

Then we can state the following property:

Proposition 4.4. Given a sentence ϕ ∈ ERL, we denote by ϕ̂ the sentence of
WTµ obtained by substituting any operator [g, a] (resp. 〈g, a〉) by the two operators
[g][a] (resp. 〈g〉〈a〉). Then ϕ and ϕ̂ are equivalent.

Proof. Proceeding by induction on the length of the formula ϕ, the result directly
follows from the definitions. �

We now prove the following theorem which states that, as expected, the logic
WTµ increases the expressive power of ERL:

Theorem 4.5. The logic WTµ is strictly more expressive than the logic ERL
(even for ERA without invariants).

Proof. First, Proposition 4.4 proves that the logic WTµ is more expressive than
the logic ERL.

Second, we have to prove that the converse is false. We will prove (Theorem 5.5)
that it is possible to express timed bisimilarity for ERA in the logic WTµ. Together
with Theorem 3.1 which states that it is not possible to express in ERL timed
bisimilarity for ERA, this yields the result. �

Note that this result holds for all subclasses of ERA that ERL cannot char-
acterize up to timed bisimilarity. In particular, this entails that WTµ is strictly

16 TITLE WILL BE SET BY THE PUBLISHER

more expressive than ERL on the class of ERA involving only natural numbers,
i.e. the class ERA(1,∞).

4.3. Model-Checking

We consider the model checking problem of WTµ sentences on ERA models.
This problem consists in deciding, given aWTµ sentence ϕ and an ERAA, whether
the relation A |= ϕ holds. The rest of this section is devoted to the proof of the
following theorem:

Theorem 4.6. The Model-Checking problem of WTµ on ERA is EXPTIME-
complete, even for the fragment of WTµ restricted to greatest fixpoints.

EXPTIME-hardness: As WTµ is more expressive than ERL, this result follows from
the EXPTIME-hardness of the Model-Checking problem of ERL on ERA (see [18]).
For the sake of completeness, and as this result is only sketched in [18], we present
here a complete proof.

We adapt the proof of [2] to encode the acceptance problem of a word w0 by
a Linear Bounded Alternating Turing Machine (LBATM) M which is EXPTIME-
complete [7]. One can assume w.l.o.g that the alphabet of M is {a, b}, and let
n = |w0|. Configurations of M are triples (q, w, i) where i ≤ n denotes the position
of the tape head. A transition (q, α, α′, δ, q′) of M can be fired from (q, w, i) iff
w[i] = α. Then, it writes α′ instead, and moves left or right according to δ. As
M is alternating, Q is partitioned into Qor and Qand. A configuration (q, w, i)
with q ∈ Qor (resp. q ∈ Qand) is winning iff q = qf or there exists an accepting
successor configuration (resp. if all its successor configurations are accepting).
As we want to build an ERA A while the construction of [2] is done for timed
automata, we make some modifications to control the resets of clocks. Locations
of A are pairs (q, i) ∈ Q× N, where i denotes the position of the tape head. The
value of cell i of the tape is encoded by the relative values of two clocks, say xai

and xbi . The alphabet of A thus contains Σ = {ai, bi | 1 ≤ i ≤ n}. We add a
letter τ not in Σ. A transition (q, α, α′, δ, q′) is represented in A by the transitions

(q, i)
gi,σi
−−−→ (q′, i′), where:

(1) gi is xai
< xbi ∧ xτ = 1 if α = a, and gi is xai

> xbi ∧ xτ = 1 otherwise,
(2) σi = xai

if α′ = a, and σi = xbi otherwise,
(3) i′ = i+ 1 if δ = R and i < n, and i′ = i− 1 if δ = L and i > 1.

To force time elapsing between two transitions corresponding to moves of M,

we use letter τ and add transitions (q, i)
xτ=1,τ
−−−−−→ (q, i) for any location (q, i). The

initialization of the clocks to represent the word w0 can be done using a sequence of
transitions ui interleaved by transitions labelled by τ . Finally, we use the following
WTµ formula, with only greatest fixpoints:

ϕ = [tt][u1][τ] . . . [tt][un][τ].νX.([accept]ff ∧ [tt][Σ][τ]〈tt〉〈Σ〉〈τ〉X)
where accept denotes a special letter only firable from the final state of M. Then
one can prove that M accepts w0 iff A 6|= ϕ. Note that the size of A and ϕ are
polynomial in the sizes of M and w0.

TITLE WILL BE SET BY THE PUBLISHER 17

Remark 4.7. As in [2], the hardness proof could be done without diagonal con-
straints.

EXPTIME-membership: This easily follows from the EXPTIME-membership of the
model-checking of the logic L+

µ,ν over timed automata [2], as timed automata
extend ERA. However, to obtain precise complexity results, we present here a
direct proof.

