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Preface

MOVEP 2012 is the tenth occurrence in the series of MOVEP summer/winter schools devoted to the
wide area of modeling and verifying software and hardware systems. MOVEP (MOdeling and VErifying
parallel Processes) was originally a French-speaking school and was initiated by A. Arnold (LaBRI,
Bordeaux), J. Beauquier (LRI, Orsay), and O. Roux (IRCCyN, Nantes) in 1994. MOVEP was held in
Nantes five times from 1994 to 2002, and adopted English as its working language in 2000. In 2004 the
school was organized in Brussels, in 2006 in Bordeaux, in 2008 near Orléans, and in 2010 in Aachen.
MOVEP 2012 is organized in Marseille, France, and will be hosted by the CIRM, an internationally
recognized conference center in mathematics, located on the campus of Luminy. This year, about 95
people from all over Europe will participate to MOVEP.

The program of MOVEP is composed of six tutorials and five advanced lectures that were proposed
by the program committee. These lectures cover various topics including model checking, runtime
verification, synthesis, real-time and stochastic systems, Petri nets, games, logic and security. The first
part of these proceedings contains short/extended abstracts and references for the tutorials and advanced
lectures.

Another important part of MOVEP are the sessions devoted to Ph.D. students. In these sessions
students have the opportunity to report on their work in short presentations. In MOVEP 2012 there are 21
such presentations in four sessions. These presentations were selected by the organizers on the basis of
submitted extended abstracts which can be found in the second part of these proceedings. We hope that
the student sessions will help the participants of the school to get feedback on their ongoing work, to get
in touch with other researchers from their area and to initiate new collaborations.

We would like to thank the Program Committee members for their help in compiling the well-balanced
program of the school. We also thank the local organization committee and the members of the MOVE
research team of the LIF who assisted us in the evaluation of the submitted papers. We would also like to
thank the invited speakers and the authors of the papers submitted to the student sessions.

We gratefully acknowledge support from CIRM, Laboratoire d’Informatique Fondamentale de Mar-
seille (LIF), Aix-Marseille Université, CNRS, INRIA, Action AFSEC (Formal Approaches for Communi-
cating Embedded Systems) of the CNRS GDR ASR (Architecture, systems and network), Conseil Général
des Bouches du Rhône, and Ville de Marseille.

November 2012
F. Cassez, T. Jéron, C. Löding, N. Markey, P.-A. Reynier, M. Ryan

Steering Committee MOVEP 2012
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Static Analysis by Abstract Interpretation of Sequential and Multithreaded Programs . . . . . . . . . . 35

AHMED BOUAJJANI

Verification of concurrent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

RUZICA PISKAC

Software Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Student Papers

FLORENT AVELLANEDA, RÉMI MORIN
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Logic and Verification

Moshe Y. Vardi
Rice University, Houston, USA

Mathematical logic developed as an attempt to provide formal foundations for mathematics.
The success of that project can be questioned, as the logical foundations of mathematics proved
to be incomplete, possibly inconsistent, and undecidable. Logic, on the other hand, proved to
be highly successful in providing formal foundations for reasoning about computing systems,
where it is deployed today in industrial tools. This tutorial will focus on one application of logic
to verification, which is the temporal analysis of systems.

References
[1] Moshe Y. Vardi. From philosophical to industrial logics. Proc. 3rd Indian Conference on Logic and

Its Applications. Lecture Notes in AI 5378, Springer, pp. 89-115, 2009.

[2] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency:
Structure versus Automata. Springer-Verlag, Lecture Notes in Computer Science 1043, 1996, pp.
238–266.
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Probabilistic Systems

Marta Kwiatkowska
Department of Computer Science, University of Oxford, UK

Probabilistic model checking is a formal verication technique for the analysis of systems
that exhibit stochastic behaviour. Such behaviour occurs, for example, due to component
failure or randomisation, commonly used as a symmetry breaker in distributed coordination
and communication protocols. The techniques have been implemented in tools such as PRISM
(www.prismmodelchecker.org) and enable a range of quantitative analyses of probabilistic
models against specifications such as the worst-case probability of failure within 10 seconds or
the minimum expected power consumption over all possible schedulings. This course will give
an overview of probabilistic model checking discrete-time Markov chains and Markov decision
processes, explaining the underlying theory and model checking algorithms for temporal logics
such as PCTL and LTL. The material will be illustrated with several case studies that have been
modelled and analysed in PRISM.
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Unfoldings: A Partial Order approach to Model
Checking

Javier Esparza
Institut für Informatik, Technische Universitat München, Garching, Germany

State space methods are the most popular approach to the automatic verification of concurrent
systems. In their basic form, these methods explore the transition system associated to the
concurrent system. Loosely speaking, the transition system is a graph having the reachable states
of the system as nodes, and an edge from a state s to another state s′ whenever the system can
make a move from s to s′. In the worst case, state space methods need to explore all nodes and
transitions of the transition system.

The main problem of transition systems as a basis for state space methods is the well-known
state-explosion problem. Imagine a concurrent system consisting of n sequential subsystems,
communicating in some way, and assume further that each of these subsystems can be in one
out of m possible states. The global state of the concurrent system is given by the local states
of its components, and so the system may have up to mn reachable states; in fact, this bound is
already reached by the rather uninteresting system in whose components run independently of
each other, without communicating at all. So very small concurrent systems may generate very
large transition systems. As a consequence, naive state space methods may have huge time and
space requirements even for very small and simple systems.

The unfolding method is a technique for alleviating the state-explosion problem. It uses
results of the theory of true concurrency to replace transition systems by special partially ordered
graphs. While these graphs contain full information about the reachable states of the system,
their nodes are not reachable states themselves. In particular, the number of nodes of the graph
does not grow linearly in the number of reachable states. The goal of the course is to provide
a gentle introduction to the basics of the unfolding method, and in particular to introduce an
unfolding-based algorithm for model checking concurrent systems against properties specified
as formulas of Linear Temporal Logic (LTL).

The course is based on the book [1].

References
[1] Javier Esparza and Keijo Heljanko. Unfoldings. A Partial-Order Approach to Model Checking.

EATCS Monographs on Theoretical Computer Science. Springer, 2008. http://www7.in.tum.de/
~esparza/bookunf.html
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Timed automata and their quantitative extensions

Kim G. Larsen
Department of Computer Science, Aalborg University, Denmark

Timed automata is by now a well-established formalism for modeling and analyzing real-time
systems, including real-time controllers, communication protocols. Over the years a number of
symbolic techniques have been developed for the efficient analysis of timed automata and with
implementation in the tool suite UPPAAL (www.uppaal.{com,org}). The UPPAAL modeling
formalism allows for the efficient analysis of safety and (time-bounded) liveness properties
of networks of interacting timed automata extended with discrete variables, structured and
user-defined types as well as user-defined functions. The course will give an overview of the
modeling formalism of timed automata and the basic symbolic model checking algorithms.
More recently the formalism of timed automata has been extended with continuous observer
variables allowing for issues related to e.g energy consumption in embedded systems. The course
reviews a number of results for the resulting notion of priced timed automata, including recent
results on energy-bounded infinite runs in the case when energy may both be consumed as well
as harvested. Most recently a stochastic semantics of (priced) timed automata has been put
forward enabling the expression of performance properties such as the probability of violating a
deadline or the expected energy consumption. A range of so-called highly scalable statistical
model-checking techniques have been implemented in UPPAAL, allowing estimation and testing
of such performance metrics to be obtained through simulation, where the simulation effort
increases with the desired level of confidence. The lecture will contain demonstration of the
UPPAAL tool, the new statistical model checking engine as well as several case studies that have
been dealt with by the tool.
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Games for Verification and Synthesis

Hugo Gimbert
CNRS, LaBRI, Université de Bordeaux, France

Game playing is a powerful metaphor that fits many situations in which interaction between
autonomous agents plays a central role. Numerous tasks in computer science and AI such as
design, synthesis, verification, testing, query evaluation, planning, etc. can be formulated in
game-theoretic terms. Viewing them abstractly as games reveals the underlying algorithmic
questions, and helps to clarify the relationships between problem domains.

This talk will illustrate how games can be used in several ways in this context: as algorithmi-
cally tractable models of controllable open systems (e.g. games on graphs and stochastic games)
as algorithmic tools (e.g. for mu-calculus model-checking) as well as proof tools (e.g. to prove
stability under complementation of recognizable set of trees).
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Safety, Dependability and Performance Analysis
of Extended AADL Models

Alessandro Cimatti
Fondazione Bruno Kessler

Trento, Italy
cimatti@fbk.eu

Thomas Noll
RWTH Aachen University

Aachen, Germany
noll@cs.rwth-aachen.de

Abstract

This MOVEP 2012 tutorial presents a component-based modeling approach to system-software
co-engineering of real-time embedded systems, in particular aerospace systems. Our method is
centered around the standardized Architecture Analysis and Design Language (AADL) modeling
framework. Taking the core features of AADL and its recent Error Model Annex, we have set up a
modeling framework that supports a variety of system analysis and verification methods. Its major
distinguishing aspects are the possibility to describe hardware and software components and their
nominal operation, hybrid (and timing) aspects, as well as probabilistic faults and their propagation
and recovery. Moreover, it supports dynamic (i.e., on-the-fly) reconfiguration of components and
inter-component connections. The operational semantics gives a precise interpretation of specifica-
tions by providing a mapping onto networks of event-data automata. These networks are then subject
to different kinds of formal analysis such as model checking, safety and dependability analysis, and
performance evaluation. We demonstrate tool support realizing these analyses and report on indus-
trial case studies that have been carried out in the context of aerospace systems. The tool is publicly
available from [1].

1 Introduction

Hardware/software (HW/SW) co-design of safety-critical systems such as on-board systems that appear
in the aerospace domain is a very complex and highly challenging task. Component-based engineering
is an important paradigm that is helpful to master this design complexity while, in addition, allowing
for re-usability. The key principle in component-based design is a clear distinction between component
behaviour (implementation) and the possible interactions between the individual components (interfac-
ing). Components may be structured in a hierarchical manner akin to an AND-composition in the visual
modelling formalism Statecharts [21]. The internal structure of a component implementation is specified
by its decomposition into subcomponents, together with their HW/SW bindings and their interaction
via connections over ports. Component behaviour is typically described by a textual representation of
mode-transition diagrams, a kind of finite-state automata.

As safety-critical systems are subject to hardware and software faults, the adequate modelling of
faults, their likelihood of occurrence, and the way in which a system can recover from faults, are es-
sential to a model-based approach for safety-critical systems. Although several formal approaches to
component-based design have been recently reported in the literature, error handling and modelling have
received scant attention, if at all. Another shortcoming of many proposals —a notable exception is the
recent work of [12]— is the lack of connection to a notation that is used and understood by design
engineers. In the COMPASS Project [1], we attempt to overcome these shortcomings by enriching a
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practical component-based modelling approach with appropriate means for modelling probabilistic fault
behaviour.

To warrant acceptance by design engineers in, e.g., aerospace industry and the automotive domain,
our approach is based on the Architecture Analysis and Design Language (AADL), a design formalism
that is standardised by the Society of Automotive Engineers [31, 32]. The major distinguishing aspects
of AADL are the possibility to describe nominal hardware and software operations, hybrid (and timing)
aspects, as well as dynamic reconfiguration of components and port connections between components.
In order to model probabilistic faults, their propagation and recovery, and degraded modes of operation,
we adopt the recent AADL Error Model Annex [33].

Error behaviour is defined by probabilistic finite-state machines, where error delays are determined
by continuous random variables, in particular, those that are governed by negative exponential distri-
butions. This strongly resembles the well-studied model of continuous-time Markov chains (CTMCs),
with the exception that nondeterminism is also allowed in our setting. The integration of nominal be-
haviour and error models follows an approach advocated in [11], and basically boils down to a product
construction of an event-data automaton and a finite interactive Markov chain (i.e., a CTMC exhibiting
nondeterminism) [23].

The remainder of this extended abstract is structured as follows. Section 2 provides a gentle introduc-
tion to our AADL dialect incorporating error modelling features by means of a small example. Section 3
presents the COMPASS Toolset that supports the modelling and formal analysis of AADL specifications.

2 SLIM Modelling Language

The System-Level Integrated Modelling (SLIM) language [9] has been designed as an “extended subset”
of AADL [31, 32] in order to provide a cohesive and uniform approach to model heterogeneous systems,
consisting of software (e.g., processes and threads) and hardware (e.g., processors and buses) compo-
nents, and their interactions. Furthermore, it has been drafted with the following essential features in
mind:

• Modelling both the system’s nominal and faulty behaviour. To this aim, SLIM provides primitives
to describe software and hardware faults, error propagation (that is, turning fault occurrences into
failure events), sporadic (transient) and permanent faults, and degraded modes of operation (by
mapping failures from architectural to service level).

• Modelling (partial) observability and the associated observability requirements. These notions are
essential to deal with diagnosability and Fault Detection, Isolation and Recovery (FDIR) analyses.

• Specifying timed and hybrid behaviour. In particular, in order to analyse continuous physical
systems such as mechanics and hydraulics, the SLIM language supports continuous real-valued
variables with (linear) time-dependent dynamics.

• Modelling probabilistic aspects, such as random faults, repairs, and stochastic timing.

Here we give a comprehensive presentation of the capabilities of the SLIM language, using a running
example. Its formal semantics is described in [8].

A complete SLIM specification consists of three parts, namely a description of the nominal be-
haviour, a description of the error behaviour and a fault injection specification that describes how the
error behaviour influences the nominal behaviour. These three parts are discussed in order below.
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device Battery

features

empty: out event port;

tryReset: in data port bool default false;

voltage: out data port real default 6.0;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous default 1.0;

modes

charged: activation mode while energy’ = -0.02 and energy >= 0.2;

depleted: mode while energy’ = -0.03 and energy >= 0.0;

transitions

charged -[then voltage := 2.0 * energy + 4.0]-> charged;

charged -[reset when tryReset]-> charged;

charged -[empty when energy = 0.2]-> depleted;

depleted -[then voltage := 2.0 * energy + 4.0]->depleted;

depleted -[reset when tryReset]-> depleted;

end Battery.Imp;

Figure 1: Specification of a battery component.

2.1 Nominal Behaviour

A SLIM model is hierarchically organised into components, distinguished into software (processes,
threads, data), hardware (processors, memories, devices, buses), and composite components (called sys-
tems). Components are defined by their type (specifying the functional interfaces as seen by the environ-
ment) and their implementation (representing the internal structure). An example of a component’s type
and implementation is shown in Figure 1, which represents a simple battery device [7].

The component type describes the ports through which the component communicates. For example,
the type interface of Figure 1 features three ports, namely an outgoing event port empty which indicates
that the battery is about to become discharged, an incoming data port tryReset which indicates that the
battery device should (try to) reset, and an outgoing data port voltage which makes its current voltage
level accessible to the environment.

A component implementation defines its subcomponents, their interaction through (event and data)
port connections, the (physical) bindings at runtime, the operational behaviour via modes, the transitions
between them, which are spontaneous or triggered by events arriving at the ports, and the timing and
hybrid behaviour of the component. For example, the implementation of Figure 1 specifies the battery to
be in the charged mode whenever activated, with an energy level of 100%. This level is continuously
decreased by 2% (of the initial amount) per time unit (energy’ denotes the first derivative of energy)
until a threshold value of 20% is reached, upon which the battery changes to the depleted mode. This
mode transition triggers the empty output event, and the loss rate of energy is increased to 3%. Moreover,
the voltage value is regularly computed from the energy level (ranging between 6.0 and 4.0 [volts])
and made accessible to the environment via the corresponding outgoing data port. In addition, the battery
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system Power

features

alert: out data port bool observable;

end Power;

system implementation Power.Imp

subcomponents

batt1: device Battery.Imp in modes (primary);

batt2: device Battery.Imp in modes (backup);

mon: device Monitor.Imp;

connections

data port batt1.voltage -> mon.voltage in modes (primary);

data port batt2.voltage -> mon.voltage in modes (backup);

data port mon.alert -> alert;

data port mon.alert -> batt1.tryReset in modes (primary);

data port mon.alert -> batt2.tryReset in modes (backup);

modes

primary: initial mode;

backup: mode;

transitions

primary -[batt1.empty]-> backup;

backup -[batt2.empty]-> primary;

end Power.Imp;

Figure 2: The complete power system.

listens to the tryReset port to decide when a reset operation should be performed in reaction to faulty
behaviour (see the description of error models below).

In general, the mode transition system —basically a finite-state automaton— describes how the com-
ponent evolves from mode to mode while performing events. Invariants on the values of data components
(such as “energy >= 0.2” in mode charged) restrict the residence time in a mode. Trajectory equa-
tions (such as the one associated with energy’) specify how continuous variables evolve while residing
in a mode. This is akin to timed and hybrid automata [22]. Here we assume that all invariants are given
by Boolean expressions over data subcomponents and constants where each arithmetic subexpression is
linear. Moreover we constrain the derivatives occurring in trajectory equations to real constants, i.e., the
evolution of continuous variables is described by linear functions.

A mode transition is of the form m -[e when g then f]-> m′. It asserts that the component can
evolve from mode m to mode m′ on the occurrence of event e (the trigger event) provided the guard g, a
Boolean expression that may depend on the component’s (discrete and continuous) data elements, holds.
Here “data elements” refers to both (incoming and outgoing) data ports and data subcomponents of the
respective component. On transiting, the effect f which may update data subcomponents or outgoing
data ports (like voltage) is applied. The presence of event e, guard when g and effect then f is
optional. If absent, e defaults to an internal event, g to true, and f to the empty effect.

Mode transitions may give rise to modifications of a component’s configuration: subcomponents can
become (de-)activated and port connections can be (de-)established. This depends on the in modes
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device Monitor

features

voltage: in data port real;

alert: out data port bool;

end Monitor;

device implementation Monitor.Imp

flows

alert := (voltage < 4.5);

end Monitor.Imp;

Figure 3: Specification of the monitor.

clause, which can be declared along with port connections and subcomponents. This is demonstrated
by the specification in Figure 2, which shows the usage of the battery component in the context of a
redundant power system. It contains two instances of the battery device, being respectively active in the
primary and the backup mode. The mode switch that initiates reconfiguration is triggered by an empty

event arriving from the battery that is currently active.
The behaviour of a component after a re-activation (that is, an activation following a previous de-

activation) depends on the definition of its starting mode. If the latter is declared using the initial

attribute (such as mode primary of the Power component in Figure 2), then mode history is supported,
that is, after re-activation the component resumes its operation without changing its mode or the values
of its data elements. In contrast, the activation attribute (which is, e.g., attached to mode charged

in Figure 1) indicates that each re-activation resets the component to its starting mode, using the default
values for its data elements. In other words, the model assumes that batteries will be recharged upon
re-activation.

Moreover, the definition of the power system includes a monitor component which checks the current
voltage level and raises an alarm if it falls below a critical threshold of 4.5 [volts]. Its specification
is shown in Figure 3; it employs another modelling concept, a so-called flow. A flow establishes a
direct dependency between an outgoing data port of a component and (some of) its incoming data ports,
meaning that a value update of one of the given incoming data ports immediately causes a corresponding
update of the outgoing data port. In our concrete example, the flow-defined value of the outgoing data
port alert is forwarded to the environment (by the data port connection mon.alert -> alert as
defined in Figure 2) and is also used for triggering battery resets (by the connection to data port tryReset
of the currently active battery).

2.2 Error Behaviour

Error models in SLIM are an extension to the specification of nominal models and are used to conduct
safety and dependability analyses. For modularity, they are defined separately from nominal specifica-
tions. Akin to nominal models, an error model is defined by its type and its associated implementation.

An error model type defines an interface in terms of error states and (incoming and outgoing) error
propagations. Error states are employed to represent the current configuration of the component with
respect to the occurrence of errors. Error propagations are used to exchange error information between
components.
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error model BatteryFailure

features

ok: activation state;

dead: error state;

resetting: error state;

batteryDied: out error propagation;

end BatteryFailure;

error model implementation BatteryFailure.Imp

events

fault: error event occurrence poisson 0.001;

works: error event occurrence poisson 0.2;

fails: error event occurrence poisson 0.8;

transitions

ok -[fault]-> dead;

dead -[batteryDied]-> dead;

dead -[reset]-> resetting;

resetting -[works]-> ok;

resetting -[fails]-> dead;

end BatteryFailure.Imp;

Figure 4: An error model.

An error model implementation provides the structural details of the error model. It is defined by a
(probabilistic) machine over the error states declared in the error model type. Transitions between states
can be triggered by error events, reset events, and error propagations.

Error events are internal to the component; they reflect changes of the error state caused by local
faults and repair operations, and they can be annotated with occurrence distributions to model proba-
bilistic error behaviour. Moreover, reset events can be sent from the nominal model to the error model
of the same component, trying to repair a fault which has occurred. Whether or not such a reset opera-
tion is successful has to be modelled in the error implementation by defining (or respectively omitting)
corresponding state transitions. Outgoing error propagations report an error state to other components.
If their error states are affected, the other components will have a corresponding incoming propagation.

Figure 4 presents a basic error model for the battery device. It defines a probabilistic error event,
fault, which occurs once every 1000 time units on average. Whenever this happens, the error model
changes into the dead state. In the latter, the battery failure is signalled to the environment by means of
the outgoing error propagation batteryDied. Moreover, the battery is enabled to receive a reset event
from the nominal model to which the error behaviour is attached. It causes a transition to the resetting
state, from which the battery recovers with a probability of 20%, and returns to the dead state otherwise.

Just as for nominal component specifications, we distinguish between initial and activation

starting states. Their meaning is similar to that of initial and activation modes: if an initial state is given,
the error model is put in that state only in the beginning of system execution, supporting error history
during deactivation phases. With an activation state, the error model starts over again in that state after
each (re-)activation of the respective component. This distinction is useful, e.g., for modelling the dif-
ferent error behaviour of hardware and software components: while reactivating a hardware component
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(like a processor) will generally not remove the cause of an error, this is usually the case for software
components (such as processes).

2.3 Fault Injection

As error models bear no relation with nominal models, an error model does not influence the nominal
model unless they are linked through fault injection.

A fault injection describes the effect of the occurrence of an error on the nominal behaviour of the
system. More concretely, it specifies the value update that a data element of a component implementation
undergoes when its associated error model enters a specific error state.

To this aim, each fault injection has to be given by the user by specifying three parts: a state s in the
error model, an outgoing data port or subcomponent d in the nominal model, and the fault effect given
by the expression a. Multiple fault injections between error models and nominal models are possible.

The automatic procedure that integrates both models and the given fault injections, the so-called
model extension, works as follows. The principal idea is that the nominal and error models are running
concurrently. That is, the state space of the extended model consists of pairs of nominal modes and
error states, and each transition in the extended model is due to a nominal mode transition, an error state
transition, or a combination of both (in case of a reset operation). The above fault injection becomes
enabled whenever the error model enters state s. In this case the assignment d := a is carried out, i.e., the
data subcomponent is assigned with the fault effect. This error effect is maintained as long as the error
model stays in state s, overriding possible assignments to d in the nominal model. When s is left, the
fault injection is disabled (but possibly another one is enabled).

For the power system example, the nominal model Power.Imp from Figure 1 and the error model
BatteryFailure.Imp from Figure 4 can e.g. be linked through the injection of voltage := 0.0 upon
entering error state dead. The corresponding extended model is shown in Figure 5.

As the nominal and the error models contain two modes and three states, respectively, the extended
model has six modes which are represented in the form m#s (for nominal mode m, and error state s). The
transitions of the extended model fall into five different categories:

1. Nominal transitions are just copied if the error model is in its starting state (ok).

2. Error event transitions give rise to internal, probabilistic transitions which include the failure ef-
fects, if applicable.

3. Failure effects are also attached to nominal transitions if the error model is in the respective error
state (dead in our example).

4. A combined reset transition is possible if it is enabled in both the nominal and the error model.

5. Finally, the outgoing error propagation batteryDied is turned into an event port, and correspond-
ing transitions are added.

3 The COMPASS Toolset

The COMPASS toolset is the result of a significant implementation effort carried out by the COMPASS
Consortium in a time frame of nearly three years. The design and implementation involved a full team
of six researchers and twelve programmers. The GUI of the tool and most subcomponents (including the
parsing routines, property manager, fault injection, and translators to and from SLIM) are implemented
in the Python programming language, using the PyGTK library. Pre-existing components, such as the
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device Battery

features

empty: out event port;

tryReset: in data port bool default false;

voltage: out data port real default 6.0;

batteryDied: out event port;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous default 1.0;

modes

charged#ok: activation mode while energy’ = -0.02 and energy >= 0.2;

charged#dead, charged#resetting:

mode while energy’ = -0.02 and energy >= 0.2;

depleted#ok, depleted#dead, depleted#resetting:

mode while energy’ = -0.03 and energy >= 0.0;

transitions

-- (i) Purely nominal transitions

charged#ok -[then voltage := 2.0 * energy + 4.0]-> charged#ok;

charged#ok -[empty when energy = 0.2]-> depleted#ok;

depleted#ok -[then voltage := 2.0 * energy + 4.0]-> depleted#ok;

-- (ii) Error event transitions

charged#ok -[prob 0.001 then voltage := 0.0]-> charged#dead;

depleted#ok -[prob 0.001 then voltage := 0.0]-> depleted#dead;

charged#resetting -[prob 0.2]-> charged#ok;

depleted#resetting -[prob 0.2]-> depleted#ok;

charged#resetting -[prob 0.8 then voltage := 0.0]-> charged#dead;

depleted#resetting -[prob 0.8 then voltage := 0.0]-> depleted#dead;

-- (iii) Nominal transitions with fault injection

charged#dead -[then voltage := 0.0]-> charged#dead;

charged#dead -[empty when energy = 0.2]-> depleted#dead;

depleted#dead -[then voltage := 0.0]-> depleted#dead;

-- (iv) Reset transitions

charged#dead -[when tryReset]-> charged#resetting;

depleted#dead -[when tryReset]-> depleted#resetting;

-- (v) Error propagation transitions

charged#dead -[batteryDied]-> charged#dead;

depleted#dead -[batteryDied]-> depleted#dead;

end Battery.Imp;

Figure 5: Battery component after model extension.

NuSMV and MRMC model checker, are instead written in C. Overall, the core of the COMPASS toolset
consists of about 100,000 lines of Python code. Figure 6 visualizes the embedding of the toolset in the



24 A. Cimatti, Th. Noll

Requirements
Model

ExtendedModel

Extension

Traces

(Counterex.)

Trees

Fault

Tables

FMEA

Requirements

Observability

Effectiveness

FDIR

Measures

Performability

Counterex.

Witnesses/

Fault

Injections

Input

Nominal

Model

Model

Error

Model

Checking

Validation

Tool

Output

Figure 6: Methodology of the COMPASS Approach.

overall methodology.
The toolset takes as input one or more models written in the SLIM language, and a set of property

patterns [16, 19]. Property patterns are internally converted into temporal logic before being fed to the
underlying model checkers. This approach is intended to provide a simpler and better usable interface for
system and software engineers, hiding the details of the temporal logic encoding. The COMPASS toolset
provides templates for the most frequently used patterns. The tool generates several artefacts as output,
among them: traces resulting either from simulation of the SLIM specification or as counterexamples for
properties not satisfied by the specification; (probabilistic) fault trees and FMEA tables; diagnosability
and performability measures. The toolset builds upon the following main components:
NuSMV [30, 13] (New Symbolic Model Verifier) is a symbolic model checker, supporting state-of-the-

art verification techniques such as BDD-based and SAT-based verification techniques for CTL and
LTL.

MRMC [29, 25, 27] (Markov Reward Model Checker) is a probabilistic model checker, supporting the
analysis of discrete-time and continuous-time Markov reward models. It supports PCTL (Proba-
bilistic Computation Tree Logic) and CSL (Continuous Stochastic Logic [2], a probabilistic real-
time version of CTL), as well as variants thereof referring to expected costs and total accumulated
costs.

SigRef [34] is a tool for minimising, amongst others, Interactive Markov Chains (IMC) with respect to
different notions of bisimulation. It works in a fully symbolic manner using multi-terminal BDD
representations of IMCs and applies signature-based algorithms.

Other components are used to manage parsing of models, parsing and editing of properties, fault injec-
tion and model extension, the translation from and to different languages supported by the verification



Safety, Dependability and Performance Analysis of Extended AADL Models 25

engines, and the visualization of the results.
In the remainder of this section, we overview the formal analyses supported by the COMPASS

toolset.

3.1 Functional Correctness

The COMPASS toolset supports both traditional methods for analysis of functional correctness, such as
simulation, and automated techniques for property verification, based on model checking.

Model-based simulation can be performed in two variants: random simulation, and guided simula-
tion. Guided simulation comes in two different flavours: in guided-by-transitions simulation, the user
can execute a step-by-step-simulation by choosing the next transition to be taken, among the enabled
ones; in guided-by-values simulation, the user can perform a step-by-step-simulation by choosing a tar-
get value for one or more variables, and let the toolset choose a transition that drives the system into the
target state, if any exists. The generated traces can be inspected using a trace manager that displays the
values of the model variables of interest (filtering is possible) for each step, in a human-readable form;
in case of timed and hybrid systems, timed transitions are highlighted.

Property verification is carried out by using model checking [3]. Model checking is an automated
technique that verifies whether a property, typically expressed in temporal logic, holds for a given model.
Symbolic techniques are used to tackle the state explosion problem. The COMPASS platform integrates
the model checking capabilities provided by the NuSMV model checker. The version of NuSMV in-
tegrated in the COMPASS toolset supports both state-of-the-art BDD-based and SAT-based verification
for finite-state systems, and SMT-based verification techniques for timed and hybrid systems, based on
the MathSAT solver [6, 28]. On refutation of a property, a counterexample is generated by the model
checker, showing an execution trace of the model violating the property; the trace can be inspected using
the trace manager.

In addition to property model checking, it is also possible to run deadlock checking, in order to
pinpoint deadlocks (states with no outgoing transitions) in the model, if there are any.

3.2 Safety Assessment

Model-based safety assessment of SLIM models aims at reducing the effort involved in safety assessment
and at increasing the quality of the results by focusing on building formal models of the system, rather
than carrying out the analyses. The analyses are based on symbolic model checking techniques [18, 10]
first developed in the ESACS [17] and ISAAC [24] projects. As advocated in [11], an essential step to
enable safety analysis is the decoupling between the nominal behaviour and the error behaviour of the
system, realised by means of model extension, as explained in Section 2.3.

COMPASS automates traditional techniques for failure analysis, namely Failure Mode and Effects
Analysis (FMEA) and Fault Tree Analysis (FTA). FMEA is an inductive (bottom-up) technique that starts
by identifying a set of failure modes and, using forward reasoning, assesses their impact on a set of events
(system properties). It requires a set of failure modes and a set of events to be analysed as input. FMEA
typically considers single faults, but fault configurations involving several faults can be investigated as
well. The set of fault configurations to be analysed is provided by specifying the cardinality of the FMEA
table to be generated (generating a table of cardinality k amounts to considering sets of failure modes
of cardinality at most k). The analysis results are summarised in an FMEA table, which links the given
fault configurations with their effect on the given events. It is also possible to generate dynamic FMEA
tables, namely to enforce an order of occurrence between failure modes within a fault configuration.
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Figure 7: Example fault tree of the battery power system.

FTA is a deductive (top-down) technique, which, given a top-level event (TLE), i.e., the specification
of an undesired condition, constructs all possible chains of one of more basic faults that contribute to
the occurrence of the TLE, and pictorially represents these causal dependencies in a fault tree. In the
COMPASS toolset, a fault tree can be represented as the collection of its minimal cut sets [11]. In
this form, a fault tree has a two-layer logical structure, consisting of the disjunction of the minimal cut
sets, each cut set being the conjunction of the corresponding basic faults. COMPASS also supports the
generation of dynamic fault trees by analysing for each minimal cut set in which order the constituent
basic faults have to occur to trigger the TLE; pictorially, such ordering constraints are represented using
a priority AND (PAND) logical gate in the generated fault tree.

Figure 7 depicts a simple fault tree that is generated by FTA considering the TLE “batt1.voltage
< 4.0 and batt2.voltage < 4.0” in the power system model of Section 2. The fault tree con-

tains only one minimal cut set (in the terminology introduced earlier in this section), corresponding
to the unique child of the top-level OR gate, called fault cfg 1. This cut set is a conjunction (AND
gate in the fault tree) of two basic faults, namely batt1._errorSubcomponent.#fault and batt2.

_errorSubcomponent.#fault. The fault tree shows that the only cause that can lead to the occurrence
of TLE is when both batteries die.

3.3 Diagnosability and FDIR Analysis

The COMPASS toolset also supports diagnosability analysis and FDIR (Fault Detection, Isolation and
Recovery) effectiveness analysis. These analyses work under the hypothesis of partial observability.
Rarely real applications are fully observable: parts of their state are hidden, and sensors are used to
expose (partial) information about otherwise unobservable aspects. Diagnosis starts from the observed
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run time behaviour of a system, and tries to provide an explanation (in terms of hidden states). Variables
and ports in SLIM models can be declared to be observable, such as the outgoing data port alert in
Figure 2.) The observables specify which variables or states are visible during execution. Diagnosis
amounts to identifying the set of possible causes of a specific unexpected or faulty behaviour.

Diagnosability analysis is typically carried out before a fault management subsystem is available. It
investigates the possibility for an ideal diagnosis system to infer accurate and sufficient run-time infor-
mation on the behaviour of the observed system. Given a diagnosability property, diagnosability depends
on the observed system and the available observations. The COMPASS toolset follows the approach de-
scribed in [14]. In this framework, the violation of a diagnosability condition (e.g., fault detection) is
reduced to the search of critical pairs. A critical pair is a pair of executions that are indistinguishable
(i.e., they share the same inputs and observations), but hide conditions that should be distinguished (e.g.,
the fault is triggered only in one of the two executions). As an example, consider the property “batt1
.voltage < 4.0 and batt2.voltage < 4.0” in the power system model. This property turns out
to be not diagnosable, with the set of observables provided in the model, that is, the signal alert. The
reason for non-diagnosability lies in the fact that the signal alert does not allow to distinguish the case
where the batteries die from the case where they are depleted (in mode depleted, the voltage may reach
a minimum value of 4.0, whereas the signal alert is activated when the voltage decreases below 4.5).
If we add another observable signal, say alert2 defined as “alert2 := (voltage < 4.0)”, then the
system becomes diagnosable. Diagnosability analysis is implemented using model checking techniques
that search for critical pairs in the so-called twin plant model which consists of a pair of instances of the
original model, running in parallel. Using techniques similar to those used for computing minimal cut
sets, it is also possible to automatically synthesise a set of observables that ensure diagnosability of a
given SLIM model, see [4].

FDIR effectiveness analysis is carried out on an existing fault management subsystem, in order to
ensure that it meets the diagnosability requirements. Fault detection is concerned with detecting whether
a given system is malfunctioning. It checks whether a candidate observable signal can be considered
as a fault detection means for a given fault, i.e., every occurrence of the fault will eventually cause the
observable to be true. The COMPASS toolset reports all such observables as possible detection means.
As an example, the observable alert is a fault detection means for the property “batt1.voltage <

4.0 and batt2.voltage < 4.0”, as it will be activated whenever this property holds. Fault isolation
analysis is concerned with identifying the specific cause of malfunctioning. It generates a fault tree that
contains the minimal explanations that are compatible with the observable being true. In case of per-
fect isolation, the fault tree contains a single cut set consisting of one fault, indicating that the fault has
been identified as the cause of the malfunctioning. A fault tree with more than one cut set indicates that
there may be several explanations for the malfunctioning. As an example, the observable alert has two
possible explanations in terms of elementary faults: either batt1 has died, or batt2 has died. Finally,
fault recovery analysis is used to check whether a system is able to recover from a fault, according to a
user-specified recoverability property. For instance, consider the property “always (batt1.voltage

< 4.4 implies eventually batt1.voltage > 5.5)”. This property states that whenever the volt-
age of batt1 decreases below value 4.4, it will eventually recover, that is, it will be recharged so that its
voltage is above value 5.5. This property is true in the nominal model, because the model assumes that
batteries will be recharged upon re-activation (note that mode charged is declared to be an activation
mode in Figure 1). However, this property does not hold when error behaviour is taken into account, as
a battery may die, and the fault injection “voltage := 0.0” overrides the nominal behaviour in such
a case (note that the reset operation may be unsuccessful). As for safety analysis, FDIR effectiveness
analysis are implemented using model checking techniques.
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Figure 8: Cumulative distribution function curve resulting from performability analysis.

3.4 Performability Analysis

In order to guarantee the required performance, a SLIM model can be evaluated using probabilistic model
checking techniques [3, Ch. 10]. The COMPASS toolset supports model checking of properties ex-
pressed in Continuous Stochastic Logic (CSL), which allows for the formal specification of well-known
steady-state and transient probabilities, and more intricate performance measures such as combinations
thereof.

As an example, consider a version of the redundant battery model in Section 2 where the energy is not
expressed by a continuous differential equation, but by a discretised representation. This is needed for
performability analysis, as it is yet unknown how to analyse stochastic hybrid systems with continuous-
time stochastic aspects. Typical performance requirements of interest would be “the probability that the
first battery dies within 100 hours” or “the probability that both batteries die within the mission duration”.

In order to verify these performance requirements, the extended SLIM model undergoes several
transformation steps. First, its reachable state space is generated through exhaustive (symbolic, i.e.,
BDD-based) exploration. In this phase, the error transitions, like those marked with prob in Figure 5,
are viewed as ordinary transitions. In the second phase, the probabilistic rates (captured by prob) are
interwoven through the previously generated state space by replacing the transition label with the associ-
ated probabilistic rate. The resulting state space is an Interactive Markov Chain, i.e., a Continuous-Time
Markov Chain (CTMC) that may exhibit non-determinism [23]. This IMC is passed through the third
phase, in which it is minimized using weak bisimulation minimization [15]. The IMC may turn into a
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CTMC. Note that transitions in the resulting CTMC have rates that are either the same as the rates defined
by the occurrences definition in the SLIM error model, or are, due to probabilistic bisimilarity, sums of
those rates. Furthermore, the state labellings in that CTMC reflect the atomic propositions induced from
the performance requirements. In the final phase the CSL formulae are extracted from the performance
requirements using the patterns from [20] and then together with the CTMC fed to MRMC probabilistic
model checker [25, 26, 29], to compute the desired probabilities. The result is a graph showing the cumu-
lative distribution function over the time horizon specified in the performance requirement. An example
screenshot of this from the COMPASS toolset is shown in Figure 8.