We first state the following Lemma:

Lemma 4.8. Let Σ be a finite alphabet. Let A ∈ ERA, ϕ ∈ WTµ be a formula
without fixpoint quantifier and let K denote the maximal integer constant of A
and ϕ. Denote by X1, . . . , Xn the free variables of ϕ and let V be an assignment
function over these variables such that for any i, V(Xi) is a union of regions in
RK(A). Then, the semantics JϕKAV is also a union of regions of RK(A).

Proof. We proceed by induction on the length of ϕ and consider the type of ϕ:

• ϕ = tt or ϕ = ff. The result follows as QA and ∅ are both a union of
regions.

• ϕ = ϕ1∧ϕ2 or ϕ = ϕ1∨ϕ2. The result follows from the induction property
as the set of union of regions is closed under Boolean operations.

• ϕ = Xi for some i ∈ {1, . . . , n}. Then JϕKAV = V(Xi) and the result follows
from the hypothesis on V.

• ϕ = 〈g〉ϕ′ or ϕ = [g]ϕ′ with g ∈ C(Σ). By induction property the se-
mantics Jϕ′KAV is a union of regions. Then, the result follows from the
time-abstract bisimulation property of clock regions which implies that
the time predecessors of a clock region is a union of clock regions.

• ϕ = 〈a〉ϕ′ or ϕ = [a]ϕ′ with a ∈ Σ. By induction property the semantics
Jϕ′KAV is a union of regions. Then, the result follows from the time-abstract
bisimulation property of regions which implies that the predecessors of a
region by a discrete transition is a union of regions.

This concludes the proof. �

This entails the following lemma:

Lemma 4.9. Let Σ be a finite alphabet. Let A ∈ ERA, and ϕ be a sentence in
WTµ. Denote by K the maximal integer constant of A and ϕ. Then the semantics
of ϕ over A, JϕKA, is a union of regions of RK(A). In other terms, we have:

∀ℓ ∈ LA, ∀v, v
′ ∈ T

Σ s.t. v ≃K v′,A, (ℓ, v) |= ϕ ⇐⇒ A, (ℓ, v′) |= ϕ

Proof. As the semantics of formulae of WTµ are monotonic functions, Knaster-
Tarski theorem implies that fixpoint formulae can be evaluated using formally
infinite intersections and unions given by:

JµX.ϕKAV =
⋃

i≥0

JµX.ϕiKAV , JνX.ϕKAV =
⋂

i≥0

JνX.ϕiKAV

18 TITLE WILL BE SET BY THE PUBLISHER

As ∅ and Q are both union of regions, Lemma 4.8 entails that the iterative evalu-
ation of fixpoints leads also to union of regions. As the number of regions is finite,
these evaluations terminate, returning also a union of regions. �

The proof of Lemma 4.9 thus shows that the model checking problem can be
solved symbolically using regions. To obtain results on complexity issues, we
reduce the model checking problem to an equivalent model checking problem for
standard µ-calculus working on regions. Therefore, we define the semantics of
WTµ over RK(A). The only operators for which the semantics is non standard
are the following:

J〈g〉ϕK
RK(A)
V = {(ℓ, r) ∈ RK(A) | ∃r′ ∈ RK(Σ) s.t. (ℓ, r)

τ
−→ (ℓ, r′), r′ ⊆ JgK

and (ℓ, r′) ∈ JϕK
RK(A)
V }

J[g]ϕK
RK(A)
V = {(ℓ, r) ∈ RK(A) | ∀r′ ∈ RK(Σ) s.t. (ℓ, r)

τ
−→ (ℓ, r′),

if r′ ⊆ JgKthen (ℓ, r′) ∈ JϕK
RK(A)
V }

Then, we can prove the correctness of this semantics as in [10,12]:

∀v ∈ T
Σ,A, (ℓ, v) |= ϕ ⇐⇒ RK(A), (ℓ, [v]) |= ϕ

However, the semantics of WTµ over RK(A) does not exactly match this of stan-
dard mu-calculus. This is due to inclusion testing between r′ and JgK. To solve
this problem, we can for instance introduce atomic propositions corresponding to
the clocks constraints g ∈ C(Σ) of the formula ϕ. A predicate g is satisfied in a
region (ℓ, r) if and only if the inclusion r ⊆ JgK holds. Then, we can write the
following equivalences:

〈g〉ϕ ≡ 〈τ〉(g ∧ ϕ); [g]ϕ ≡ [τ](g → ϕ) ≡ [τ](¬g ∨ ϕ)

Note that the number of atomic propositions introduced for a formula ϕ ∈ WTµ

is linear in the size of this formula. Another approach consists in enlarging the
alphabet to include the clock constraints. This approach is described in [13].