The same probabilistic model checking techniques are used for fault tree evaluation, i.e., computing
the probability of the top-level event in dynamic fault trees by transforming it into its underlying Markov
Chain [5].
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Starting from a definition of runtime verification, we develop a taxonomy that explains the
different aspects of runtime verification. We explain the core idea of runtime verification by
showing how monitors can be attached to existing programs, be used to verify certain aspects
of the underlying program as well as be used to guide the program execution. The main part
of the presentation deals with synthesis techniques that, starting from a high level correctness
specifications, derive suitable monitors automatically. We start with properties expressed in linear
temporal logic (LTL), first with a semantics on finite traces and then extended to a semantics
over infinite traces.
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Computer-Aided Cryptographic Proofs and
Designs

Gilles Barthe
IMDEA Software, Madrid, Spain

EasyCrypt is a tool for constructing and verifying cryptographic proofs. EasyCrypt can
be used as a stand-alone application, or as a verifying back-end for cryptographic compilers.
SyntheCrypt is a new tool that synthesizes public-key encryption schemes and generates proofs
of security in EasyCrypt. The presentation will outline the language-based methods that underlie
the design of both tools and illustrate some of their applications.
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Abstract

In the realm of embedded critical systems, it is crucial to guarantee the correctness of programs
before they are deployed. Static analyzers can help by detecting at compile-time potentially erro-
neous program behaviors: they perform sound over-approximations to achieve an efficient analysis
while not missing any potential behavior. We discuss the systematic design of such analyzers using
abstract interpretation, a general theory of semantic approximation. After recalling the classic con-
struction of static analyzers for sequential programs by abstraction of the concrete trace semantics,
we introduce abstractions to derive thread-modular analyzers for multithreaded programs, borrowing
ideas from rely/guarantee proof methods. Finally, we present two static analyzer tools, Astre and
AstreA, that are used to check for run-time errors in large sequential and multithreaded embedded
industrial avionic C applications.

1 Introduction

It is crucial to guarantee the correctness of programs before they are deployed, especially in the realm of
embedded critical systems, where software cannot be corrected during missions and a single mistake can
have dramatic consequences. Testing, the most widespread verification method employed in industry,
is very efficient at catching errors, but it is costly and cannot, for efficiency reasons, test all executions.
Hence, testing can miss errors. This is especially true for parallel and multithreaded programs: the huge
number of possible thread interleavings causes a combinatorial explosion of executions, while some
errors only appear in a tiny fraction of them (such as data-races). Formal methods, on the other hand,
can provide rigorous guarantees that all the executions are correct.

We consider here static analyses, able to inspect program sources in order to find defects. We only
consider semantic analyses, that are based on a mathematical notion of program behaviors, as opposed
to syntax-based style checkers. Unlike proof methods, which require the user to provide annotations,
these analyses run on the original, unannotated source without human intervention. Full automation and
efficiency imply that such analyses are approximated. We impose soundness: unlike testing, program
behaviors are over-approximated so that, if an error is present, it will be detected. However, the analysis
can report spurious errors. Sound static analyzers have been used for decades in applications, such as
program optimization, where precision is not critical. Recent progress had lead to the design of tools able
to check for simple but important safety properties (such as the absence of run-time error) with few or
zero false alarms. We participated in the design of two of them [2]: Astre, an industrial-strength analyzer

∗This work was partially supported by the INRIA project “Abstraction” common to CNRS and ENS in France, and by the
project ANR-11-INSE-014 from the French Agence nationale de la recherche.
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that checks for run-time errors in synchronous embedded C code, and AstreA, its prototype extension
targeting multithreaded embedded C applications.

These analyzers are based on abstract interpretation, which is a general theory of program semantics
introduced by Cousot and Cousot in the late ’70s [5]. Abstract interpretation stems from the observation
that many semantics can be uniformly expressed as fixpoints of operators, after which seemingly unre-
lated semantics can be compared. It expresses formally the fact that some semantics are more abstract
than (lose information with respect to) others as they compute approximations in less rich domains of
properties. It provides tools to prove soundness: any property proved in an abstract semantic is still true
in the concrete one. Finally, it provides tools to design and combine abstractions.

The aim of the article is to give a short overview of the theory underlying tools such as Astre and
AstreA. Section 2 focuses on sequential programs and presents the classic construction of an effective
analyzer by abstraction of the most concrete semantics of a program: its execution traces. Section 3
considers multithreaded programs and explains how, borrowing ideas from rely/guarantee proof methods
[14], an efficient, thread-modular analysis can be constructed. Section 4 briefly presents the Astre and
AstreA analyzers, and Sec. 5 concludes.

The modest contribution of this article is the formulation, in Sec. 3.4, of Jones’ rely/guarantee method
[14] in abstract interpretation form, as an abstraction of the execution traces of multithreaded programs
by decomposition into intra-thread invariants and inter-thread interferences. This extends previous work
in the 80’s [7] that formalized earlier Owicki–Gries–Lamport methods [17, 15] as abstract interpretation.
It also extends our recent previous work [16], that only considered coarse abstract interferences, by
exhibiting an intermediate layer of abstraction from which it can be recovered.

2 Abstractions for Sequential Programs

As a short introduction to abstract interpretation concepts, we review the formal construction of a static
analyzer for sequential programs by abstraction of its trace semantics — see also [2, § II] for an extended
introduction.

2.1 Transition Systems

The semantics of a program is defined classically [5] in a very general way in small step operational
form, as a transition system: (Σ,τ, I), where Σ is a set of states, I ⊆ Σ is the subset of initial states, and
τ ⊆ Σ×Σ is a transition relation. For sequential programs, the state set is defined as Σ

def
= L ×M , where

each state σ = (`,m) has a control part ` ∈L denoting the current program point, and a memory part
m ∈M

def
= V → V mapping program variables V ∈ V to values v ∈ V. A transition models an atomic

execution step, such as executing a machine-code instruction in a program. We denote by (`,m)→
(`′,m′) the fact that ((`,m),(`′,m′)) ∈ τ , i.e, the program can reach the state (`′,m′) from the state (`,m)
after one execution step. The transition system derives mechanically from the program code itself, e.g.,
from the sequence of binary instructions or, more conveniently, by induction on the syntax tree of the
source code.

Example 1. Consider the simple programming language syntax:

`P`′ ::= `x := e`
′ | `if e then `′′P`′ | `while e do `′′P`′ | `P; `

′′
P′`

′
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(1) i := 2;

(2) n := input int();

(3) while i < n do

(4) if input bool() then i := i + 1;

(5) done;

(6) assert i >= 2;

at (1): i = 0∧n = 0
at (2): i = 2∧n = 0
at (3): 2≤ i≤max(2,n)
at (4): 2≤ i≤ n−1∧n≥ 3
at (5): 2≤ i≤ n∧n≥ 3
at (6): i = max(2,n)

(a) (b)

Figure 1: A simple sequential program (a), and invariant assertions (b).

n

i

...

n

i

...

n

i

(a) (b) (c)

Figure 2: Semantics of the program in Fig. 1 at various levels of abstractions: (a) traces, and (b) reachable
states and (c) intervals at program point (3).

where ` and e denote respectively syntactic program points and expressions. The transition system τ[`P`′ ]
is derived by induction on the syntax of P as follows:

τ[`x := e`
′
]

def
= {(`,m)→ (`′,m[x 7→ v]) |m ∈M , e m

 v}

τ[`if e then `′′P`′ ]
def
= {(`,m)→ (`′′,m) |m ∈M , e m

 true}∪ τ[`
′′
P`′ ]∪

{(`,m)→ (`′,m) |m ∈M , e m
 false}

τ[`while e do `′′P`′ ]
def
= {(`,m)→ (`′′,m) |m ∈M , e m

 true}∪ τ[`
′′
P`]∪

{(`,m)→ (`′,m) |m ∈M , e m
 false}

τ[`P; `
′′
P′`

′
]

def
= τ[`P`′′ ]∪ τ[`

′′
P′`

′
]

where m[x 7→ v] denotes the function mapping x to v and y 6= x to m(y), and e m
 v states that e can

evaluate to the value v in the memory m. �

2.2 Trace Semantics

We are not interested in the program itself, but in the properties of its executions. Formally, an execution
trace is a finite sequence of states σ0 → σ1 → ··· → σn such that σ0 ∈ I and ∀i, (σi,σi+1) ∈ τ . The
semantics we want to observe, which is called a collecting semantics, is thus defined in our case as the
set T ∈P(Σ∗) of traces spawned by the program. It can be expressed [6] as the least fixpoint of a
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continuous operator in the complete lattice of sets of traces:

T = lfp F where
F(X)

def
= I∪{σ0→ ··· → σi+1 |σ0→ ··· → σi ∈ X ∧σi→ σi+1 }

(1)

i.e., T is the smallest set containing traces reduced to an initial state and closed under the extension of
traces by an additional execution step. Note that we are observing partial execution traces; informally,
we allow executions to be interrupted prematurely; formally, T is closed by prefix (it also includes the
finite prefixes of non-terminating executions). This is sufficient if we are interested in safety properties,
i.e., properties of the form “no bad state is ever encountered,” which is the case here — more general trace
semantics, able to also reason about liveness properties, are discussed for instance in [4]. A classic result
[6] is that T can be restated as the limit of an iteration sequence: T =

⋃
n∈N Fn( /0). It becomes clear then

that computing T is equivalent to testing the program on all possible executions (albeit with an unusual
exhaustive breadth-first strategy) and that it is not adapted to the effective and efficient verification of
programs: when the program has unbounded or infinite executions, T is infinite.

Example 2. The simple program in Fig. 1.a increments i in a loop, until it reaches a user-specified value
n. Figure 2.a presents its trace semantics starting in the state set I = {(1, [m 7→ 0,i 7→ 0])}. The program
has infinite executions (e.g., if i is never incremented). �

2.3 State Semantics

We observe that, in order to prove safety properties, it is not necessary to compute T exactly. It is
sufficient to collect the set S ∈P(Σ) of program states encountered, abstracting away any information
available in T on the ordering of states. We use an abstraction function αstate : P(Σ∗)→P(Σ):

S = α
state(T ) where α

state(X)
def
= {σ |∃σ0→ ·· · → σn ∈ X , i ∈ [0;n], σ = σi } (2)

An important result is that, as T , S can be computed directly as a fixpoint:

S = lfp G where G(X)
def
= I∪{σ

′ |∃σ ∈ X , σ → σ
′ }

or, equivalently, as an iteration sequence S =
⋃

n∈N Gn( /0), which naturally expresses that S is the set of
states reachable from I after zero, one, or more transitions. The similarity in fixpoint characterisation
of S and T is not a coincidence, but a general result of abstract interpretation (although, in most cases,
the abstract fixpoint only over-approximates the concrete one: lfp G ⊇ αstate(lfp F), see [4]). Dually,
given a set of states S, one can construct the set of traces abstracted by S using a concretization function
γstate def

= λS .{σ0→ ··· → σn |n ∈N∧∀i ∈ [0;n], σi ∈ S}. The pair (αstate,γstate) forms a Galois connec-
tion.1 A classic result [5] states that the best abstraction of F can be defined as αstate ◦F ◦ γstate, which
in our case turns out to be exactly G. When the set of states is finite (e.g., when the memory is bounded),
S can always be computed by iteration in finite time, even if T cannot. Obviously, S may be extremely
large and require many iterations to stabilize, hence computing S exactly is not a practical solution; we
will need further abstractions.

1I.e., ∀X ∈P(Σ∗),∀Y ∈P(Σ), αstate(X)⊆ Y ⇐⇒ X ⊆ γstate(Y ).
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2.4 Program Proofs and Inductive Invariants

There is a deep connection [5] between the state semantics and the program logic of Floyd–Hoare [13]
used to prove partial correctness. If we interpret each logic assertion A` at program point ` as the set of
memory states JA` K⊆M satisfying it, and note M def

= {(`,m) |m ∈ JA` K}, then (A`)`∈L is a valid (i.e.,
inductive) invariant assertion if and only if G(M) ⊆M. Moreover, the best inductive invariant assertion
stems from lfp G, i.e., it is S. While, in proof methods, the inductive invariants must be devised by an
oracle (the user), abstract interpretation opens the way to automatic invariant inference by providing a
constructive view on invariants (through iteration) and allowing further abstractions.

Example 3. The optimal invariant assertions of the program in Fig. 1.a appear in Fig. 1.b, and Fig. 2.b
presents graphically its state abstraction at point (3). �

2.5 Memory Abstractions

In order gain in efficiency on bounded state spaces and handle unbounded ones, we need to abstract
further. As many errors (such as overflows and divisions by zero) are caused by invalid arguments of
operators, a natural idea is to observe only the set of values each variable can take at each program
point. Instead of concrete state sets in P(Σ)

def
= P(L × (V → V)), we manipulate abstract states in

ΣC
def
= (L ×V )→P(V). The concrete and abstract domains are linked through the following Galois

connection (so-called Cartesian Galois connection):

αcart(X)
def
= λ (`,V ) .{v |∃(`,m) ∈ X , m(V ) = v}

γcart(X ])
def
= {(`,m) |∀V, m(V ) ∈ X ](`,V )}

(3)

Assuming that variables are integers or reals, a further abstraction consists in maintaining, for each
variable, its bounds instead of all its possible values. We compose the connection (αcart,γcart) with (the
element-wise lifting of) the following connection (α itv,γ itv) between P(R) and (R∪{ −∞})× (R∪
{ +∞}):

α itv(X)
def
= [minX ;maxX ]

γ itv([a;b]) def
= {x ∈ R |a≤ x≤ b}

(4)

yielding the interval abstract domain [5].
Another example of memory domain is the linear inequality domain [10] that abstracts sets of points

in P(V →R) into convex, closed polyhedra. One abstracts P(Σ)'L →P(V →V) by associating a
polyhedron to each program point, which permits the inference of linear relations between variables. The
polyhedra domain is thus a relational domain, unlike the domains deriving from the Cartesian abstraction
(such as intervals).

Example 4. Figure 2.c presents the interval abstraction of the program in Fig. 1.a at point (3). The
relational information that i≤ n when n≥ 2 is lost. �

Following the same method that derived the state semantics from the trace one, we can derive an
interval semantics from the state one: it is expressed as a fixpoint lfp G] of an interval abstraction G]

of G. While it is possible to define an optimal G] as α ◦G ◦ γ — where (α,γ) combines (α itv,γ itv) and
(αcart,γcart) — this is a complex process when G is large, and it must be performed for each G, i.e.,
for each program. To construct a general analyzer, we use the fact that F , and so, G = αstate ◦F ◦ γstate,
are built by combining operators for atomic language constructs, as in Ex. 1. It is thus possible to
derive G] as a combination of a small fixed set of abstract operators. More precisely, we only have
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to design abstraction versions of assignments, tests, and set union ∪. Generally, the combination of
optimal operators is not optimal, and so, the resulting G] is not optimal — e.g., (α ◦G1 ◦G2 ◦ γ)(X) (
((α ◦G1◦γ)◦(α ◦G2◦γ))(X). Additionally, due to efficiency and practicality concerns, the base abstract
operators may be chosen non-optimal to begin with. Achieving a sound analysis, i.e., γ(lfp G])⊇ lfp G,
only requires sound abstracts operators, i.e., ∀X ],(γ ◦G])(X ])⊇ (G◦γ)(X ]). The fact that G] 6=α ◦G◦γ ,
and even the existence of an α function, while sometimes desirable, is by no mean required — for
instance, the polyhedra domain [10] does not feature an abstraction function α as some sets, such as
discs, have no best polyhedral abstraction.

Example 5. The interval abstraction J `x := y+ z`
′ K

]
of a simple addition maps the interval environment

[x 7→ [lx;hx];y 7→ [ly;hy];z 7→ [lz;hz]] at point ` to [x 7→ [ly + lz;hy +hz];y 7→ [ly;hy];z 7→ [lz;hz]] at point `′,
which is optimal. �

Example 6. The optimal abstraction J `y :=−z; `
′
x := y+ z`

′′ K
]

would map x to [0;0]. However, the
combination J `y :=−z`

′ K
] ◦ J `′x := y+ z`

′′ K
]

maps x to [lz− hz;hz− lz] instead, which is coarser when
lz < hz. �

Example 7. We can design a sound non-optimal fall-back abstraction for arbitrary assignments `x := e`
′

by simply mapping x to [−∞;+∞]. �

We now know how to define systematically a sound abstract operator G] which can be efficiently
computed. Nevertheless, the computation of lfp G] by naive iteration may not converge fast enough (or at
all). Hence, abstract domains are generally equipped with a convergence acceleration binary operator O,
called widening and introduced in [5]. Widenings extrapolate between two successive iterates and ensure
that any sequence X ]

i+1
def
= X ]

i OG](X ]
i ) converges in finite time, possibly towards a coarse abstraction of

the actual fixpoint.
Example 8. The classic interval widening [5] sets unstable bounds to infinity:

[l1;h1]O [l2;h2]
def
=

[{
−∞ if l2 < l1
l1 otherwise

;
{

+∞ if h2 > h1
h1 otherwise

]
(5)

When analyzing Fig. 1, the iterations with widening at (3) give the following intervals for i: i]0 = [2;2]
and i]1 = [2;2]O [2;3] = [2;+∞], which is stable. �

To balance the accumulation of imprecision caused by widenings and combining separately ab-
stracted operators, it is often necessary to reason on an abstract domain strictly more expressive than
the properties we want to prove — e.g., the polyhedra domain may be necessary to infer variable bounds
that the interval domain cannot infer, although it can represent them, such as x = 0 in Ex. 6.

2.6 Further Considerations

We end this introduction with some pointers to additional material. Firstly, there exists a large library of
abstract domains, in particular numeric ones, and associated operators with various precision versus cost
trade-offs — [2] describes a few of them. An actual analyzer will use a combination, such as a reduced
product, of many domains [9]. Secondly, we have assumed for simplicity that the set of variables V is
finite, but abstract domains able to handle an unbounded memory exist; this is necessary when dynamic
memory allocation is used. They often combine abstractions of the memory shape and of the contents of
numeric fields, as in [19]. Likewise, an efficient handling of procedures requires abstracting the control
state L (which can be large, or even unbounded in the case of recursivity). Call-string methods [18] are
an instance of such abstractions. Finally, alternate iteration techniques exist [3], as well as methods to
decompose the global fixpoint into several local ones to achieve a modular analysis [8].
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3 Abstractions for Parallel Programs

We now consider multithreaded programs in a shared memory. We show how, starting from a classic
concrete semantics based on interleaved executions [11] and applying abstract interpretation, we can
construct an effective thread-modular static analysis which is similar to rely/guarantee proof methods
[14].

3.1 Labelled Transition Systems

We assume a finite set T of threads. Each thread t ∈ T has its own control space Lt and transition
relation τt ⊆ Σt ×Σt , where Σt

def
= Lt ×M . The state space and transitions for the whole program are

derived from those of individual threads as follows. Program states live in Σ
def
= (∏t∈T { t }→Lt)×M ,

i.e., each thread has its own control point, but the memory is shared. The semantics of the program is
defined as a labelled transition system (Σ,τ, I), where the transition relation τ ⊆ Σ×T ×Σ is defined
as:2 (( ¯̀,m), t,( ¯̀′,m′)) ∈ τ if (( ¯̀[t],m),( ¯̀′[t],m)) ∈ τt and ∀t ′ 6= t, ¯̀[t ′] = ¯̀′[t ′]. It states that an execution
step of the program is an execution step of some thread and updates only that thread’s control location.
We denote such a step as ( ¯̀,m)

t→ ( ¯̀′,m′). Labels t ∈ T are used to explicitly remember which thread
caused each transition.

3.2 Interleaved Trace Semantics

As for sequential programs, we consider finite prefixes of executions and ignore liveness properties —
in the context of parallel programs, liveness properties are related to fairness conditions, which is a very
complex issue not discussed here; see [11] for a complete treatment. The trace semantics T is defined as
in (1):

T = lfp F where

F(X)
def
= I∪{σ0

t0→ ··· ti→ σi+1 |σ0
t0→ ··· ti−1→ σi ∈ X ∧σi

ti→ σi+1 }
(6)

which thus corresponds to executions consisting of arbitrary interleavings of transitions from any threads.
Given the similarity with the sequential trace semantics, a natural idea to analyze a parallel program

is to forget about labels and apply the state and memory abstractions (Secs. 2.3, 2.5). The problem with
this method is the huge number of control states to consider: ∏t∈T |Lt | instead of |L |. Moreover, τ is
much larger that

⋃
t∈T τt as a single transition in τt is repeated for each possible control state of other

threads ∏t ′ 6=t Lt ′ . As a consequence, constructing an abstraction G] of F from abstractions of atomic
instructions requires a combination of many more such functions than for sequential programs. This
makes even coarse Cartesian interval abstractions impracticable.

3.3 Rely/Guarantee

Proof methods for parallel programs, such as Owicki–Gries–Lamport [17, 15] and rely/guarantee [14]
solve this issue by attaching invariants to thread control points in

⋃
t∈T Lt instead of combinations of

thread points in ∏t∈T Lt . The price to pay is a refined notion of invariance: the properties attached to a
thread t must also be proved stable by the effect of the other threads t ′ 6= t. In rely/guarantee methods,
this effect is explicitly provided as extra annotations in t that are assumed to hold (relied on) when

2The x̄ notations indicates that x̄ is a finite vector. x̄[i] is its value at index i. We also use vector functions f̄ . The i-th
component of y’s image f̄ (y) is denoted f̄ (y)[i]. Finally, /̄0, ∪̄, and ⊆̄ denote respectively /0, ∪, ⊆ extended element-wise to
vectors.
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(1) while true do (5) while true do at (1),(2),(4): x≤ y

(2) if x < y then (6) if y < 10 then at (3): x< y

(3) x := x + 1; (7) y := y + 1; at (5),(6),(8): y≤ 10
(4) done; (8) done; at (7): y< 10

(a) (b)

Figure 3: A simple multithreaded program (a), and its invariant assertions (b).

(1) while true do (5) while true do at (1),(2),(4): x ∈ { −2,0}
(2) x := x + 1; (6) x := x - 2; at (3): x ∈ { −1,1}
(3) x := x - 1; (7) x := x + 2; at (5),(6),(8): x ∈ {0,1}
(4) done; (8) done; at (7): x ∈ { −2,−1}

(a) (b)

Figure 4: A program requiring flow-sensitivity (a), and its invariant assertions (b).

checking the invariants for t and proved correct (guaranteed) when checking the other threads t ′ 6= t. It
then becomes possible to check each thread in a modular way, i.e., without looking at the code of the
other threads, relying on the annotations instead.

Example 9. Figure 3 presents a program with two threads: the first one increments x up to y and the
second one increments y up to 10. For conciseness, we exemplify the rely/guarantee conditions at a
single program point. Consider the problem of proving that x < y holds at (3), just after the test. We
need to prove that the assertion is stable by the action of the second thread. It is sufficient to rely on the
fact that the second thread does not modify x and only increments y. This property is, in turn, guaranteed
by analyzing the second thread, relying only on the fact that the first thread does not modify y. �

3.4 Interference Semantics

We now rephrase the idea of rely/guarantee methods as an abstract interpretation of the interleaved trace
semantics T (6). We decompose the trace semantics using two complementary abstractions: an ab-
straction into thread-local invariants (which is inspired from the formalization in [7] of Owicki–Gries–
Lamport methods [17, 15] as an abstract interpretation) and an abstraction into inter-thread interferences
(which is new). Firstly, the local invariant S̄[t] of a thread t is defined by projecting, with the bijection πt ,
the reachable states αstate(T ) (2) on t’s control state Lt :

S̄[t] def
= (Πt ◦αstate)(T ) where

Πt(X)
def
= {πt(x) |x ∈ X } and πt( ¯̀,m)

def
= ( ¯̀[t],m[∀t ′ 6= t, pt ′ 7→ ¯̀[t ′]])

We keep the control state ¯̀[t ′] of other threads t ′ 6= t encoded as extra variables pt ′ in the memory (called
auxiliary variables in Owicki–Gries [17]). It is possible to remove these variables and keep only t’s
control information to get:

α
ctrl
t (S̄[t]) where α

ctrl
t (X)

def
= {(`,m) |∃ ¯̀, πt( ¯̀,m) ∈ X ∧ ¯̀[t] = `} (7)

but αctrl
t is known to be an incomplete abstraction: some invariance properties on S̄[t] cannot be proved

using αctrl
t (S̄[t]) only (see Ex. 12). Secondly, the interference Ā[t] of a thread t is defined as the possible
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actions it has on other threads, as observed in the interleaved trace semantics T :

Ā[t] def
= {(σi,σi+1) |∃σ0

t0→ ··· tn−1→ σn ∈ T, ti = t } (8)

Interferences are actually subsets of the transition relation restricted to those transitions appearing in
actual traces starting in I. We can then express S̄[t] in fixpoint form as a function of Ā and the transitions
caused by thread t:

S̄[t] = lfp Gt(Ā) where
Gt(Ȳ )(X)

def
= Πt(I)∪{πt(σ

′) |∃πt(σ) ∈ X , σ
t→ σ ′∨∃t ′ 6= t, (σ ,σ ′) ∈ Ȳ [t ′]}

i.e., to reach a new program state from a known one, we either execute a step from thread t (in t→) or a
step from another thread (in Ā[t ′]). Moreover, we can express directly Ā as a function of S̄:

Ā[t] = B̄(S̄)[t] where B̄(Ȳ )[t] def
= {(σ ,σ ′) |πt(σ) ∈ Ȳ [t]∧σ

t→ σ
′ }

which expresses that Ā[t] corresponds to the transitions in τt starting from a reachable state. This yields
the following nested fixpoint characterisation of S̄:

S̄ = lfp H̄ where H̄(X̄)[t] def
= lfp Gt(B̄(X̄)) (9)

which can be computed in iterative form as: S̄ =
⋃̄

n∈NH̄n( /̄0) while H̄(X̄)[t] =
⋃

n∈N(Gt(B̄(X̄)))n( /0). The
benefit of this characterization is that the computation of H̄(X̄)[t] only depends on its argument X̄ and
the transition relation of the thread t, not on the transition relations of the other threads: the inner fixpoint
is thus similar to the analysis of a sequential process. However, as analyzing a thread in a given set of
interferences B̄(X̄) gathers a new, larger set of interferences B̄(H̄(X̄)), the analysis must be performed
again with this enriched set until it becomes stable. This is the role of the outer fixpoint.

3.5 Memory and Interference Abstractions

Our interference semantic S̄ is very concrete (the state semantics αstate(T ) can be recovered fully from
it), and too large to be computed directly. An effective and efficient analyzer can be designed by applying
abstractions independently to local invariants and to interferences, while keeping the nested fixpoint form
of (9). Firstly, any memory abstraction, such as intervals (4) or polyhedra [10], can be applied directly
to each local invariant S̄[t]. As the number of variables is often a critical parameter in the efficiency of
abstract domains, a faster but coarser analysis can be achieved by removing the auxiliary variables from
S̄[t] with αctrl

t (7) prior to memory abstraction. Secondly, we abstract interferences Ā[t]. For instance, it
is possible to forget the control state of all threads using a flow-insensitive abstraction αflow:

α
flow(X)

def
= {(m,m′) |∃ ¯̀, ¯̀′, (( ¯̀,m),( ¯̀′,m′)) ∈ X }

Intuitively, this means that, when analyzing a thread t, we consider that any instruction from any thread
t ′ 6= t may be executed at any point of thread t. Then, by noting that P((V → V)× (V → V)) '
P(({1,2}×V )→ V), we can see a set of pairs of maps on V as a set of maps on {1,2}×V , with
twice as many variables; hence, we can apply any memory abstraction to αflow(X). Another solution
consists in abstracting the relation αflow(X) with its image, using the following abstraction α img, before
applying a memory abstraction:

α
img(X)

def
= {m′ |∃m, (m,m′) ∈ X }
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which is coarser but more efficient as it avoids doubling the number of variables. By combining αflow,
α img, and αcart (3), we abstract thread interferences in a non-relational and flow-insensitive way, as the
set of values each thread can store into each variable during the thread execution. Further abstractions,
such as intervals α itv (4), can be applied. This yields an efficient analysis: the abstract interference is
simply a global map from T ×V to intervals, and we can build an abstraction H̄](X̄ ])[t] of H̄(X̄)[t] by
combining abstractions for each instruction of thread t (as Ex. 5 but slight modified to take interferences
into account).

Example 10. The interval abstraction J `x := y+1`
′ K

]
in the environment [x 7→ [lx;hx];y 7→ [ly;hy]] at

` and the global interference map [x 7→ [l′x;h′x];y 7→ [l′y;h′y]] gives, at `′, the interval x 7→ [min(l′x, lx +
min(ly, l′y)+1);max(h′x,hx +max(hy,h′y)+1)]. �

Example 11. We analyze Fig. 3 using intervals, by applying αctrl
t , αcart, and α itv to local invariants, and

αflow, α img, αcart, and α itv to interferences. We find that, at (3), x ∈ [0;9]. The information that x < y

is lost. The second thread produces the abstract interferences [x 7→ /0,y 7→ [0;10]], i.e., we infer that it
cannot modify x and can only put values from [0;10] into y. We lose the information that y can only
increase. �

Example 12. Consider the program in Fig. 4. When analyzing the first thread, we note that, at (2), x can
be 0 or -2, depending on whether the second thread is at (6) or (7). Moreover, to prove that x stays in
{ −2,0} at (2), it is necessary to infer that the interference from the second thread can only increment x
when it is at (7), and decrement it when it is at (6). A flow-insensitive abstraction using αctrl

t and αflow

would instead infer that x can be incremented arbitrarily and decremented arbitrarily. It would not allow
us to prove that x is bounded. �

3.6 Further Considerations

A practical consequence of (9) is that a thread-modular static analyzer can be designed by slightly modi-
fying a sequential analyzer: all we need to do is keep track of (abstract) interferences as well as reachable
states, and add an external fixpoint iteration to re-analyze each thread until the inferred interferences
stabilize. As for memory abstractions, there are many choices in how to abstract interferences, with
various cost versus precision trade-offs and various levels of expressiveness. Although we presented
only flow-insensitive non-relational abstract interferences, we can envision abstractions keeping (at least
partially) flow and relational information. This is in contrast to our earlier formalization [16] which
only allowed flow-insensitive non-relational interferences, and can now be seen a special case of the
framework presented here. In the presence of mutual exclusion primitives and scheduling policies that
restrict the interleaving of threads (such as thread priorities), a model of the scheduler can be incorporated
into the semantics to refine the notion of interference. For instance [16] handles locks by partitioning
flow-insensitive, non-relational abstract interferences with respect to the set of locks each thread holds.
Another remark is that the interleaved trace semantics (6) is not realistic in the context of modern mul-
ticore architectures and compilers; non-coherent caches and optimizations can expose extra behaviors.
However, we proved in [16] that, provided that a flow-insensitive abstraction of interferences is used, the
abstract semantics is sound even in the presence of weakly consistent memory models, so that the results
of the static analysis can still be trusted in realistic settings. Finally, we did not discuss the case of an
unbounded number of threads, which requires further abstraction.
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4 Applications

We now briefly describe two static analysis tools that were designed at the cole normale suprieure using
abstract interpretation principles.

4.1 Astre

Astre is a static analyzer that checks for run-time errors in synchronous (hence sequential) embedded
critical C programs. It covers the full C language, including pointers and floats, but excluding dynamic
memory allocation and recursivity (forbidden in the realm of critical software). It checks for arithmetic
overflows, and invalid arithmetic and memory operations. It is sound, and so, never misses any existing
error. Due to over-approximations, it can signal false alarms. Although Astre can analyze many kinds
of codes, it is specialized to control-command avionic software, on which it aims at efficiency and certi-
fication, i.e., zero false alarm. It was able to prove quickly (2h to 53h) the absence of run-time error in
large (100 K to 1M lines) industrial avionic codes. This result could be achieved using a specialization
process: starting from a fast and coarse analyzer based on intervals, we added manually more powerful
abstract domains as they were needed. Some were borrowed from the large library of existing abstrac-
tions, and others were developed specifically for the avionic application domain (such as an abstraction
of digital filters [12]). Astre is a mature tool: it is industrialized and made commercially available by
AbsInt [1]. More details can be found in [2].

4.2 AstreA

AstreA aims at checking for run-time errors in multithreaded embedded critical C programs. It is based
on the Astre code-base and inherits all of its abstractions. Additionally, it implements the interference
fixpoint analysis described in Sec. 3. Interferences are abstracted in a flow-insensitive and non-relational
way, which was sufficient to give encouraging experimental results. On our target application, a 1.6
Mlines industrial avionic software with 15 threads, AstreA reports around 1 300 alarms in 50h. More
details can be found in [16, 2]. AstreA is a research prototype in development; we are currently improving
it with more powerful memory and interference abstractions.

5 Conclusion

We have provided in this article a short glimpse of abstract interpretation theory and its application to
the systematic construction of static analyzers for sequential and parallel programs. Two key reasons
make abstract interpretation-based constructions attractive. Firstly, its ability to relate in a formal way
the output of a static analyzer all the way down to the precise dynamic behavior of the input program (its
execution traces), both in terms of soundness proof and information loss. Secondly, the ability to decom-
pose the design of an analyzer as the combination of independent, reusable abstractions, which allows
the modular implementation of analyzers (e.g., abstract domains designed for Astre could be reused in
AstreA). Future work includes the design of new abstractions to improve the AstreA analyzer prototype
and reduce the number of alarms on selected embedded multithreaded C programs. In particular, the
derivation of thread-modular abstract semantics for parallel programs through the use of concrete inter-
ferences we introduced here opens the way to the design of flow-sensitive and relational interference
abstractions, which was not possible in the earlier framework underlying AstreA.
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A Proofs

All the results from Sect. 2 are very classic, so, we do not prove them here (see for instance [4]). Instead,
we focus on the new results presented in Sect. 3: the nested fixpoint characterization of the reachable
states of a parallel program using interferences.

A.1 Proof of (6)

The proof that the operator F in (6) indeed has a least fixpoint, T , is analogous to that of F in (1).
As F is a continuous morphism in the complete partial order of trace sets ordered by inclusion, i.e.,
F(
⋃

i Xi) =
⋃

i F(Xi), we can apply Kleene’s fixpoint theorem [4], which states that lfp F exists and is
exactly equal to

⋃
n∈N Fn( /0).

We now repeat this classic proof for the sake of completeness. Let us note X def
=
⋃

n∈N Fn( /0). We
first prove that X is indeed a fixpoint of F , then that it is smaller than any other fixpoint. Indeed,
F(X) = F(

⋃
n∈N Fn( /0)) =

⋃
n∈N Fn+1( /0), by continuity. Moreover, F0( /0) = /0 ⊆ F1( /0), hence F(X) =⋃

n∈N Fn+1( /0)∪F0( /0) =
⋃

n∈N Fn( /0) = X . Hence, X is a fixpoint. Let Y be another fixpoint, i.e., F(Y ) =
Y . We have F0( /0) = /0⊆ Y and, if Fn( /0)⊆ Y , then Fn+1( /0) = F(Fn( /0))⊆ F(Y ), as the continuity of F
implies its monotonicity, hence Fn+1( /0) ⊆ Y as Y = F(Y ). Thus, by recurrence, ∀n, Fn( /0) ⊆ Y , which
implies that X ⊆ Y . Hence, X is the least fixpoint of F .

A.2 Proof of (3.4)

By definition (3.4), S̄[t] def
= Πt(α

state(T )) and T = lfp F with F(X)
def
= I∪{σ0

t0→ ·· · ti→ σi+1 |σ0
t0→ ·· · ti−1→

σi ∈X∧σi
ti→σi+1 }. We wish to prove that S̄[t] = lfp Gt(Ā), where Gt(Ā)(X)

def
= Πt(I)∪{πt(σ

′) |∃πt(σ) ∈ X , σ
t→

σ ′∨∃t ′ 6= t, (σ ,σ ′) ∈ Ā[t ′]}. To lighten notations, we note G def
= Gt(Ā).

We first prove by recurrence on n that Πt(α
state(Fn( /0))) = Gn( /0). Intuitively, Gn( /0) corresponds

to the states, projected on thread t, that can be reached from I after at most n execution steps. When
n = 0, Πt(α

state(F0( /0))) = G0( /0) = /0. Assume that the property holds for some n and let us prove that
it holds for n+ 1. As πt is one-to-one, we can reason equivalently on Gn+1( /0) and the states σ such
that πt(σ) ∈ Gn+1( /0), so, let us consider such a σ . Then, either (a) σ ∈ I, or σ can be reached from
some σ ′ such that πt(σ

′) ∈ Gn( /0) and either (b) σ ′
t→ σ or (c) ∃t ′ 6= t, (σ ′,σ) ∈ Ā[t ′]. By definition,

(σ ′,σ) ∈ Ā[t ′] is equivalent to the existence of a trace · · ·σ ′ t ′→ σ · · · in T . Moreover, by recurrence
hypothesis, σ ′ ∈ αstate(Fn( /0)), i.e., there exists a trace in T with at most n transitions and ending in σ ′.

This means that, if a transition · · ·σ ′ t ′→ σ · · · exists in a trace in T , it also exists in a trace of length
at most n+ 1 in T (the set of traces is “closed by fusion” [11]). Hence, case (c) is equivalent to the

existence of t ′ 6= t and a trace · · ·σ ′ t ′→ σ · · · in Fn+1( /0). Case (b) is equivalent to the existence of a trace
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· · ·σ ′ t→ σ · · · in Fn+1( /0). Thus, the disjunction of (a), (b), and (c) is equivalent to the existence of a trace
in Fn+1( /0) containing σ , which is equivalent to σ ∈ αstate(Fn+1( /0)). This ends the proof by recurrence.

We now use the characterization of fixpoints by iteration: we proved in the proof of (6) that T =⋃
n∈N Fn( /0). Kleene’s theorem implies likewise that lfp G =

⋃
n∈N Gn( /0). By continuity of Πt and αstate,

we get that Πt(α
state(T )) = Πt(α

state(
⋃

n∈N Fn( /0))) =
⋃

n∈N Πt(α
state(Fn( /0))). Applying the result of

the preceding paragraph, we get Πt(α
state(T )) =

⋃
n∈N Gn( /0) = lfp Gt(Ā).

A.3 Proof of (3.4)

We now prove that Ā[t] = {(σ ,σ ′) |πt(σ) ∈ S̄[t]∧σ
t→ σ ′ }. By definition, Ā[t] def

= {(σi,σi+1) |∃σ0
t0→

·· · tn−1→ σn ∈ T, ti = t }. As T is closed by prefix, we have Ā[t] = {(σn−1,σn) |∃σ0
t0→ ··· tn−1→ σn ∈ T, tn−1 =

t }. As T is a fixpoint of F , ∃σ0
t0→ ··· tn−1→ σn ∈ T is equivalent to ∃σ0

t0→ ··· tn−2→ σn−1 ∈ T and σn−1
tn−1→ σn.

Finally, as S̄[t] = Πt(α
state(T )), this is equivalent to πt(σn−1) ∈ S̄[t] and σn−1

tn−1→ σn, which ends the
proof.

A.4 Proof of (9)

We now prove that S̄ = lfp H̄, where H̄(X̄)[t] def
= lfp Gt(B̄(X̄)), and give the iterative form of lfp H̄.

Firstly, we prove that S̄ is a fixpoint of H̄. Indeed, for any t, H̄(S̄)[t] = lfp Gt(B(S̄)) = lfp Gt(Ā) by
(3.4), which equals S̄[t] by (3.4).

Secondly, we prove that lfp H̄ can be expressed in iterative form. To do so, we prove that H̄ is
continuous. Kleene’s fixpoint theorem applied to the continuous function Gt gives the following char-
acterization of H̄: H̄(X̄)[t] =

⋃
n∈N(Gt(B̄(X̄)))n( /0). To simplify notations, we define, for each t and n,

the function Īn(X̄)[t] def
= (Gt(B̄(X̄)))n( /0). Then, we have H̄(X̄) =

⋃̄
n∈NĪn(X̄). We note that each Īn is

continuous. Hence, we have: H̄(
⋃̄

iX̄i) =
⋃̄

n∈NĪn(
⋃̄

iX̄i) =
⋃̄

n∈N
⋃̄

iĪn(X̄i) =
⋃̄

i
⋃̄

n∈NĪn(X̄i) =
⋃̄

iH̄(X̄i),
which proves the continuity of H̄. We can thus apply Keene’s fixpoint theorem to H̄ itself to get lfp H̄ in
iterative form: lfp H̄ =

⋃̄
n∈NH̄n( /̄0).