Finally, we obtain the reduction desired to a model checking problem of the
standard mu-calculus over the region automaton. This problem, for a mu-calculus
formula ϕ and a finite structure S, can be solved in time O((|S| × |ϕ|)n+1), where
n is the number of alternations of greatest and least fixpoints quantifiers in ϕ [19].
As the size of RK(A) is in |A|× 2O(|Σ|. logK|Σ|), and n is in O(|ϕ|), we obtain that
the model checking problem of WTµ over ERA is in EXPTIME, with a precise time
complexity.

5. Characteristic Formulae Constructions

We describe in this section characteristic formulae constructions in the logic
WTµ to express timed similarity and timed bisimilarity for ERA with invariants.
In the sequel, we consider an ERA A = 〈LA, ℓ

A
0 ,Σ, EA, IA〉 over the alphabet

TITLE WILL BE SET BY THE PUBLISHER 19

Σ. Let ℓ ∈ LA and a ∈ Σ, we first introduce an operation, denoted Split(ℓ, a),
related to the determinization of ERA. Split(ℓ, a) returns a finite set of constraints
{g1, . . . , gn} ⊆ C(Σ) such that:

(i) it partitions the constraint En(ℓ, a):
⋃

iJgiK = JEn(ℓ, a)K and ∀i 6= j, JgiK ∩
JgjK = ∅,

(ii) its elements ”match” the clock constraints of a-labelled edges leaving ℓ: ∀i ∈
{1, . . . , n}, ∀(ℓ, g, a, ℓ′) ∈ EA, JgiK ⊆ JgK or JgiK ∩ JgK = ∅.

We do not investigate here how such an operator can be defined as it is not the
purpose of this work. It can for instance be defined using the region construction,
and then be optimized using some merging operations on zones. It is worth noticing
that in the worst case, the size of Split(ℓ, a) may be 2O(|Σ| logK|Σ|), with K the
largest integer constant of A (due to the region construction). However, if the
ERA A is deterministic, then its size is linear in the size of Out(ℓ, a). Indeed, the
determinism implies that the clock constraints of a-labelled edges leaving ℓ are
disjoint.

5.1. Characteristic Formulae for Timed Bisimilarity

Definition 5.1. We define a declaration D∼A associating a formula to each loca-
tion ℓ of A, and consider the greatest solution of this system of fixpoint equations.

Φ∼A(ℓ)
D∼A=















































































∧

a∈Σ

∧

(ℓ,g,a,ℓ′)∈EA

[g]〈a〉 Φ∼A(ℓ′) (C1)

∧
[IA(ℓ)] Φ

∼A(ℓ) (C2)
∧

∧

a∈Σ

∧

g∈Split(ℓ,a)

[g][a]
∨

(ℓ,g′,a,ℓ′)∈EA|JgK⊆Jg′K

Φ∼A(ℓ′) (C3)

∧
∧

a∈Σ

[¬En(ℓ, a)][a]ff (C4)

∧
[¬IA(ℓ)] ff (C5)

Note that the construction introduces as clock constraints formulae obtained
by disjunctions and negations. They can be rewritten in the syntax of WTµ using
the property that [g1 ∨ g2]ϕ is equivalent to [g1]ϕ ∧ [g2]ϕ (see [13]).

Before proving the correctness of this construction, we give some intuition on
its definition. Let B be an ERA and analyze how these formulae constrain B. The
parts C1 and C2 express the simulation constraints (A ≺ B), while the three other
constraints express the converse (B ≺ A). More precisely, note that C1 requires
that any discrete transition of A also exists in B: for any transition in A and
for all delays after which it is firable, there exists a corresponding transition in B
leading to a bisimilar configuration. This combination of a universal quantification
over delays with an existential quantification over discrete successors was missing

20 TITLE WILL BE SET BY THE PUBLISHER

in ERL, as shown in Section 3. In the converse direction, discrete transitions are
encoded in C3 and C4. C4 states that an a transition can only happen in B when
it is possible in A. C3 uses the decomposition Split(ℓ, a) of the clock constraint
En(ℓ, a) to express that any a transition in B corresponds to some a transition of
A firable from the same valuation. Finally, C2 and C5 handle the case of delay
transitions.

Example 5.2. We illustrate this definition on the ERA B introduced in Section 3
to show that the construction of [18] is erroneous. This ERA is depicted in Figure 2.
Applying the previous definition leads to the following equation for location ℓ0:

Φ∼B(ℓ0) =







[0 ≤ xa ≤ 1]〈a〉Φ∼B(ℓ1) ∧ [1 ≤ xa ≤ 2]〈a〉Φ∼B(ℓ2)
∧ [0 ≤ xa < 1][a]Φ∼B(ℓ1) ∧ [xa = 1][a](Φ∼B(ℓ1) ∨ Φ∼B(ℓ2))
∧ [1 < xa ≤ 2][a]Φ∼B(ℓ2) ∧ [2 < xa][a]ff

Observe the splitting of the constraint 0 ≤ xa ≤ 2, obtained by the decomposition
Split. This corrects the corresponding constraint of the construction of [18] (see
Section 3) which was [0 ≤ xa ≤ 2, a](Φ∼B(ℓ1) ∨ Φ∼B(ℓ2)).

Remark 5.3 (On the satisfiability of WTµ). In [13], the satisfiability problem is
proved to be decidable for a large fragment of WTµ, which contains restrictions
on the nesting of operators. It is easy to verify that the characteristic formulae
constructed above for ERA are, if the ERA do not contain invariants, elements of
this fragment.

Remark 5.4 (On the size of characteristic formulae Φ∼A). Due to the use of
the operator Split, these characteristic formulae are in the worst case of size
|A| × 2O(|Σ| logK|Σ|), with K the largest integer constant of A, whereas if A is
deterministic, then their size is linear in the size of A. Compared with the con-
struction proposed in [1] which yields formulae whose size is linear in that of the
automaton, this complexity may seam to be non-optimal. However, we believe
that this exponential blow-up is not avoidable, and detail now why. Character-
istic formulae of [1] compare the clock valuation with the guards of edges after
the discrete firing, and can then conclude a posteriori which edges may have been
fired. For ERA, once a discrete transition labelled by a has been fired, one can
not recover the value of clock xa before this firing, as it has been reset. This
observation motivated the introduction of the Split operator, which underlies the
worst-case exponential size. Moreover, note that this exponential blow-up has no
consequences on the theoretical time complexity of timed bisimilarity checking (see
Corollary 5.6), as formulae of linear size would lead to the same complexity.

The following result states the correctness of the previous construction.

Theorem 5.5. Let A and B be two ERA over Σ and consider ℓ and m two
locations of A and B respectively. Then for any valuation v ∈ T

Σ, we have :

(ℓ, v) ∼ (m, v) ⇐⇒ B, (m, v) |=D∼A
Φ∼A(ℓ)

In particular, we have: A ∼ B ⇐⇒ B |=D∼A
Φ∼A(ℓA0)

TITLE WILL BE SET BY THE PUBLISHER 21

Proof. To prove Theorem 5.5 we establish successively the two implications:

⇐: If B, (m, v) |=D∼A
Φ∼A(ℓ), then we have (ℓ, v) ∼ (m, v).

⇒: If (ℓ, v) ∼ (m, v), then B, (m, v) |=D∼A
Φ∼A(ℓ) holds.

Let us denote by QA and QB the set of configurations of A and B respectively.
Proof of ⇐. We consider the relationR ⊆ QA×QB defined asR = {((ℓ, v), (m, v)) |
B, (m, v) |=D∼A

Φ∼A(ℓ)} and show that it is a timed bisimulation. In other terms,
we must verify the conditions of Definition 2.9.

(i) Step in A. Consider σ ∈ Σ∪T such that (ℓ, v)
σ
−→ (ℓ′, v′) in A, and show that

there exists m′ ∈ LB such that (m, v)
σ
−→ (m′, v′) in B and (ℓ′, v′)R(m′, v′).

We distinguish two cases according to the nature of σ.
• If σ = a ∈ Σ. Then there exists a transition (ℓ, g, a, ℓ′) ∈ EA corre-
sponding to this firing. In particular, we have v |= g and v′ = v[xa := 0].
By hypothesis, we have B, (m, v) |=D∼A

Φ∼A(ℓ). In particular the tran-
sition of A corresponds to a conjunct in part C1 of Φ∼A(ℓ), and we thus
have B, (m, v) |=D∼A

[g]〈a〉Φ∼A(ℓ′). As v |= g, this implies the exis-

tence of a step (m, v)
a
−→ (m′, v′′) in B, with B, (m, v′′) |=D∼A

Φ∼A(ℓ′).
The semantics of ERA implies that v′′ = v[xa := 0], and hence v′′ = v′,
which concludes this case.

• If σ = δ ∈ T. Then we have (ℓ, v)
δ
−→ (ℓ, v + δ) in A what implies

that v + δ |= IA(ℓ). Part C2 of Φ∼A(ℓ) then implies the existence of

the transition (m, v)
δ
−→ (m, v + δ) in B, such that B, (m, v + δ) |=D∼A

Φ∼A(ℓ), as desired.
This shows that the relation R is a timed simulation between A and B.

(ii) Step in B. Conversely, we show that the relation R−1 is a timed simulation

between B and A. As above, let us consider σ ∈ Σ ∪ T such that (m, v)
σ
−→

(m′, v′) in B, and show that there exists ℓ′ ∈ LA such that (ℓ, v)
σ
−→ (ℓ′, v′)

in A and (ℓ′, v′)R(m′, v′). Again, we distinguish two cases according to the
nature of σ.

• If σ = a ∈ Σ. By hypothesis, we have B, (m, v) |=D∼A
Φ∼A(ℓ).