Finally, we prove that S̄ ⊆̄ lfp H̄. To do this, we prove by recurrence on n that, if σn is reachable after
n steps, i.e., if there exists some trace σ0

t0→ ·· · tn−1→ σn in T , then, for any t, πt(σn) ∈ (H̄n+1( /̄0))[t]. When
n = 0, H̄( /̄0)[t] = lfp Gt(B̄( /0)) = lfp Gt( /0)⊇ Πt(I). As σ0 ∈ I, we indeed have πt(σ0) ∈ Πt(I). Assume
that the property is true at rank n and consider a trace σ0

t0→ ··· tn→ σn+1 in T . As T is closed by prefix,
σ0

t0→ ·· · tn−1→ σn is also in T and we can apply the recurrence hypothesis to get πt(σn) ∈ (H̄n+1( /̄0))[t].
Moreover, we have σn

tn+1→ σn+1. We consider first the case tn+1 = t. Then as (H̄n+1( /̄0))[t] is closed
by reachability from thread t, we also have πt(σn+1) ∈ (H̄n+1( /̄0))[t], and so, πt(σn+1) ∈ (H̄n+2( /̄0))[t].
Consider now the case tn+1 6= t. Then, πt(σn) ∈ (H̄n+1( /̄0))[t] implies that (σn,σn+1) ∈ B̄(H̄n+1( /̄0))[t].
As a consequence, (H̄n+2( /̄0))[t] is closed under reachability through the transition σn

tn+1→ σn+1, and
so, πt(σn+1) ∈ (H̄n+2( /̄0))[t]. We have proved that, for any πt(σ) ∈ S̄[t], there exists some n such that
πt(σ) ∈ (H̄n( /̄0))[t]. As lfp H̄ =

⋃̄
n∈NH̄n( /̄0), we get that πt(σ) ∈ (lfp H̄)[t], hence, S̄ ⊆̄ lfp H̄.
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The verification of concurrent programs is a challenging problem. This is due to the huge
number of orderings in which actions of different threads can be executed, and to the intricacy
of the interactions between these threads (especially in presence of dynamic thread creation,
recursion, etc). Basic problems such as the state reachability problem, that is relevant in checking
safety properties, are undecidable in general, even when the manipulated data are in a finite
domain. Therefore, restrictions either on the considered class of program models or on the class
of explored behaviors during the analysis, must be considered in order to obtain decidable and/or
tractable analysis problems. In this talk, we will present program models capturing relevant
classes of programs (including for instance asynchronous programs) and study the decidability
and complexity of their state reachability problem. Moreover, we will present bounded analysis
techniques (such as context-bounding) that are used for efficient bug detection in concurrent
programs.
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Software synthesis is a technique for automatically generating code given a specification.
The goal of software synthesis is to make coding easier while increasing both the productivity of
the programmer and the correctness of the produced code. Code produced this way is correct by
construction.

The idea of automatically generating code was introduced more than 30 years ago [1].
However, it is not always easy to automatically construct code - due to the high computational
cost of synthesizing code, this idea was not further explored until recently. There is a regaining
interest in software synthesis that is driven by the increasing computational power. Today even
desktop machines are able to construct code from complex input specifications. On the other
hand, it is not only the computation power that plays an important role in synthesizing code.
Recently we have witnessed to a rapid progress of automated reasoning. There are various tools
that can automatically prove formulas belonging to different logics. Using automated reasoning
we can handle complex specifications by employing efficient algorithms for reasoning about the
domain of the specification.

In this lecture we will present our new approach to synthesis that relies on the use of
automated reasoning and decision procedures [2, 4, 5]. We handle complex specifications
by employing efficient algorithms for reasoning about the domain of the specification. We
will describe how to generalize decision procedures into predictable and complete synthesis
procedures. Here completeness means that the procedure is guaranteed to find code that satisfies
the given specification. Moreover, the synthesis procedure also outputs preconditions on input
values that guarantee the existence of the output values. As an example, I will explain how to
transform a decision procedure for linear arithmetic into such a synthesis procedure.

In addition, we will also outline a synthesis procedure for specifications given in the form
of type constraints [3]. The procedure takes into account polymorphic type constraints as well
as code behavior and derives code snippets that use given library functions. We use a first-
order resolution-based theorem prover to solve these constraints and derive code snippets. The
constraints can have multiple solutions and hence the theorem prover may produce more than
one code snippet. Therefore, we use an additional weight function to rank the derived snippets.
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Abstract
A p-dimensional vector addition system with states (VASS) is a weighted digraph whose arcs

carry a p-dimensional integral vector. The structural boundedness problem asks whether a given
VASS admits a closed path with a positive weight vector. Although a VASS can be simulated by a
Petri net, none of the known simulations preserve structural boundedness. Thus we cannot cite the
classical result by Memmi and Roucairol to assert that checking structural boundedness is polyno-
mial. Based on some encoding in the form of a system of exponentially many linear Diophantine
inequalities, we show that checking the structural boundedness of a given VASS is polynomial with
the help of a separation algorithm. Similar techniques can be used for checking the structural ter-
mination of a VASS, which asks whether there exists some closed path with a non-negative weight
vector.

1 Introduction

Consider a set of reactions that take place among a collection of particles such that each reaction con-
sumes a multiset of available particles and produces a linear combination of other particle types. This
kind of framework can be formalized by a vector addition system [5] or, equivalently, a (pure) Petri net
[8]. Consider in addition some control state which determines whether a reaction can occur or not, and
such that the occurrence of a reaction leads to a possibly distinct control state. Then the model becomes
formally a vector addition system with states (a VASS), a notion introduced in [4]. In this paper we in-
vestigate the computational complexity of two structural properties for VASS, that is, properties that do
not depend on a particular initial collection of particles. In this way, we consider the initial configuration
as a parameter of the system.

The first problem we consider asks whether the number of particles remains bounded, that is, only
finitely many distinct configurations can be reached, for each initial configuration. Since particles often
represent the consumption of resources, such as messages in channels, this first problem asks whether
there exists some amount of resources sufficient to cope with all configurations reachable from any fixed
finite set of potential configurations. A second basic issue is to check that a given system terminates, i.e.
whether there is no infinite execution, for each initial configuration. In other words, we aim at checking
that a system eventually deadlocks. Although one usually tries to avoid deadlocks in concurrent systems,
termination remains in some cases a basic problem in formal verification: In particular non-termination
can result from livelocks in concurrent programs when components fail to achieve their tasks.

Petri nets form a popular and intensively studied model of distributed systems. Formally a Petri net
is simply a VASS with a single control state. It is often claimed that Petri nets, vector addition systems,
and vector addition systems with states are equivalent formalisms because they can simulate each other
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(see e.g. [8]). The idea is simple: A VASS with n control states can be simulated by a VASS with a single
control state (i.e. a Petri net) which makes use of n additional particle types. These n additional particle
types are used to encode the current control state of the former VASS by means of a single additional
particle that evolves from one of these types to another. Since only one particle is allowed within these
additional types, this simulation does not preserve structural properties. More precisely it is easy to
design a structurally bounded VASS whose equivalent Petri net is not structurally bounded.

In order to describe a distributed system, it is often convenient to use a vector of control states whose
components are the local states of each process. Then particles represent messages within channels.
This model is called a parallel-composition-VASS [6]. It is close to the notion of a communicating
finite state machine but with non-FIFO message exchanges. Similarly to the simulation of a VASS by
a Petri net, a parallel-composition-VASS can be simulated by a Petri net with additional places whose
marking represent the current vector of control states. Again, structural properties are not preserved by
this simulation. Besides checking the structural boundedness of a parallel-composition-VASS is NP-
complete [6] whereas this problem can be solved in polynomial time in the particular case of Petri nets
[2, 7]. In this paper, we prove that the problems of checking the structural boundedness and the structural
termination of a given VASS can be solved in polynomial time.

2 Background

Let p be a fixed non-zero natural number. A vector addition system with states is simply a directed graph
whose arcs are labeled by vectors from Zp.

Definition 1. [4] A vector addition system with states (for short: a VASS) is a pair S= (Q,A) where Q
is a finite set of states, and A⊆ Q×Zp×Q is a finite set of arcs labeled by vectors from Zp.

Throughout the paper we let S= (Q,A) be a VASS. We let |Q| and |A| denote the cardinalities of Q
and A respectively. The source and the target of a labeled arc a ∈ A are denoted by dom(a) and cod(a)
respectively. We let cost(a) ∈ Zp denote the vector labeling each arc a ∈ A.

2.1 Basics and notations

Let S= (Q,A) be a VASS. A path is a sequence of arcs γ = a1...an ∈ A? such that we have dom(ai+1) =
cod(ai) for each i ∈ [1..n− 1]. A path γ = a1...an ∈ A? is closed if n ≥ 1 and dom(a1) = cod(an). A
path γ = a1...an ∈ A? is simple if dom(ai) 6= dom(a j) for all distinct i, j. A circuit is a simple and
closed path. The cost of a path γ = a1...an is the vector cost(γ) = ∑

i=n
i=1 cost(ai). Further the cost of a

multiset of arcs x ∈ NA is cost(x) = ∑a∈A x(a) · cost(a) and the cost of a finite multiset of paths F is
cost(F ) = ∑γ∈A? F (γ) · cost(γ).

A configuration is a pair (q,r) ∈ Q×Np consisting of a control state q and a multiset of available
particles r. A labeled arc a ∈ A is enabled at the configuration (q,r) and leads to the configuration (q′,r′)
if dom(a) = q, cod(a) = q′, and r+cost(a) = r′. An execution of S from an initial configuration (qin,rin)
is a sequence of labeled arcs a1...an ∈ A? such that there are configurations (q0,r0), ..., (qn,rn) for which
(q0,r0) = (qin,rin) and for each i ∈ [1..n], the labeled arc ai is enabled at (qi−1,ri−1) and leads to (qi,ri).
Then the configuration (qn,rn) is reachable from (qin,rin). The set of all executions of S from an initial
configuration (qin,rin) provided with the prefix partial order over A? is called the reachability tree of S
from (qin,rin).

Let x and y be two integral vectors with n components: x = (x[1], ...,x[n]) and y = (y[1], ...,y[n]). We
put as usual x ≥ y if x[i] ≥ y[i] for each i; x > y if x[i] > y[i] for each i; and x  y if x ≥ y and x 6= y. As
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explained below, we shall represent closed paths of a VASS S as particular multisets of labeled arcs.

2.2 Structural properties and characterizations with closed paths

Definition 2. A VASS S is structurally terminating if it is terminating for any initial configuration.

The structural termination problem for vector addition systems asks whether a given VASS has an
infinite execution for some initial configuration. We observe first that this question boils down to search
for particular closed paths in S.

Proposition 3. A VASS S is structurally terminating if and only if there exists no closed path γ with
cost(γ)≥~0.

A VASS provided with an initial configuration (qin,rin) is bounded, if there is a natural number k
such that, for each configuration (q,r) reachable from (qin,rin), there are never more than k particles of
each type, i.e. r[i]≤ k for each i ∈ [1..p].

Definition 4. A VASS S is structurally bounded if it is bounded for all initial configurations.

Similarly to Proposition 3, checking the structural boundedness of a VASS boils down to detect a
closed path with a non-negative non-zero cost.

Proposition 5. A VASS S is structurally bounded if and only if there exists no closed path γ with cost(γ)
~0.

2.3 Connected Eulerian multisets of labeled arcs vs. closed paths

Definition 6. A multiset of labeled arcs x ∈ NA is called Eulerian if for each state q ∈ Q we have
∑dom(a)=q x(a) = ∑cod(a)=q x(a).

Proposition 7. (Euler’s theorem) Let x ∈NA be a non-empty connected and Eulerian multiset of labeled
arcs. Then there exists some closed path γ = a1...an ∈ A? such that ∑

i=n
i=1 ai = x.

It is easy to show that structural boundedness and structural termination are in NP: A witness of a
pathological path is simply a connected subset of arcs C ⊆ A for which there exists an Eulerian set of
arcs x such that Ax =C and cost(x) 0 (resp. cost(x)≥ 0).

3 From pathological closed paths to weak-circuits

In this section we present the key technical lemma of this work (Lemma 9). This result makes use of
the notion of weak-circuits. Each pathological path for structural termination (or structural bounded-
ness) with inner state q̂ can be represented by a multiset of weak-circuits starting from the base state q̂.
Moreover we prove that the length of these weak-circuits can be bounded.

3.1 Definition and examples

In this section we fix a VASS S= (Q,A) and a base state q̂ ∈ Q.

Definition 8. Let q ∈ Q be a state of S and γ0 be a circuit of S starting from q. Let γ1 be a simple path
from q̂ to q and γ2 be a simple path from q to q̂. Let k ∈ N. If the length of the path γ1.(γ0)

k.γ2 from q̂ to
q̂ is at least 1, then the closed path γ1.(γ0)

k.γ2 is called a weak-circuit of S with valuation k starting from
q̂.
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A weak-circuit will be often represented by a multiset of arcs W = D+ k ·C where D is the multiset
of arcs occurring in γ1 and γ2 and C is the set of arcs occurring in γ0. Then the multiset W is connected
and Eulerian. Note that the path γ1.γ2 from q to q need not to be simple (nor non-empty). However each
arc occurs at most twice in γ1.γ2.

3.2 From closed paths to weak-circuits with a bounded valuation

We are now ready to prove the expected Lemma 9.

Lemma 9. If q̂ is an inner state of a closed path γ such that cost(γ) ≥~0 then there exists a non-empty
finite family of weak-circuits W1, ..., Wn starting from q̂ with valuation at most 2Φ where Φ = 96× (p+
1)4× size(S) and some non-zero natural numbers λ1,..., λn ∈ N∗ such that ∑

i=n
i=1 λi · cost(Wi)≥~0.

4 Checking structural termination

In this section we explain why checking the structural termination of a given VASS can be done in
polynomial time. Let S be a VASS and q̂∈Q be a fixed state of S. We build a system of linear Diophantine
inequalities SS,q̂ which has a solution if and only if there exists some closed path γ with inner state q̂ such
that cost(γ) ≥~0. Then Prop. 3 guaranties that the VASS S terminates structurally if and only if the
system SS,q̂ has no solution for each q̂ ∈ Q. The system SS,q̂ derives from Lemma 9. Observe first that
the number N of weak circuits starting from q̂ with valuation at most 2Φ is exponential in the size of S. It
is easy to design a system of p linear Diophantine inequalities with N unknown natural numbers which
has a solution if and only if there is a finite family of weak-circuits starting from q̂ with valuation at most
2Φ whose cost is non-negative.

We consider actually the dual problem. The system SS,q̂ relies on a vector w of p unknown com-
ponents such that w >~0. It consists essentially of the inequality cost(γ)>w < 0 for each weak-circuit γ

starting from q̂ with valuation at most 2Φ. With the help of the Infeasibility Theorem [1, Th. 2.1], the
system SS,q̂ has no solution if and only if there exists some non-negative non-zero linear combination
of such weak-circuits whose cost is non-negative. By Lemma 9, this is equivalent to the existence of a
closed path γ with inner state q̂ such that cost(γ) ≥~0. However, SS,q̂ consists of possibly exponentially
many inequalities. For that reason, we design a separation oracle to solve this system in polynomial time
with the help of the fundamental result due to Grötschel, Lovász and Schrijver [3] (see also [9, Th. 14.1]).

Given a vector w >~0, the separation oracle decides whether w is a solution to SS,q̂ or not, and, in the
latter case, it must compute an inequality of SS,q̂ for which w fails. At this point the separation oracle need
to compute a particular weak-circuit. However, computing such a weak-circuit turns out to be NP-hard
in general. In order to cope with this difficulty, we introduce below the notion pseudo-circuits, which
are particular closed paths. Since each weak-circuit is a pseudo-circuit, we may replace weak-circuits
by pseudo-circuits in the statement of Lemma 9. Consequently, the system SS,q̂ we consider consists
actually of the inequation cost(γ)>w < 0 for each pseudo-circuit γ with valuation at most 2Φ. In this
way, the separation oracle compute a pseudo-circuit γ for which cost(γ)> ·w > 0 whenever w is not a
solution to SS,q̂.

4.1 Searching for bounded pseudo-circuits with inequations

The system of inequalities we consider relies on the following notion of pseudo-circuits which general-
izes the definition of a weak-circuit.
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Algorithm 1 (Separation algorithm)
Require: S= (Q,A) is a VASS, w ∈Qp, q̂ ∈ Q.
Ensure: returns true if w is a solution to SS,q̂ and some violated inequality otherwise

if w 6>~0 then
return some i ∈ [1..p] such that w[i]≤ 0.

end if
for q,q′ ∈ Q do

Compute blmwq,q′(w) ∈Q and some γq,q′ ∈ A? in polynomial time
end for
for q ∈ Q do

if (*) blmwq̂,q(w)+2Φ×blmwq,q(w)+blmwq,q̂(w)≥ 0 then
return cost(γq̂,q)+2Φ× cost(γq,q)+ cost(γq,q̂)

end if
end for
return true

Definition 10. Let q,q′ ∈ Q be two states of S. Let γ0 be a closed path of S starting from q′. Let γ1 be
a path from q to q′ and γ2 be a path from q′ to q. Let k ∈ N. We assume that the lengths of γ0, γ1 and
γ2 are at most |Q|. Let W = γ1.γ

k
0 .γ2 be the closed path which starts from q and which consists of γ1,

followed by k iterations of the circuit γ0, followed by γ2. If the length of W is at least 1 then W is called
a pseudo-circuit of S with valuation k.

Noteworthy each weak-circuit with valuation k (Def. 8) is a pseudo-circuit with valuation k. Conse-
quently Lemma 9 still holds if one replace weak-circuits by pseudo-circuits.

We let SS,q̂ be the system of linear inequalities for w ∈Qp consisting of the following constraints:
• for each i ∈ [1..p]: w[i]> 0

• for each pseudo-circuit W starting from q̂ with valuation ≤ 2Φ: −cost(W )>w > 0.
Proposition 11. The system SS,q̂ has no solution if and only if there exists some closed path γ with inner
state q̂ such that cost(γ)≥~0.

4.2 Separation of solutions

Let w ∈ Qp. If some component w[i] of w is non-positive, then the constraint w[i] > 0 is not satisfied.
Thus we may assume that w >~0. We denote by S/w = (Q,A/w) the directed graph obtained from the
VASS S by replacing the label cost(a) ∈ Zp of each arc a ∈ A by cost(a)>w. For any two states q,q′ ∈Q,
we compute the maximal weight blmwq,q′(w) ∈ Q of the paths from q to q′ in S/w with length at most
|Q|. We compute also such a maximal path γq,q′ ∈ A? with length at most |Q| from q to q′, regarded as
a path in S. This can be done, e.g., by means of |Q| matrix multiplications in (max,+)-algebra. Note
that blmwq,q(w)≥ 0 for each q ∈ Q. Let q ∈ Q be some state of S. If blmwq̂,q(w)+2Φ×blmwq,q(w)+
blmwq,q̂(w)≥ 0 then the pseudo-circuit W built from the path γq̂,q, followed by 2Φ iterations of the closed
path γq,q and the path γq,q̂ satisfies cost(W )>w ≥ 0 because cost(W ) = cost(γq̂,q) + 2Φ× cost(γq,q) +
cost(γq,q̂). This leads us to Algorithm 1.
Proposition 12. Algorithm 1 decides whether w is a solution to SS,q̂ or not, and, in the latter case, returns
an inequality of SS,q̂ for which w fails.

As a consequence, we can apply [9, Th. 14.1] and get
Theorem 13. We can check the structural termination of a given VASS in polynomial time.
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4.3 Checking structural boundedness

We show now how to check whether a given VASS S is structurally bounded. We let S◦S,q̂ be the system
of linear inequalities for w ∈Qp consisting of the following constraints:

• for each i ∈ [1..p]: w[i]> 0

• for all pseudo-circuits W starting from q̂ with valuation ≤ 2Φ: cost(W )>w≤ 0.

We can adapt the proof of Prop. 11 and show that S◦S,q̂ characterizes the structural boundedness of S.

Proposition 14. The system S◦S,q̂ has no solution if and only if there exists some closed path γ with inner

state q̂ such that cost(γ)~0.

It is easy to design a new separation algorithm for S◦S,q̂: we need simply to replace the test (∗) blmwq̂,q(w)+
2Φ× blmwq,q(w)+ blmwq,q̂(w) ≥ 0 from Algorithm 1 by the following condition: blmwq̂,q(w)+ 2Φ×
blmwq,q(w)+blmwq,q̂(w)> 0. We can prove that the resulting algorithm decides whether w is a solution
to S◦S,q̂ or not, and, in the latter case, returns an inequality of S◦S,q̂ for which w fails. Thus,

Theorem 15. We can check the structural boundedness of a given VASS in polynomial time.

5 Conclusion

Despite the well-known fact that vector addition systems with states are equivalent to Petri nets when
they are provided with an initial configuration, checking the structural properties of a VASS turns out to
be much more complicated than for Petri nets. Yet we present polynomial time algorithms to check the
structural termination and the structural boundedness of a given VASS by means of an encoding in linear
programming and a separation algorithm.
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Kaira: HPC and Petri nets

Stanislav Böhm, Ondřej Meca, Martin Šurkovský

Abstract

This paper briefly describes the main aspects and the current state of the tool Kaira. Kaira is a
programming environment for creating applications in the area of high-performance computing. The
tool uses attributes that are usually seen in modelling tools like simulation or high level approach
and provide them as a development environment. Parallel aspects and communication of designed
applications are expressed by visual models based on Coloured Petri nets.

1 Introduction

There is no standard definition of high-performance computing (HPC), but it usually means the use
of parallel computers for run technical and scientific computations demanding huge numbers of opera-
tions. Physics simulations or weather forecasting can be named as examples. Parallel computers provide
performance for such tasks but development of applications for these systems is more complex than de-
velopment of sequential applications. There are many tools and libraries developed with the aim to create
these applications easier and more portable[5]. OpenMP1 and MPI2[10] are among the most widely used
tools in this area. OpenMP is very effective if the core of computation can be expressed as a cycle
with independent runs. In such cases programmers are able to get parallel applications from sequential
versions quickly. But this effectively runs only on shared memory architectures. MPI is designed for
usage with distributed memory, but it is a quite low level interface from an application programmer’s
point of view. There are also libraries for specific areas besides universal tools. Let us name PetsC3 and
Trilinos4 as examples for numerical computations. They usually offer typical data structures and parallel
operations on them. When we want to use standard algorithms and there is such a library then it is often
the best way.

The tool described in this paper is based on generating code from Coloured Petri nets (CPNs)[7].
Usually in this area, somehow restricted CPNs and high-level languages are used [8, 9]. It leads to
generation of human-readable codes. We do not introduce such restrictions because we are focused on
difference aspects of a code generation. For example, for us it is important to avoid unnecessary memory
movements because processed data can be large. This is one of reasons why we use C++ instead of
high-level languages.

In this text we introduce a development environment for programming parallel applications, the tool
named Kaira. More precisely, Kaira is focused on the area of HPC systems with distributed memory
architectures. We want to create a practical tool but on a higher level of abstraction than standard tools.
The basic aspects and goals are the follows:

1http://openmp.org/
2http://www.mpi-forum.org/docs/docs.html
3http://www.mcs.anl.gov/petsc/
4http://trilinos.sandia.gov/

http://openmp.org/
http://www.mpi-forum.org/docs/docs.html
http://www.mcs.anl.gov/petsc/
http://trilinos.sandia.gov/


62 S. Böhm, O. Meca, M. Šurkovský

• Abstract computational model – The tool should be at the basic level usable by non-experts in
parallel/distributed programming. The model should be sufficiently abstract hence it can be used
without knowledge of low-level details of used technologies and without solving low level issues.
On the other hand our goal is not to develop an automatic parallelization tool. Therefore Kaira
does not discover parallelisms in applications. The user has to explicitly define them, but they are
defined in a high level way and the tool derives implementation details. We also want to use an
abstract model to communicate in the opposite way, i.e. from a program to a user during debugging
and profiling. We want to show what happens inside a developed program in terms of our high
level model without using specialized low level tools.

• Integration with existing source codes – Our goal is to create a practical tool, therefore one of
the important aspects is reusing of existing codes. We want to achieve integration in both ways.
One way is an easy integration of existing libraries in our abstract model and the second way is to
integrate resulting code from Kaira into other programs.

• Fast prototyping – It can take a long time to get a working prototype during the development
of an application for distributed memory systems. We want to allow observing behaviour of an
incomplete application from a very early stage of a development cycle. Together with the previous
point, we want to allow a smooth iterative development from a sequential version (for example
written in C++) to a parallel version (with support of Kaira).

• Reasonable fast resulting programs – We are developing a high level tool, but we are still in the
area of HPC, therefore performance matters. We can only accept a very small performance loss in
compare to hand-optimized solutions.

The result of our efforts is the tool called Kaira5[1, 4, 2, 3]. Kaira is an open source project released
under GPL licence6.

We have chosen semantics based on CPNs as a computation model for the specification of parallel
aspects and communication in applications. CPNs naturally capture parallel behaviour and they also pro-
vide natural visual representations of models, visual editing of models and their simulations. However,
we do not want to visually program a complete application, our visual language is focused on paral-
lelisms and communication. Sequential parts of a program can be created in a common language and
they are smoothly integrable into a visual model. We assume that a user is an experienced (sequential)
programmer and therefore writing sequential codes in a textual language is more convenient. We focus
on reducing complexity of developing parallel aspects, not developing of sequential parts.

In the current version of Kaira, sequential codes (inserted into visual models) can be written in C++.
We are also working on Java and Python versions but it is still in an early state. C++ codes can be inserted
into models in two ways. Codes can be inserted into transitions and places, and our inscription language7

can be enriched by C++ functions and types.
Models created in Kaira can be simulated in the same way as in a modelling tool. A programmer can

see what happens inside of an incomplete application without any special debugging tools. Because of
our effort to create a practically usable programming environment, Kaira is able to generate standalone
parallel applications. The resulting applications use MPI and pthreads as parallel backends, hence these
applications can be directly run on HPC hardware.

The other way how to use Kaira is to generate libraries which can be used in other programming
environments. Generating libraries allows creating building blocks for other environments. Performance

5http://verif.cs.vsb.cz/kaira
6http://www.gnu.org/licenses/gpl-3.0.html
7The language used for expressions in Coloured Petri net

http://verif.cs.vsb.cz/kaira
http://www.gnu.org/licenses/gpl-3.0.html
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demanding parts of an existing application can be gradually replaced by parallel versions designed in
Kaira. The use of libraries is not limited to C++ but we can also generate modules for Octave8, the
tool for numerical computations. We are also working on a support for Matlab9. Moreover Kaira is
able to generate a library with a remote procedure call (RPC) architecture (both client and server are
generated). Therefore the user can run the main program on a single computer in a single instance and
computationally demanding codes can be transparently executed on a cluster.

Figure 1 shows a basic usage of Kaira on pingpong example. We show a comparison of the develop-
ment process in the case of plain C++ with MPI and in the case of Kaira.

2 Profiling

Here we mention the recently improved feature of Kaira. When the performance of an application mat-
ters, then it is very important to see what happens inside it. This kind of performance measurement is
called profiling. There are matured tools like Scalasca 10[6] or Vampir 11 focused on this area. But we can
show that our approach allows simplifying some parts or providing more precise information, because
our tool is not a universal tool that can handle any program, but we profile a program with a structure
captured by our model. Generally there are three steps during profiling:

1. Instrumentation (i.e. putting measuring codes inside an application)

2. Data collecting

3. Data processing and visualization

In general, it is a non-trivial task to correctly instrument a compiled program. But in our case we gen-
erate the whole communication and parallelization codes and therefore we can put measuring codes
precisely into interesting parts without any additional effort. Moreover, the whole process is compiler
and architecture independent.

In the second step, it is important what is monitored. Collecting too much data deforms a real run of
an application. Usually what is measured is adjusted on the level of functions. But there can be a large
number of user and internal functions, therefore it is not always easy to setup the right list of monitored
ones. In our approach, we use Petri net where the user can specify what is measured in terms of places,
transitions and tokens (see Figure 2). Petri nets are also used in the third step, i.e. how to present results
to a user. Kaira offers a replay of a program in the form of the “token game” in Petri nets, or statistical
summaries like running times of transitions (see Figure 3), number of tokens in a place, etc.

3 Conclusion

As we said, the main aim is to provide a high level tool for the area where we think that such tool is
missing. Our approach tries to apply ideas from the world of modelling tools to the area of HPC pro-
gramming. Kaira is designed to preserve basic attributes of modelling tools like an easy usage, fast
prototyping and simulations but provides them in the form of a practically usable environment for cre-
ating real-world HPC applications. Therefore important features are generating standalone applications
and libraries, ability to run on real HPC hardware and cooperation with commonly used technologies.

8http://www.gnu.org/software/octave/
9http://www.mathworks.com/products/matlab/

10http://www.scalasca.org/
11http://www.vampir.eu/

http://www.gnu.org/software/octave/
http://www.mathworks.com/products/matlab/
http://www.scalasca.org/
http://www.vampir.eu/
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Figure 1: A demonstration of a standard usage of MPI and Kaira
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Figure 2: A specification what will be traced (orange marks).

Figure 3: A chart of transitions utilization.
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The implementation of Kaira is now in a state where all necessary parts, from visual modelling to
debugging produced applications, are functional and the idea of the tool can be practically tested with real
programs. On the other hand there are still missing some more advance optimizations. Implementation
of optimizations is one of goals in the future. Our research will be focused on problems about data
structures, locking mechanisms and a memory management in this topic.

Another part of future works is implementation of some verification techniques. Semantics of our
models are too general and most interesting questions are undecidable, but still we can answer some
useful questions about of application by a state space analysis, for example checking behaviour on some
hardware architectures that is not available for us. With our approach, we do not need to extract a model
from source codes because all parallel behaviour is already in form of CPN. Our preliminary results show
that this approach can be successfully used to generate the state spaces for small instances of practical
applications.
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[3] Stanislav Böhm and Marek Běhálek. Usage of Petri nets for high performance computing. In Proceedings
of the 1st ACM SIGPLAN workshop on Functional high-performance computing, FHPC ’12, pages 37–48,
New York, NY, USA, 2012. ACM.
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Abstract

We propose an extension of visibly pushdown automata by means of weights (represented as
positive integers) associated with transitions, called visibly pushdown automata with multiplicities.

We prove the problem of deciding whether the multiplicity ofan automaton is finite to be in
PTIME. We also consider theK-boundedness problem,i.e. deciding whether the multiplicity is
bounded byK: we prove this problem to be EXPTIME-complete whenK is part of the input and in
PTIME whenK is fixed.

1 Introduction

Visibly pushdown automata (VPA for short) have been proposed in [1] as an interesting subclass of
pushdown automata, strictly more expressive that finite state automata, but stillenjoying good closure
and decidability properties. They are pushdown automata such that the behavior of the stack,i.e. whether
it pushes or pops, is visible in the input word. Technically, the input alphabet is partitioned into call,
return and internal symbols. When reading a call the automaton must push a symbol onto the stack, when
reading a return it must pop and when reading an internal it cannot touchthe stack. The partitioning of the
alphabet induces a nesting structure of the input word. Calls and returnscan be viewed as opening/closing
brackets, and well-nested words are words where every call symbol (resp. return symbol) has a matching
return (resp. call).

The original motivation for their introduction was for verification purposes, the stack being used for
the modelization of call/returns of functions. Another application domain is the processing of XML
documents. Indeed, unranked trees in their linear form can be viewed aswell-nested words. Actually,
the model of visibly pushdown automata is expressively equivalent to that of finite tree automata, see [1].

It is quite standard to extend a class of automata with weights, by adding a labeling function assigning
a weight to each transition. In this work, we considerVPA with multiplicities (N-VPA for short) where
weights are positive integers (multiplicities). The multiplicity of a run is the productof the multiplicities
of the transitions used along it. The multiplicity of a word is the sum of the ones of all its accepting runs.
Finally, the multiplicity of the automaton is the supremum of the multiplicities of the words it accepts.
This model extends the model of finite state automata with multiplicities [9].

The first problem we consider is the finiteness of the multiplicity of an automaton,i.e. does there exist
K ∈N such that the multiplicity is bounded byK. To solve this problem, we extend a characterization of
finite state automata based on patterns to visibly pushdown automata. We also provide an algorithm to

∗Partially supported by the ANR Project ECSPER (ANR-09-JCJC-0069).
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decide the presence of these patterns in polynomial time. The second class of problems asks whether the
multiplicity of an automaton is bounded byK, whereK is given. This problem can be considered under
the hypothesis thatK is part of the input, or is fixed. We show that the problem is EXPTIME-complete in
the first case, and can be solved in polynomial time in the second one.

Definitions are given in Section 2. Comparisons with existing results for tree automata with mul-
tiplicities are drawn in Section 3. In Section 4, we give the characterization ofN-VPA with infinite
multiplicity based on original patterns and the decision procedure associated. We studyK-boundedness
problems in Section 5. This paper is a short version of [5], you can find the details of proofs and results
about tree automata within.

2 Visibly pushdown automaton with multiplicities

All over this paper,Σ denotes a finite alphabet partitioned into three disjoint setsΣc, Σr andΣι , denoting
respectively thecall, return andinternal alphabets. We denote byΣ∗ the set of (finite) words overΣ and
by ε the empty word. The length of a wordu is denoted by|u|. The set ofwell-nestedwordsΣ∗

wn
is

the smallest subset ofΣ∗ such thatΣ∗
ι ⊆ Σ∗

wn
and for allc∈ Σc, all r ∈ Σr , all u,v∈ Σ∗

wn
, cur ∈ Σ∗

wn
and

uv∈ Σ∗
wn

. Let u= α0 · · ·αk−1 ∈ Σ∗ with k= |u|, thenui, j denotes the wordαi · · ·α j−1 for 0≤ i ≤ j ≤ k.

Visibly pushdown automata (VPA) [1] are a restriction of pushdown automata in which the stack
behavior is imposed by the input word. On a call symbol, theVPA pushes a symbol onto the stack, on
a return symbol, it must pop the top symbol of the stack and on an internal symbol, the stack remains
unchanged. We introduce the model ofVPA with multiplicities in N (N-VPA for short), by labeling
transitions ofVPA by positive integers:

Definition 1 (N-VPA). A visibly pushdown automaton with multiplicities(N-VPA) overΣ is a tupleA=
(Q,Γ,δ ,Qin,Qf ,λ ) whereQ is a finite set of states,Qin ⊆Q is the set of initial states,Qf ⊆Q is the set of
final states,Γ is a finite stack alphabet,δ = δc⊎δr ⊎δι is the set of transitions, withδc ⊆ Q×Σc×Γ×Q,
δr ⊆ Q×Σr ×Γ×Q, andδι ⊆ Q×Σι ×Q andλ is a labeling functionλ : δ → N>0.

Configuration - Run - Degree of ambiguity. A configurationof a N-VPA is a pair(q,σ) ∈ Q×Γ∗

(whereΓ∗ denotes the set of finite words overΓ). We denote by⊥ the empty word onΓ. Initial (resp.
final) configurations are configurations of the form(q,⊥), with q∈ Qin (resp.q∈ Qf ).

A run of A on a sequence of transitions{ti}1≤i≤k from a configuration(q,σ) to a configuration
(q′,σ ′) over a wordu = α0 . . .αk−1 ∈ Σ∗ is a finite non-empty sequenceρ = {(qi ,σi)}0≤i≤k such that
q0 = q, σ0 = σ , qk = q′, σk = σ ′ and for each 1≤ i ≤ k, ti = (qi−1,αi−1,γi ,qi) ∈ δc andσi = σi−1γi or
ti = (qi−1,αi ,γi ,qi) ∈ δr andσi−1 = σiγi , or ti = (qi−1,αi ,qi) ∈ δι andσi = σi−1. A run isacceptingif it
starts in an initial configuration and ends in a final configuration. Thedegree of ambiguityof A, denoted
by da(A), is the maximal number of accepting runs for any possible input word.

Language. A word u is accepted byA if there exists an accepting run ofA on u. The languageof A,
denoted byL (A), is the set of words accepted byA. Note that we consider acceptance on empty stack,
which implies that all accepted words are well-nested. Unlike [1], we do notconsider returns on empty
stack and unmatched calls. This assumption is done to avoid technical details but the general case could
be handled1.

1More precisely, given a generalN-VPA A, one can build aN-VPA A′ according to Definition 1 such that accepting runs
of A′ are in bijection with those ofA. This can be achieved by adding self-loops on initial states that allow to pusha special
symbol (for the returns on empty stack) and self-loops on final states that allow to pop any symbols.
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Multiplicity. For each transitiont ∈ δ , λ (t) is called themultiplicity of t. Let ρ be a run on the
sequence of transitions{ti}1≤i≤k over the wordu and letmi = λ (ti) for 1≤ i ≤ k. The multiplicity ofρ,

denoted by〈ρ〉 is equal to∏1≤i≤k mi . Let a wordu 6= ε, we write(q,σ)
u|m
−−→ (q′,σ ′) when there exists a

run overu from (q,σ) to (q′,σ ′) with multiplicity m.
The multiplicity of u, denoted by〈u〉 is the sum of the multiplicities of the accepting runs overu.

Themultiplicity of anN-VPA A, denoted by〈A〉, is defined as〈A〉 = sup{〈u〉 | u∈ L (A)}. Let K ∈ N.
We say thatA is bounded byK if 〈A〉 ≤ K. We say thatA is finite if we have〈A〉 < +∞, and infinite
otherwise. Note that the degree of ambiguity of aVPA is equal to the multiplicity of the corresponding
N-VPA where all the multiplicities of transitions are set to 1.

Trimmed. A configuration(q,σ) is reachable(resp.co-reachable) if there existsu∈ Σ∗ andq0 ∈ Qin

(resp.qf ∈ Qf ) such that(q0,⊥)
u|m
−−→ (q,σ) (resp. such that(q,σ)

u|m′

−−→ (qf ,⊥)). A VPA A is trimmedif
every reachable configuration is co-reachable, every co-reachable configuration is reachable and if every
state ofA belongs to a reachable configuration. In [4], we present a procedure which allows to trim a
VPA and which preserves the set of accepting runs.

3 Relating Tree Automata andVPA

There is a strong relationship between words written over a partitioned alphabet and (un)ranked trees.
This relationship extends to recognizers withVPA on one side and tree automata on the other side.
A polynomial time construction from VPA to tree automata is presented in [1], which can be slightly
modified to guarantee the isomorphism of accepting computations [3]. Conversely, it is easy to encode
ranked trees as well-nested visible words, and to build from a tree automatona VPA accepting the
encodings and preserving the accepting computations as well.

Note that preserving (accepting) computations implies that the degree of ambiguity of the encoded
VPA and of the target tree automaton are the same.

Hence, one may now wonder whether this relationship extends to models with weights and what
are the results known for weighted tree automata on the semiring(N,+, ·) that carry overN-VPA: this
question is crucial as in one direction, it may be the case that problems we want to address could be
solved thanks to this relationship and on the other direction, new results forN-VPA may carry over
weighted tree automata almost for free.