In particular, part C4 of this formula is satisfied what implies that
v |= En(ℓ, a). Then, as Split(ℓ, a) partitions the constraint En(ℓ, a),
there exists a unique clock constraint g ∈ Split(ℓ, a) such that v |= g.
The corresponding conjunct of part C3 implies that B, (m′, v′) |=D∼A
∨

(ℓ,g′,a,ℓ′)∈EA|JgK⊆Jg′K Φ
∼A(ℓ′). The second property of Split(ℓ, a) im-

plies, as JgK is not empty, that there exists a transition (ℓ, g′, a, ℓ′) ∈ EA

such that B, (m′, v′) |=D∼A
Φ∼A(ℓ′) and with JgK ⊆ Jg′K. As a con-

sequence, we have v |= g′ and then (ℓ, v)
a
−→ (ℓ′, v′′) in A, with v′′ =

v[xa := 0] = v′, which concludes this case.

• If σ = δ ∈ T. Then we have (m, v)
δ
−→ (m, v + δ) in B. Part C5

of formula Φ∼A(ℓ) implies that v + δ |= IA(ℓ). Thus, the transition

(ℓ, v)
δ
−→ (ℓ, v+ δ) exists in A. Moreover, since v+ δ |= IA(ℓ), part C2 of

the formula Φ∼A(ℓ) implies that (m, v + δ) |=D∼A
Φ∼A(ℓ), as desired.

22 TITLE WILL BE SET BY THE PUBLISHER

This concludes the proof that R−1 is also a timed simulation between B and
A, and thus R is a timed bisimulation as desired. This concludes the proof
of the first implication.

Proof of ⇒. Recall that the characteristic formulae Φ∼A(ℓ) are defined as the
greatest solution of a system of inequalities. Using the notion of coinduction [16],
any solution of these inequalities also satisfies these formulae. We consider the as-
signment function V over the variables Φ∼A(ℓ) defined by V(Φ∼A(ℓ)) = {(m, v) ∈
QB | (ℓ, v) ∼ (m, v)} for any ℓ ∈ LA. It is then sufficient to prove the following
inclusions:

∀ℓ ∈ LA, JΦ
∼A(ℓ)KBV ⊆ JD∼A(Φ

∼A(ℓ))KBV (5.1)

Let (m, v) ∈ JΦ∼A(ℓ)KBV (that is such that (ℓ, v) ∼ (m, v)). The proof proceeds by
considering each conjunct ξ of D∼A(Φ

∼A(ℓ)).

(i) ξ = [g]〈a〉Φ∼A(ℓ′) for some transition (ℓ, g, a, ℓ′) ∈ EA. We distinguish
between whether this transition can be fired from the configuration (ℓ, v) or
not. If it cannot be fired from (ℓ, v), that is ∀δ ∈ T, v + δ 6|= g, then we
trivially have B, (m, v) |= ξ. Otherwise, there exists a delay δ ∈ T such that

v+δ |= g. Then, we have (ℓ, v+δ)
a
−→ (ℓ′, v′) in A, with v′ = (v+δ)[xa := 0].

By bisimulation property and by time determinism, we have that (ℓ, v+δ) ∼
(m, v + δ) and then that there exists a configuration (m′, v′′) of B such that

(m, v+ δ)
a
−→ (m′, v′′) in B and (ℓ′, v′) ∼ (m′, v′′). Semantics of ERA implies

that v′ = v′′ and thus the result follows since, by definition of V, we have
(m′, v′) ∈ JΦ∼A(ℓ′)KBV .

(ii) ξ = [IA(ℓ)]Φ
∼A(ℓ). For any δ ∈ T such that v + δ |= IA(ℓ), we have

(ℓ, v)
δ
−→ (ℓ, v+ δ) in A. By bisimulation property and time determinism, we

then have (ℓ, v + δ) ∼ (m, v + δ). This concludes this case.
(iii) ξ = [g][a]

∨

(ℓ,g′,a,ℓ′)∈EA|JgK⊆Jg′K Φ
∼A(ℓ′), for some clock constraint g ∈ Split(ℓ, a).

Consider, if some exists, a delay δ ∈ T such that v + δ |= g and (m, v)
δ
−→

(m, v + δ)
a
−→ (m′, v′) in B. Then, we must show that the following holds:

B, (m′, v′) |=D∼A

∨

(ℓ,g′,a,ℓ′)∈EA|JgK⊆Jg′K Φ
∼A(ℓ′). First, we have by bisimu-

lation and time determinism that (ℓ, v)
δ
−→ (ℓ, v + δ) exists in A and that

(ℓ, v + δ) ∼ (m, v + δ) holds. Bisimulation then implies that there exists a

transition (ℓ, v + δ)
a
−→ (ℓ′, v′′) in B such that (ℓ′, v′′) ∼ (m′, v′). This im-

plies that there exists a transition (ℓ, g′, a, ℓ′) in EA such that v + δ |= g′.
By the second property of Split(ℓ, a), this implies that JgK ⊆ Jg′K, and thus
this transition belongs to the disjunction of ξ. In particular, we thus have
B, (m′, v′) |=D∼A

Φ∼A(ℓ′), as required.
(iv) ξ = [¬En(ℓ, a)][a]ff. By contradiction, assume that the property is not sat-

isfied, that is, there exists a delay δ ∈ T such that v + δ 6∈ En(ℓ, a) and

(m, v + δ)
a
−→ (m′, v′) in B for some configuration (m′, v′). By bisimulation,

an a-labelled transition is also firable from the configuration (ℓ, v + δ). This
is in contradiction with v + δ 6∈ En(ℓ, a).