Let us briefly recap some known results for tree automata with weights/costs.In [13], (ranked) tree
automata with polynomial costs are considered over several semirings. However, the result of the com-
putation is the set of costs computed for each accepted run (no combination ismade with the accepting
computations over the same input tree). These results are extended in [2] by considering more general
semirings but without addressing complexity issues.

However, the algorithms for finiteness of the degree of ambiguity [11] (deciding DA = da(A) <
+∞) in PTIME and of the cost of some tree automaton with costs [13] (decidingMM = sup{〈ρ〉 |
ρ an accepting computation} < +∞) in PTIME can be combined to get a PTIME algorithm for finite-
ness of weighted tree automata, thanks to the following statement : max(DA,MM) ≤ 〈A〉 ≤ DA ∗MM.
Thanks to the PTIME encoding ofN-VPA into weighted tree automata, we obtain a PTIME algorithm
for finiteness ofN-VPA. However, our approach provides a direct method based onVPA and a rather
intuitive algorithm compared to [11, 13].
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4 Characterization and decision of infiniteN-VPA

In this section, we give a characterization onN-VPA ensuring their infiniteness by means of patterns.
Then, based on this characterization, we devise a PTIME algorithm to solve the finiteness problem.

4.1 Characterization

We introduce the criteria depicted on Figures 1(a) and 1(b) which characterize infiniteN-VPA. Pattern
of Figure 1(a) coincides with patterns for finite-state automata with multiplicities (see [14, 7]). Pattern
of Figure 1(b) is specific to the model ofVPA. Intuitively, the loop over a well-nested word is splitted
into two loops on wordsu1 andu2, such that the concatenationu1u2 is a well-nested word butu1 is not
well-nested. We say thatA contains a pattern whenever there exist words inΣ∗, states ofA and runs inA
that fulfill all the conditions of the pattern.

p q
ρ2 : u | m2

ρ1 : u | m1 ρ3 : u | m3

(a) (S1)Well-nested case:u∈ Σ∗
wn

. ρ1ρ2ρ3 is a run andm1 > 1 or ρ1 6= ρ2.

p q q′ p′
ρ2 : u1|m2 ρ : w|m ρ ′

2 : u2|m′
2

ρ1 : u1|m1 ρ3 : u1|m3 ρ ′
3 : u2|m′

2 ρ ′
1 : u2|m′

1

(b) (S2)Matched loops case:w∈ Σ∗
wn

, u1u2 ∈ Σ∗
wn

, andu1 6∈ Σ∗
wn

. ρ1ρ2ρ3ρρ ′
3ρ ′

2ρ ′
1 is a run, and

either (m1 > 1 orm′
1 > 1), or (ρ1 6= ρ2 or ρ ′

1 6= ρ ′
2).

Figure 1: Patterns characterizing infinite multiplicity.

Theorem 2. Let A be a trimmedN-VPA. A is infinite iff A complies with one of the criteria(S1) and
(S2).

The proof of the fact that the presence of one of the criteria implies an infinite multiplicity is easy.
The other part of the proof relies on the two technical Lemmas 3 and 4 which we present intuitively. To
state these lemmas, we define the constantN = (n2L)2|Γ| with n = |Q|, L = max{λ (t) | t ∈ δ} and the
function ψ : N → N asψ(z) = n(Nz)2n

. Pattern(S1) allows to increase the multiplicity along a well-
nested word. Lemma 3 states that ifA does not comply with(S1), then a well-nested wordu whose
multiplicity is greater thanψ(l) has a well-nested subwordv whose multiplicity is greater thanl , and
such that the height ofu is greater than the height ofv. Then, Lemma 4 applies iteratively Lemma 3 to
prove that a word with large multiplicity has a large height, and hence allows to find pattern(S2), using
a vertical pumping.

hu(x) is the height ofu at positionx andsu(x,y) is the sum of the multiplicities of the runsρ ′ over
ux,y such that there exists an accepting runρρ ′ρ ′′ overu.

Lemma 3. We suppose that A is infinite but A does not comply with(S1). Let u∈ L (A), l ∈ N>0 and
x,y be two positions such that0≤ x≤ y≤ |u|, ux,y ∈ Σ∗

wn
and sux,y ≥ ψ(l). Then there exist two positions

x< x′ ≤ y′ < y such that ux′,y′ ∈ Σ∗
wn

, hu(x′) = hu(x)+1 and sux′,y′ ≥ l.
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Lemma 4. We suppose that A is infinite but A does not comply with(S1). Then A complies with(S2).

4.2 Decidability of finiteness

We show in this part how to decide in PTIME the presence of one of the patterns.
The algorithm uses bunches of inference rules applied as a saturation procedure: the first bunch

builds a setS1 of tuples composed of 6 states and a Boolean, which allows to decide the presence of the
pattern(S1). The 6 states represent the source and the target of 3 paths over the same well-nested word
and the Boolean retains an information about a multiplicity greater than 1 or the fact that different paths
are considered. The second bunch builds a setS2 of tuples composed of 12 states and a Boolean which
allows to decide the presence of pattern(S2).
Let A= (Q,Γ,δ ,Qin,Qf ,λ ) be a trimmedN-VPA. We now define the setsS1 andS2.

Let S1 ⊆ Q6×B be a set such that(p1,q1, p2,q2, p2,q3,B) ∈ S1 if and only if the following property
holds:

∃u∈ Σ∗
wn

and three runsηi : (pi ,⊥)
u
−→ (qi ,⊥) of A for i ∈ {1,2,3}

such thatB= (ρ1 6= ρ2∨〈ρ1〉> 1)
(1)

Let S2 ⊆ Q12×B be a set such that(p1,q1, p2,q2, p3,q3,q′3, p
′
3,q

′
2, p

′
2,q

′
1, p

′
1,B) ∈ S2 if and only if the

following property holds:

∃w,uu′ ∈ Σ∗
wn

and runsρi : (pi ,⊥)
u
−→ (qi ,σi), ρ ′

i : (q′i ,σi)
u′
−→ (p′i ,⊥) and

ρ : (q3,⊥)
w
−→ (q′3,⊥) of A for i ∈ {1,2,3}

such thatB= (ρ1 6= ρ2∨ρ ′
1 6= ρ ′

2∨〈ρ1〉> 1∨〈ρ ′
1〉> 1)

(2)

We can build these sets in polynomial time using inference rules. Then:

Proposition 5. For any trimmedN-VPA A= (Q,Γ,δ ,Qin,Qf ,λ ), (p,q,q,q, p, p,⊤) ∈ S1 with p,q∈ Q
if and only if A complies with(S1).

For any trimmedN-VPA A = (Q,Γ,δ ,Qin,Qf ,λ ), (p, p, p,q,q,q, p′, p′, p′,q′,q′,q′,⊤) ∈ S2 with
p, p′,q,q′ ∈ Q, if and only if A complies with(S2).

Theorem 6. Finiteness forN-VPA is in PTIME.

5 DecidingK-bounded multiplicity

We consider here theK-bounded multiplicity problem: For a given trimmedN-VPA A and an integerK,
we ask whether〈A〉< K. K can be fixed or be a part of the input.

Theorem 7. Given a trimmedN-VPA A and K∈ N>0, the problem of determining whether〈A〉 < K is
EXPTIME-complete.

Theorem 8. Fix K ∈ N>0. For a trimmedN-VPA A, deciding whether〈A〉< K is in PTIME.

The first result is an extension of an algorithm described in [6] and the second is an extension of an
algorithm described in [14]. These algorithms decide if the ambiguity of a finite state automaton is less
than a given integer.
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6 Conclusion

In this paper we have presented three differents results : a characterisation of infinite multiplicity ofN-
VPA, a polynomial algorithm for the finiteness problem and two different algorithms for theK-bounded
multiplicity problem (depending whetherK is a part of the input or not).

There exists a polynomial construction to build a weighted tree automaton from aN-VPA. Since
this construction preserves the multiplicity (we have a bijection between the runsof the two automata),
we can easily adapt all the results fromN-VPA to weighted tree automaton, and thus acquire a new
characterisation for the infinite cost of weighted tree automata on the semiring(N,+, ·). See [5] for more
details.

We recall that degree of ambiguity of a word is a special case of multiplicity. The class of finitely
ambiguous automata has been investigated for both automata on words and on trees [6, 14, 11, 12].
The interest in this class arised from the fact that it allows an efficient (polynomial) equivalence check.
An analogy can be drawn with the context of transducers where the equivalence problem is decidable
for finite-valued transducers (and undecidable in general). In [10],the characterization of automata
whose multiplicity is finite is used to build a characterization of finite-valued word transducers. We
hope this present work will be a first step towards the characterization offinite-valued visibly pushdown
transducers, which is a relevant issue as this model is incomparable with bottom-up tree transducers
(see [8]).
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Abstract
We present the design of an error detection service for real-time automotive embedded software.

The service monitors at runtime the data flows in a graph of communicating real-time tasks. At
design-time, monitors are automatically generated from formal models; at compile-time, monitors
are embedded in the Real Time Operating System (RTOS) kernel; at runtime, errors are detected and
notified with a small and deterministic latency.

1 Introduction

During the past 15 years, the number of services provided in vehicles caused the evolution of Electrics
and Electronics (E/E) systems from federated architectures (one function per Electronic Control Unit
(ECU)) to integrated architectures (several functions per ECU). In this context, automotive OEMs (Orig-
inal Equipment Manufacturers) and suppliers are turning toward real-time and multitask-capable operat-
ing systems for improved code quality and efficiency. To face new challenges induced by theses changes,
automotive industry stakeholders are working on the design of a common architecture supported by stan-
dardized software services: AUTOSAR (AUTomotive Open System ARchitecture) [1].

The context of our work is the dependable design of AUTOSAR systems. Among the attributes of
dependability, we focus here on software fault tolerance and more specifically on error detection. We are
developing an error detection service based on runtime verification in AUTOSAR-like systems [5].

The paper is organized as follows. In section 2 we present the main motivations of our work. In
section 3, we recall the object of runtime verification and expose the runtime verification technique of
LTL formula from bauer2011. In section 4, we explain how to use runtime verification efficiently in the
context of automotive embedded systems. In section 5, we conclude.

2 Motivations

Modern automotive embedded software applications are composed of communicating real-time tasks.
Their global behavior depends on many design time and runtime parameters. As an illustration, let us
consider the model described in Figure 1. In this example, three concurrent tasks T0, T1 and T2 communi-
cate through two shared buffers b0 and b1. T2 reads data from both b0 and b1 to make a coherency check
between the input and the output of T1. A correctness requirement for this application could be: when T2
starts reading, the buffers are synchronized and stay synchronized until it has finished. The buffers are
synchronized if the data currently stored in b1 has been produced with the data currently stored in b0.
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T0

T1

T2b0

b1

Monitoring service

s00
r10 s11 r21

r21

false true

Figure 1: Monitoring architecture. sxy are sending events by Tx to by and rxy are receiving events by Tx

from by.

The satisfaction of such a property depends on parameters such as task scheduling parameters (pe-
riod, priority, execution times), synchronisation and communication protocols, task assignment to cores
(for multicore architecture), etc.

In an integrated architecture, several concurrent real-time applications are hosted on a single exe-
cution platform. Today, these platforms are based on monocore microcontrollers. In the near future,
multicore microcontrollers (i.e. the combination of two or more calculation units on a same die, that run
in parallel) will be used because they offer undeniable advantages in terms of performance and power
consumption. Unfortunately, real-time parallel programming is known to be very difficult.

It is thus reasonable to consider that errors will occur at runtime in tomorrow’s automotive embedded
software. Then, runtime mechanisms to detect and mitigate these errors must be proposed.

A well known solution is to rely on diversification. Our proposal is a specific form of diversification,
targeting data flow errors in real-time multitask software systems. Here, we focus on the error detection
part. At design time, the expected behaviors of the data flows are specified. They are used with a formal
model of the system to generate specialized monitors. The tool Enforcer1 has been built for this purpose.
Then, at compile-time, the generated monitors are embedded in the RTOS kernel. Lastly, at runtime, the
error detection service uses the monitors to report the behaviors that do not conform to the specification.

3 Runtime Verification

3.1 From Model Checking to Runtime Verification

Runtime Verification (RV) is a lightweight formal method that shares some concepts with Model Check-
ing (MC). Both methods ask the designer to specify the properties φ that the system should verify. These
properties are typically expressed with a temporal logic such as LTL (for RV or MC) or CTL (for MC). In
MC, the designer must also provide a model M of the system, typically in the form of a transition system.
Then, the model checker solves the problem M |= φ . The answer is either yes, or a counter-example. MC
allows to detect design errors.

In RV, the property φ is used to generate an event-based monitor that is translated into code to decide
at runtime σ |= φ , where σ denotes the ongoing execution of the system. The designer must provide
some extra information to recognize and preprocess the events of interest. When the monitor receives
an event, it outputs a verdict: true (all the possible continuations of the execution will be accepted),
f alse (none of the continuations of the execution will be accepted), or inconclusive (some continuations

1 Enforcer is developed by the group systèmes temps réel at IRCCyN. It is distributed under GPL licence. It is available
here: http://enforcer.rts-software.org

http://enforcer.rts-software.org
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will be accepted, some others will not). The monitor must be built such that it outputs its verdict as
soon as possible. Runtime verification allows to detect errors that are activated at runtime. That runtime
verification can be introduced in industrial real-time embedded systems with a minimal execution time
overhead and an acceptable memory footprint as shown in [4].

3.2 Runtime Verification of LTL formulae

3.2.1 Linear Temporal Logic (LTL)

Temporal logics are mathematical tools that deal with the temporal behaviors of discrete event systems.
LTL (Linear Temporal Logic) is a temporal logic proposed by Pnueli for the formal specification and
verification of reactive systems [8]. LTL formulae express properties about the running of such systems.
LTL extends propositional logic with two modalities: X (for neXt) and U (for Until), presented below.
Syntax: Let AP be a set of atomic propositions. The set of LTL formulae over AP is defined inductively
as follows: if p ∈ AP, then p is a LTL formula; if φ and ψ are LTL formulae then ¬φ , φ ∧ψ , φUψ and
Xφ are also LTL formulae.
Semantics: Let Σ = 2AP and σ = s0s1s2 . . .si . . . ∈ Σω an ω-word on Σ. Let σ(i) = si the ith element
of σ , and σi = sisi+1... the suffix of σ starting at the ith element. Let p ∈ AP and φ and ψ two LTL
formulae over AP. The satisfaction relation σ |= φ is defined inductively as follows: σ |= true; σ |= p
iff p ∈ σ(0); σ |= ¬φ iff σ 6|= φ ; σ |= φ ∧ψ iff σ |= φ and σ |= ψ; σ |= Xφ iff σ1 |= φ (φ will be true
at the next step); σ |= φUψ iff ∃ j ∈ N s.t σ j |= ψ and ∀k < j,σk |= φ (φ remains true until ψ becomes
true).

From these basic operators, it is possible to define other logical operators (∨,⇒, . . . ) and modalities
such as F (a property will eventually be true) and G (a property is and will always be true).

3.2.2 Automatic Generation of Monitors

We recall here the construction of an RV monitor for the LTL formulae proposed in [2]
The monitor is given in the form of a Moore machine. The input alphabet of the machine is the set 2AP

where AP is the set of atomic propositions used to write φ . The output alphabet is the set B3 = {>,⊥,?}
(resp. true, false and inconclusive). The procedure to build the machine is illustrated by figure 2. It is
composed of two similar branches. The top branch builds a monitor that outputs either> or ? for formula
φ . The bottom branch is the same for formula ¬φ so that the outputs of the monitor can be interpreted
as ⊥ and ?.

φ

φ

¬φ A¬φ F¬φ Â¬φ Ã¬φ

ÃφÂφFφAφ

Mm

Input : LTL property LTL property
Non deterministic
Buchï automata

NBA

Emptiness checking
(per state)

Non deterministic
Finite Automata

NFA

Deterministic 
Finite Automata

DFA
Output : Monitor

Finite State Machine

Figure 2: Procedure to build a Moore machine from LTL formulae [2]

Consider the formula φ = G a (a is and will always be true). The first step consists in computing two
non-deterministic Büchi automata (NBA) accepting the same ω−languages as φ and ¬φ . This can be
done by using for instance the technique described by Gastin and Oddoux in [7]. The result is given on
Table 1 (left side).
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The next steps consist in computing two deterministic finite automata (DFA) that recognize the lan-
guages of the prefixes of the ω-word accepted by the two NBA. This requires to perform two classical
operations: first, emptiness checking for each state of each NBA; then, determinization of finite au-
tomata. The result is given on Table 1 (middle). It is worth noting that a trap state has been added during
the determinization step of φ so that the resulting automata is complete with regards to 2AP.

The Moore machine is finally built by a synchronized product of the two DFA. The output function
is then computed to associate a verdict>, ⊥ or ? to each state. The result is given on Table 1 (right side).

S0start

a S′0start

S′1

ā
Σ

Σ

S0start

Add

a
ā

Σ

S′0start

S′1

ā
a

Σ

initstart bad

a

ā

Σ
Inconclusive False

NBA(φ ) NBA(¬φ) DFA (φ) DFA (¬φ) Moore Machine

Table 1: Procedure for the Moore Machine synthesis (monitor for a given LTL formula)

RV of LTL formulae has some limits. Indeed, there exist LTL properties for which it is not possible
to build a monitor that outputs > or ⊥ in finite time. For these formulae, the procedure builds a Moore
machine with a single state that outputs ?. Detailed discussion on the class of properties that can be
monitored can be found in [6] and [2]. In [2], Bauer et al. describe an experiment based on a set
of patterns commonly found in the specification of concurrent and reactive systems. On 107 patterns
expressed as valid LTL formulae, 53 are found monitorable. This tends to show that, despite its limits,
this technique can be used for a broad range of properties.

4 Towards an Error Detection Service based on Runtime Verification

RV appears to be a promising approach to generate monitors that could be used by an error detection
service. This service should implement the following functions: identification of the event of interest ;
update of the set of atomic properties that are true after the occurrence of an event ; computation of the
output of the monitor to this update ; if the output is either > or ⊥, notification to the error mitigation
component. We have developed such a service (and the companion toolchain) for an AUTOSAR-like
platform based on the Trampoline RTOS.

4.1 Implementation Constraints in Automotive Embedded Systems

A typical automotive embedded system is hosted on a microcontroller with limited resources (from
32KB to 1MB of RAM, a few MB of Flash, processor frequency under 100MHz) and must fulfill real-
time constraints (required response time for some motor control functions is less than 1 ms). These
constraints must be taken into account in the design of the error detection service. In other words, the
service must accomplish its functions with a small and predictable overhead (both in time and memory)
and it must also offer a predictable response time (ie. the time between the date of the occurrence of the
event which allows to deduce that the property is verified/violated and the date of the notification of this
deduction to the error mitigation component must be bounded).

As we are targeting the automotive domain, the characteristics of AUTOSAR must also be taken
into account. One important characteristic is the static nature of AUTOSAR: all software objects are
created at compile-time. A direct consequence is that all objects are known a priori. This allows to use
specialization to achieve low and deterministic overhead for system services.



Runtime Verification for Real-Time Automotive Embedded Software 77

4.2 Efficient Identification and Preprocessing of the Events

To minimize the amount of runtime computation required to identify and preprocess the events, we have
taken the following design decisions:

• the events can only be system calls. The set of system calls to intercept are identified offline. The
identification consists in a triplet (called function, caller id, parameter values) ;

• the preprocessing of the events is also performed offline.

The first decision allows to automatically inject the event identification code in the source code of
the RTOS kernel. The identification consists in a lookup in a table. This is done in O(1).

To realize the second decision, we must bridge the gap between the intercepted events and the atomic
proposition used to write the monitored properties. This is done with a deterministic finite automaton
(DFA) that models the monitored system, and a labeling function that decorates the state of this DFA
with atomic propositions.

Formally, the DFA As over alphabet Σs is defined as As = (Qs, is,→s) where Qs is the finite set of
states, is ∈ Qs is the initial state and→s⊂ (Qs×Σs) 7→ Qs is the transiton function.

The type of the labeling function is given by λ s ⊂ Qs 7→ 2AP.
The monitor computed by the RV technique is given by Mm = (Qm, im,→m,γ

m) where Qm is the
finite set of states, im ∈ Qm is the initial state, →m⊂ (Qm× 2AP) 7→ Qm is the transition function and
γm ⊂ Qm 7→ B3 is the output (injective) function.

To preprocess the events, we compute the Moore machine M′ offline over Σs defined as M′ =
(Q′, i′,→,γ ′) where Q′ = Qs×Qm, i′ = (is, im),→⊂ (Q′×Σs) 7→Q′ where (qs,qm)

σ→ (rs,rm) iff qs σ→srs

and qm u→mrm and u⊆ λ s(rs) and γm(qm) =?, and γ ′ ⊂ Q′ 7→ B3 where γ ′(qs,qm) = γm(qm).
Notice that we do not build the transitions outgoing from a state that outputs either ⊥ or >. When

such a state is reached, the work of the monitor is finished. In practice we build only the subset of Q′

composed of reachable states with a depth-first exploration starting at (is, im).
The machine M′ reacts directly to the intercepted events. If the machine is encoded with a matrix,

this reaction consists in another lookup in a table and can be done in O(1).
The update of machine M′ is performed after the identification step. Both steps being in O(1),

the time overhead is deterministic. We have performed experiments to confirm that this overhead is
small enough (see [4]). The system is static, so the memory overhead can be estimated offline. In our
experiments, we have also confirmed that the memory overhead is compatible with the constraints of
automotive embedded systems.

Lastly, to ensure a small and predictable response time, all the steps are executed in kernel mode,
ensuring freedom of interference from application tasks or interrupts.

4.3 Example

Let us consider a system composed of two tasks communicating through a blackboard. For this system,
we want to monitor the property a message written in the buffer is always read before being overwritten.
Let the atomic proposition a denote “the buffer does not contain a message that has not been read and
that has been overwritten”. Then we have φ = G a.

To preprocess the event, we can use an abstract model of the system As over the alphabet Σs =
{SendMessage,ReceiveMessage} that counts the number of successive occurrences of SendMessage in
the set {0,1,+}. The labelling function is {(0 7→ a),(1 7→ a),(+ 7→ ā)}.

The monitor generated for G a has already been given in table 1. The machine M′, resulting from the
construction explained above, is given in figure 3.
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0, initstart 1, init +,bad

ReceiveMessage

ReceiveMessage

SendMessage

SendMessage

Figure 3: Final monitor

4.4 Tool Support and Integration in Trampoline

We have developed a tool named Enforcer, that implements the generation of the machine M′ [5]. En-
forcer processes a model As and a property φ . It outputs the source code (in C) of the machine M′ that is
statically injected in the kernel of the Trampoline RTOS [3]. The input language of Enforcer allows us to
describe rules. Each rule contains a model of a part of the system and a property. The model is defined as
a set of Deterministic Finite Automata (DFA) that are then composed with a synchronized product (AS).
The property is expressed in LTL over the set of state of the model.

The tool calls LTL2BA 2 to compute NBA(φ) and NBA(¬φ) and implements all the other steps.

5 Conclusion

Our work aims at providing error detection and mitigation components for future real-time automotive
embedded systems. We have designed a service for error detection. This service uses monitors that are
automatically generated from formal models thanks to runtime verification techniques.
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[4] Sylvain Cotard, Sébastien Faucou, and Jean-Luc Béchennec. A dataflow monitoring service based on runtime
verification for. autosar os: Implementation and performances. In Proceedings of the 8th annual workshop on
Operating Systems Platforms for Proceedings of the 8th annual workshop on Operating Systems Platforms for
Embedded Real-Time applications, pages 46–55, 2012.
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Abstract

We consider distributed systems with dynamic process creation. We use data words to model
behaviors of such systems. Data words are words where positions also contain some data values
from an infinite domain. The data values are seen as the process identities. We use automata with a
stack and registers to model a distributed system with dynamic process creation. The non emptiness
checking of these automata is NP-Complete. While satisfiability of first order logic over data words is
undecidable, we show that model checking such automata against full MSO logic (with data equality
and comparison predicates) is decidable.

1 Introduction

Distributed systems with a pre-defined finite set of processes have been studied extensively. However,
verification of distributed systems with unbounded set of processes or those with dynamic process cre-
ation has received relatively little attention. One reason might be the additional difficulty in modeling
and model checking caused by the unbounded set of processes. Unfortunately most of the distributed
systems we encounter in our everyday life, like internet, creates processes dynamically. Hence verifica-
tion of distributed systems with dynamic process creation has become a necessity, needless to say it is
interesting in its own with the scope of extending the frontiers from bounded number of processes to a
dynamic setting.

Verification of systems with dynamic process creation was considered in [3]. Grammars were used to
model such systems, and showed that model checking these grammars against MSO is decidable. In [1], a
powerful automaton model with stacks and registers are used to model dynamic distributed systems. This
extended abstract is an extract from [1], restricting the automaton to use only one stack. We study the
non-emptiness problem of these automata. We argue that model checking these automata against MSO
with data comparison test (as opposed to equality test which is shown decidable in [1]) is decidable. Our
automaton must be seen as a low-level specification formalism rather than an implementation model.
This is a first step towards synthesizing local implementations from a global specification, in the spirit
of [2] where the authors show how to synthesize the local implementations from a global grammar
specification.

This extended abstract is organized as follows. Section 2 defines data words formally and shows how
to model distributed protocols as data words. It also introduces the specification language – MSO logic
with data comparison. Section 3 introduces the automata formalism and states the results. We conclude
in next section with a brief discussion.
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(c) A peer-to-peer protocol.

Figure 1: Data-words for DDS behaviors

2 Data words to model protocols

Notation Given a ranked alphabet A with a mapping arity : A 7→N and a (potentially infinite) set B, we
denote by AB the set {a(p1, . . . , pn) | a ∈ A, n = arity(a) and pi ∈ B}.

We fix the set of process identifiers of any Dynamic Distributed Systems (abbreviated as DDS hence-
forth) to be the set of positive integers N for the scope of this extended abstract.

We consider DDS capable of performing two types of atomic events: create, and message. Each of
these events have two participating processes – for create, we have the creating process and the created
process; for message, we have the sender and the receiver. The created process will be a fresh (non
existing) process, while the creating process as well as the sender and the receiver are assumed to be
existing. We also assume the pid of the created process to be bigger (in the natural order) than that of any
existing process. This is in accordance with the pid assigning conventions in Unix, thereby facilitating
to determine which process is more recent by looking at its process ids. In addition, a message can have
the message contents, which we denote by a predefined message type and the set of (existing) process
ids appearing in the message. The number of process ids that appear in a message is determined by the
message type.

Let Messages = {a,b, . . .} be the finite set of predefined message types. Then we let Events =
{create,a,b, . . .} to be the finite ranked alphabet of the DDS with arity : Events→N, the arity function.
We have arity(create) = 2 and arity(a)≥ 2 for a ∈Messages. In fact arity(a)−2 gives the number of
process ids that appear in the message of type a. An event is an element of EventsN.

A sequence of events gives a behavior of a DDS. For example,

Example 1. The behavior of a DDS depicted in Figure 1(a) is
trace= create(1,2)create(2,3)msg(3,1)create(3,4)msg(2,1)create(4,5)msg(5,1)msg(4,1).

A data word, over a finite ranked alphabet A and an infinite data domain D, is a sequence of elements
from AD. If a position i of a data word is labeled by a letter of arity m, we denote the kth data value at
i by datak(i) for all k ≤ m. For example, if i is labeled by σ(d1, . . .dn), then datak(i) = dk. Notice that
behaviors of DDS are data words over Events and N. But any data word over Events and N need not
have an interpretation as the behavior of a DDS. For e.g. create(1,2)create(2,1) is a valid data word,
but it cannot be seen as the behavior of a DDS since an existing process cannot be created. create(2,1)
is also not a valid behavior, since the pid of the newly created process needs to be bigger than the existing
processes.
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It might be a bit confusing to see that we have used sequences to represent the behaviors of a DDS.
This looks like it captures only linearzations of the distributed behavior. However, as we will shortly
see, the specification language we use is powerful enough to recover the concurrency information from
a linearization. Thus, language of data words L ⊆ Events∗N can represent a set of behaviors of a DDS,
or a protocol. The following example describes peer to peer communication in a DDS.
Example 2. The set of data words of the form create(1,2)create(2,3) . . .create(n−1,n)req(n,n−
1,n)req(n−1,n−2,n) . . .req(m−1,m,n)msg(m,n)msg(n,m)msg(m,n)msg(n,m) . . .msg(m,n)msg(n,m)
with m < n is a dynamic peer to peer protocol. The informal description of the protocol is as follows.
There is a creation phase in which the processes are created in a cascade fashion. After that the last
created process requests its parent to be a peer. It can either accept, or refuse by passing the request on to
its parent. The messages in the request phase needs to carry the identity of the requesting process in its
contents. Figure 1(c) shows this behavior as a distributed system with n = 6 and m = 2. The data word
is obtained by writing down the events in the left to right order.
Example 3. Consider a DDS which creates processes to form a tree architecture like in Figure 1(b). This
word can be represented by a depth-first-search listing of the create events. For e.g. in Figure 1(b) it is
create(1,2)create(2,3)create(3,4)create(3,5)create(2,6)create(1,7)create(7,8)
create(8,9)create(8,10)create(10,11) which we denote by tree. This can be followed by a request
propagating from the leftmost leaf to the right most leaf only through the leafs (the request message scans
the yield of the tree from left to right). This is similar to the seeking phase in the peer-to-peer protocol. A
data word for this phase in the example is seek = req(4,5,4)req(5,6,4)req(6,9,4)req(9,11,4) Finally,
the rightmost leaf (peer) sends a message directly to the leftmost leaf (msg(11,4)). Thus a data word
representation of Figure 1(b) is treeseekmsg(11,4).

This example can be seen as modeling the search for a distant relative in a social network. The green
part of the tree shows the family tree. The leaves are the current generation. The leaves only know their
closest relatives in the current generation (their left and right neighbors in the left-to-right ordering of the
leaves). A person in the present generation (process 4) wants to find a kin peer. The request for such a
peer must be propagated along the current generation (older generations are perhaps dead).

Now we describe a powerful language to reason about the properties of data words. We use an
extension of MSO over words to data words which allows comparison of data values.

Monadic second order logic over data words We assume countably infinite supplies of first-order
and second-order variables. We let x,y, . . . denote first-order variables, which vary over word positions,
and we use X ,Y, . . . to denote second-order variables, which vary over sets of positions.
Definition 4 (MSO logic over data words). The class MSOd(Events) of monadic second-order (MSO)
formulas over data words is given by the following grammar, where a ranges over Events, and k, ` are
at most the maximum rank of any letter in Events:

ϕ ::= a(x) | d<
k,`(x,y) | d=

k,`(x,y) | x≤ y | x ∈ X | ¬φ | φ ∨φ | ∃xφ | ∃Xφ

If the free variable x is interpreted as position i of a data word, then Formula a(x) holds if the label
of i is a. If the free variable x and y are interpreted as positions i and j respectively, Formula d=

k,`(x,y)
holds if k and ` are at most the rank of the letters labeling i and j respectively, and datak(i) = data`( j).
Semantics of Formula d<

k,`(x,y) is similar but requires datak(i)< data`( j) instead of datak(i) = data`( j).
Formula x ≤ y, the boolean connectives, and quantifiers are self-explanatory. We may use the usual
abbreviations x < y, ∀xφ , φ → ψ and so on. If φ is a sentence, i.e., it does not have any free variable,
then we set L(φ) to be the set of data words w such that w |= φ .
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Example 5. Consider the property that any process which requests for a peer eventually gets a peer. This
can be said by the following formula: ∀xreq(x)→ ∃y(y > x∧msg(y)∧ d=

3,2(x,y)) . That is, if there is
a “req” event, then there is a “msg” event in the future such that the parameter of “req” event and the
receiver of the “msg” event are the same.

Example 6. Consider a property that the participants of any message are always leaves, i.e., they do not
create other processes. This can be said by the formula
∀x¬create(x)→¬∃ycreate(y)∧ (d=

1,2(y,x)∨d=
1,1(y,x))

Example 7. Messages are always sent from younger processes to older processes can be said by the
formula ∀xmsg(x)→ d<

2,1(x,x)

Example 8. Every created process eventually sends a message to the “root” process. This can be said
by the formula ∃x(∀z(x≤ z)∧∀y(create(y)→∃y′ (d=

2,1(y,y
′)∧d=

1,2(x,y
′)))). The formula holds in the

data word trace (Figure 1(a)).

Example 9. This example demonstrates that our logic is powerful enough to express causal dependen-
cies, though it is evaluated on linearizations. Two events are causally dependent can be said by the
following formula x � y := (x ≤ y∧∨

i, j∈{1,2} d=
i, j(x,y))

∗. We do not explicitly give this formula, but
transitive closure is definable in MSO.

3 Data Pushdown automata

A data pushdown automaton is a finite state automaton equipped with a stack and a few registers. It
can remember data values by either storing it in registers or by pushing it to the stack. At any state it
optionally pop the topmost values in the stack to some registers (determined by a mapping φ ). Then it
can perform an event involving the data values in the registers. Then it can push some register contents
to the stack, reassign the register values (by a mapping ρ), and update its state.

All registers except one are undefined in the beginning. They hold a special value ⊥. Only the
contents of those registers with a proper pid can be pushed onto the stack. Thus the stack does not
contain ⊥. Similarly the registers can be rewritten by only pids. Thus a register if ever gets to store a
pid, it will never hold ⊥ again.

The infinite set of transition labels allow a finite abstraction by writing the register name which
contains the data value rather than the actual data value. Let R be the set of register names. The set of
such abstract events is EventsR . That is, EventsR = {a(p1, . . . pn) | a ∈ Events, n = arity(a) and pi is
a register name from the set R}. If the automaton executes a create action, the data value in the target
register is rewritten by a “fresh” value which is higher than any of the data values used so for. Then it
optionally pushes some of its register contents to the stack and updates its registers and state. We define
these notions formally.

Definition 10 (data multi-pushdown automaton). Let k ≥ 0. A k-register data pushdown automaton
(DPA) over (Events) is a 7-tuple A = (S,Z ,s0,r0,Z,F,∆) where S is a finite set of states, Z is a finite
ranked alphabet of stack symbols, s0 ∈ S is the initial state, r0 is the initial register, Z ∈ Z is the start
symbol with arity(Z) = 0, and F ⊆ S is the set of final states. Moreover, ∆ is a set of transitions of
the form τ = (s,A,φ ,α,upd,ρ,s′) where s,s′ ∈ S are states, A ∈Z , α ∈ EventsR and upd ∈Z ∗

R and
φ : [arity(A)] 7→ [k] and ρ : [k] 7→ [k] are two injective partial functions.

We let ConfA := S× (N∪{⊥})k×N×Z ∗
N denote the set of configurations of A . Configuration

γ = [s,r,max,w] with r = (d1, . . . ,dk) says that the current state is s, the content of register ri is di, all the
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data values which have already been used are at most max, and the stack content is w where we assume
that the topmost symbol is written last. If some di is ⊥, then the register ri is undefined.

Now, consider a transition τ = (s,A,φ ,α,upd,ρ,s′). It is enabled at γ if 1) w = w′A(d′1, . . . ,d
′
m), 2)

ri ∈ pre-image(ρ)\ image(φ), then di 6=⊥ and 3) depending on the type of α

• if α = create(ri,r j), then di 6=⊥ or i ∈ image(φ).

• if α = a(ri,r j, . . .), then (di 6=⊥ or i ∈ image(φ)) and (d j 6=⊥ or j ∈ image(φ)).

That is, for τ to be enabled at γ 1) the top stack symbol of γ should match that of the transition, 2) the
register assignment should not overwrite a defined register with ⊥, and 3) the pids executing the event
must exist (or the corresponding register names must be defined).

A register assignment function σ : R 7→ N∪{⊥} is said to be suitable for γ and τ if it is compatible
with the r and φ , and moreover, if it is a create event, the target register should be assigned a value larger
than max. That is:

• if α = create(−,r j) then σ(r j) = m for some m > max and for i 6= j if i∈ image(φ) then σ(ri) =
d′

φ−1(i) else σ(ri) = di

• otherwise, for all i if i ∈ image(φ) then σ(ri) = d′
φ−1(i) else σ(ri) = di

For every γ and τ there exists infinitely many suitable register assignment functions. If α = a(p1, . . . , pn)∈
EventsR , we let σ(α) be a(σ(p1), . . . ,σ(pn)). We lift this notion to words in Events∗R as well:
σ(uv) = σ(u)σ(v).

If τ is enabled at γ and if σ is a suitable register assignment function, the automaton A can execute
τ under σ generating σ(α). Then it moves into a new configuration γ ′ = [s′,r′,max′,w′′] with max′ =
maxi σ(ri), w′′=w′σ(upd) and r′=(σ(ρ−1(r1)), . . . ,σ(ρ−1(rk))) where we set ρ(i)= i if i /∈ image(ρ).

In this case we write γ
σ(α)
=⇒σ ,τ γ ′.

A configuration of the form [s0,(d,⊥, . . . ,⊥),d,Z] with d ∈ N is called initial, and a configuration
[s,r,d,w] such that s∈ F is called final. A run of A on u∈ Events∗N is a sequence γ0

α1=⇒σ1,τ1 γ1
α2=⇒σ2,τ2

. . .
αn=⇒σn,τn γn such that u = α1 · · ·αn and γ0 is initial. The run is accepting if γn is final. We let L(A ) :=

{u ∈ Events∗N | there is an accepting run of A on u} be the language of A .

Example 11. A DPA for the peer-to-peer protocol (cf. Example 2) is given in Figure 2(a). It uses three
registers and a stack symbol with arity 1. We remove this symbol in the figure for readability.

Example 12. The DPA given in Figure 2(b) accepts the distant-relative search example (cf. Example 3).

We conclude this section with two complexity results on DPAs. We have non-emptiness checking in
NP and, decidable MSO model checking.

Theorem 13. Non-emptiness checking of data pushdown automata is NP- Complete

Proof. (Sketch.) The set of defined registers (ones that holds pids instead of ⊥) is monotonously non-
decreasing. Hence the NP algorithm guesses a path along with the set of defined registers, and verifies it
is accepting. The lower bound is by reduction from CNF-SAT.

Theorem 14. Given a DPA A and an MSOd formula φ , it is decidable to check whether L(A )⊆ L(φ).

Proof. (Sketch.) The proof is by reduction to trees (or nested words) over finite alphabet. The data
comparison can be recovered by classical MSO over trees (or nested words).
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1 2 3 4

create(r1, r3)
push(r1), r1  r3

r3  pop
req(r2, r3, r1)

r2  r3
r3  pop

req(r1, r3, r1)
r2  r3 msg(r2, r1) msg(r1, r2)

msg(r2, r1)

(a) A DPA for peer-to-peer

1 2 3

6 5 4

create(r1, r2)
push(r1), r1  r2 r1  pop

create(r1, r2)
push(r1), r1  r2

create(r1, r2)
r3  r2, r4  r2

create(r1, r2)
push(r1), r1  r2

create(r1, r2)

msg(r3, r2, r4)
r3  r2

r1  pop

create(r1, r2)
push(r1), r1  r2

msg(r3, r4)

(b) A DPA for distant-relative search

Figure 2: DPA examples

4 Discussions

The MSO model checking result could be extended to a DPA that runs over arbitrary data words (that is,
not necessarily over create and msg alphabet). Indeed, we need to require the fresh data values to be
higher than any of the previously used values. Perhaps it is also possible, instead of requiring the fresh
data value to be higher, to allow guards involving data inequality comparisons of the register contents
and the fresh value for the transitions.