TITLE WILL BE SET BY THE PUBLISHER 23

(v) ξ = [¬IA(ℓ)]ff. By contradiction, assume that the property is not satisfied,

that is, there exists a delay δ ∈ T such that v + δ 6|= IA(ℓ) and (m, v)
δ
−→

(m, v + δ) in B. By bisimulation, we also have (ℓ, v)
δ
−→ (ℓ, v + δ) in B. This

is in contradiction with v + δ 6|= IA(ℓ).

This concludes the proof of the property (5.1), and thus the second implication
also holds.

This concludes the proof of Theorem 5.5. �

Corollary 5.6. One can decide timed bisimilarity of two ERA A and B over Σ
in time |A| × |B| × 2O(|Σ| logK|Σ|) (K denotes the largest constant of A and B).

Proof. Using the previous theorem, this problem reduces to the model checking
problem of B against formula Φ∼A(ℓA0) under the declaration D∼A. Note that Φ

∼A

contains only greatest fixpoints and thus is alternation-free. As there exists better
complexity results for this class (see [8]), the proof of Theorem 4.6 shows that the
time complexity of this problem is in O(|RK(B)|×|Φ∼A|). The result follows from
the size of RK(B) and previous remarks on the size of the characteristic formulae
Φ∼A. �

Note that this complexity result is more precise than the EXPTIME complexity
resulting from constructions proposed in [1]. For instance, for a fixed alphabet Σ
and if constants are encoded in unary, then timed (bi)similarity of two ERA A
and B can be checked in polynomial time. In other terms, there is no exponential
blow-up in the size of the discrete structures of A and B.

5.2. Characteristic Formulae for Timed Similarity

Definition 5.7. We define a declaration D≻A associating a formula to each loca-
tion ℓ of A, and consider the greatest solution of this system of fixpoint equations.

Φ≻A(ℓ)
D≻A

=















∧

a∈Σ

∧

(ℓ,g,a,ℓ′)∈EA

[g]〈a〉 Φ≻A(ℓ′) (C′
1)

∧
[IA(ℓ)] Φ

≻A(ℓ) (C′
2)

Note that this construction leads to characteristic formulae whose size is lin-
ear in the size of A. The following result states the correctness of the previous
construction.

Theorem 5.8. Let A and B be two ERA over Σ and consider ℓ and m two
locations of A and B respectively. Then for any valuation v ∈ T

Σ, we have :

(ℓ, v) ≺ (m, v) ⇐⇒ B, (m, v) |=D≻A
Φ≻A(ℓ)

In particular, we have: A ≺ B ⇐⇒ B |=D≻A
Φ≻A(ℓA0)

We omit the proof as it is similar to that of Theorem 5.5. As for bisimilarity,
we obtain an EXPTIME procedure to decide timed similarity:

24 TITLE WILL BE SET BY THE PUBLISHER

Corollary 5.9. One can decide timed similarity of two ERA A and B over Σ in
time |A| × |B| × 2O(|Σ| logK|Σ|) (K denotes the largest constant of A and B).

Moreover, this procedure can also be used to decide language inclusion between
ERA. More precisely, we have:

Corollary 5.10. Given two ERA A and B, the procedure checking timed similarity
leads to an EXPTIME procedure to decide whether L(A) ⊆ L(B) holds or not.

Proof. We first determinize automaton B, resulting in B′. Following [4], the num-
ber of locations and edges of B′ is then exponential in the size of B. Using Propo-
sition 2.12, language inclusion reduces to A ≺ B′, and then to the model checking
problem B′ |=D≻A

Φ≻A(ℓA0). Using previous analysis, this can be checked in time
|RK(B′)|×|Φ≻A|. Finally, we obtain a procedure to decide this language inclusion
in time |A| × 2|B|, which belongs thus to EXPTIME. �

Note that the problem of language inclusion is PSPACE-complete [4], thus this
procedure is not optimal. However, the known algorithm [4] matching the lower
bound consists in guessing a path in the region automaton. A zone-based version
of this procedure may thus be an interesting alternative in practice.