To conclude, we have considered a special case of the Data Multipushdown automata defined in [1].
We have extended this restriction to include data comparison, while restricting the application domain
to Dynamic Distributed Systems. This model is powerful enough to model several interesting examples.
We retain all the results of [1], but also show a tight bound on the complexity of deciding non-emptiness
for this particular class of automata.
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Abstract

Reachability and model-checking problems for flat counter systems are known to be decidable,
but whereas the reachability problem can be shown to be in NP,for most model checking problems
the best known upper bound is made of a tower of several exponentials, when there are such bounds.
Herein, we investigate and provide new results on the optimal complexity bounds for model check-
ing problems of flat counter systems with linear-time properties using several different specification
languages like temporal logic, first-order logic and automata. We also show that even extending the
temporal logic with arithmetical constraints on counters preserves the bounds.
PhD advisors : Stéphane Demri (LSV) and Arnaud Sangnier (LIAFA).

1 Introduction

Counter systems are finite-state automata equipped with program variables interpreted over non-negative
integers. They are used in many places like, broadcast protocols and program with pointers to quote a
few. Alongwith their large scope of usability, many problems on general counter systems are known to
be undecidable. But decidability of many problems can be gained by considering subclasses of counter
systems. Here we consider an important and natural class of counter systems, calledflat counter systems,
i.e. whose control graph does not contain a state which occurs in more thanone cycle in control graph.
Many of the naturally occuring systems are inherently non-flat, for example, programs with nested loop.
Though, for such systems we can under-approximate the runs to a flat system, which is useful for the
existential model checking. Even though flatness is clearly a substantial restriction, it is shown in [10]
that many classes of counter systems with computable Presburger-definable reachability sets areflattable,
i.e. there exists a flat unfolding of the counter system with identical reachability sets. Decidability results
on verifying safety and reachability properties on this kind of systems havebeen obtained in [4, 7, 2].
However, so far, such properties have been rarely considered in theframework of any formal specification
language (with an exception in [3, 6]).

Here, we establish decidability results and several computational complexity characterizations of
model-checking problems restricted to flat counter systems. We consider several formal specification
languages like, linear temporal logic (LTL) with past, non-deterministic Büchi automata and first order
logic. We show that the model checking problem is NP-Complete for specifications in LTL with past
and non-deterministic B̈uchi automata. We also prove that model checking first order logic formulas
on flat counter systems is PSPACE-Complete. The main techniques involved in obtaining these results
are stuttering theorem, characterizing runs by quantifier-free Presburger formulae and small solutions of
systems of equations. The detailed procedures and proofs for some of the results presented in Section
3.2 and 3.3 will be part of a forthcoming submission.
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2 Definitions

Counter constraints are defined below as a subclass of Presburger formulae whose free variables are
understood as counters. Such constraints are used to define guards incounter systems but also to de-
fine arithmetical constraints in formulae. LetC = {x1,x2, . . .} be a countably infinite set ofcounters
(variables interpreted over non-negative integers) and AT= {p1, p2, . . .} be a countable infinite set of
propositional variables (abstract properties about program points).We writeCn to denote the restriction
of C to {x1,x2, . . . ,xn}.

Definition 1 (Guards). The setG(Cn) of guards(arithmetical constraints on counters inCn) is defined
inductively as follows:

t ::= a.x | t+t

g ::= t∼ b | g∧g | g∨g

wherex ∈ Cn, a∈ Z, b∈ N and∼∈ {=,≤,≥,<,>}.

Note that such guards are closed under negations (but negation is not alogical connective) and the
truth constants⊤ and⊥ can be easily defined too. Giveng ∈ G(Cn) and a vectorv ∈ N

n, we say that
v satisfiesg, written v |= g, if the formula obtained by replacing eachxi by ~v[i] holds. For example
x1 ≥ 0∧ x2 ≤ 7 is a guard from Figure 1 and the vector(3,−1) satisfies it.

2.1 Flat Counter Systems

Definition 2 (Counter system). For a natural numbern≥ 1, an-dim counter system (shortly a counter
system)S is a tuple〈Q,Cn,∆, l〉 where:

• Q is a finite set ofcontrol states.

• ∆ ⊆ Q×G(Cn)×Z
n×Q is a finite set of edges labeled by guards and updates of the counter values

(transitions).

• l : Q→ 2AT is a labelling function.

For δ = 〈q,g,u,q′〉 in ∆, we denoteg andu asguard(δ ) andupdate(δ ) respectively.
We denote the configuration set ofS asC = Q×N

n. Given an initial configurationc0 ∈ Q×N
n, a

run ρ starting fromc0 in S is an infinite sequence of configurations such that it describes a path inSand

is denoted as:ρ := c0
δ0−→ ·· ·

δm−1
−−→ cm

δm−→ ·· · , whereci = 〈qi ,vi〉 ∈ Q×N
n, δi ∈ ∆, vi |= guard(δi) and

vi+1 = vi +update(δ ) for all i ∈ N. For example, a run in the counter system in Figure 1, could be

〈q1,(0,0)〉 → 〈q2,(5,7)〉 → 〈q2,(8,6)〉 → 〈q2,(11,5)〉 → 〈q3,(11,5)〉 → 〈q3,(12,6)〉 · · ·

We say that a counter system isflat if every node in the underlying graph belongs to at most one simple
cycle (a cycle being simple if no edge is repeated twice in it) [4]. In a flat counter system, simple cycles
can be organized as a DAG where two simple cycles are in the relation whenever there is path between a
node of the first cycle and a node of the second cycle. We denote byCFS the class of flat counter systems.
A flat Kripke structurecan be thought of as a flat counter system without any counter and thus do not
have any guards and updates on transitions. The class of flat Kripke structures are denoted byKFS. The
counter system shown in Figure 1(a) is a flat counter system.

A path schema,P in a system is anω-regular expression of the formp1l+1 p2l+2 · · · pklω
k , where each

pi is a sequence of consecutive edges called a path segment in the given system and eachl i is called a
loop segment is a path segment which describes a cycle in the given system. Aminimal path schema
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q1 q2 q3

q4

x1 = 0∧x2 = 0,(5,7)

x1 ≥ 0∨x2 ≤ 7,(3,−1)

x1 < 12,(0,0)

⊤,(1,1)

(a) Flat counter system

q1 q2 q3
x1 = 0∧x2 = 0,(5,7)

x1 ≥ 0∨x2 ≤ 7,(3,−1)

x1 < 12,(0,0)

⊤,(1,1)

(b) Path schema

Figure 1: Counter system and one of its path schema

is a path schema where no edge is repeated strictly more than twice. Note that there are exponentially
many minimal path schemas in a flat counter system. The language of a path schema represents a set of
runs which visit the loops inP in order at least once and the last loop infinitely many times. For a run
ρ, belonging to the language of path schema, we also say thatρ respectsP. Figure 1(b) shows a path
schema in the counter system. Note thatρ in the example above respects the path schema in Figure 1(b).

2.2 Specification Languages

Models of all the logics presented here are essentially abstractions of runs from counter systems. Since
a run in a flat counter system is an infinite sequence of configurations we can represent the runs as
ω-sequencesσ : N→ 2AT ×N

C, which we take as model for all the specifications defined here.

Formulae of PLTL[C] are defined as usual with exception of adding guards as atomic propositions.
The formulas consist ofφ ::= p | g | ¬φ | φ ∧φ | φ ∨φ | Xφ | φUφ | X−1φ | φSφ wherep∈ AT
andg ∈ G(Cn) for somen. We also denote by PLTL[ /0] thePLTL[C] formulas where no guards appear in
the formula. Given a modelσ and a positioni ∈ N, the satisfaction relation|= for PLTL[C] is defined as
usual for the Boolean combinations and temporal operators. For example:

• σ , i |= g
def
⇔ vi |= g wherevi [ j]

def
= π2(σ(i))(x j),

• σ , i |= Xφ def
⇔ σ , i+1 |= φ ,

• σ , i |= φ1Sφ2
def
⇔ σ , j |= φ2 for some 0≤ j ≤ i s.t. σ ,k |= φ1,∀ j < k≤ i.

For example a PLTL[C] formula could be(x1 < 10)U(a∧(x2 ≥ 2)∧Xb) which is satisfied by the example
run presented above with the labelling function mappingq2 to {a} andq3 to {b}.

We define a B̈uchi automaton,B as usual over a finite alphabet setΣ consisting of all the subsets
of AT. Thus, the language accepted byB is a subset of(2AT)ω . Hence, we sayσ |= B iff proj1(σ),
projection of the first component of every configuration inσ , belongs toL (B).

For defining First Order logic, we assume a countably infinite set of variables denoted byz1,z2, . . .. We
also assume a set of propositional symbols denoted asAT. A formula inFirst Order (FO[C]) logic with
counters is constructed as:φ ::= Pa(z) | g(z) | z1 < z2 | z1 = z2 | ¬φ | φ ∧φ ′ | ∃zφ(z) , where
a∈AT. The variables of aFO[C] formula are interpreted over the positions in the model. The satisfaction
relation ofFO[C] formulas are defined as usual. We writeFO[ /0] to denote the restriction ofFO[C]without
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arithmatical constraintsg(z). For example∃z1z2z3.Pa(z1)∧Pa(z2)∧Pa(z3)∧∀z4Pa(z4)∧ (z4 = z1∨z4 =
z2∨ z4 = z3) is FO[ /0] sentence which is satisfied by the example run above with the labelling function
mappingq2 to {a} andq3 to {b}.

It is interesting to note that there exists a standard logspace translation fromPLTL[C] formula to a
FO[C] formula, while preserving the semantics. In fact, as presented here,FO[C] andPLTL[C] have the
same expressive power, thanks to Kamp’s theorem. On the other handPLTL[C] can not be translated
to Büchi automata because of the guards in the logic. However, it is possible to have an exponential
translation fromPLTL[ /0] formula to B̈uchi automata.

2.3 Problem Definition

Effectively, a run in a flat counter system is an infinite sequence of configurations from the set 2AT ×N
C.

Thus, we can easily see a runρ from a flat counter system as a model for logicsσ : N→ 2AT ×N
C which

returns the configuration of the run for every position in theρ. Given a specification language L and a
classC of counter systems, we write MC(L,C ) to denote the existential model checking problem: given
S∈ C , a configurationc0 andφ ∈ L, does there existρ starting fromc0 such thatρ,0 |= φ? In that case,
we writeS,c0 |= φ . It is known that for the full class of counter systems, even the reachability problem
is undecidable, see e.g. [11]. Some restrictions, such as flatness, can lead to decidability as shown in [6]
but the decision procedure there involves an exponential reduction to Presburger Arithmetic, whence the
high complexity.

3 Results

We will now state the results related to the problems MC(PLTL[C],CFS), MC(FO[C],CFS). We will first
list the basic steps followed by the algorithms. In effect, though the steps followed by the algorithms are
the same, the techniques used and the bound obtained for the steps are different in each case and this
difference leads to different complexity characterization. Given a flat counter systemSand a formula in
the respective logicφ , basically the following steps are followed:

1. Select a minimal path schemaP from S.

• There are exponentially many path schemas in a flat counter system and theirsize is bounded
by size(S).

2. Guess an “equivalent” path schemaP′ to P such thatP′ contains no disjunction in guards and the
states are labelled with counter constraints that are satisfied at the specific state.

• From [5], we know that, there are polynomially many path schemas equivalent to P.

3. Guess a quantifier-free Presburger formulaψ characterizing which loops to be taken a fixed num-
ber of times and which ones can be taken unbounded number of times. Checkthat the solutions to
ψ give runs that satisfy the given specificationφ when the counter behaviours inP′ are ignored.

• This can be done by establishing “stuttering theorem” (similar to the pumping lemma for
finite automaton) for each specification.

4. Build constraint systemE that characterizes precisely the number of times each loop can be taken
in a valid run (characteristics of the counters are taken into consideration).

• From [5], we know that, we can buildE in polynomial time.

5. Guess and check a polynomial size solution forE ∧ψ .
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• From [1], we know that, there exists a polynomial size solution if it is satisfiable.

Note that Step 2 and 4 does not depend on the specification language and hence is same for different
logics. On the other hand Step 3 depends only on the specification and the structure of the system. Thus,
the stuttering theorem and procedure for checking satisfaction of formulaare different for various logics.

3.1 Linear Temporal Logic with Past

The “stuttering theorem” forPLTL[ /0] formulas is proved in [5]. It gives a bound on the number of times
each loop in a path schema from flat Kripke structure is taken, depending on the temporal depth of the
formula. The temporal depth of aPLTL[ /0] formula is the maximum number of nesting of the temporal
operators in the formula. The bound given by the theorem is 2.td(φ ′)+5 wheretd(φ) is the temporal
depth ofφ . Clearly, the bound is polynomial in size(φ). Thus, we can unfold loopi of P′ ~y[i] times,
giving us anultimately periodic pathof polynomial size. Model checkingφ ′ on such a path can be done
in polynomial time by the procedure in [9]. Note that every step of the algorithmcan be completed in
polynomial time and with guesses of polynomial size. Thus, it gives us an NP procedure for the problem.

The NP-hardness of the problem follows from a reduction from Booleansatisfiability problem, where
the truth value of the variables are encoded by the number of times a fixed loopis taken.

Theorem 3. MC(PLTL[C],CFS) is NP-Complete.

3.2 First-Order Logic

The “stuttering theorem” forFO[ /0] formulas is proved using Ehrenfeucht-Fraı̈sśe games (EF Games).
It gives a bound on the number of times each loop in a path schema from flat Kripke structure is taken,
depending on the quantifier height of the formula. The quantifier height ofa FO[ /0] formula is the
maximum number of nesting of the∃ operator in the formula. The bound given by the theorem is 2qh(φ ′)

whereqh(φ ′) is the quantifier height ofφ ′. Clearly, the bound is exponential in size(φ ′). Thus, we
can not directly construct an ultimately periodic path fromP′ and~y as the path could be exponential in
length. Instead we work with the succinct representation of this exponential path as〈P′,~y〉. Recall that,
even though~y may contain exponential value, the number of bits required to represent~y is polynomial
due to binary encoding. Now, since the variables inφ ′ are interpreted over the positions in run which can
be at most 2qh(φ ′)×size(P′), this can also be stored using polynomially many bits. And evaluatingφ ′ on
such a representation can be done using arithmetic over polynomially many bits.Note that every step of
the algorithm can be completed in polynomial space and with guesses of polynomial size. Thus, it gives
us a PSPACE procedure for the problem.

The PSPACE-hardness of the problem follows from a reduction from quantified boolean formula on
finite structures.

Theorem 4. MC(FO[C],CFS) is PSPACE-Complete.

3.3 Büchi Automata

For MC(BA,CFS) we employ a different procedure. We use the fact that for a non-deterministic finite au-
tomaton, there exists a existential Presburger formula of polynomial size which characterizes the Parikh
image of its language [12]. We also use the fact that an accepting run in a Büchi automaton, can be split
non-deterministically into two parts, each part recognised by a non-deterministic finite state automaton.
The procedure involves constructing a product automata for each partwith the given path schema and
check for satisfiability of the formula characterizing the Parikh images.
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Theorem 5. MC(BA,CFS) is NP-Complete.

From the above result we can conclude that if we define linerµ-calculus in a way similar toPLTL[C],
we can obtain that the model checking problem for such logic is decidable. This can be done by per-
forming the translation from linearµ-calculus to B̈uchi automata and then applying the procedure for
MC(BA,CFS).

4 Conclusion

Here, we have investigated the complexity of the model-checking problem of various kinds of specifi-
cations for linear time properties over flat counter systems and its subclasses. The main results showing
NP-completeness of the problem MC(PLTL[C],CFS) improve the upper bound of previously known re-
sults and also improves the understanding of flat counter systems by showing the PSPACE-completeness
of MC(FO[C],CFS) which was previously not known. Furthermore the results extend the result from [8],
by including past time operator in the logic and showing that it still has the same complexity. The results
are represented in the following table.

System PLTL[ /0] PLTL[C] FO[ /0] FO[C] BA

KFS NP-complete - PSPACE-complete - NP-complete
CFS NP-complete NP-complete PSPACE-complete PSPACE-complete NP-complete
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[2] M. Bozga, R. Iosif, and F. Konecný. Fast acceleration of ultimately periodic relations. InCAV’10, volume
6174 ofLNCS, pages 227–242. Springer, 2009.

[3] H Comon and V. Cortier. Flatness is not a weakness. InCSL’00, volume 1862 ofLNCS, pages 262–276.
Springer, 2000.

[4] H. Comon and Y. Jurski. Multiple counter automata, safety analysis and PA. InCAV’98, volume 1427 of
LNCS, pages 268–279. Springer, 1998.

[5] S. Demri, A.K. Dhar, and A. Sangnier. Taming Past LTL and Flat Counter Systems. InIJCAR’12, volume
7364 ofLNAI, pages 179–193. Springer, 2012.

[6] S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checkingCTL∗ over flat Presburger counter
systems.Journal of Applied Non-Classical Logic, 20(4):313–344, 2010.

[7] A. Finkel and J. Leroux. How to compose Presburger accelerations: Applications to broadcast protocols. In
FST&TCS’02, volume 2256 ofLNCS, pages 145–156. Springer, 2002.

[8] L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In CONCUR’11, volume 6901 ofLNCS, pages
419–433. Springer, 2011.

[9] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with forgettable past. InLICS’02, pages
383–392. IEEE, 2002.

[10] J. Leroux and G. Sutre. Flat counter systems are everywhere! In ATVA’05, volume 3707 ofLNCS, pages
489–503. Springer, 2005.

[11] M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.

[12] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of equational horn clauses.
In CADE, pages 337–352, 2005.



Inferring Biological Regulatory Networks from Process
Hitting models

Maxime Folschette
LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597

(Institut de Recherche en Communications et Cybernétique de Nantes)
1 rue de la Noë – B.P. 92101 – 44321 Nantes Cedex 3, France.

National Institute of Informatics,
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

Maxime.Folschette@irccyn.ec-nantes.fr

Joint work with: Loïc Paulevé, Katsumi Inoue, Morgan Magnin, Olivier Roux

Abstract
The Process Hitting (PH) is a recently introduced framework to model concurrent processes. It

is notably suitable to model Biological Regulatory Networks (BRNs) with partial knowledge of co-
operations by defining the most permissive dynamics. On the other hand, the qualitative modeling of
BRNs has been widely addressed using René Thomas’ formalism. Given a PH model of a BRN, we
first tackle the inference of the underlying Interaction Graph between components. Then the infer-
ence of corresponding Thomas’ models is provided by inferring some parameters and enumerating
the compatible parametrizations.

1 Introduction

As regulatory phenomena play a crucial role in biological systems, they need to be studied accurately.
Biological Regulatory Networks (BRNs) consist in sets of either positive or negative mutual effects be-
tween the components. Besides continuous models of physicists, often designed through systems of
ordinary differential equations, a discrete modeling approach was initiated by René Thomas in 1973 [16]
allowing the representation of the different levels of a component, such as concentration or expression
levels, as integer values. Nevertheless, these dynamics can be precisely established only with regard
to some kind of “focal points”, related to as Thomas’ parameters, indicating the evolutionary tendency
of each component. This modeling has motivated numerous works (e.g., [12, 9, 15, 1]), and other ap-
proaches related to our work, which rely on temporal logic [7] and constraint programming [4, 5], aim
at determining models consistent with partial data on the regulatory structure and dynamics. While the
formal checking of dynamical properties is often limited to small networks because of the state graph ex-
plosion, the main drawback of this framework is the difficulty to specify Thomas’ parameters, especially
for large networks.

In order to address the formal checking of dynamical properties within very large BRNs, we recently
introduced in [10] a new formalism, named the “Process Hitting” (PH), to model concurrent systems
having components with a few qualitative levels. A PH describes, in an atomic manner, the possible
evolutions of a “process” (representing one component at one level) triggered by the hit of at most one
other “process” in the system. This particular structure makes the formal analysis of BRNs with hundreds
of components tractable [11]. PH is suitable, according to the precision of this information, to model
BRNs with different levels of abstraction by capturing the most general dynamics.
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In this work1, we show that starting from one PH model, it is possible to find the underlying inter-
actions, then the underlying Thomas’ parameters. It relies on an exhaustive search of the interactions
between components of the PH model, and an enumeration of the (possibly large) nesting set of valid
parameters, so that the resulting dynamics are ensured to respect the PH dynamics, i.e. no spurious
transitions are made possible.

The first benefit of our approach is that it makes possible the construction refining of BRNs with
a partial and progressively brought knowledge in PH, while being able to export such models in the
Thomas’ framework. Our second contribution is to enhance the knowledge of the formal links between
both modelings. The method can be applied to large BRNs (up to 40 components).

2 Frameworks

2.1 The Process Hitting framework

A Process Hitting (PH) (Def. 1) gathers a finite number of concurrent processes grouped into a finite
set of sorts. A sort stands for a component of the system while a process, which belongs to a unique
sort, stands for one of its expression levels. A process is noted ai where a is the sort and i is the process
identifier within the sort a. At any time, exactly one process of each sort is present; a state of the PH
corresponds to such a set of processes.

The concurrent interactions between processes are defined by a set of actions. Actions describe the
replacement of a process by another of the same sort conditioned by the presence of at most one other
process in the current state. An action is denoted by ai→ b j � bk, which is read as “ai hits b j to make it
bounce to bk”, where ai,b j,bk are processes of sorts a and b, called respectively hitter, target and bounce
of the action.

Definition 1 (Process Hitting). A Process Hitting is a triple (Σ,L,H ):

• Σ = {a,b, . . .} is the finite set of sorts;

• L = ∏a∈Σ La is the set of states with La = {a0, . . . ,ala} the finite set of processes of sort a ∈ Σ and
la a positive integer, with a 6= b⇒ La∩Lb = /0;

• H = {ai → b j � bk ∈ La×Lb×Lb | (a,b) ∈ Σ2 ∧ b j 6= bk ∧ a = b⇒ ai = b j} is the finite set of
actions.

Given a state s ∈ L, the process of sort a ∈ Σ present in s is denoted by s[a]. An action h = ai→ b j � bk ∈
H is playable in s ∈ L if and only if s[a] = ai and s[b] = b j. In such a case, (s · h) stands for the state
resulting from the play of the action h in s, with (s ·h)[b] = bk and ∀c ∈ Σ,c 6= b,(s ·h)[c] = s[c].

Modeling cooperation. As described in [10], the cooperation between processes to make another pro-
cess bounce can be expressed in PH by building a cooperative sort. Fig. 1 shows an example of a
cooperative sort bc between sorts b and c, defined with 4 processes (one for each sub-state of the pres-
ence of processes b1 and c1). For the sake of clarity, processes of bc are indexed using the sub-state
they represent. Hence, bc01 represents the sub-state 〈b0,c1〉, and so on. Each process of sort b and c hit
bc to make it bounce to the process reflecting the status of the sorts b and c (e.g., b1→ bc00 � bc10 and
b1→ bc01 � bc11). Then, to represent the cooperation between processes b1 and c1, the process bc11 hits
a1 to make it bounce to a2 instead of independent hits from b1 and c1. The same cooperative sort is used
to make b0 and c0 cooperate to hit a1 and make it bounce to a0.

1The formal details of our method are presented in [6].
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Example. Fig. 1 represents a PH (Σ,L,H ) with especially: Σ = {a,b,c,bc}, La = {a0,a1,a2}, Lb =
{b0,b1}, Lc = {c0,c1} and Lbc = {bc00,bc01,bc10,bc11}. This example models a BRN where the com-
ponent a has three qualitative levels, components b and c are Boolean and bc is a cooperative sort. In
this BRN, a inhibits b at level 2 while b and c activate a with independent actions (e.g. b0→ a2 � a1) or
through the cooperative sort bc (e.g. bc11→ a1 � a2). Indeed, the reachability of a2 and a0 is conditioned
by a cooperation of b and c, as explained above.

b

0 1

c

0 1

a

0

1

2

bc
00 01 10 11

Figure 1: A PH example with four sorts: three components (a, b and c) and a cooperative sort (bc).
Actions targeting processes of a are in thick lines.

2.2 Thomas’ modeling

Thomas’ formalism, here inspired by [13, 3], lies on two complementary descriptions of the system.
First, the Interaction Graph (IG) models the structure of the system by defining the components’ mutual
influences. Its nodes represent components, while its edges labeled with a threshold stand for either
positive or negative interactions (Def. 2); la denotes the maximum level of a component a.

Definition 2 (Interaction Graph). An Interaction Graph (IG) is a triple (Γ,E+,E−) where Γ is a finite
number of components, and E+ (resp. E−) ⊂ {a t−→ b | a,b ∈ Γ∧ t ∈ [1; la]} is the set of positive (resp.
negative) regulations between two nodes, labeled with a threshold. A regulation from a to b is unique.

For an interaction of the IG to take place, the expression level of its head component has to be higher
than its threshold; otherwise, the opposite influence is expressed. For any component a ∈ Γ, Γ−1(a) =
{b ∈ Γ | ∃b t−→ a ∈ E+∪E−} is the set of its regulators. A state s of an IG (Γ,E+,E−) is an element in
∏a∈Γ[0; la] and s[a] refers to the level of component a in s.

The specificity of Thomas’ approach lies in the use of discrete parameters to represent focal level
intervals (Def. 3).

Definition 3 (Discrete parameter Kx,A,B and Parametrization K). Let x ∈ Γ be a given component and
A (resp. B) ⊂ Γ−1(x) a set of its activators (resp. inhibitors), such that A∪B = Γ−1(x) and A∩B = /0.
The discrete parameter Kx,A,B = [i; j] is a non-empty interval so that 0 ≤ i ≤ j ≤ lx. With regard to the
dynamics, x will tend towards Kx,A,B in the states where its activators (resp. inhibitors) are the regulators
in set A (resp. B). The complete map K = (Kx,A,B)x,A,B of discrete parameters for an IG is called a
parametrization of this IG.
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ab c

1+

1+
2− Ka,{b,c}, /0 = [2;2] Kb,{a}, /0 = [0;1]

Ka,{b},{c} = [1;1] Kb, /0,{a} = [0;0]

Ka,{c},{b} = [1;1]

Ka, /0,{b,c} = [0;0] Kc, /0, /0 = [0;1]

Figure 2: (left) IG example. Regulations are represented by the edges labeled with their sign and thresh-
old. For instance, the edge from b to a is labeled “1+”, which stands for: b 1−→ a ∈ E+. (right) Example
parametrization of the left IG.

At last, dynamics are defined in BRN in a unitary and asynchronous way: from a given state s, a
transition to another state s′ is possible provided that only one component a will evolve of exactly one
level towards Ka,A,B, where A (resp. B) is the set of activators (resp. inhibitors) of a in s.

Example. Fig. 2(left) represents an Interaction Graph (Γ,E+,E−) with Γ = {a,b,c}, E+ = {b 1−→ a,c 1−→
a} and E−= {a

2−→ b}; hence Γ−1(a) = {b,c}. Fig. 2(right) gives a possible parametrization on this IG. In
this BRN, the following transitions are possible: 〈a0,b1,c1〉→ 〈a1,b1,c1〉→ 〈a2,b1,c1〉→ 〈a2,b0,c1〉→
〈a1,b0,c1〉, where ai is the component a at level i.

3 Interaction Graph Inference

In order to infer a complete BRN, one has to find the Interaction Graph (IG) first, as some constraints
on the parametrization rely on it. Inferring the IG is an abstraction step which consists, from atomistic
actions of a PH, in determining the global influence of every component on each of its successors.

This step assumes that the studied PH defines two types of sorts: the sorts corresponding to BRN
components, which will appear in the IG, and the cooperative sorts. The identification of these two sets
of sorts relies on the observation of their possible behavior, which in both cases observe some rules.

IG Inference Inferring global influences of a predecessor b on a component a requires to find “local
influences” from this predecessor first, by considering a given state and changing only the active process
of b. The aim is to compare the set of processes towards which the component a will evolve, for each
active process of b, leaving the active process of all the other sorts unchanged. Indeed, if after increas-
ing the level of b (i.e. activating a higher process of b) we notice that a tends to reach a higher (resp.
lower) level, we can then deduce that b activates (resp. inhibits) a in this selected state. Of course, only
predecessors of a have to be considered.

This has to be observed on every possible state in order to infer a local influence. Indeed, if all local
influences of b on a are the same (activations or inhibitions) we can deduce that the global influence of b
on a is also the same, and the related threshold is the lowest level of b for which we can observe such an
influence. An unsigned edge with no threshold is inferred if two different local influences are found, or
in particular cases (when a behavior cannot be represented as a BRN).

Example. Consider, in the PH of Fig. 1, the sub-state 〈b0,c0,bc00〉 of predecessors of a. In this sub-
state, a can be hit by the following actions: {b0 → a2 � a1,c0 → a2 � a1,bc00 → a1 � a0}. Thus, if
a evolves, it will eventually reach process a0. But if a higher process of b is activated, that is, b1
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instead of b0, thus considering the sub-state 〈b1,c0,bc10〉, then a can be hit by the two following actions:
{b1→ a0 � a1,c0→ a2 � a1}, and will eventually reach process a1.

Therefore, in this sub-state of predecessors of a, b locally activates a. Furthermore, if this analysis
is carried for all possible sub-states of predecessors of a, only local activations are found, thus giving:
b 1−→ a ∈ E+. After applying this method to all pairs of influence, the IG given in Fig. 2 is inferred.

4 Parametrization inference

Given the IG inferred from a PH as presented in the previous section, one can find the discrete param-
eters that model the behavior of the studied PH using the method presented in the following. As some
parameters may remain undetermined, another step allows to enumerate all parametrizations compatible
with the inferred parameters.

Independent parameters inference This subsection presents some results related to the inference of
independent discrete parameters from a given PH, equivalent to those presented in [10]. We suppose in
the following that the considered PH is well-formed for parameters inference, i.e. its inferred IG does not
contain any unsigned edge, and in each sort, all processes activating (resp. inhibiting) another component
share the same behavior. Let Ka,A,B be the parameter we want to infer for a given component a ∈ Γ, and
A ⊂ Γ−1(a) (resp. B ⊂ Γ−1(a)) a set of its activators (resp. inhibitors). This inference, as for the IG
inference, relies on the search of focal processes of the component for the given configuration of its
regulators.

For each sort b ∈ Γ−1(a), we define a context that contains all processes of b activating (resp. in-
hibiting) a if b ∈ A (resp. B). From all contexts of all predecessors of a, we create a global context that
represents the configuration A,B (including the cooperative sorts involved). The parameter Ka,A,B speci-
fies towards which values a eventually evolves as long as this context holds, which is precisely given by
the set of focal processes.

Example. Consider the PH of Fig. 1, from which the IG of Fig. 2 is inferred. Inferring the parameter
Ka,{b,c}, /0 requires to understand the behavior of a in the sub-state 〈b1,c1,bc11〉. In this sub-state, a
tends to eventually reach process a2; thus, we can deduce the parameter: Ka,{b,c}, /0 = [2;2]. Inferring all
parameters leads to the complete parametrization given in Fig. 2.

Admissible parametrizations enumeration The previous inference step may leave several parameters
undetermined, due to missing cooperations or behaviors impossible to represent in a BRN. If it is not
possible to change the PH model in order to remove these inconclusive cases, one can perform a last
step to enumerate all valid values for each parameter that could not be inferred given the above results.
We consider that a parameter is valid if any transition it involves in the resulting BRN is allowed by the
studied PH by actions that represent this behavior. We also add some biological constraints on the whole
parametrizations, given in [3]. These constraints lead to a family of admissible parametrizations which
we can enumerate and are ensured to observe a coherent behavior that is included in the original PH.

Answer Set Programming (ASP) [2] turns out to be effective for the enumerative searches developed
in this paper, as it efficiently tackles the inherent complexity of the models we use, thus allowing an
efficient execution of the formal tools developed. Furthermore, ASP finds a particularly interesting
application in the research of admissible parametrizations regarding the properties presented above, as
this enumeration can be naturally formulated by using of aggregates and constraints.
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5 Implementation

The inference method described in this paper has been implemented as a tool named ph2thomas, as part
of PINT2, which gathers PH related tools. Our implementation mainly consists of ASP programs that are
solved using Clingo3.

In the previous sections, we illustrate our results on a toy example considered as a very small network.
But our approach can also successfully handle large PH models of BRNs found in the literature such as an
ERBB receptor-regulated G1/S transition model from [14] which contains 20 components, and a T-cells
receptor model from [8] which contains 40 components4. For each model, IG and parameters inferences
are performed together in less than a second on a standard desktop computer.

6 Conclusion

This work establishes the abstraction relationship between PH, which is more abstract and allows incom-
plete knowledge on cooperations, and Thomas’ approach for qualitative BRN modeling. This motivates
the concretization of PH models into a set of compatible Thomas’ models in order to benefit of the com-
plementary advantages of these two formal frameworks and extract some global information about the
influences between components.

As an extension of the present work, we plan to explore new semantics of BRNs to be able to tackle
influences currently represented by unsigned edges.
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Abstract
We introduce a model for networks of identical probabilistic timed processes, where the num-

ber of processes is a parameter. Each process is a probabilistic single-clock timed automaton and
communicates with the others by broadcasting. On the one hand, we prove that most parameterized
verification problems (i.e. verification independently of the number of processes) are undecidable in
the static case, already in the untimed case. On the other hand, we show that presence of dynamism,
via creation and extinction of processes, permits to recover decidability.

1 Introduction

Parameterized verification aims at verifying a system independently of its actual instantiation, that is in
our case, independently of the number of processes involved. In [1], networks of many identical timed
automata are introduced. For this model, safety properties are decidable if and only if the timed automata
have a single clock. More recently, a series of papers, initiated with [5], investigates the parameterized
verification of ad-hoc networks. The nodes in the network are modelled by finite automata (and later
single-clock timed automata) that communicate through broadcast. The decidability status of reachability
and coverability problems depends on the topology and its evolution.

Another aspect of verification are quantitative verification problems. A prominent class of quanti-
tative systems is the one of probabilistic models, which are well known in the finite case. However,
up to our knowledge, the parameterized verification (for the number of processes in the network) of
probabilistic systems hasn’t been investigated yet.

We introduce a modelling formalism that combines infinite-state space, due to an unknown number
of processes in the network, and probabilistic behaviours. Probabilistic timed networks are formed of
many identical probabilistic timed automata with a single clock, and interaction between the processes
is modelled by message broadcasting. In a second step, in order to encompass mobility in the network,
we also define dynamic probabilistic timed networks, where processes can disappear and be created.

On the one hand we prove that most parameterized problems are undecidable when the topology is
static, already in the untimed case. On the other hand, in the dynamic case, we provide a transforma-
tion from probabilistic timed networks to a class of probabilistic lossy channel systems, and derive the
decidability of the considered parameterized verification problems.

The rest of the paper is organized as follows. We define the model of probabilistic timed networks
in Section 2 together with the parameterized verification problems we consider. Section 3 presents the
undecidability in the static case. In Section 4 we adapt the model to the dynamic case and establish the
decidability of the parameterized verification problems. We conclude by mentionning open questions
and future work.
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2 Modelling probabilistic protocols

Notations For E a finite or denumerable set, we write Dist(E) for the set of discrete probability distri-
butions over E, that is, the set of functions δ : E→ [0,1] such that ∑e∈E δ (e) = 1. For E an arbitrary set,
we write M (E) for the set of multisets over E, or equivalently the set of multiplicity functions f : E→N.

Given x a continuous clock the set of regions over x, with a maximal constant b ∈ N>0, is denoted
Reg(x). Up = {id,z} is the set of possible updates for clock x: a clock update up(x) either resets the
clock x to zero (up= z) or leaves it unchanged (up= id).
Model We define a new model for probabilistic timed protocols which are in fact probabilistic timed
automata with a single clock, and with restrictions on the form of transition rules, to emphasize their
communicative nature.

Definition 1. A probabilistic timed protocol is a tuple P = (Q,q0,x, I,Σ,∆) where: Q is a finite set of
control states, q0 ∈ Q is the initial state, x is a clock, I : Q→ 2Reg(x) is the invariant function, Σ is a
finite message alphabet with a subset Σε of internal actions, and ∆ is the probabilistic discrete transition
function, partitioned into: internal actions: ∆i : Q×Reg(x)×Σε → Dist(Q×Up), denoted q

g,ε,up,p−−−−→ q′

whenever δ (q′,up) = p with δ = ∆i(q,g,ε); broadcasts: ∆b : Q×Reg(x)×!(Σ\Σε)→ Q×Up, denoted

q
g,!a,up−−−−→ q′ whenever (q′,up) = ∆b(q,g, !a); receptions: ∆r : Q×Reg(x)×?(Σ\Σε)→ Q×Up, denoted

q
g,?a,up−−−−→ q′ whenever (q′,up) = ∆r(q,g,?a).

A probabilistic timed network, written PN , is composed of N ∈ N>0 copies, called processes, of a
probabilistic timed protocol P .

The intuitive interpretation of a probabilistic timed network PN is that N processes arranged in a
clique execute the probabilistic timed protocol P simultaneously.

Remark 2. In our model, in each control state, several internal actions can be enabled, each giving rise
to a probability distribution for the successor state, whereas broadcasts and receptions are deterministic.
This is not a real restriction, since systems with nondeterministic and probabilistic choices for broadcast
and receptions can be encoded in our model by introducing intermediary states and additional internal
transitions.

Let us explain informally the semantics JPNK of a probabilistic timed network. A configuration of a
probabilistic timed network PN is a finite multiset γ ∈M (Q×R+) over the set of pairs composed of a
control state and a real value for the clock. Each pair represents a process involved in the network (since
we consider networks with N processes each configuration is composed of N pairs). We only consider
legal configurations that satisfy the state invariants given in P i.e. γ(q,x)> 0 implies x ∈ I(q). The set
of all such configurations is denoted Conf.

JPNK, is given in terms of a timed Markov decision process over the configuration. The initial con-
figuration γ0, is defined as γ0(q0,0) = N and γ0(q,x) = 0 otherwise. The transition relation is partitioned
into time elapsing and discrete actions. Where time elapsing increments all the clocks values with a real
value (and preserve the invariants) and discrete actions are defined informally as follows: from a config-
uration, first a process is selected nondeterministically, and second, a (broadcast or internal) transition
enabled for that process is performed. Messages are broadcast to all other processes, whereas internal
actions only affect the chosen process.

An execution in JPNK is a finite or infinite sequence γ0→ γ1→ γ2 · · · , where the transitions corre-
spond to time elapsing, internal actions or communications.

A scheduler for a timed Markov decision process is a function σ that resolves the nondeterminism by
choosing in each configuration an action: either time elapsing for all processes, or some element in the
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support of the configuration together with an enabled internal action, or an enabled broadcast. In order
to avoid some unrealistic time convergences, we also assume that, on any infinite execution, schedulers
choose discrete actions infinitely often.

The probabilistic timed network PN together with a fixed scheduler σ give rise to a Markov chain
with state space Conf, and in which the probability measure over executions of PN , defined in a standard
way, is written Pσ .
Relevant verification questions We mainly focus on qualitative variants of reachability problems for
networks of probabilistic protocols. For q f ∈ Q, an execution ρ of PN satisfies 3q f (written ρ |= ♦q f ),
if there exists a configuration γ along ρ that contains a process with control state q f . We write Pσ (PN |=
3q f ) for the probability under scheduler σ of the set of executions ρ with ρ |=3q f , and further denote
by Pmin(P

N |= 3q f ) (resp. Pmax(PN |= 3q f )) for the minimum (resp. maximum) of these values
among all possible schedulers.