5.3. A positive result for ERL

Following discussion of Subsection 3.2, we consider now the subclass of ERA

with a fixed granularity. Let (d,M) ∈ N×N, recall that we denote by ERAlazy
(d,M) the

subclass of ERA composed of models without invariants and such that constants
are bounded by M , and use denominators that divide d. We prove the following
positive result:

Theorem 5.11. Let (d,M) ∈ N×N. The logic ERL can express timed (bi)similarity

for the class ERAlazy
(d,M).

Proof. Without loss of generality, we can multiply all constants by the same con-
stant and end up with ERA using only integer constants. We thus consider the

class ERAlazy
(1,K). Let A ∈ ERAlazy

(1,K), we detail how we build a formula in ERL

which characterizes all elements in ERAlazy
(1,K) which are timed bisimilar to A. A

similar approach can be used for timed similarity. It can first be checked that
in our previous construction, WTµ characteristic formulae used to express timed
bisimilarity belong to the following grammar (recall that there are no invariants
in A):

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | [g]〈a〉ϕ | [g][a]ϕ | νX.ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var. More precisely, g are either constraints
associated with edges (case of C1), or constraints resulting from the Split operation
(case of C3). In particular, these constraints only involve integer constants less or
equal than K. As a consequence, the constraint g is equivalent to a union of
regions, and hence the formula [g]ϕ is equivalent to the formula

∧

r|r⊆JgK[r]ϕ,

TITLE WILL BE SET BY THE PUBLISHER 25

where the operator [r] is an abuse of notation, as we should use a clock constraint
defining r instead.

Note that by Proposition 4.4, we can replace the WTµ operator [r][a] by the
ERL operator [r, a]. It remains to handle the combination [r]〈a〉, where r denotes
a region. As the ERA we consider here have the same granularity, a transition is
enabled in a valuation of a region r if and only if it is enabled in all the valuations
of r. However, we can not replace formula [r]〈a〉ϕ by formula 〈r〉〈a〉ϕ as the first
one is equivalent to tt for all valuations which have no time successors in r. We
instead have the following informal equivalence:

(ℓ, v) |= [r]〈a〉ϕ ⇐⇒ (ℓ, v) |= [r]ff ∨ 〈r〉〈a〉ϕ

Note that formula [r]ff requires that v has no time successors in r. But this last
formula can not be expressed in ERL, and we can thus not obtain a direct trans-
lation. To solve this issue, we use a more complicated construction, by exhibiting
one variable for each pair (ℓ, r) composed of a location and of a region, as it is
done in [12]. This trick allows us to decide locally whether the valuation has time
successors in a region r′. Indeed, this only depends on the current region r. The
equation for variable Φ∼A(ℓ, r) is then:

Φ∼A(ℓ, r)
D∼A=























∧

(ℓ,g,a,ℓ′)∈EA

∧

r′∈RK(Σ)|r′⊆JgK∧r r′

〈r′, a〉 Φ∼A(ℓ′, r′[xa := 0])

∧
∧

a∈Σ

∧

r′∈RK(Σ)

[r′, a]
∨

(ℓ,g′,a,ℓ′)∈EA|r′⊆Jg′K

Φ∼A(ℓ′, r′[xa := 0])

where the notation r r′ means that the region r′ is a time successor of the
region r, and r′[xa := 0] denotes the region obtained from r′ by resetting xa. Note
that we specify which region is reached when firing a discrete transition. We can

then obtain the following equivalence, where B ∈ ERAlazy

(1,K) and (m, v) denotes a

configuration of B:

(ℓ, v) ∼ (m, v) ⇐⇒ B, (m, v) |=D∼A
Φ∼A(ℓ, [v])

As a consequence, we obtain A ∼ B ⇐⇒ B |=D∼A
Φ∼A(ℓA0 , r0), where r0 is the

unique region containing the initial valuation. We do not detail the proof of the
above equivalence as it follows the lines of the proof of Theorem 5.5. �

Example 5.12. We illustrate this last result on the ERA B depicted in Figure 2.
Compared with the WTµ formula obtained for location ℓ0 of this ERA in Exam-
ple 5.2, the ERL formula for this location is obtained using more variables. For
location ℓ0, we distinguish one variable for each region. There are here 6 regions,
which we denote by r0, r0,1, r1, r1,2, r2 and r∞, according to the associated inter-
vals for clock xa. We obtain for instance for the variable Φ∼B(ℓ0, r1) the following

26 TITLE WILL BE SET BY THE PUBLISHER

equation:

Φ∼B(ℓ0, r1) =















〈r1, a〉Φ
∼B(ℓ1, r0) ∧ 〈r1, a〉Φ

∼B(ℓ2, r0)
∧ 〈r1,2, a〉Φ

∼B(ℓ2, r0) ∧ 〈r2, a〉Φ
∼B(ℓ2, r0)

∧ [r1, a](Φ
∼B(ℓ1, r0) ∨ Φ∼B(ℓ2, r0)) ∧ [r1,2, a]Φ

∼B(ℓ2, r0)
∧ [r2, a]Φ

∼B(ℓ2, r0) ∧ [r∞, a]ff

Note that the resulting ERL formula is only correct for ERA without invariants,
and with only integral constants bounded by 2, while the WTµ formula holds for
the whole class of ERA.