We focus on the following relevant problems:
- REACH>0

max: Does there exist N such that Pmax(PN |= 3q f ) > 0? For q f a bad state this question
correspond to: is there a network size and an environment such that something bad can happen?

- REACH=1
min: Does there exist N such that Pmin(PN |= 3q f ) = 1? For q f a good target state this

problem ensure that for a well sized network, whatever what happen, q f is almost surely reached.
- REACH<1

min: Does there exist N such that Pmin(PN |= 3q f ) < 1?1 This question is relevant for
negative answer: whatever the size of the network the state is almost surely reached.

3 Static number of processes

In the static case, where processes can not disappear or be created, the studied problems are undecidable
except for the case REACH>0

max. This case corresponds to reachability in the non probabilistic case, and is
decidable [3]. The other problems are still undecidable even in the untimed restriction of the model.

This is proved by reduction of the halting problem (resp. the boundedness problem) of a IT 2-counter
machine M (IT stands for infinitely testing: for an infinite run a non zero counter is tested to zero infinitely
often, see [2]).

The idea of the reduction is the following: one process plays the role of the controller that keeps
track of the control state in M, the other processes will encode the values of the counters. Increments
and decrements are just changing the state of one of these processes. And zero tests are modelled by a
probabilistic choice of the controller. In case of error in this choice we ensure that one process reaches
an error state. Hence the only way to avoid error states is thus to faithfully simulate M.

With this construction, we can prove that REACH<1
min for the error state is equivalent to termination in

M and that REACH=1
min is equivalent to counter boundedness in M, hence the undecidability.

4 Dynamic number of processes

In this section, we extend the model of probabilistic timed networks in order to take into account dispari-
tion and creation of processes. This dynamism is sensible for the application to wireless sensor networks
where nodes can break down or run out of battery, but also be newly inserted or refill their battery.
Syntax and semantics A dynamic probabilistic timed network (P,N0,λ+,λ−) is composed of prob-
abilistic timed protocols P with initially N0 copies, together with a creation rate λ+ ∈ (0,1) and a
disparition rate λ− ∈ (0,1). After each discrete action and every time unit, each process disappears with
probability λ−, followed by the creation of k processes (in the initial control state with clock value 0)
with probability λ k

+(1−λ+).

1This is not the negation of the precedent problem because of the existantial quantifier.
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Note that λ+ = λ− = 0 is forbidden, otherwise the number of processes is constant and we recover
the model of probabilistic timed network from Definition 1.

The semantics of a dynamic probabilistic timed network is defined as for the static case, by a timed
Markov decision process. The only difference is that it takes into account the distributions risen by the
processes that disappear followed by the creation of new processes.
Mixed channel systems To show decidability we introduce mixed channel (MCS) system which are
close to lossy channel system (LCS) and show that decidability in LCS still holds for MCS and that we
can model probabilistic timed network in MCS.
Definition 3 (Mixed channel system). A mixed channel system is a tuple (S,C ,Σ, f ,Λ) where S is a finite
set of control states, C is a finite set of FIFO channels, Σ = Σr∪Σu is a finite set of messages partitioned
into reliable and unreliable messages, f ⊆ S×2C ×

(
(C ×{!,?}×Σ)∪{ε}

)
×Dist(S) is the probabilistic

transition function, split into perfect transitions and gainy/lossy transitions: f = fp ∪ fl,g, and Λ is the
pair of creation and disparition rates.

Mixed channel systems are a mixture of channel systems with emptiness tests and unreliable channel
systems with insertions and losses: first, not all messages can be lost, and second, not all transitions
are unreliable. The model is undecidable in its full generality (it already encompasses perfect channel
systems), however in the sequel we explain how to encode any dynamic probabilistic timed network into
a mixed channel system with decidable reachability problem. This reduction will ensure the existence of
a finite attractor and that predecessor operators are effectively computable and upward closed hence the
decidability of reachability problems.

The semantics of a mixed channel system is an infinite-state Markov decision process where the
states are configurations (s,w) formed of a control state s ∈ S and a mapping w : C → Σ∗, describing the
channel contents. The set of actions is composed of reads from and writes to the channels, and internal
actions, potentially guarded by an emptiness test of a subset of the channels. The probability distributions
are given by the probability of deletion and creation of lossy messages in the channels during gainy/lossy
transitions.

In this Markov decision process, a scheduler U is a function that associates with each configuration
(s,w) some enabled action (read, write or internal).
Reduction to mixed channel systems The principle of the reduction is to encode the configurations of
PN0

Λ
by channel contents. In order to keep the channel alphabet finite, we rather encode an abstraction

of the configurations using the classical region abstraction for timed automata. In the region abstraction,
the only relevant informations about a configuration are the state of each process, the integer part of
their respective clock and the ordering of the fractional parts of their clocks. Reg Abs(γ) denotes this
abstraction for γ . As an example Reg Abs((q,2.7),(q′,1.3)) = (q,x)∧ (q′,x′)∧ 1 < x′ < 2 < x < 3∧
{x′}< {x} (where {x} denotes the fractional part of x).

The channel alphabet first contains unreliable messages encoding the control state together with the
integer part of the clock (up to a maximal bound b): Σ1 = Q× [0 .. b]. The encoding of the ordering be-
tween fractional parts of clocks uses special reliable messages in Σ2 = {0,D} to delimit processes with
equal clock fractional parts: any two messages in Σ1 between two consecutive D’s represent processes
that share the same clock fractional part; also messages in Σ1 between 0 and the first D represent pro-
cesses with null fractional part; last, the channel contains encodings of fractional parts in increasing order.
The channel contents thus belong to the regular language denoted by the expression R = 0Σ∗1(DΣ

+
1 )
∗.

Let us give some examples for the encoding into channel contents of configurations (q,x),(q′,x′) for
various values of x, x′. The region 1 < x′ < 2 < x < 3,{x′} < {x} is encoded by the channel content:
0D(q′,1)D(q,2), 0 < x < x′ < 1 by 0D(q,0)(q′,0), 2 < x′ < 3 = x by 0(q,3)D(q′,2), and x = 2,x′ = 1
by 0(q′,1)(q,2).
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The reduction from dynamic probabilistic timed networks to mixed channel systems with probabil-
ities is schematically represented in Figure 1. Given PN0

Λ
a dynamic probabilistic timed network, the

associated mixed channel system MCS is decomposed into three blocks and a recurrent state obs. The
first block initializes the system, to encode the initial configuration: N0 processes in (q0,0) so that the
channel contents is 0(q0,0)N0 . The system then contains two cycles around obs, one to encode time
elapsing, and the other one to encode execution of an action. The action block is itself split into three
consecutive sub-blocks: 1) the choice of a process and an enabled action, 2) the execution of the chosen
action (modifying the configuration), and 3) a reordering of the channel contents to obtain an encoding
of the configurations as explained above. The whole translation is done in such a way that the projection
of an execution of the mixed channel system onto the configurations with control state obs corresponds
to the region abstraction of an execution in the dynamic probabilistic timed network, and vice versa.

time elapsing

channel reordering

initialization

process and
action choice

execution
a1

execution
an. . .

channel reordering

obs
time

fail
act

Figure 1: General figure of the reduction.

Let us now explain how each of the blocks works. From state obs two transitions are enabled: one
leading to the time elapsing block, and the other to the process and action choice block, corresponding
respectively to the decision for the scheduler to let time elapse or to perform an action.
Choice of a process and an action. The first step when the decision is taken to perform an action, is to
non-deterministically choose a process and some enabled action. If no process has an enabled action, the
channel system moves to the time elapsing block, via the dashed arrow labelled fail.
Execution of an action. Once an action is chosen, the corresponding execution block encodes the
effect of performing this action. Depending on the nature of the action, internal action or broadcast, it
affects the chosen process only or all processes. The update of the messages representing the processes
in the channel takes part in two steps: first the control state of the processes are updated and marked to
remember the associated clock update, and second the abstract clock values are updated and the messages
reordered to take into account the clock updates. This second step happens in the next block.

In case of an internal action, the channel content is inspected to find the marked message correspond-
ing to the chosen process (in the previous block). It is updated to its new control state and possibly a new
abstract clock value according to the rule in the underlying probabilistic timed protocol (possibly with
a probability distribution). Similarly, in case of a broadcast, the block modifies all messages (different
from 0 and D) according to the transitions in P .
Reordering of the channel contents. The goal of the channel reordering block is to transform the
channel contents into one satisfying the regular expression R. Messages (for processes whose clock was
just reset) are rewritten right after the marker 0 (with the new clock value 0) and the other messages are
kept in place. In this block also, in order to keep the number of reliable messages as small as possible,
multiple successive occurrences of D are replaced with a single D.
Time elapsing, or region change. Recall that we use the region abstraction to represent the timing
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information of configurations. As a consequence, time elapsing is simulated by moving to the next time-
successor region. We distinguish two cases. If some clocks have an integer value, then in the successor
region, the ordering of fractional parts is unchanged, and no clocks have an integer value any-more. If
all clocks have a non-null integer part, the time-successor is obtained when the clocks with maximal
fractional part reach the next integer. This corresponds in the channel contents to rewriting the last D
message as 0 and the 0 as D, while updating the new integer value for the concerned clocks (with the
convention that b+ 1 = b for the maximal constant b). In both cases, time elapsing is only possible if
the state invariants are not violated. This is checked before performing the region increment, and if time
elapsing is not possible, the channel system moves to the action block via the fail transition.
Gainy/Lossy transitions. To represent the creations and disparitions of processes, in the channel system
MCS, some of the transitions are gainy/lossy, that is, in fl,g. Since disparitions and creations in PN0

Λ

happen after each discrete action, and after each elapsed time unit, the transitions leaving the action
execution blocks, and the time elapsing block (provided that a global clock, modelled in the channel and
keeping track of global time, was reset) are declared to be gainy/lossy.

Properties and consequences There is a close connection between schedulers in the probabilistic
network, and schedulers in the mixed channel systems, i.e. PN0

Λ
and MCS behave the same, up to a region

abstraction on one side, and a projection to configurations in obs on the other side.
With the properties that there exists a finite attractor, and second, the predecessor operators by action

and time elapsing are effective and upward-closed for some well-quasi-ordering in MCS, we can show
that probabilistic reachability problems are decidable. Hence REACH>0

max, REACH<1
min, and REACH=1

min are
decidable for dynamic protocol networks.

5 Conclusion

We have studied qualitative parameterized verification problems for a model of networks of identical
probabilistic timed processes. Interesting qualitative questions turn out to be undecidable in the static
case, and become decidable under the assumption that processes can be created and disappear.

A relevant question is whether dynamic networks can be encoded into a decidable model with lower
complexity than probabilistic lossy channel systems. An interesting research direction for future work,
is to move from qualitative to quantitative questions. In particular, adapting existing techniques for
Markov chains [2, 4] to Markov decision processes would allow one to approximate optimal reachability
probabilities, to estimate maximum expected times to reachability, or to compute optimal values of the
parameter.
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Abstract
We study a parametric approach in the automata theory. We introduce parameters into timed game

automata (TGA) framework and define a subclass for which the reachability emptiness problem is
decidable. We then propose a semi-algorithm to symbolically compute the corresponding set of
parameter valuations. We also study a parameter synthesis for parametric timed automata (PTA),
and provide a subclass of PTA with a different restriction scheme: since in classical timed automata
real-valued clocks are always compared to integers for all practical purposes, we also search for
parameter values as bounded integers. In this way we obtain decidability for the most interesting
problems. We introduce symbolic algorithms for the parameter synthesis that ensure the termination
and have a practical advantage of giving the result as symbolic constraints between the parameters.

1 Introduction

Timed automata [1] and timed game automata [6] are one of the most often used frameworks for the
analysis of real-time systems and control problems on real-time systems. A prerequisite for these meth-
ods is the availability of a complete model of the system. Thus, it can be difficult to use them at early
design stages, when the whole system is not fully characterized.

It is sometimes possible to overcome this problem by using parameters for modeling values that are
not fully characterized yet. To exploit such models, a parametric approach in automata theory must be
used. The analysis of a parametric model produces symbolic constraints on the parameters that ensure
the correctness of the system.

However, for general parametric formalisms such as parametric timed automata (PTA) [2], the exis-
tence of a parameter valuation, such that some state is reachable from the initial state, is undecidable and
there is currently no algorithm that solves the synthesis problem of parameter values, except for severely
restricted subclasses, whose practical usability is unclear.

It is then a challenging issue to define a subclass of parametric timed automata, which retains enough
of its expressive power and such that, for both reachability and unavoidability properties, the existence
of parameter values is decidable and for which there exist efficient symbolic synthesis algorithms.

We, as well, extend the model of timed game automata, such that it employs parameters. Obtained
model is undecidable with respect to the reachability timed game, and we seek its subclass for which we
can decide the existence of parameter valuation and, further, synthesize them.

2 Undecidability Results

Here we present some new undecidability results for the restricted classes of PTA that motivate the
introduction of the new class of PTA presented in Section 3. Due to the lack of space, we omit the



Implementation of Real-Time Systems: Theory and Practice 105

proofs. We focus on two often studied problems:

• EF-emptiness problem: is the set of parameter valuations v, such that some location in the automa-
ton is reachable, empty?

• AF-emptiness problem: is the set of parameter valuations v, such that all maximal runs of the
automaton go through some location, empty?

Following the result from [2], where EF-emptiness is proven undecidable for PTA, we further restrict
the problem by bounding parameter valuations (k ≤ v ≤ K for k,K ∈ Z) and prove (Theorem 1), that
undecidability is retained.

Theorem 1. Bounded EF-emptiness problem is undecidable for parametric automata.

A L/U-automaton, that employs each parameter as either a lower or an upper bound on clocks, has
been proposed in [4] as a subclass of PTA for which the EF-emptiness problem is decidable. However,
by proving Theorem 2, we rule out the possibility of computing the solution set as a finite union of
polyhedra.

Theorem 2. If it can be computed, the solution to the EF-synthesis problem for L/U-automata cannot
be represented using any formalism for which emptiness of the intersection with equality constraints is
decidable.

We now address a further subclass of L/U automata, U-automata, that allows only the upper bound
parameters, and prove that AF-emptiness is undecidable (due to the fact that it is not based on the mono-
tonicity property of L/U automata).

Theorem 3. The AF-emptiness problem is undecidable for U-automata.

These negative theoretical results show the need for the new class of PTA that will have the advantage
of both decidability of the most interesting properties and the possibility of computation of the set of
parameter valuations such that these properties are satisfied.

3 Integer Parameter Synthesis for Timed Automata

Currently the most useful known subclass of PTA, L/U automata have a syntactical restriction in the
use of parameters. We therefore advocate for a different restriction scheme: since in classical timed
automata, real-valued clocks are always compared to integers for all practical purposes, we also search
for parameter values as bounded integers.

From a practical point of view, the subclass of PTA in such setting is not really restrictive since
the temporal constraints for timed automata are usually defined on natural numbers. Nevertheless, this
subclass is restrictive enough to make the problems we address decidable and to allow symbolic synthesis
algorithms of parameter values. The case of integer parameters can be interesting only if we solve this
problem symbolically - deriving the constraints on the parameters such that certain property is satisfied.

We can define several parameter-related problems on PTA that fall into two broad categories: do
there exist valuations for the parameters such that some property is satisfied and can we compute all of
these valuations? We have focused on reachability (EF-emptiness) and unavoidability (AF-emptiness)
properties.

We first introduce symbolic semi-algorithms, EF and AF, to solve the synthesis problems in the
general setting (possibly non integer valuations) that are based on a straightforward extension of the
symbolic zone-based state-space exploration that is ubiquitous for timed automata. For S = (l,Z), when
non-ambiguous, we use S in place of l or Z to simplify the writing.
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For EF we aggregate the valuations found when reaching the locations in G:

EFG(S,M) =


S|P if S ∈ G
/0 if S ∈M⋃

e∈E
S′=Succ(S,e)

EFG
(
S′,M∪{S}

)
otherwise.

AFG(S,M) =
S|P if S ∈ G
/0 if S ∈M⋃

e∈E
S′=Succ(S,e)

AFG
(
S′,M∪{S}

)
∩
⋂

e′∈E
e′ 6=e
S′′=Succ(S,e′)

AFG
(
S′′,M∪{S}

)
∪ (RP \S′′|P) otherwise.

In both algorithms, conditions are evaluated from top to bottom and M represents a passed list of
symbolic states. It records the symbolic states that have already been explored on a given path. Initially,
M is empty and, for the EF-synthesis problem, for instance, the invocation of EF is, for the PTA A and
a subset of its locations G: EFG(Init(A ), /0).

3.1 Extension of the semi-algorithms for integer synthesis problem

In order to compute the integer valuations, the semi-algorithms have to be modified. For that we introduce
the notion of integer hull.

Let n ∈N and let Y be a subset of Rn. We denote by Conv(Y ) the convex hull of Y , i.e. the smallest
convex set containing Y . IntVects(Y ) denotes the subset of all elements of Y with integer coordinates.
We call those elements integer valuations. The integer hull of Y , denoted by IntHull(Y ) is the smallest
convex set containing all the integer vectors of Y , i.e. IntHull(Y ) = Conv(IntVects(Y )).

We extend IntVects to symbolic states (l,Z) (consisting of a location l and a set of valuations on
clocks and parameters Z) by: IntVects((l,Z)) = (l, IntVects(Z)) and extend likewise all the other oper-
ators on valuation sets.

We have shown (here we omit numerios lemmas, due to the lack of space) that it is sufficient to
consider the integer hulls of the (valuations in the) symbolic states.

We therefore consider the semi-algorithm IEF (resp. IAF) obtained from EF (resp. AF) by re-
placing all occurrences of the symbolic state successor operator Succ by ISucc with ISucc((l,Z),e) =
IntHull(Succ(l,Z),e). We also extend ISucc to edge sequences in the same way as for Succ. Now, we
can state the main result of this subsection: IEF and IAF are correct semi-algorithms for their respective
integer synthesis problems.

Theorem 4. For any PTA A and any subset of its locations G, upon termination, IEFG(Init(A ), /0) (resp.
IAFG(Init(A ), /0)) is the solution to the integer EF-synthesis (resp. AF-synthesis) problem for PTA A
and set of locations to reach G.

In order to ensure the termination of the algorithm, we consider that we are searching the bounded
integer parameter valuations. Given some N ∈ Z, we search for valuations in [−N,N]. The algorithm
accepts the bound on the parameters in the initial symbolic state, and therefore in the whole computation,
which ensures the termination of the algorithm.

Theorem 5. For any M,N ∈N, any PTA A and any subset of its locations G, Algorithms IEFG(InitM,N(A ), /0)
and IAFG(InitM,N(A ), /0) terminate.
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Considering bounded integers as values for the parameters seems like a big theoretical restriction
but it offers the algorithm for the synthesis problems for the expressive model of PTA, which is of
great practical interest. In practice, this is not such a big restriction for the modeler because the integer
constants are the natural choice. Also, the symbolic approach allows for choosing very big bounds on
parameters.

4 Parametric Timed Game Automata

Timed game automata are used for modeling and analyzing the control problems on real-time systems. A
timed game automaton is essentially a timed automaton whose set of actions is partitioned into control-
lable and uncontrollable actions. Two players, a controller and an environment, choose at every instant
one of the available actions from their own sets and the game progresses. Finding a winning strategy for
the controller consists in determining when and which of the controllable actions should be taken such
that, regardless of what the environment does, the system ends up in a desired location. We introduce
parameters into timed games and obtain a new model called parametric timed game automaton [5].

For parametric timed automata (PTA), [2], the EF-emptiness problems asks whether the set of pa-
rameter valuations, such that a certain state is reachable from the initial state, is empty. We define the
EF-emptiness problem for parametric timed games (PGA).

Definition 6. EF-emptiness problem for PGA is the problem of determining whether the set of parameter
valuation, such that there is a strategy for the controller to reach the desired state, is empty.

The EF-emptiness problem for PTA is known to be undecidable, [2]. As PGA extend PTA, this
problem for PGA is undecidable as well. It is therefore interesting to find a class of PGA for which the
EF-emptiness problem is decidable.

4.1 L/U Game Automata

We introduce the new class of parametric timed games, called L/U game automata, [5]. The parameters
are partitioned into two sets. The first set Pl contains parameters that are used as lower bounds in the
guards on the controllable transitions and as upper bounds in the guards of the uncontrollable transitions.
The parameters from the other set, Pu, are used as upper bounds in the controllable and lower bounds in
the uncontrollable transitions. This is a natural way of making the controller more powerful by restricting
possible behaviors of the environment (and vice-versa). We assume that invariants are non-parametric
constraints.

For this class of timed games, we prove that the existence of parameter valuation, such that there is a
strategy to reach the desired state, is decidable.

Theorem 7. The EF-emptiness problem for L/U game automata is decidable.

In terms of control it may not be very realistic to be allowed to forbid uncontrollable transitions using
the values of their parameters. We will now explore the case in which we nonetheless impose that the
parameter valuations never set the guards of the uncontrollable transitions to false: we can restrict their
behavior but not to the point of uniformly forbidding the transition.

Consequently, all the guards on the uncontrollable transitions that contain a parameter as a lower
(resp. upper) bound have to contain a constant as a non-strict upper (resp. lower) bound. Non-strict
inequalities are mandatory so that a clock can take the value equal to the constant as a single time point
in the emptiness test. The guards on the controllable transitions have no other restriction than the L/U
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condition. We also limit the parametric linear expression in the constraints of uncontrollable transitions
to just one parameter.

Definition 8 (Restricted L/U game automata). A restricted L/U game automaton is a L/U game au-
tomaton in which the guards of the uncontrollable transitions are constraints of the form k ≤ x ≤ Ka or
Ka≤ x≤ k, where x is a clock, a a parameter, k a rational number and K a natural number.

We state the decidability of the EF-problem for restricted L/U game automata in Theorem 9.

Theorem 9. The EF-emptiness problem for restricted L/U game automata is decidable.

4.2 Algorithm for Parameter Synthesis

In [3], the authors present a symbolic on-the-fly algorithm for solving timed reachability games. This
algorithm consists of a forward computation of the simulation graph and a back-propagation of infor-
mation of winning states. Upon the termination, the set of winning states of the simulation graph, from
which we can extract the winning strategy, is obtained.

We have extended this algorithm for parameter synthesis, in order to compute the set of parameter
valuations, together with the set of winning states.

To modify this algorithm so as to compute parameter valuations, we have used an extended notion
of symbolic state in which we have a location and a parametric zone - a polyhedron constraining both
clocks and parameters together, i.e., a set of pairs (w,v) satisfying a parametric clock constraint, where
w is a clock valuation and v a parameter valuation.

The algorithm requires some specific operations on symbolic states. We have straightforwardly ex-
tended them for this extended notion of symbolic state.

The termination of our parametrization of the algorithm is not guaranteed. In the case of termina-
tion however, if the initial state belongs to a set of winning states, the correct set of constraints on the
parameters is obtained and a strategy can be extracted from the set of winning states.

5 Conclusions and Future Work

There are several things planned for the future work. First, there is a question of time-bounded reachabil-
ity problem for PTA. We want to prove its decidability for certain classes of PTA and write the algorithm
for the parameter synthesis. Further, we want to extend hybrid automata with uncontrollable transitions
and define necessary operators for solving timed game on this new model. For the parametric timed
games, it could be interesting to look for the less restrictive subclasses and implement the proposed
parametrized algorithm. Also, the algorithm for the integer parameter synthesis could be extended for
the parametric timed games.
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Abstract

We investigate the model checking problem for Dynamic Communicating Automata (DCA) [5]
using the data logics Freeze LTL (LTL↓) [9] and Basic Data LTL (BD−LTL) [16]. DCA model
concurrent systems with unboundedly many processes which can communicate with each other. Data
Logics express properties of data words, i.e. words where every position carries some symbols from
a finite set and some data values from an infinite set. We interprete the process IDs in the runs
of DCA as data values and consider the following model checking problem: Given a DCA and a
formula of LTL↓ or BD−LTL, is the formula satisfied on all runs of the DCA? While this problem
is undecidable in general we find some restrictions of DCA such that the considered problem gets
decidable.

1 Introduction

Logics on data words, i.e. words where every position is labelled by some symbols from a finite set and
some data values from an infinite set were investigated intensively in recentyears [9][2][8][16][13][12].
In this work we concentrate on the data logics Freeze LTL (LTL↓) [9] and Basic Data LTL (BD−LTL)
[16] which are incomparable in expressive power.

The logic LTL↓ is an extension of classical LTL by register variables. It allows to store a data value
of a current word position in some registerx (by ↓x) and to test at some other position whether some
data value of that position and the one stored inx are the same (by↑ x). For example, the formula
G(a→↓1 x.F(b∧ ↑2 x)) expresses that every symbola is followed by someb such that the first data value
of thea-position and the second data value of theb-position are equal.

The logic BD−LTL is also an extension of LTL. Besides the usual navigation on consecutive po-
sitions it allows the navigation along positions carrying the same data value. Forinstance, the formula
FC1(G¬b) expresses that there is a positionp such that on all following positions carrying the same data
value as the first data value ofp there does not occur anyb.

In most of the papers dealing with data logics, besides the area of XML, system verification is given
as an important motivation. Data words can be used to represent runs of systems where an unbounded
number of processes can occur and interact. In this context the data values of a word position represent
the IDs of the processes performing an action and the symbols from the finiteset represent the performed
actions. Then, formulas of data logics can be used to express propertiesof system runs.

Our main motivation is to consider the model checking problem with data logics on models which

(1) describe the behavior of concurrent systems with unboundedly manyprocesses, and

(2) produce system runs which can be represented by data words when the process IDs occurring in
the runs are interpreted as data values.
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Even though system verification is often given as an important motivation fordata logics, as far
as we know, until now the most investigated question in the area of data logics israther satisfiability
than model checking. Nevertheless, we would like to give some notable exceptions. In [11] and [10]
the authors interpret runs of one-counter automata as data words and investigate the model checking
problem on one-counter automata with data logics. While counter automata havemany applications in,
e.g. timed systems [17] and programs with pointer variables [6], the authors of [11] and [10] do not
motivate counter values primarily as a representation for process IDs in systems with many processes.
An other remarkable paper which tackles exactly the same question which motivates our work is [3].
There, the authors consider the model checking problem for data multi-pushdown automata (DMPA)
with data logics. DMPA generate data words and they are indeed suitable to model concurrent programs
with dynamic process creation.

In this work we investigate the model checking problem for dynamic communicating automata
(DCA) [5] with LTL ↓ and BD−LTL. DCA seem to be a very simple and convenient model to de-
scribe systems with unboundedly many processes. They are an extensionof communicating finite state
machines [7] and allow the creation of fresh processes and the communication between them through
communication channels. A process maintains the communication to another process by storing its pro-
cess ID in one of its process variables.

Work in progress and first insights It follows from [7] that the model checking problem on DCA
with unbounded message channels with these logics is in general not decidable. This even holds for
DCA with a finite number of processes. We can show that model checking ofDCA remains undecidable
if we use bounded channels but two process variables for every process.

One of our positive results is that model checking of DCA with BD−LTL is decidable when com-
munication channels are bound and every process uses only one process variable.

On the other hand, model checking with LTL↓, even on automata where communication among
processes is not allowed (and which we therefore just call dynamic automata), is not decidable. However,
we can show that on faulty dynamic automata, i.e. dynamic automata where unexpected processes can
occur, model checking with LTL↓ gets decidable.

These are just our first insights in this area and further directions are mentioned in the last section.

2 Data Words

Let Prop be afinite set of propositions andD an infinite set of data values. Form≥ 1 anm-dimensional
data wordover Prop andD is a finite sequence(P1, ~d1), . . . ,(Pn, ~dn) of tuples such that for everyi ∈
{1, . . . ,n} the setPi is a subset ofPropand~di is a nonempty vector of elements fromD of length at most
m. In this work we are concerned with 1-dimensional and 2-dimensional datawords.

3 Data Logics

Freeze LTL

Freeze LTL (LTL↓) was introduced in [9] and allows to store data values in registers and to testwhether
the data value in some register is equal to a data value at some position. Here, we only deal with LTL↓

with one register on 1-dimensional data words. Formulas of this logic are constructed according to the
following grammar1:

ϕ := p |↑| ¬ϕ | ϕ ∨ϕ | ↓.ϕ | Xϕ | ϕ1Uϕ2

1As only one register is used we omit the register variable in the syntax.
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whith p∈ Prop.
Formulas of LTL↓ are evaluated with respect to a 1-dimensional data wordw= (P1,d1), . . . ,(Pn,dn), a

positioni ∈ {1, . . . ,n} onw and a partial register mappingν : {1}→D . In the definition of the semantics
we omit the boolean cases:

• (w, i,ν) |= p if p∈ Pi

• (w, i,ν) |=↑ if ν(1) is defined andν(1) = di

• (w, i,ν) |= ↓.ψ if (w, i,{1 7→ di}) |= ψ

• (w, i,ν) |= Xψ if i < n and(w, i+1,ν) |= ψ

• (w, i,ν) |= ψ1Uψ2 if there existsj ≥ i such that(w, j,ν) |= ψ2 and(w,k,ν) |= ψ1 for all i ≤ k< j

A 1-dimensional data wordw satisfies a LTL↓ formulaϕ if (w,1,ν) |= ϕ whereν is the register mapping
whereν(1) is undefined.

In [9] it is shown that the satisfiability problem for LTL↓ is decidable with non-primitive recursive
complexity. It is also proven that adding past time operators or a second register causes undecidability.

Basic Data LTL

Basic Data LTL (BD−LTL) was introduced in [16] and allows the navigation along positions carrying
the same data value. In this work we only consider BD−LTL over 2-dimensional data words. Among
the BD−LTL subformulas we distinguish between position formulasϕ and class formulasψ whose
syntax is defined as follows2:

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | Xϕ | X−ϕ | ϕUϕ | ϕU−ϕ | C jψ

ψ ::= ϕ |@j |¬ψ | ψ ∨ψ | X=ψ | X=
−ψ | ψU=ψ | ψU−

=ψ

with p∈ Propand j ∈ {1,2}.
The logic BD−LTL consists of all position formulas.
Position formulas are evaluated with respect to a 2-dimensional data word and a word position and

class formulas are evaluated additionally with respect to a data value. Letw= (P1, ~d1), . . . ,(Pn, ~dn) be a
2-dimensional data word,i a position inw andd ∈ D a data value. In the semantics definition we again
omit the boolean cases and the past operators X− and U− which are duals of X and U.

• (w, i) |= p if p∈ Pi

• (w, i) |= Xχ if i < n and(w, i+1) |= χ

• (w, i) |= χ1Uχ2 if there exists ak≥ i with (w,k) |= χ2 and(w, ℓ) |= χ1 for all i < ℓ≤ k

• (w, i) |= C jψ if ~di( j) is defined and(w, i, ~di( j)) |= ψ

• (w, i,d) |= ϕ if w, i |= ϕ (for a position formulaϕ)

• (w, i,d) |= @j if ~di( j) = d

• (w, i,d) |= X=ψ if there exists ak> i and j ∈ {1,2} such that~dk( j) = d, (w,k,d) |= ψ and for all
ℓ with i < ℓ < k there is noj ∈ {1,2} with ~dℓ( j) = d

2 Compared to [16] we give here a restricted fragment of BD−LTL where the explicit navigation to some position with a
different data value is not included.
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• (w, i,d) |= ψ1U=ψ2 if there exists ak ≥ i and a j ∈ {1,2} with ~dk( j) = d and(w,k,d) |= ψ2 and
for all ℓ with i ≤ ℓ < k such that here exists aj ∈ {1,2} with ~dℓ( j) = d it holds(w, ℓ,d) |= ψ1

A BD−LTL formula ϕ is satisfied by a data wordw if (w,1) |= ϕ .
In [16] it is shown that the satisfiability problem for BD−LTL is decidable. The authors prove

that the problem is as hard as the nonemptiness problem for multi-counter automata [15]. The precise
complexity of the latter is not known.

4 Dynamic Communicating Automata

As an extension of [5], in the definition ofdynamic communicating automata (DCA)given here we assign
propositions to automata states. A DCAA overProp is a tuple(X,M,Q,q0,s,δ ,F) where

• X = {x1, . . . ,xn} is a finite set of process variables,

• M is a finite set of messages,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• s : Q→ 2Prop maps each state to a finite set of propositions

• δ ⊆ Q×Act×Q is a finite set of transitions and

• F ⊆ Q is the set of final states.

The setAct is a finite set of actions ofA including the actions{spawn(x,x′,q) | x,x′ ∈ X,q ∈ Q} ∪
{send(x,m,~x), receive(x,m,~x) | x∈ X,m∈ M and~x is a vector of process variables of lengthn}.

We describe the semantics of DCA informally. The IDs of the processes contained in the system
described by a DCAA are chosen fromD . A run of A is represented by a data word overPropandD .
Every process holds his own process variablesx1, . . . ,xn. A process can only perform sends and receives
to processes whose IDs are stored in its registers. At the beginning, the system described byA contains
only one process. If a processd performsspawn(x,x′,q) leading to state ˆq, a new process with a fresh ID
d′ starting at stateq is created,d′ is stored into variablex of processd andd is stored into variablex′ of
processd′. Within the run this action is represented by a position labelled by(s(q̂)∪{spawn},(d,d′)).
Assume that the IDd′ is stored in a process variablex of processd andd executessend(x,m,~x) for some
vector~x such that the action leads to some state ˆq. Then, the messagem(d1, . . . ,dn) whered1, . . . ,dn

are the contents of the variables in~x in processd, is put into the fifo-channel betweend andd′. The
action is represented by(s(q̂)∪{send},(d,d′)). The vector~x in a receive-action decides how the IDs
taken from the channel are distributed to the variables of the receiving process. The representation of
receive-actions in runs is analogue to that of send-actions. Every other actiona of a processd leading to
a state ˆq is represented by(s(q̂)∪{a},d). A run of A is accepting if all processes end up in accepting
states.

DCA with n process variables are also calledn-variable-DCA. If a DCA does not contain any send-
or receive-actions it is just calleddynamic automaton(DA). Obviously, DA generate 1-dimensional data
words as runs. DA where in each execution step new processes in arbitrary states can arise unexpectedly
are calledfaulty DA.

5 Model Checking Dynamic Communicating Automata

The model checking problem for dynamic communicating automata and a data logicL is defined as
follows:
Given: A DCA A and a formulaϕ of L
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Question: Is ϕ satisfied on all accepting runs ofA ?
It easily follows from [7] that the model checking problem on DCAs with unbounded channels is not
decidable even with LTL where no access to data values is possible. To show this, a finite number of
processes suffices.
Remark 1. The model checking problem for DCA and LTL is not decidable.

5.1 Model Checking withBD−LTL

For DCA without channel capacities and two process variables per process the model checking problem
with BD−LTL remains undecidable.
Theorem 2. The model checking problem for2-variable-DCA without channel capacities andBD−LTL
is undecidable.

Proof idea. By reduction from the nonemptiness problem for 2-counter automata [18].The reduction
makes use of the fact that with 2-variable-DCA it is possible to construct anunbounded chain of processes
where every two neighbored processes are linked to each other by theirprocess variables, and to send
messages forth and back among these processes.3

With 1-variable-DCA it is not possible to relate more than two processes with each other by their
process variables at the same time. Thus, the crucial property mentioned in the above proof idea is not
given for 1-variable-DCA. Indeed, for 1-variable-DCA model checking with BD−LTL is decidable.
Theorem 3. The model checking problem for 1-variable-DCA with bounded channels andBD−LTL is
decidable.

Proof idea. By reduction to the non-emptiness problem for multi-counter-automata [15].

5.2 Model Checking with Freeze LTL

For LTL↓ the situation is much more worse. Even on DA (no send- and receive-actions) model checking
is undecidable with LTL↓.
Theorem 4. The model checking problem for DA andLTL ↓ is undecidable.

Proof idea. By reduction from the non-emptiness problem for 2-counter automata.
However, model checking with LTL↓ gets decidable if we consider faulty DA.

Theorem 5. The model checking problem for faulty DA andLTL ↓ is decidable.
Proof idea. By a reduction to the reachability problem in well-structured transition systems [14].

6 Further Directions

We indicated in Chapter 5 that the undecidability proof of Theorem 2 relies onthe fact that with 2-
variable-DCA messages can be sent forth and back among an unbounded number of processes. We can
show that for DCAs (no matter how many process variables are used) where at each time only a bounded
number of processes can stay in a communication relation, model checking withBD−LTL is decidable.
It would be interesting to find out how DCA can be restricted such that this property holds on all possible
runs.

It is known that many problems which are undecidable on systems with a finite number of processes
but unbounded communication channels get decidable whenlossychannels, i.e. channels where mes-
sages can get lost, are considered [1]. We would like to find out whetherthe model checking problem on
general DCA is decidable if lossy channels are used.

3A detailed proof can be found in [4].
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Abstract
Linearizability is a commonly accepted notion of correctness for libraries of concurrent algo-

rithms, which has recently started to become adopted for weaker consistency guarantees provided by
hardware and software platform. In this paper, we present the first definition of linearizability on the
axiomatically formulated Total Store Order weak memory model, implemented by x86 processors.
We establish that our definition is a correct one in the following sense: while proving a property of
a client of a concurrent library, we can soundly replace the library by its abstract implementation
related to the original one by our generalisation of linearizability. This allows abstracting from the
details of the library implementation while reasoning about the client.

1 Introduction

Modern multiprocessor architectures, such as Intel x86 [5], IBM POWER [6, 4] and ARM, provide mem-
ory consistency models that are weaker than the classical sequential consistency (SC). What makes these
models different is that they do certain relaxations to the order of memory accesses, which make pro-
gram execution not sequentially consistent. Relying on relaxations enables implementing programs more
efficiently, but leads to counter-intuitive behaviours in many cases, so programming on weak memory
models can be subtle and error-prone.

Compositional reasoning about programs on the weak memory models requires a new formalisation
for correctness of program components. Correctness of concurrent libraries is commonly formalised by
the notion of linearizability [3], which fixes a certain correspondence between the library and its (usually
sequential) abstract specification with methods implemented atomically. Unfortunately, the classical
definition of linearizability is only appropriate for sequentially consistent (SC) memory models, in which
accesses to shared memory occur in a global-time linear order.

In this paper we suggest an approach for compositional reasoning on a weak memory model of Total
Store Order (TSO), implemented by x86 processors [5] (Sections 2, 3). TSO allows the store buffer
optimisation implemented by modern multiprocessors: writes performed by a processor are buffered in
a processor-local store buffer and are flushed into the memory at some later time.

A consequence of the store buffer optimisation is that on TSO, given two memory locations x and
y initially holding 0, if two CPUs respectively write 1 to x and y and then read from y and x, as in the
following program, it is possible for both to read 0 in the same execution:

{x = y = 0}
x = 1; y = 1;
b = y; a = x;

{a = b = 0}
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This happens when the reads from y and x occur before the writes to them have propagated from the
store buffers of the corresponding CPUs to the memory. To exclude such behaviours, TSO processors
provide special instructions, called memory fences, that force the store buffer of the corresponding CPU
to be flushed completely before executing the next instruction. Adding memory fences after the writes
to x and y in the above program would make it produce only SC behaviours.

In this paper, we present the definition of linearizability on a weak memory model of TSO, which
is different from a classic definition due to the store buffer relaxation. Usually the semantics of weak
memory models is described in operational or axiomatic setting, and in this work we choose the axiomatic
way. While operational model is more intuitive, the axiomatic semantics is more abstracted from a
particular implementation and in some situations is easier to reason about.

We show that our definition of linearizability is a right one in the sense that it validates what we call
the Abstraction Theorem (Theorem 4, Section 4): while proving a property of a client of a concurrent
library, we can soundly replace the library by its abstract implementation related to the original one
by our generalisation of linearizability. Abstraction theorem has a practical value as a compositional
reasoning and verification technique: it enables abstracting from the details of the library implementation
while reasoning about its client, despite subtle interactions between the two caused by the weak memory
model.

2 Preliminaries

The most intuitive way to explain TSO is to define its operational semantics using an abstract machine.
In the following, we informally present the operational model, previously described in [5], and then in
Section 3 we formally define axiomatic semantics. Due to space constraints we do not provide a proof
of their equivalence.

Programming language. We assume that the memory consists of locations Loc= {1,2, . . .} containing
values Val= Z. We consider programs in the following core language:

C ::= α |C ; C |C+C |C* | m L ::= {m =Cm | m ∈ M} C(L) ::= let L in C1 ‖ . . . ‖Cn

A program consists of a library L implementing methods m∈Method and its client C1 ‖ . . . ‖Cn, given by
a parallel composition of threads (for simplicity, in this paper we suppose that all threads are bijectively
mapped to a set of CPUs). Threads are indexed by ThreadID= {1, . . . ,n}. The commands include primi-
tive commands α ∈ PComm, method calls m ∈Method, sequential composition C;C′, non-deterministic
choice C+C′ and iteration C*. We use + and * instead of conditionals and while loops for theoretical
simplicity: given appropriate primitive commands, the latter can be defined in the language as syntactic
sugar.

We assume that every method accepts a single parameter and returns a single value. Parameters and
return values are passed by every thread via distinguished locations in memory, denoted paramt , retvalt ∈
Loc for t ∈ThreadID. The rest of memory locations are partitioned into those owned by the client (CLoc)
and the library (LLoc): Loc= CLoc⊎LLoc⊎{paramt , retvalt | t ∈ ThreadID}.

TSO operational semantics. In the operational semantics we consider an abstract machine executing
programs in the core language. Each CPU has a set of general-purpose registers Reg = {r1, . . . ,rm}
storing values from Val. On TSO, processors do not write to memory directly. Instead, every CPU has a
store buffer, which holds write requests that were issued by the CPU, but have not yet been flushed into
the shared memory. The state of a buffer is described by a sequence of location-value pairs.

The abstract machine can perform the following transitions:
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∙ ⟨skip⟩= {( /0, /0)};

∙ ⟨C1;C2⟩t = {(A1 ·∪A2,po1 ∪po2 ∪{(a,b) | a ∈ A1 ∧b ∈ A2})};

∙ ⟨C1 +C2⟩t = ⟨C1⟩t ∪⟨C2⟩t ;

∙ ⟨C*⟩t = { /0, /0}∪{( ·
⋃n

i=1 Ai,
⋃n

i=1 poi ∪{(a,b) | a ∈ Ai ∧b ∈ A j ∧ i < j}) | (Ai,poi) ∈ ⟨C⟩t ∧n ≥ 1};

∙ ⟨m⟩t = {(A ·∪{c} ·∪{d},po ∪ {(c,d)} ∪ {(c,a),(a,d) | a ∈ A}) | (A,po) ∈ ⟨Cm⟩t ∧ c =
( , t,call m( ))∧d = ( , t, ret m( ))};

∙ ⟨let {m =Cm | m ∈ M} inC1 ‖ . . . ‖Cn⟩= prefix({( ·
⋃n

t=1 At ,
⋃n

t=1 pot) | (At ,pot)∈ ⟨Ct⟩t , t = 1..n}),
where prefix(A,po) =

⋃
a∈A({a′ | a′ ∈ A∧a′

po−→ a},po)∪{(A,po)}.

Figure 1: Program order semantics of common commands

∙ A CPU wishing to write a value to a memory location adds an appropriate entry to the tail of its
store buffer.

∙ The entry at the head of the store buffer of a CPU is flushed into the memory at a non-
deterministically chosen time. Store buffers thus have the FIFO ordering.

∙ A CPU can execute a memory fence that flushes all the content of its store buffer to the memory in
the FIFO ordering.

∙ A CPU wishing to read from a memory location first looks it up in its store buffer. If there are
entries for this location, it reads the value from the newest one; otherwise, it reads the value directly
from the memory.

∙ A CPU can execute a command affecting only its registers. In particular, it can call a library
method or return from it.

3 The TSO axiomatic memory model

Action structures. We record information about program executions using actions, defined as follows:

a ∈ Act ::= (e, t,store(x,v)) | (e, t, load(x,v)) | (e, t,call m(v)) | (e, t, ret m(v)) | (e, t, fence)
Here t ∈ ThreadID, x ∈ Loc, v ∈ Val, and e is an action identifier, picked from the set AId. For call
and return actions v means actual parameter and return value respectively. We omit e annotation from
actions, when it is not relevant, and often use r, w and f to denote load, store and fence actions.

We denote the set of all finite sets of actions with P(Act). When considering a relation R over

actions, we write (a,b) ∈ R and a R−→ b interchangeably.

Program order semantics. We first define a program order semantics, which generates all executions
of a program based solely on the structure of its statements, without taking into account the semantics of
memory operations. For instance, in generated executions loads can read arbitrary values disregarding
the values written by performed store actions. After we define the notion of execution, we introduce
axioms which filter out executions that do not satisfy them.

Program order semantics associates a program with a set of action structures—tuples (A,po), where
A ∈ P(Act), and po : A×A is program order that is a total on the set of actions by the same thread.



The axiomatic TSO memory model 119

MOWF. mo is total, transitive, irreflexive and relates only store actions in the execution.

POWF. po is total, transitive, irreflexive and relates only actions by the same thread.

SCWF. sc is total, transitive, irreflexive and relates only fences in the execution.

RFWF. (∀w1,w2,r.w1
rf−→ r∧w2

rf−→ r =⇒ w1 = w2)∧
(∀w,r.w rf−→ r =⇒ ∃x,a.w = ( ,store(x,a))∧ (r = ( , load(x,a)))∨ r = ( ,call (a)))∨ r = ( , ret (a))))

RFDET. ∀x,w,r.(r = ( , load(x, ))∨ (∃t.x = paramt ∧ r = (t,call ))∨
(∃t.x = retvalt ∧ r = (t, ret )))∧w = ( ,store(x, ))∧ (w hb−→ r∨w

po−→ r) =⇒ ∃w′.w′ rf−→ r
HBDEF. hb= (po∪ rf)+

HBVSMO. ¬∃w1,w2. w1

hb **
w2

mo
jj

RFMR. ¬∃w1,w2,r. w1
mo //

rf

33w2
hb // r

where w1, w2 and r access the same location.
RFMR’. ¬∃w,w1,w2,r.

w1
mo //

rf

11w2
mo // w rf // r′ sb // r

where w1 and w2 write to the same location,
and w and r′ are by different threads.

HBWF. hb is acyclic.

HBVSSC. ¬∃ f1, f2. f1

hb )) f2
sc
ii

MOVSSC. ¬∃w1,w2, f1, f2.

w1
hb // f1

sc // f2
hb // w2

mo

ll

SCRF. ¬∃w,w′, f1, f2,r.

w mo //

rf

11w′ po // f1
sc // f2

po // r

Figure 2: The validity axioms

Let A ·∪B be the union of the sets of actions A and B with disjoint sets of action identifiers. Consider
a program C(L) = (let {m =Cm | m ∈ M} in C1 ‖ . . . ‖Cn). We define the set of action structures ⟨C(L)⟩
for program executions in Figure 1. By construction and definition of prefix(A,po), ⟨C(L)⟩ is also prefix-
closed, i.e. it includes incomplete executions.

For a primitive command α ∈ PComm, we assume a set ⟨α⟩t of all action structures α produces
when executed by thread t. We require that structures in ⟨α⟩t do not contain call or return actions.

The memory model gives a semantics to a program as a set of executions, each of which is a tuple
X = (A,po, rf,mo,sc,hb) of a set of actions A ∈ P(Act) and relations on A. An execution enriches
an action structure with information about the way operations on memory are performed. The relations
included into an execution are as follows:

∙ rf: reads-from, relating the load actions r to the store actions w from which they take their values;

∙ mo: modification order, relates all store actions in the order they hit the memory;

∙ sc: synchronisation order, relates all fences in the order of their execution;

∙ hb: happens-before, showing the precedence of actions in the execution.

Validity. For an execution X and one of the relations R defined above, we write R(X) to select the
corresponding relation for X . An execution X = (A,po, rf,mo,sc,hb) is called valid when it satisfies the
validity axioms in Figure 2.

A call action (t,call m(v)) gets its argument v by reading from a correspondent client’s store to
paramt . A return action (t, ret m(v)) gets its return value v by reading from a correspondent library’s
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store to retvalt . In the following we treat calls and returns as loads, what is established in RFWF axiom.
We also assume that call (return) actions access paramt (retvalt) only when executed by a thread t.

A store action (t,store(x,v)) writes a value v to the address in memory. Analogously to the opera-
tional semantics, where a written value does not hit the main memory immediately, in our model a store
(t,store(x,v)) becomes observable from a thread t, but not always from the other ones. The explicit
way to make the written value visible to the other threads is to execute a fence action (t, fence). We
add RFMR, RFMR’ and SCRF axioms to ensure that a load action reads the most recent value that is
observable to its thread.

We further use JC(L)K to denote for a given program C(L) the set of all valid executions with action
structures from ⟨C(L)⟩: JC(L)K = {X | X = (A,po, , , , )∧ (A,po) ∈ ⟨C(L)⟩}.

Execution projections. We call actions of the form (t,call m(v)) or (t, ret m(v)) interface actions.
Consider an execution X = (A,po, rf,mo,sc,hb) of C(L). An action a ∈ A is a library action, if it is

an interface action, or ∃b. b = ( ,call )∧b
po−→ a∧¬∃c.c = ( , ret )∧b

po−→ c
po−→ a.

An action a ∈ A is a client action, if it is an interface action, or the negation of the above property
holds. Let client(A) be the set of client actions in A. We define a client’s execution:

client(X) = (client(A),client(po),client(rf),client(mo),client(hb))

by projecting all the relations in X to actions from client(A). We also use analogous projection lib(X) to
library actions and lift client and lib to sets of executions pointwise.

Non-interference. We assume that the set of memory locations Loc is partitioned into those owned by
the client (CLoc) and the library (LLoc): Loc = CLoc⊎LLoc. The client C and the library L are non-
interfering in C(L), if in every computation from JC(L)K, commands performed by the client (library)
code access only locations from CLoc (LLoc). Formally, an execution C(L) is called non-interfering
when it satisfies the following axiom:

NONINTERF.∀a,x, t.a ∈ A∧ (a = (t,store(x, ))∨a = (t, load(x, ))) =⇒
((a ∈ lib(A,po) ⇐⇒ (x ∈ LLoc∨a = (t,store(retvalt , ))∨a = (t, load(paramt , ))))∧

(a ∈ client(A,po) ⇐⇒ (x ∈ CLoc∨a = (t,store(paramt , ))∨a = (t, load(retvalt , ))))).

In the following, we assume that at the beginning of execution all locations are arbitrarily and explicitly
initialised by means of store actions.

4 Abstraction theorem

The idea behind linearizability is to record all interactions between the client and the library. That is
done by means of the notion of a history. Clients and libraries can affect each other by passing different
values through interface actions. Precisely, the library can observe the parameters provided by the client
at calls, and the client can observe the library’s return values. Therefore, a history includes the set of
interface actions in the execution. We also include in histories two partial orders (guarantee and deny)
over interface actions to consider additional interactions caused by relaxations of TSO.

Definition 1. A history is a set of interface actions and a pair of partial orders over it.

Informally, in a history H = (I,G,D), the guarantee G describes the happens-before edges enforced
by the library; and the deny D describes the happens-before edges that a client must not enforce.

Consider an execution X and its interface actions I(X). We let guar(X) be the projection of hb(X)
onto I(X) and deny(X) be the relation over I(X) obtained from dashed edges in Figure 3. These edges
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Figure 3: The definition of the deny(X). Here x,y,x′,y′ are interface actions. If the solid edges belong to
the corresponding relations in X , the dashed edges belong to deny(X).

describe all the possible ways in which happens-before edges enforced by the client can contradict other
relations from the library execution; the axioms that can be violated are indicated in the figure. Let
history(X) = (I(X),guar(X),deny(X)). We lift history to sets of executions pointwise.

We use the ⊆ relation between partial orders to denote that a partial order is a sub-relation of another
one, and lift it to histories as follows: (I1,G1,D1)⊆ (I2,G2,D2) = (I1 = I2)∧ (G1 ⊆ G2)∧ (D1 ⊆ D2).

Definition 2. A history H ′ linearizes a history H if H ′ ⊆ H.

Thus, a linearized history enforces fewer dependencies between interface actions for a client and has
less restrictions on enforcing dependencies by a client. This indeed allows more client behaviours.

To generate the set of all histories of a given library L, we consider its most general client, whose
threads repeatedly invoke library methods in any order and with any parameters possible. Take n ≥ 1 and
assume sig(L) = {m1, . . . ,ml}. Then we define MGCn(L) = (let L in Cmgc

1 ‖ . . . ‖Cmgc
n ), where for all t,

Cmgc
t = (m1 + . . .+ml)

*.
A library execution of L is an execution of JMGCn(L)K for some n ≥ 1. A library execution is valid,

if it satisfies the validity axioms in Figure 2, and it is non-interfering, if it satisfies NONINTERF axiom.
Let JLK be the set of all valid library executions of L. The set of executions in JLK defines a library-

local semantics of L. We say that a library L is non-interfering if so is every execution in JLK.
Now we present our main result – the definition of linearizability for the axiomatic model of TSO.

The correctness of the proposed notion is established in Theorem 4.

Definition 3. For non-interfering libraries L1 and L2, L2 linearizes L1, written L1 ⊑ L2, if:

∀H1 ∈ history(JL1K).∃H2 ∈ history(JL2K).H2 ⊆ H1.

Noteworthily, checking linearizability L1 ⊑ L2 does not involve reasoning about any client. What we
need to do is to generate all possible library-local executions, or, in other words, all possible executions
of MGC(L1) and MGC(L2), and check the definition.

Theorem 4 (Abstraction). If L1, L2 and C(L2) are non-interfering and L1 ⊑ L2, then C(L1) is non-
interfering and ∀X1,X2 . X1 ∈ client(JC(L1)K)∧X2 ∈ client(JC(L2)K)∧hb(X2)⊆ hb(X1).

By Theorem 4, while reasoning about a client C(L1) of a library L1, we can soundly replace L1 with
a simpler library L2 linearizing L1: if a property over client actions holds over C(L2), it will also hold
over C(L1). Since L2 is usually simpler than L1, this eases the proof of the resulting program. Thus,
the proposed notion of linearizability and Theorem 4 enable compositional reasoning about programs on
TSO: they allow decomposing the verification of a whole program into the verification of its constituent
components.
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C(L1)
{x = y = 0}

x = 1 y = 1
call m1 call m2
skip skip
ret m1 ret m2
b = y a = x

{a = b = 0}

C(L2)
{x = y = z = 0}

x = 1 y = 1
call m1 call m2
z = 1 while !z do skip
ret m1 ret m2
b = y a = x

{a = 1}

Figure 4: A motivation to include guarantee: it should not be the case that L1 ⊑ L2, if the latter adds
synchronisation and therefore allows less behaviours.

Execution of C(L)
m1()
m2()
z = 1 while !z do skip

m1()

Methods
L1, L2: m1 { return ++ x; }
L1: m2 { return 2; }
L2: m2 { return ++ x; }

Figure 5: A motivation to include deny: if L1 ⊑ L2, then client must not be able to distinguish them by
making a synchronisation between library methods calls.

Let us now return to definition of a history and illustrate the ideas behind inclusion of two relations
into it. The inclusion of a guarantee relation into a history is aimed to prevent a library L2 that linearizes
L1 from adding new synchronisations, so that a client cannot notice a difference between them.

Consider libraries L1 and L2 with different implementations for methods m1 and m2 along with their
client C in Figure 4. A client is able to observe a synchronisation inside a library L2, because it disables
some client’s behaviours. Particularly, because of reading z in m2, a store x = 1 is always flushed by the
moment of reading a = x. Consequently, the outcome b = 0 is possible in C(L1) and never happens in
C(L2). In our setting such case is ruled out by a guarantee relation, since all histories of L2 contain an
edge (between a call to m1 and a return from m2) that any history of L1 does not.

With the following example we show the role of a deny relation in a history. Consider libraries L1
and L2 with different implementations for a method m2 along with their client in Figure 5. The former
one always returns 2 while the latter returns the value of x++. It is easy to see that for any history
from history(JL1K) there is an equivalent one from history(JL2K), so by definition L1 ⊑ L2. However,
Abstraction Theorem does not hold of L1 and L2. The subtlety here is that a client is able to perform a
synchronisation that influences library’s execution and makes it possible to detect a different behaviour
of a linearized library.

In terms of our axiomatic model this means, that an execution of C(L2) violates RFMR’ validity
axiom, while C(L1) does not. To avoid this, each validity axiom that can be violated because of client’s
synchronisation contributes edges into a deny relation. This way any client synchronisation that breaks a
library-local execution is explicitly forbidden.

5 Related work and conclusions

Recent work has proposed definitions of linearizability for the operational model of TSO [2] and the
axiomatic model of C++11 [1]; the latter memory model is significantly more complex than TSO. The
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techniques we used in this paper are inspired by the construction of the definition of linearizability for
C++11. By demonstrating their application in a simple and clean setting, we hope to highlight their
main underlying ideas and make it easier for other researchers to use them for developing compositional
reasoning methods for other memory models.

We also hope that the definition of linearizability for an axiomatic version of TSO will lend itself
easier to automatic verification and testing than the operational definition [2]. Namely, model checking
the latter requires enumerating an exponential number of concurrent program executions. In contrast, a
single execution in an axiomatic model concisely represents whole classes of executions in a way that
can be accepted by standard SAT or SMT solvers, which enables efficient verification [4].
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Abstract
Hybrid type systems combine the best of static and dynamic type systems, providing an adequate

compromise when properties are at conflict. Moreover, the combination of gradual typing with hybrid
type checking gives users control over the level of typedness. As a result, users can adjust the type
system to the particular needs of each stage in the development process and avoid the scenario where
the type system becomes a burden. In this paper, we review existing approaches to hybrid type
systems from which we collect a number of relevant properties, such as, static detection of type errors
and type inference. Finally, we present these properties and discuss our future research directions.

1 Introduction

Increasing software reliability is one of the main tasks of researchers and engineers working in program
verification and software engineering. There are various powerful formal methods for proving correct-
ness properties of programs. However, in order to fully explore their potential, users must have a high
level of expertise and a deep understanding of the underlying theories. An average programmer is more
inclined towards methods that help increase software reliability and correctness without being exposed
to a complicated formalism. Such methods are known as lightweight formal methods and type systems
are perhaps the most widely used among them.

A type system is a mechanism in a programming language that ensures a certain level of correctness
and that can specify and verify basic interface specifications [5]. Additionally, by using type declarations,
programs are more structured, and thus amenable to higher level verification techniques. Traditionally,
type systems are divided in static and dynamic type systems. In static type systems, type errors are
caught at compile-time and ill-typed programs cannot be executed. On the other hand, dynamic type
systems detect type errors at runtime and programs are aborted [4]. In general, properties supported by
one system are not supported by the other.

Static type systems allow earlier error detection, better documentation through type signatures, com-
piler optimization, and increased runtime efficiency [1]. However, contrary to advocates of static typing,
well-typed programs can still go wrong, mainly because static type checking is partially sound and in-
complete. Additionally, static type systems enforce a tight typing discipline making a language less ex-
pressive. Due to loss of expressiveness and generality, some classes of well-typed programs do not type
check in conventional static type systems. Among the examples for the programs that do not type check
under conventional static type systems are heterogeneous functions (functions returning non-uniform
types) and some forms of recursion (for example, self application results in an infinite type) [4].

Dynamic type systems address these problems and among their advantages are truly dynamic behav-
ior, rapid development, fast adaptation to changing or unknown requirements, and simpler interaction
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with systems that change unpredictably [1]. Moreover, users are not forced to commit prematurely to a
particular data representation and they can experiment more easily. While dynamic languages, such as
Python and Ruby, allow several forms of reflection and intercession (the ability to inspect and modify
the program at runtime), these properties are usually not supported (in full) by static languages. How-
ever, their use makes code more difficult to read and understand, and program errors can be very difficult
to trace. In addition, the advantages of the static languages are mainly disadvantages for the dynamic
languages: they do not support the standard stronghold of static types, such as earlier error detection,
documentation, optimization, and runtime efficiency.

Such a division between static and dynamic type systems forces users to make a choice that is not
always obvious because some useful properties are always left out. Hybrid type systems appear as a
solution to this problem, by combining the best of both static and dynamic type systems. Hybrid type
systems are also a topic on which I am planning to work during my PhD studies.

I have started a PhD program only recently (one month ago), and this paper is a survey where we
present current work done towards defining hybrid type systems and show the advantages and limitations
of each attempt.

2 Problem statement

Our goal is to develop a hybrid type system that combines a number of relevant and useful properties,
from static and dynamic type systems, and implements them efficiently, with an adequate level of com-
promise when needed.

We plan to develop a gradual hybrid type system. Following [2], graduality is an important require-
ment that allows users to control the degree of typedness. With this approach users can adjust the type
system to the particular needs of each stage of development. As an illustration, consider the following
scenario: at the start of a software project, users are still sketching the program and, therefore, the type
system should not enforce a strong typing discipline. This gives users more freedom in experimenting
with different models. When the program becomes more mature, users can add type annotations, which
can be used by the type system to catch more type errors statically and generate optimized code.

By developing a hybrid type system, we also aim to increase software reliability. A division of static
and dynamic type systems also extends to a division among verification techniques: specifications can
be verified either statically or dynamically [5]. Hybrid type systems provide an ideal infrastructure to
support these two classes of specifications in the same programming language. Once again, users do not
have to choose and we plan to combine static and dynamic type systems and specifications.

We see this project as part of a bigger research question that answers how type systems can evolve
throughout the development process to adjust to the particular needs at each stage. Our study of current
approaches to hybrid type systems has showed that these type systems have great potential for program-
ming languages by providing a unified static/dynamic framework for specification and verification.

In their position paper, Meijer and Drayton [1] proposed a number of relevant properties a hybrid
type system should provide. However, the approaches we have studied (cf. Section 3) showed that only
a very small subset of properties are considered for a given type system and that the level of compro-
mise is extreme. As an illustration, a hybrid type system [4] supports dynamically typed programming
but it does not catch any type errors statically. In our opinion, such restrictions are too drastic and a
compromise should be found instead. We are aware that it is impossible to meet all the requirements, as
there are several degrees of conflict. However, we plan to explore the fact that at a particular stage in the
development process not all properties need to be in effect. Therefore, the type system can evolve from
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a more dynamic to a more static one.
There are several open questions regarding hybrid type systems, among the most important ones is

the right set of properties and an adequate level of compromise such that the type system is feasible
and useful. Our ongoing research work aims at answering these questions. In Section 4 we list desired
relevant properties for a hybrid type system. This list is based on the extensive study of related work.

3 Related work - Approaches to hybrid type systems

This section describes several approaches towards hybrid type systems. We list their main contributions,
as well as their limitations.

3.1 Static typing with dynamic type

Abadi et al. [3] proposed an approach to hybrid type systems that comprises a static type system, defined
by a typed lambda-calculus, with a dynamic type denoted by Dynamic. Dynamic values can be created
with the type constructor dynamic and inspected with the typecase form. A dynamic value is a pair (v,T )
where v is a value and T is a type tag containing the type of v. For example, the following higher-order
function receives two dynamic values df and de, and uses the typecase form to dynamically ensure that
df has function type and that de matches the type of the function argument.

λdf: Dynamic. λde: Dynamic.

typecase df of

(X, Y) (f: X → Y)

typecase de of

(e. X) dynamic f(e): Y

else dynamic "Error: formal and actual types mismatch" : String

end

else dynamic "Error: expected function type" : String end

In general, this approach to hybrid type systems makes the type system more flexible, when compared
to a conventional static type system. However, it still does not allow programming in a dynamically typed
style because the programmer is forced to insert coercions from and to type dynamic [2]. Moreover, there
is a too fine line separating the highlevel semantics and the underlying representation of dynamic values.
Therefore, users must not only manage the interface between static and dynamic types manually, but
also remember the history of tagging patterns of a value because a runtime check must look for the exact
same pattern [6]. The hybrid type system explained in the next section addresses this issue.

3.2 Quasi-static typing

Thatte [6] introduces an approach to hybrid type checking called quasi-static typing. In this approach,
programs are classified as ill-typed, programs that are rejected because they contain one or more statically
detected type errors, well-typed, programs that are accepted because they do not contain static type errors
or produce unexpected runtime type errors, and ambivalent, programs that are accepted because they do
not contain any static type errors, although they may contain runtime type errors.

In quasi-static typing, dynamic typing is a property inherited by all types through structural subtyp-
ing. The type of dynamically typed values is Ω and all types are subtypes of it. Quasi-static typing has
two phases, namely, type and coercion inference, and plausibility checking. Type and coercion inference
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reconstruct types for terms and insert coercions in ambivalent programs, making them well-typed. Plau-
sibility checking detects type errors statically by reducing sequences of tagging and checking operations
and locating implausible coercions, such as, a coercion from Nat to Bool.

Quasi-static typing merges static and dynamic typing, which combined with type inference and im-
plicit coercions provide a good user experience. However, there are some limitations. For example, this
approach does not statically catch all type errors in fully annotated programs, and the type hierarchy with
the type dynamic as the generalization of all other types combined with negative coercions weakens the
type system up to a point that too many ill-typed programs are accepted [2]. Cartwright et al. [4] point
out other limitations, namely, function arguments require type annotations, only one level of subtyping
is allowed, and parametric polymorphism and recursive types are not provided.

Because parametric polymorphism is not supported, there is an over generalization of types. For
example, the polymorphic identity function has type a → a, thus preserving the argument type in the
result. However, in quasi-static typing, the identity function has type Ω → Ω, therefore, arguments are
coerced to type dynamic. As a result, the type of the argument cannot be propagated, which would be
useful to statically detect more type errors. Moreover, as shown in the next section, recursive types are a
possible solution to the heterogeneity problem, e.g., a function returning different types.

3.3 Soft typing

Cartwright et al. [4] propose an approach to hybrid type systems partly based on quasi-static typing.
Soft typing classifies programs as well-typed and ambivalent only, and ill-typed programs are considered
ambivalent. The type system inserts runtime checks in ambivalent programs around suspect arguments
of primitive operations, thus converting dynamically typed programs into well-typed programs. The
inserted runtime checks are located in expressions that might contain type errors, but type errors are not
caught statically [2]. As a result, users must inspect program phrases that contain runtime checks for
potential type errors. Soft typing provides several type features, namely, parametric polymorphism, type
variables, type constructors, union types, and recursive types (through fixed-point operations on type
functions). Union types can be used to encode the type of a conditional that produces different return
types on its branches. For example, the following function has type true+ f alse → suc+nil, where suc
is a constructor for natural types, and nil a constructor for the empty list.

λ x. if x then 1 else nil

Contrary to static typing with dynamic type, in soft typing the user does need to explicitly annotate
dynamically typed variables or resort to checking operations on dynamic values, to ensure a correct static
typing discipline or to manage the interface between statically typed and dynamically values.

3.4 Gradual typing

Siek et al. [2] points out that soft typing does not catch errors statically. As a result, a different approach
to hybrid type system called gradual typing is proposed. Being a gradual type system, it gives the user
control over the degree of static checking by optionally annotating function parameters with types. The
proposed gradual type system supports dynamically typed programming when type annotations are omit-
ted by the user and statically typed programming otherwise. The benefits of static typing include static
error detection, optimized code generation (e.g., unboxed values), and improved runtime efficiency, by
avoiding unnecessary runtime checks. It should be noted that this system catches all type errors statically
for fully annotated programs, a property that is not provided by the previous hybrid type systems.
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The proposed type system is a gradually typed λ -calculus, which is an extension to the simply typed
λ -calculus with the dynamic type, denoted by ?. The gradually typed λ -calculus is then transformed into
a simply typed λ -calculus with explicit casts. Runtime checks are also necessary because unannotated
type parameters can prevent static detection of some type errors. For example, the parameter x in the
following function has type dynamic.
((λ (x) (succ x)) #t)

Therefore, even though the program is ill-typed, this error is caught only at runtime by the inserted
checks. In this case, type inference could reconstruct the type of variable x and detect type inconsistency
statically. However, type inference is not provided. Another interesting property would be parametric
polymorphism, but it is also not supported. As a result, the gradual type system suffers from the same
problem of quasi-static typing, in what overgeneralization of types is concerned (Section 3.2).

3.5 Hybrid type checking

The hybrid type system approaches presented so far have mainly focused on type checking and infer-
encing, and language features, such as parametric polymorphism, and union and recursive types. This
section presents a different approach to hybrid type systems based on verification of specifications.

Flanagan [5] proposed a hybrid type checking approach that combines traditional static type systems
for verifying statically basic interface specifications, whenever possible, and dynamic contract checking
to support more expressive and precise specifications.

In general, the kinds of specifications provided by static type systems are limited. Dependent and
refinement types appear in these type systems as more expressive specifications. But even these mecha-
nisms are not expressive enough because the specification language is intently restricted to preserve static
verification. On the other hand, dynamic checking supports more precise specifications, such as, sub-
range types, aliasing restrictions, ordering restrictions, size specifications, and ultimately any arbitrary
predicate, with the disadvantage of not being statically verifiable in general.

The underlying infrastructure of Flanagan’s hybrid type checking is similar to that of quasi-static
typing, soft typing, and gradual typing: programs are classified as well-typed, ill-typed, or ambivalent,
and, in the latter case, runtime checks and coercions are inserted to detect type errors at runtime. The
main difference is that dependent function types, refinement types, and arbitrary predicates, are also
used, allowing users to define precise and expressive specifications.

The refinement types are written using constants, namely, boolean and arithmetic values and opera-
tions, conditionals, and fixpoint constructors. The type system relies on an automatic theorem prover to
statically verify the specifications, but the use of arbitrary predicates makes typechecking undecidable.
In this case, the program is still accepted and the hybrid type checker inserts casts and runtime checks to
verify the specification dynamically.

4 Properties of hybrid type systems

In the previous section, we showed several approaches to hybrid type systems, each emphasizing dif-
ferent properties, in some cases preferring static typing over dynamic or vice-versa. Inspired by these
type systems and [1], we propose a set of properties that a hybrid type system should provide. To our
knowledge, no current hybrid type system supports all of these properties.

Minimal text principle Type annotations in terms are optional. However, unannotated terms do not
default to the dynamic type. Instead, type inference is used and parametric polymorphism allowed.
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Static error detection There is a best-effort to statically detect type errors. However, all type errors are
caught in fully annotated programs.

Type inference There is a best effort to reconstruct the types of terms, while at the same time avoiding
the overgeneralization problem described in Section 3.2

Gradual typing A gradual transition between dynamic and static typing is provided, with the user con-
trolling the typedness degree through type annotations.

Specifications Specifications are provided to allow definition of invariants. However dynamically ver-
ifiable specifications are not forbidden and are deferred to runtime, and there is no syntactic dis-
tinction between these and statically verifiable specifications.

Subtyping In the presence of inheritance, when there is a subtype relationship between the inferred and
required types, for example, in a function application, coercions are implicitly inserted.

Generics and heterogeneous data Data types are parametric to promote code reuse. Moreover, hetero-
geneous data structures are allowed because, with homogeneous structures only, users are forced
to commit (prematurely) to a particular data representation.

Covariance Without covariance, parametric types are achieved with parametric polymorphism, causing
type parameters to spread. Covariance can be achieved without complicating the type system by
adding runtime checks. For example, array covariance combines parametric and subtype polymor-
phism and each write operation requires a runtime check to preserve the array type.

Prototype programming It should be possible to extend classes and data structures dynamically to
avoid the problem that statically typed languages force programmers to commit (prematurely) to
inter-entity relationships.

5 Conclusions

To conclude, hybrid type systems are a research area with a great potential. They provide a general unifi-
cation of both static and dynamic type systems, and statically and dynamically verifiable specifications.
This way users are not forced to compromise between static and dynamic type systems and they do not
need to commit to a particular type system during an entire development process.

Our research plan is to build such a hybrid type system, that meets the before mentioned properties.
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Abstract

Mobile robot networks emerged in the past few years as a promising distributed computing
model, where simple limited entities perform complex collaborative tasks. Existing works in the
literature verify mobile robot protocols by writing ad hoc proofs, which, in the case of more complex
asynchronous environments, reveals both cumbersome and error-prone.

In this paper, we propose the first formal modeling and verification methodology for mobile
robots protocols operating in a discrete space. We use a known protocol for exclusive perpetual
exploration with three robots as a case study. Our technique shows that in the synchronous and
semi-synchronous environments, this protocol is correct, yet safety properties can be violated in the
completely asynchronous environment. Finally, we present a protocol fix for the safety problem and
verify the correctness of our change.

1 Introduction
The number of tasks that may be performed by autonomous robots and their complexity are increas-
ing. Many applications envision groups of mobile robots self organizing and cooperating toward the
resolution of common objectives, in the absence of any coordinating agent.

A recent trend was to shift from the classical continuous setting where coordinated distributed robots
evolve in a continuous two-dimensional Euclidian space, to a discrete one where space is partitioned into
a finite number of locations. This discrete space is conveniently represented by a graph, where nodes
represent locations, and edges represent paths for a robot from one location to another. Thus, the discrete
setting permits to simplify robot models by reasoning on finite structures.

We consider a distributed system of k mobile robots, that have limited capacities: they are identical
and anonymous (they execute the same algorithm and they cannot be distinguished using their appear-
ance), they are oblivious (they have no memory of their past actions) and they have neither a common
sense of direction, nor a common handedness (chirality). Furthermore robots do not communicate in an
explicit way. However they have the ability to sense the environment and see the position of the other
robots. Robots operate in three phase cycles: Look, Compute and Move. During the Look phase robots
take a snapshot of the graph together with other robots’ positions. The collected information is used in
the Compute phase in which robots decide to move or to stay idle. In the Move phase, robots may move
to one of their adjacent nodes computed in the previous phase. In this model introduced by Suzuki &
Yamashita in [7] called SYm (or ATOM), a subset of robots execute the three phases synchronously.
Prencipe improved this model by proposing in [6] the CORDA model which is totally asynchronous, and
reflects distributed system behavior. We consider execution models where movements are instantaneous.

The research concern is on determining what tasks can be performed, under what conditions, and
at what cost. Among the multiple tasks that have been studied in a discrete setting, we study here
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the perpetual exploration of an unknown environment: Every node of the graph which constitute the
environment must be explored infinitely often. We assume in this work that the graph shape is a ring.

No deterministic exploration is possible on a ring when the number of robots k divides the number
of nodes n [4]. The authors proposed a deterministic algorithm to solve the exploration using at least 17
robots provided that n and k are co-prime. In [3] the authors show that four identical probabilistic robots
are necessary and sufficient in any anonymous unoriented ring of size n > 8, also removing the co-prime
constraint and propose a probabilistic algorithm for four robots in any ring of size n ≤ 8. In [2], the
authors investigate both the minimal and the maximal number of robots that are necessary and sufficient.
On the minimal side, three deterministic robots are necessary and sufficient, in a ring of size n≥ 10. On
the maximal side, n− 5 robots are necessary and sufficient to exclusively perpetually explore a ring of
size n when n is coprime with k. They provide algorithms for both the minimal and maximal case.

For these algorithms, no formal correctness proofs have been given. We propose the first formal
modeling and verification methodology for mobile robots protocols. Our case study concerns algorithms
proposed in [2] which permit the exclusive perpetual exploration problem on ring shaped graphs.

We first present our formal model, then we discuss the case study specifications and properties which
need to be verified. Finally we present verification for algorithms from [2], and the fixed and verified
algorithm in the last section.

2 System model
We describe the robot behavior in SYm or CORDA execution models, as a set of finite automata. We
consider two types of components, robots and scheduler, each of them described by an automaton. We
first discuss robot modeling, before going on to how the total asynchrony or strong atomicity for robot
behaviors are performed by the scheduler according to the execution model.

Robot modeling. Robots execute the same deterministic algorithm and have an identical behavior,
hence they can be described by the same automaton. Figure 1 shows a finite automaton modeling the
robot behavior. It should be recall that robots operate in Look, Compute, and Move cycles.

Ready
to look

Ready to
compute

Ready
to move

Look Compute

Move

Figure 1: An automaton for the robot behavior

To begin a cycle, a robot must take a snapshot of its environment, which is represented by the Look
transition. Then, it must compute its future location, represented by the Compute transition. Finally the
robot has to move according to its previous computation, this effective movement is represented by the
Move transition.

The ”Ready to move” state is divided in as many parts as the number of possible movements accord-
ing to the algorithm to be verified.

We abstract precise time constraints (like computational or motorial speed of robots) and keep only
sequences of instantaneous actions, assuming that each robot completes each cycle in finite time. There-
fore, the model can be reduced by combining the Look and Compute phases to obtain the LC phase.
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Scheduler modeling. The scheduler organizes robot movements to obtain behaviors which respect
SYm and CORDA models. Like robots, the scheduler is modeled by a finite automaton. For each variant
of the execution model, there is one scheduler model. By synchronizing one of these schedulers with
robot automata, we obtain an automaton that represents the global behavior of robots in the chosen
model. We now describe these scheduler models for a set Rob of robots. Unlike robots which have the
same behavior regardless of the model, the scheduler is set by the model and the number of robots.

In the sequel we denote by LCi (respectively Movei), the LC (resp. Move) phase of ith robot. And for
a subset Sched ⊆ Rob, we denote by ∏

i∈Sched
LCi (respectively ∏

i∈Sched
Movei) the synchronized transitions.

The SYm model has two variants, SYm Fully-synchronous (all robots are synchronized on every
phase) and SYm Semi-synchronous (a subset of robots are synchronized). In the Semi-synchronous
case, the automaton consists of a cycle, where a set ”Sched” is first chosen, then the LC and Move phases
are synchronized for this set. The automaton of SYm Semi-synchronous is described in Figure 2a.

The ”Sched chosen” state is divided into 2k states, where k is the number of robots in order to
represent all possible sets of Sched⊆ Rob.

In the SYm fully-synchronous variant, each phase of all robots must be synchronized. On all global
cycles Sched = Rob, thus all robots are always scheduled and synchronized on every phase. Hence all
global cycles are identical.

Move
Done

Sched
chosen

LC Done
Choose Sched

∏
i∈Sched

LCi

∏
i∈Sched

Movei

(a) SYm Semi-synchronous model

Act Done
Sched
chosen

Choose Sched

∏
i∈Sched

Acti

(b) CORDA model

Figure 2: The Schedulers automata

The CORDA model is totally asynchronous. Any finite delay may elapse between LC and Move
phases: A robot can move according to an outdated observation, and any set Sched ⊆ Rob can be sched-
uled.