6. Conclusion

In this paper, we focused on the construction of characteristic formulae for
ERA up to timed (bi)similarity. After having shown that the problem could not be
solved in general in the logic ERL, we have introduced the new logic WTµ, and have
proved that it is strictly more expressive than ERL and that its model checking
problem over ERA is EXPTIME-complete. We have finally provided characteristic
formulae constructions in WTµ for the whole class of ERA with invariants.

Compared to existing results in [1] for timed automata which can also be ap-
plied to ERA using natural translations, we obtain procedures in the same class
of complexity (EXPTIME), but we state more precise complexity bounds. For in-
stance, for a fixed alphabet Σ and if constants are encoded in unary, then timed
(bi)similarity can be checked in polynomial time. Moreover, our algorithm for
model checking WTµ against ERA can be more efficient than going through Lν

and timed automata as it involves only one copy of the event-clocks. Finally,
our translation builds formulae in a subclass of WTµ for which the satisfiability
problem is decidable.

As future work, we plan to study how the fragment of WTµ with a decidable
satisfiability problem can be enlarged, for instance to be able to express controlla-
bility properties (as in [6]). We also envisage to adapt the implementation of the
procedures of [1] done in the tool CMC [11] to this framework for ERA.

References

[1] L. Aceto, A. Ingólfsdóttir, M. L. Pedersen, and J. Poulsen. Characteristic formulae for timed
automata. RAIRO - Theor. Inf. Appl., 34(6):565–584, 2000.

[2] L. Aceto and F. Laroussinie. Is your model-checker on time? on the complexity of model

checking for timed modal logics. J. Log. Algebr. Program., 52–53:7–51, 2002.
[3] R. Alur and D. Dill. A theory of timed automata. Theoret. Comput. Sci., 126(2):183–235,

1994.

[4] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class of
timed automata. Theor. Comput. Sci., 211(1-2):253–273, 1999.

[5] H. Bekic. Definable operation in general algebras, and the theory of automata and flowcharts.
In C. B. Jones, editor, Programming Languages and Their Definition, volume 177 of LNCS,

pages 30–55. Springer, 1984.

TITLE WILL BE SET BY THE PUBLISHER 27

[6] P. Bouyer, F. Cassez, and F. Laroussinie. Timed modal logics for real-time systems: Speci-

fication, verification and control. J. Logic Lang. Inform., 20(2):169–203, 2011.
[7] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
[8] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-

free modal mu-calculus. Form. Meth. Syst. Design, 2(2):121–147, 1993.

[9] D. D’Souza. A logical characterisation of event clock automata. Int. J. Found. Comput. Sci.,
14(4):625–640, 2003.

[10] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for real-time
systems. Inf. Comput., 111(2):193–244, 1994.

[11] F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking of real-time
systems. In S. Budkowski, A. R. Cavalli, and E. Najm, editors, Proc. Joint Conf. FORTE-
PSTV’98, volume 135 of IFIP Conference Proceedings, pages 439–456. Kluwer Academic,

1998.
[12] F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic – and back. In

J. Wiedermann and P. Hájek, editors, Proc. of 20th Int. Symp. on Mathematical Foundations
of Computer Science, volume 969 of LNCS, pages 529–539. Springer, 1995.

[13] O.-L. Nguena-Timo. Synthèse pour une logique temps-réel faible. PhD thesis, Université de
Bordeaux, 2009.

[14] O.-L. Nguena-Timo and P.-A. Reynier. On characteristic formulae for event-recording au-

tomata. In Proc. 6th Workshop on Fixed Points in Computer Science, pages 70–78, 2009.
[15] J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks - decidability, complexity and

expressiveness. J. Autom. Lang. Comb., 4(3):247–286, 1999.
[16] D. Sangiorgi. Bisimulation: From the origins to today. In H. Ganzinger, editor, Proc. of 19th

IEEE Symposium on Logic in Computer Science, pages 298–302. IEEE Computer Society
Press, 2004.

[17] M. Sorea. A decidable fixpoint logic for time-outs. In L. Brim, P. Jancar, M. Kret́ınský, and
A. Kucera, editors, Proc. of 13th Int. Conf. on Concurrency Theory, volume 2421 of LNCS,

pages 255–271. Springer, 2002.
[18] M. Sorea. Verification of Real-Time Systems through Lazy Approximations. PhD thesis,

University of Ulm, 2004.

[19] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of formal languages, vol. 3: beyond words, pages 389–455. Springer, 1997.

Communicated by (The editor will be set by the publisher).

(The dates will be set by the publisher).