The automaton in Figure 2b represents the corresponding scheduler. In each phase a set Sched is
chosen, and all robots in this set are allowed to act: the action Acti is either LCi or Movei depending on
the current state of the ith robot.

System modelling. In order to obtain the complete system, configurations must be added: A configu-
ration describes the positions of robots on the graph. In a graph of n nodes with k robots there are

(n
k

)
possible configurations, thus the total number of states is multiplied by

(n
k

)
. Furthermore the number of

transitions depends on the number of states and on the number of possible movements, thus to represent
the system as an automaton every Movei transition must be divided according to the shape of the graph.

Even with a high level of abstraction, chosen in order to express only behavioral specifications that
permits to verify some desired properties, the system automaton made by synchronization is prone to
state space explosion.
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3 Case Study and Verification
We choose to verify the Min-Algorithm presented by [2]. For this, we must outline the properties that
need to be satisfied. These properties come from the problem specification, given below:

The problem specification. We study the Exclusive Perpetual Exploration problem in the general
asynchronous model defined in [2] as follows:

For any graph G of size n and any initial configuration where robots are located on different vertices,
an algorithm solves the perpetual exclusive exploration problem if it guarantees these two properties:

• exclusivity: No two robots visit the same vertex or traverse the same edge at the same time. It
permits to describe the collision problem that can occur during the exploration: It corresponds to
mutual exclusion with respect to the positions in the graph and it is discussed in [5]. It assumes
that there will never be more than one robot on any vertex nor two robots will traverse the same
edge at the same time.

• liveness: Each robot visits each vertex in G infinitely often. The liveness property is satisfied iff
the perpetual exploration is achieved. It implies that executions are infinite and that in any config-
uration at least one robot can move.

In our models an execution where no robots is ever scheduled can happen, as well as an execution
where a particular robot is never scheduled. To prevent such executions a fairness assumption has to be
made: All robots have to be scheduled infinitely often. Thus the liveness property is satisfied only on
executions where the fairness assumption holds.

The Min-Algorithm. In [2] the authors proposed the Min-Algorithm which ensures that three robots
always exclusively and perpetually explore any ring of size n ≥ 10 where n is not a multiple of k. This
algorithm is based on a classification of configurations:

Definition 1. For k robots in the n-node ring, a configuration is a circular and non oriented alternating
sequence of symbols R and F , indexed by integers: Ri stands for i consecutive nodes, each of them
occupied by a robot, and Fj stands for j consecutive nodes free of robots.

A closed class of configurations is outline. These configurations, called legitimate configurations, are
defined by: C0=(R2,F2,R1,Fz), C1=(R1,F1,R1,F2,R1,Fz) and C2=(R2,F3,R1,Fz) with z ∈ {0,1,2,3}.
The phase occurring on these configurations is called the Legitimate phase. When started in a legitimate
configuration the protocol always moves into a legitimate configuration, after the execution of n rounds,
all robots have explored the ring. When started in a non-legitimate configuration the protocol ensures the
convergence towards a legitimate configuration thanks to the convergence phase. The algorithm is correct
iff from any configuration, it converges to a legitimate configuration The legitimate phase (respectively
the convergence phase) can be seen on the Table 1 (resp. Table 2)

Legitimate Phase: z 6= {0,1,2,3,4}
RL1:: (R2,F2,R1,Fz) → (R1,F1,R1,F2,R1,Fz−1)
RL2:: (R1,F1,R1,F2,R1,Fz) → (R2,F3,R1,Fz)
RL3:: (R2,F3,R1,Fz) → (R2,F2,R1,Fz+1)

Table 1: Rules of Min-Algorithm legitimate phase
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Convergence Phase: Execution starting from special configurations.
RC1:: (R2,Fy,R1,Fz) → (R2,Fmin(y,z),R1,Fmax(y,z)+1) with y 6= z 6= {1,2,3}
RC2:: (R1,Fx,R1,Fy,R1,Fy) → (R1,Fx,R1,Fy−1,R1,Fy+1) with x 6= y 6= 0
RC3:: (R1,Fx,R1,Fy,R1,Fz) → (R1,Fx−1,R1,Fy+1,R1,Fz) with x < y < z
RC4:: (R3,Fz) → (R2,F1,R1,Fz−1) when 1 robot executes

→ (R1,F1,R1,F1,R1,Fz−2) when 2 robots execute
RC5:: (R2,F1,R1,Fz) → (R2,F2,R1,Fz−1)

Table 2: Rules of Min-Algorithm convergence phase

RC4

RC4
RC1

RC2

RL1
RL2

RC4

RL2

Figure 3: Counter-example

Verification. To represent this algorithm in SYm or CORDA model, guards are added on the actions of
robots to constrain their behavior. The Min-Algorithm is based on the observed configurations: To every
possible configuration, a robot movement is assigned. Thus, each guard is a comparison of the observed
configuration and the previously fixed set of configurations.

We use the LTL (Linear Temporal Logic) model-checker DiVinE [1] to check the correctness of the
algorithm. This choice is motivated by further use of the input format, which is compatible with other
tools developed in our team. The results for the smallest ring, of size 10, are presented in Table 3.

nb States nb Transitions Memory (kB) Model Verification
256.315 737.810 248.668 SYm Fully-synch ok
407.175 881.437 248.840 SYm Semi-synch ok

3.429.715 13.218.742 1.269.432 CORDA collision

Table 3: Model-checking of Min-Algorithm in the three models for the smallest ring

In order to show factors of state space explosion, we outline the number of states, transitions, the
memory used, and the time spend. Furthermore the results show that this algorithm does not verify
the exclusivity property in the CORDA model. The counter-example of Figure 3 shows an execution
which does not satisfied this property. Every ring represents a configuration, a configuration’s change
occurs when a robot moves, in each configuration a computation is represented by a full arrow. And a
computation made on an outdated snapshot by a dotted arrow.

Thus a new algorithm is proposed by the authors of [2]. The legitimate phase is the same, only the
convergent phase changes, more precisely, only rule RC5 changes to avoid collisions which arose from
the previous rules, when movements computed on obsolete observations are taken into account. The new
RC5 rule is:

RC5 :: (R2,F1,R1,Fz) → (R1,F1,R1,F1,R1,Fz−1)

We have verified this new algorithm, we obtain the result of Table 4.
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n nb States nb Transitions Memory (kB) Time
10 1.581.961 6.090.209 1.416.880 6min 45s
11 1.926.385 7.421.315 1.568.748 9min 09s
13 2.716.637 10.476.317 2.252.600 20min 46s
14 3.162.409 12.307.905 2.560.724 26min 54s
16 4.155.385 16.041.365 2.772.188 36min 22s

Table 4: Model-checking of the patched Min-Algorithm

4 Conclusion
We have proposed a formal modeling and a verification methodology for CORDA and SYm robots
models, operating in a discrete space.

As a case study, we chose to verify an algorithm proposed in [2] which permits to achieve exclusive
perpetual exploration with three robots in any ring of size n ≥ 10. We have shown that the algorithm
is correct (for n = 10) in the fully-synchronous and semi-synchronous environments, but the exclusivity
property can be violated in the asynchronous environment. Thus, this algorithm has been fixed in order
to avoid such faulty behaviors. The correctness of this fix has been verified, for values of n up to 16.
Other techniques should be used to obtain a parametric proof for arbitrary values of n.

Future work will consist in verifying robot protocols, on other graph shapes, in a possibly stochastic
settings. Also, instead of verifying a given algorithm, we intend to study the controller’s synthesis for
the robot models: for this more difficult problem, the aim is to automatically produce a strategy such that
the system can reach its objectives regardless of the scheduler behavior.
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Abstract

We provide a Kleene Theorem for (Rabin) probabilistic automata over finite words. Probabilistic
automata generalize deterministic finite automata and assign to a word an acceptance probability. We
provide probabilistic expressions with probabilistic choice, guarded choice, concatenation, and a star
operator. We prove that expressions and automata are expressively equivalent. Our result actually
extends to 2-way probabilistic automata with pebbles and corresponding expressions, as shown in [3].

1 Introduction

Kleene’s Theorem states the equivalence of rational and recognizable languages in the free monoids.
Naturally, this fundamental result has been generalized to various settings and in particular to quantitative
extensions of classical languages, called formal power series [11, 10].

The present paper aims at a probabilistic counterpart of Kleene’s Theorem. There are actually a
variety of models for probabilistic systems, comprising Segala systems, generative systems, stratified
systems, Markov chains, etc. (see [12] for an overview). Those models may involve non-determinism
and generate some behavior according to probability distributions over states. Alternatively, they may
make a probabilistic decision depending on the input letter, like (reactive) probabilistic automata the
latter go back to Rabin [9] and are an object of ongoing research considering decision problems such as
emptiness, language equivalence [11, 13], and the value 1 problem [7].

Our starting point of view is that expressions and automata shall represent quantitative properties of
words. In particular, rather than at bisimulation equivalence, we are looking at language equivalence
in terms of formal power series (i.e., mappings from strings to elements from the real-valued interval
[0,1]). This actually has an immediate impact on the choice of both the automaton model and the syntax
of expressions that are supposed to characterize it. On the automata side, a probabilistic decision should
depend on the given input. Therefore, we consider probabilistic automata. On the specification side,
we would like to adopt concepts from rational expressions. We actually provide a simple fragment of
classical weighted rational expressions over the nonnegative real numbers, including a star operator and
concatenation. The star operator has to be handled with care, though. It comes with a subtle restriction
to make sure that an expression associates with every word a probability. In this way, we obtain a class
of probabilistic expressions that have the same expressive power as probabilistic automata. Translations
forth and back are effective so that decidability results for automata directly carry over to expressions.

Actually, a more general result can be proved. Expressions can be extended in such a way that they
capture 2-way probabilistic automata [5] and automata with pebbles (similar to 2-way word automata
and tree-walking automata). Such expressions can then be considered as a probabilistic generalization
of XPath. Note that (non-probabilistic) 2-way automata are in fact an appropriate machine model for
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compiling XPath queries. The concept presented in this paper may therefore constitute a first step to-
wards probabilistic database query languages: an expression is considered as a query, and an equivalent
automaton can be used as a tool for evaluating queries efficiently (see [6] for recent developments on
weighted query evaluation). This abstract is extracted from a joint work with Benedikt Bollig, Paul
Gastin and Marc Zeitoun [3], in which these further developments have been studied in detail.

2 Probabilistic Automata and Expressions

We fix a finite alphabet A and consider words over A, i.e., sequences w = a0 · · ·an−1 ∈ A∗ with n≥ 0 and
ai ∈ A for every i. The length n of w is denoted |w|.
Probabilistic Automata We consider classical probabilistic finite automata (PFA) [9] where we allow
probabilities of acceptance. A PFA over alphabet A is a tuple A = (Q, ι ,Acc,P) where Q is the finite set
of states, ι ∈Q is the initial state, and Acc : Q→ [0,1] is a function mapping every state to its probability
of acceptance: in the following, a state q is said accepting if Acc(q)> 0. Moreover, P : Q×A×Q→ [0,1]
is a function that assigns a probability to each transition. PFA are reactive automata, whose probabilistic
choice depends on the current input letter. Thus, we require that Acc(q)+∑q′∈QP(q,a,q′) ≤ 1 for all
(q,a)∈Q×A. An accepting run of A over w = a0 · · ·an−1 ∈ A∗ is a sequence of transitions ρ = δ1 · · ·δn

such that δi = (qi−1,ai−1,qi) with q0 = ι and qn is an accepting state. For such a run ρ , we set P(ρ) =
(∏n

i=1P(δi))×Acc(qn). The semantics of the PFA A is the mapping (series) JA K : A+→ [0,1] given by
JA K(w) = ∑ρ P(ρ), where the sum ranges over all accepting runs ρ over w.

An example PFA is depicted on the right where 1 is the initial state and 3 is the only accepting
state (with probability of acceptance being 1). Transitions with probability 0 are omitted. We have
JA K(aab) = 1

4 +
1
6 = 5

12 .

Probabilistic Expressions While PFAs are a machine model, we are aiming at denotational probabilistic
regular expressions with the same expressiveness as PFAs. We start with the definition of classical
weighted expressions (WEs):

E ::= s | a | E +E | E ·E | E∗

with s∈R≥0 and a∈ A. We often simply write EF instead of E ·F . Also, we let E0 def
= 1 and Em+1 = EEm

for m≥ 0. The semantics of a WE E is a mapping JEK : A∗→ R≥0∪{+∞} defined inductively by

JsK(w) =

{
s if w = ε

0 otherwise
JaK(w) =

{
1 if w = a
0 otherwise

JE1 ·E2K(w) = ∑w=uvJE1K(u) · JE2K(v)

JE1 +E2K(w) = JE1K(w)+ JE2K(w) JE∗K(w) = ∑m∈NJEmK(w)

In the following, we consider expressions modulo the following trivial identities: 0+E ≡ E + 0 ≡ E,
E ·0≡ 0 ·E ≡ 0, E ·1≡ 1 ·E ≡E, 0∗≡ 1, as well as s ·E ≡E ·s (for s∈R≥0) which models commutativity.

We introduce below probabilistic regular expressions (PREs) as a fragment of WEs. We have to
restrict WEs since otherwise values greater than 1 could be obtained. For instance, the WE (a+ab)(ba+
a) should not be a PRE since it evaluates to 2 on the word aba. The restriction will be both on sum and
star. Since we aim at PREs which are equivalent to PFAs, let us examine first which type of WEs
are obtained from PFAs. A transition δ = (q,a,q′) with probability P(δ ) = s could be denoted by the
expression sa. Applying classical algorithms to build a regular expression from finite-state automata, we
then obtain, for the example automaton, the expression

[1
6 a(a+b)+ 1

2 a
]∗ ·(1

3 a+b). Now, the expression[1
6 a(a+ b)+ 1

2 a
]∗ · (a+ b), obtained by changing the subexpression 1

3 a into a, should be disallowed,
because it corresponds to an automaton violating condition Acc(q)+∑q′∈QP(q,a,q′) ≤ 1. On the other
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hand,
[1

6 a(a+ b) + 1
2 a
]∗ · (1

3 a+ 1
2 b) would be acceptable: we obtain a corresponding PFA from the

previous automaton by setting P(1,b,3) = 1
2 .

Definition 1. Probabilistic regular expressions (PREs) is the fragment of WEs defined as follows:
(Atoms) p ∈ [0,1] and a ∈ A are PREs.

(+a) If (Ea)a∈A are PREs, then ∑a∈A a ·Ea is a PRE (where we write the sum with left associativity).
(+p) If E and F are PREs and p ∈ [0,1], then p ·E +(1− p) ·F is a PRE.
(·) If E and F are PREs, then E ·F is a PRE.
(∗) If E +F is a PRE, then E∗ ·F is a PRE.

(ACD) Every WE that is obtained from a PRE by applying commutativity of +, associativity of +
or ·, or distributivity of · over + is a PRE.

There are two guarded sums. The first one (+a) is deterministic and guarded by the next letter to be
read. The second one (+p) is probabilistic. Also, the star operation contains an implicit choice which is
either to iterate again the expression or to exit the loop. This choice also has to be guarded which is the
reason for the precondition E +F ∈ PRE in the rule (∗). The guard could be deterministic as in (ab)∗b
or probabilistic as in (1

3(aa+ bb))∗ 2
3(a+ b). Finally, with the above restrictions, we lose the classical

ACD identities, hence we enforce these properties explicitely with the ACD-rules which allow to rewrite
a PRE in order to apply the star rule as needed.

Since PREs form a fragment of WEs, the semantics is inherited. From Theorem 7 below, PREs are
equivalent to PFAs. We deduce that the semantics of E ∈ PRE takes values in [0,1], so that one can
interpret JEK(w) as a probability.

Example 2. A simple PRE is (1
3 a)∗ · 2

3 b, which assigns to a word amb the probability (1
3)

m · 2
3 , and 0

to words not in a∗b. Moreover, E =
[1

6 a(a+ b)+ 1
2 a
]∗ · (1

3 a+ b) is indeed a PRE for the automaton
presented previously. To show that E is a PRE, we use some semantical equivalences such as 5

6 ≡
1
2 +

1
3 .

The expression a(1
6(a+b)+ 5

6)+b uses two deterministic sums (first and third) and a probabilistic sum.
Using the above semantical equivalences and ACD-rules, we deduce that 1

6 a(a+ b)+ 1
2 a+ 1

3 a+ b is a
PRE and it remains to apply the star rule to get E.

3 A Probabilistic Kleene Theorem

In the following, we will show that, for a PFA, we can always find an equivalent PRE, and vice versa.
This result, which is non-trivial even in the one-way setting, is generalized in [3] allowing two-way
moves and pebbles. We first start by the translation from expressions to automata. The usual construction
building standard automata, presented in [10] in the weighted case, cannot be directly used here. Indeed,
notice that the rule (∗) is not an inductive rule: we need more information to apply the construction.

We start by defining the notion of terms of a PRE. Intuitively, if we suppose that summation is pushed
up as much as possible by means of ACD-rules, then the multiset of terms consists of all expressions that
occur in this big outermost sum. Formally, the definition is by induction over E ∈ PRE. When E is an
atom, we let Terms(E) = {{E}} be the singleton multiset containing only the atom itself. Moreover,1

Terms(E +F) = Terms(E)]Terms(F) Terms(E∗) = {{E∗}}
Terms(E ·F) = {{E ′ ·F ′ | E ′ ∈ Terms(E),F ′ ∈ Terms(F)}}

1Here, and in the following, we denote A]B the disjoint union of A and B.
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Note that, if an expression F can be obtained from an expression E through ACD-rules, then we have
Terms(E) = Terms(F). The converse also holds as can be seen from the following proposition which
can be easily proved by structural induction on the expression.

Lemma 3. Let E ∈ PRE with Terms(E) = {{Ei | i∈ I}}. Using ACD-rules, we can rewrite E into ∑i∈I Ei.
In particular, we have JEK = ∑i∈IJEiK. Hence, we identify E and ∑i∈I Ei.

Proposition 4. From any expression E ∈ PRE we can effectively construct an equivalent PFA A =
(Q, ι ,Acc,P). More precisely, if Terms(E) = {{Ei | i ∈ I}}, the set of accepting states of A is { fi | i ∈ I}
and for all i ∈ I the expression Ei is equivalent to the PFA A [ fi] = (Q, ι ,Acc′,P), where Acc′( fi) =
Acc( fi) and Acc′(q) = 0 for all q 6= fi.

Proof. The construction is by structural induction on the expression E ∈ PRE.
Automaton for PRE p ∈ [0,1] is a single state with accepting probability p. For the PRE a ∈ A, the

resulting automaton has two states, one initial and the other accepting with probability 1, and a single
transition labeled by a in-between these two states.

Let (Ea)a∈A be PREs such that Terms(Ea) = {{Ea,i | i ∈ Ia}}. By induction hypothesis, we have
constructed suitable PFAs Aa = (Qa, ιa,Acca,Pa) with accepting states { fa,i | i ∈ Ia}. Without loss of
generality, we assume that the sets of states are pairwise disjoint. Consider E ′ = ∑a∈A a ·Ea. We have
Terms(E ′) =

⊎
a∈A{{a ·Ea,i | i ∈ Ia}}. We construct a PFA A ′ = (

⊎
a∈A Qa ]{ι ′}, ι ′,∑a∈A Acca,P′) as

the disjoint union of automata Aa: moreover, from the new initial state ι ′, for every a ∈ A, we add an a
transition with probability 1 to the state ιa. We verify that JA ′K = JE ′K.

Now let E,E ′ ∈ PRE be such that Terms(E) = {{Ei | i ∈ I}} and Terms(E ′) = {{E ′j | j ∈ J}}. By in-
duction hypothesis, we have constructed two suitable PFAs A = (Q, ι ,Acc,P) and A ′ = (Q′, ι ′,Acc′,P′)
with respective accepting states { fi | i ∈ I} and { f ′j | j ∈ J}. We assume that Q∩Q′ = /0.

The terms of E ′′ = p ·E +(1− p) ·E ′ are Terms(E ′′) = {{p ·Ei | i ∈ I}}] {{(1− p) ·E ′j | j ∈ J}}.
Let A ′′ = (Q]Q′ ] {ι ′′}, ι ′′,Acc′′,P′′) be the PFA defined as the disjoint union of A and A ′, with
additional transitions exiting state ι ′′ defined by P′′(ι ′′,a,q) = pP(ι ,a,q) if q ∈ Q and P′′(ι ′′,a,q) =
(1− p)P′(ι ′,a,q) if q ∈ Q′; moreover, we set Acc′′(q) = Acc(q) if q ∈ Q, Acc′′(q) = Acc′(q) if q ∈ Q′

and Acc′′(ι ′′) = Acc(ι)×Acc′(ι ′). We can verify that A ′′ is indeed a PFA such that JA ′′K = JE ′′K.
For the concatenation, let E ′′ = E ·E ′, which has as terms Terms(E ′′) = {{Ei ·E ′j | (i, j) ∈ I× J}}.

The automaton A ′′ for E ′′ consists of one copy of A and a copy A ′
i of A ′ for every i ∈ I. First, A ′′

simulates A until it reaches some accepting state fi of A . Then, we duplicate each transition from ι ′ to
a state q of A ′, to a transition from fi to the copy of q in Ai, with probability the product of the previous
probability and Acc( fi). Once again, A ′′ can be shown to be a PFA equivalent to E ′′.

For the Kleene star we assume that E = F +G and E ′′ = F∗ ·G. We have I = K]L with Terms(F) =
{{Ei | i ∈ K}} and Terms(G) = {{Ei | i ∈ L}}. Hence, we have Terms(E ′′) = {{F∗ · Ei | i ∈ L}}. We
construct the PFA A ′′ = (Q, ι ,Acc′′,P′′) with accepting states { fi | i ∈ L} by duplicating each transition
reading a from ι to a state q into a transition reading a from state fi (i ∈ K) to state q, with probability
being the product of P(ι ,a,q) and Acc( fi).

Finally, if E ′′ is obtained from E via ACD-rules, we have Terms(E ′′) = Terms(E) so we can keep
the same automaton: A ′′ = A .

In order to construct a PRE which is equivalent to a PFA, we need to be able to concatenate a PRE
after an arbitrary term of another PRE. This is possible thanks to the following result.

Lemma 5. If E +F and G are PREs, then E +F ·G is also a PRE.

Proposition 6. For every PFA A there is an equivalent PRE E.
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Proof. Let A = (Q, ι ,Acc,P) be a PFA. We construct a PRE Eq = Acc(q)+∑q′∈Q Eq,q′Acc(q′) for each
q ∈ Q, where JEq,q′K(w) computes the sum of the probabilities of nonempty runs over w starting from
state q, ending in state q′ (without taking into account the acceptance probability of q′). Hence, we will
obtain the PRE Eι , which computes exactly the behavior of A .

We follow usual procedures to translate automata into expressions. For q′ ∈Q and X ⊆Q, we define
AccX

q′ = Acc(q′) if q′ ∈ X and 1 otherwise. For q ∈ Q and X ⊆ Q, we construct by induction on X a PRE

EX
q = Acc(q)+∑q′∈Q EX

q,q′AccX
q′ where EX

q,q′ is a PRE such that JEX
q,q′K(w) is the sum of the probabilities

of nonempty runs over w starting from state q, ending in state q′ and using only intermediary states in X .
Hence, we have Eq = EQ

q and Eq,q′ = EQ
q,q′ .

The base of the induction is when X = /0. For each state q ∈Q and letter a ∈ A, by definition of PFAs
we have Acc(q)+∑q′∈QP(q,a,q′)≤ 1. Hence, using rules (+a) and (+s) we obtain the PRE

E /0
q = Acc(q)+∑a∈Aa ·∑q′∈QP(q,a,q

′) = Acc(q)+∑q′∈QE /0
q,q′Acc /0

q′

where the last equality is obtained using ACD-rules and Acc /0
q′ = 1.

For the induction step, let r ∈ Q\X . By induction, we assume that PREs EX
q have been constructed

for all q ∈ Q, and we construct EX∪{r}
q . We have EX

r = Acc(r)+∑q′∈Q EX
r,q′AccX

q′ ∈ PRE and AccX
r = 1

since r /∈ X . Using rule (∗), we get GX
r =

(
EX

r,r
)∗ · (Acc(r)+∑q′∈Q\{r}EX

r,q′AccX
q′
)
∈ PRE . Now, EX

q =

Acc(q) +∑q′∈Q EX
q,q′AccX

q′ ∈ PRE and AccX
r = 1. Using Lemma 5, we can plug GX

r after EX
q,r. Using

ACD-rules, we obtain the PRE

EX∪{r}
q = Acc(q)+EX

q,r ·GX
r +∑q′∈Q\{r}E

X
q,q′AccX

q′

= Acc(q)+EX
q,r(E

X
r,r)
∗Acc(r)+∑q′∈Q\{r}

(
EX

q,q′+EX
q,r
(
EX

r,r
)∗EX

r,q′
)
AccX

q′

= Acc(q)+∑q′∈QEX∪{r}
q,q′ AccX∪{r}

q′

using AccX∪{r}
r = Acc(r) and AccX∪{r}

q′ = AccX
q′ if q′ ∈ Q\{r}.

We have finally proved that
Theorem 7. PFAs and PREs are effectively equivalent.

With Theorem 7, decidability of the equivalence problem for PFAs carries over to PREs (provided
the probabilities in an expression are rational numbers), whereas their threshold problem is undecidable
(as this problem is undecidable for automata, as originally proved in [8]). We could also state further
undecidability results about isolated cutpoints using, e.g., results of [1].
Corollary 8. The equivalence problem for PREs is decidable: given PREs E and F, does JEK = JFK
hold? The threshold problem for PREs is undecidable: given an alphabet A, a PRE E over A and
0 < s < 1, is there a word w ∈ A+ such that JEK(w)≥ s?

Note that PFAs cannot recognize all series recognized by usual Rabin automata, i.e., PFAs without
the probabilities over accepting states. For example, the map g : A∗ → [0,1], defined by g(an) = 1 if
n > 0 and g(w) = 0 for all other words w, is not recognizable by a PFA (note that a∗a is not a PRE).
However, g is recognized by a Rabin automaton with a single state. To deal with this issue, we can add
a fresh symbol C at the end of a word. For a function f : A∗→ [0,1], we define fC : (A∪{C})∗→ [0,1]
by fC(wC) = f (w) if w ∈ A∗, and 0 otherwise. For example, the series gC is definable by a(a∗C), which
is a PRE since a+C ∈ PRE. More generally, we can prove the following:
Proposition 9. Let f : A∗→ [0,1]. The function fC is recognizable by a PFA (or equivalently by a PRE)
iff f is recognizable by a Rabin automaton.
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4 Conclusion

In this abstract, we presented a probabilistic Kleene Theorem for classical probabilistic automata, that
can be extended for automata with two-way navigation and pebbles, as we did in [3]. As applications,
this is particularly useful to translate probabilistic linear temporal logic (which computes probability
for sets of paths defined by usual LTL operators) into automata. This constitutes a first step towards
probabilistic XPath, so we aim at extending our work to finite trees and probabilistic tree automata.
Notice that construction of Proposition 4 leads to an exponentially large automaton: however, we believe
this construction can be improved to get a linear-size equivalent automaton. Just like classical finite
automata, weighted automata over semirings enjoy characterizations in terms of monadic second-order
logic [4, 2]. Continuing this line of research, a recent paper establishes a logical characterization of
probabilistic automata [14]. It would be interesting to study whether alternative characterizations exist
that use, for example, a transitive-closure operator [2].
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Abstract
In this paper we illustrate the general idea of a parameterized formal framework for interprocedu-

ral static analyses of Java bytecode programs, based on abstract interpretation. The latter allows us to
show, under hypotheses we characterize, the soundness of the analyses belonging to the framework.
Our framework is capable of dealing with side-effects and exceptional executions of invoked meth-
ods. Different instantiation of the parameters of our formal framework give rise to different static
analyses. It is necessary to show, for each instantiation, that it satisfies the hypotheses mentioned
above. This way, the general theory of the framework guarantees the soundness of the new analysis
obtained from the instantiation. We introduce two static analyses formalized this way: Reachabil-
ity Analysis of Program Variables and Definite Expression Aliasing Analysis, which have been also
implemented in the static analyzer Julia and which improved the precision of its principal tools.

1 Introduction

Static analysis of computer programs allows one to gather information about the runtime behavior of
such programs, before they are run. One of its goals is to prove that programs do not perform any illegal
operation, such as a division by zero or a dereference of null, or do not lead to erroneous executions,
such as infinite loops, or do not divulge information in incorrect ways (such as security authorizations
or GPS position in mobile devices). Static analysis has a long story now and can be formalized in many
ways. We follow the abstract interpretation [1] approach, which allows one to define a static analysis from
the formal specification of the property of interest and of the semantics of the programming language.

Dynamic allocation of objects is heavily used in (complex and large) real life programs. When such
objects are instantiated on demand, their number might not be statically known. Moreover, objects in
general contain references to other objects (i.e., fields in object-oriented parlance ) and those references
are usually updated at run-time. The most interesting properties of the present software products are re-
lated to the objects they dynamically allocate in memory rather than to primitive values such as integers.
A large literature tackles the analysis of memory-related properties. There are very general techniques,
such as shape analysis, that statically build a conservative description of possible shapes that data struc-
tures might have at runtime. There exist some more abstract analyses, typically less precise but more
efficient. For instance, aliasing analysis exists in uncountable variations and expresses the fact that two
variables might (or must always) point to the same location (i.e., they are possible or definite alias of
each other), while sharing analysis determines whether two variables might ever be bound to overlapping
data structures, i.e., two variables share if they might reach the same location at runtime.

We introduce a formal framework for static analyses of Java bytecode programs capable of capturing
the memory-related properties mentioned above. Our analyses are constraint-based: a large constraint is
built from the program, whose solution is a sound approximation of the property of interest at each pro-
gram point. The correctness of our analyses is proved in the abstract interpretation framework. We also
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show two non-trivial static analyses obtained as instantiations of our framework: Reachability Analysis
of Program Variables [6] and Definite Expression Aliasing Analysis [5].

2 Formal Framework for Constraint-based Analysis

In this section we introduce a general idea of our approach. First of all we introduce our target, Java
bytecode-like language, used in [7, 6, 5] and inspired by the standard informal semantics [2]. It contains
the following instructions: const x , dup, load, store, inc, add, sub, mul, div, rem, ifeq, ifne, new,
getfield, putfield, throw and call. They abstract whole classes of Java bytecode instructions such as
iconst_x, ldc, bipush, dup, iload, aload, istore, astore, iinc, iadd, isub, imul, idiv, irem, ifeq, ifne, if_null,
if_nonnull, new, getfield, putfield, athrow, invokevirtual and invokespecial. Moreover, the instruction
catch starts the exception handlers. We analyze programs at bytecode level for several reasons: there
is a small number of bytecode instructions, compared to varieties of source statements; bytecode lacks
complexities such as inner classes; implementations of our analyses are at bytecode level as well, which
brings formalism, implementation and correctness proofs closer. We analyze bytecode preprocessed into
a control flow graph (CFG), i.e., a directed graph of basic blocks, with no jumps inside them. Operational
semantics of our target language corresponds to the standard operational semantics of Java bytecode [2].

Example 1. In Fig. 1 we show a simple Java method delayMinBy of a class Event (at the left) and its
corresponding CFG (at the right). �

Abstract Interpretation. Our framework is based on the general theory of approximations, called
abstract interpretation [1]. Its general idea is the following. Suppose we are given a set of elements, called
concrete domain and a function f operating on the latter. Abstract interpretation defines an abstract
domain, i.e., the set of elements containing less pieces of information comparing to the concrete ones,
two maps relating the domains and and a function operating on the abstract domain which simulates f . In
our framework, all the analyses use the same concrete domain C which is composed of all possible states
that can be verified in a program point. On the other hand, the abstract domain A depends on the property
we are interested in, and its elements are obtained by extracting away from the concrete states all those
pieces of information which are irrelevant for the analysis of interest. For every analysis, it is necessary
to formally define the form of abstract elements and an ordering among them. The former determines the
type of information our analysis captures, while the latter is relevant for the existences and uniqueness of
the solution of our analysis. Moreover, concrete and abstract elements have to be connected by a pair of
functions α : C→ A (abstraction) and γ : A→C (concretization) which specify which concrete elements
correspond to which abstract elements (γ) and vice versa (α).

Abstract Constraint Graph. Our analysis is constraint-based: we construct an abstract constraint
graph from the program under analysis and then we solve these constraints. For each bytecode instruction
of the program under analysis there is a node containing an approximation of the information related to
the property of interest at that point. Arcs of the graph propagate these approximations, reflecting, in
abstract terms, the effects of the concrete semantics on the property of interest. In other words, an arc

public class Event {
public int hr , min ;
. . .
public int delayMinBy ( int o f f s e t )

{ return min + o f f s e t ; }
. . .

}

load 0 Event

getfield Event.min : int

load 1 int

add int

return int

catch

throw Throwable Figure 1: Our running example
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between the nodes corresponding to two instructions b1 and b2 propagates the approximation at b1 into
that at b2. The exact meaning of propagates depends on: (i ) the property we are interested in and the
abstraction we use to represent it; (ii ) the type of analysis we want to perform: possible or definite; (iii )
b1 itself, since different instructions have different effects on the approximations present at that point.

Definition 2 (ACG). Let P be the program under analysis in the form of a CFG for each method or
constructor. The abstract constraint graph (ACG) for P is a directed graph 〈V ,E 〉 (nodes, arcs) where:
(i ) V contains a node ins for each instruction ins in P ; (ii ) for each method or constructor m in P , V
contains nodes exit@m and exception@m , representing the normal and the exceptional ends of m; (iii )
each node contains an abstract element representing an approximation of the information related to the
property of interest at that point; (iv ) E contains directed arcs with one (1−1) or two (2−1) sources and
always one sink. Each arc has a propagation rule, i.e., a function over the abstract domain, from the
approximation(s) of its source(s) to the one of its sink. We distinguish the following types of arcs:

• Sequential arcs: if ins is an instruction in P , distinct from call, immediately followed by an
instruction ins′, distinct from catch, then an 1−1 sequential arc is built from ins to ins′ ;

• Final arcs: for each return t and throw κ instructions occurring in a method or a constructor m of
P , there are 1−1 final arcs from return t to exit@m and from throw κ to exception@m , respectively;

• Exceptional arcs: for each instruction ins throwing an exception, immediately followed by a
catch, an 1−1 exceptional arc is built from ins to catch ;

• Parameter passing arcs: for each call m1 . . .mq occurring in P with π parameters (including
the implicit parameter this) we build, for each 1≤w ≤ q , an 1−1 parameter passing arc from
call m1 . . .mq to the node corresponding to the first bytecode instruction of the method mw ;

• Return value arcs: for each call insC = call m1 . . .mq to a method with π parameters (including
parameter this) returning a value of type t,void, and each subsequent instruction insN distinct
from catch, we build, for each 1≤w ≤q , a 2−1 return value arc from insC and exit@mw to insN ;

• Side-effects arcs: for each call insC = call m1 . . .mq to a method with π parameters (including
the implicit parameter this), and each subsequent bytecode instruction insN , we build, for each
1≤w ≤ q , a 2−1 side-effects arc from insC and exit@mw to insN , if insN is not a catch and a
2−1 side-effect arc from insC and exception@mw to catch .

The sequential arcs correspond to the non-exceptional executions of all the instructions except call,
return and throw. The final arcs connect the nodes corresponding to the last instruction of each method or
constructor m (i.e., return or throw) to the special nodes exit@m , in the case of return, and exception@m ,
in the case of throw. The exceptional arcs represent the exceptional executions of the instructions that
might launch an exception, i.e., call, new, throw, getfield and putfield, and they connect the nodes cor-
responding to these instructions with the node related to the catch instruction at the beginning of their
exceptional handlers. The parameter passing arcs link every node corresponding to a method call to
the node corresponding to the first instruction of the method(s) that might be called there. There exists
a return value arc for each dynamic target m of a call insC returning a value. These arcs have two
sources, insC and exit@mw , and they propagate the approximations present at these nodes to the node
corresponding to the bytecode instruction following insC . Moreover, these arcs might enrich the result-
ing approximation with some additional abstract elements due to the m’s returned value. The execution
of the method m might modify the memory in which m is executed and this might affect the approxi-
mation at the node insC corresponding to the method call insC . The side-effects arcs deal with these
phenomena, i.e., they are 2−1 arcs connecting insC and exit@m (respectively exception@m ) with the
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node anode c

catch

node 9
exception@delayMinBy

node b
store 3 int

node 6
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
return int

node 7
catch

node 8
throw java.lang.Throwable

E

PP

SE SE
RV

S

S S

S

SE

F

F

Figure 2: The ACG for the method delayMinBy in Fig. 1

ΠPP (Aa) v A1
ΠS (A1) v A2
ΠS (A2) v A3
ΠS (A3) v A4
ΠS (A4) v A5
ΠF (A5) v A6
ΠE (A2) v A7
ΠS (A7) v A8
ΠF (A8) v A9

ΠRV (Aa,A6) t ΠSE (Aa,A6) v Ab
ΠE (A6) t ΠSE (Aa,A6) v Ac

Figure 3: The constraints extracted
from the ACG of Fig. 2

node corresponding to the instruction (respectively catch) which follows insC , for each dynamic target
m of the call, and propagate the approximation at insC modified by the side-effects of m’s execution.
Example 3. In Fig. 2 we give the ACG of the method delayMinBy from Fig. 1. Nodes a, b and c belong
to the caller of this method and exemplify the arcs related to the call and return bytecodes. Arcs are
decorated with an abbreviation denoting their types: S, F, E, PP, RV and SE state for sequential, final,
exceptional, parameter passing, return value and side-effects arcs respectively. �

Each arcs of the ACG is associated with a function showing how the approximations at its sources
are transformed in the approximation of its sink. We call these functions propagation rules. Their formal
definition depends on a concrete property we are interested in and it represents the actual static analysis
we perform. Since our goal is to introduce a general framework for constraint-based static analyses of
Java bytecode programs, we do not concentrate on one particular property of interest, and therefore we
do not provide the formal definition of the propagation rules related to that property.

Constraints. The ACG of the program under analysis introduces, for each of its nodes a set of
constraints: one for every in-going arc. Every correct solution of these constraints is one possible result
of our static analysis. The following definition shows how the constraints are extracted from an ACG.
Definition 4 (Constraints). Let N be a node of an ACG and AN the approximation of the property
of interest information contained in that node. Suppose that there are k arcs whose sink is N and for
each 1≤ i ≤ k , let Πi and approx(i ) respectively denote the propagation rule and the approximation of
the property of interest at the source(s) of the i th arc. These arcs give rise to the following constraint:
tki=1Πi (approx(i ))vAN , where v and t are the partial ordering and join operator of the abstract domain.
Example 5. In Fig. 3, we show the constraints extracted from the ACG introduced in Example 3. These
constraints concern the method delayMinBy only, and not the whole program under analysis. �

We showed that, when A satisfies the ACC condition, and when the propagation rules are monotonic,
then there exists a solution of the constraints constructed this way and it is unique.

Soundness. We formally proved that, when the propagation rules correctly simulate the bytecode
instructions corresponding to their sources, our static analyses are sound. Due to space limitations we
do not provide the theorem stating that result, since it requires a lot of formal definitions not included in
this paper. The proof uses the most important results of the abstract interpretation framework.

3 Examples of Constraint-based Analyses

In this section we introduce two static analysis of Java bytecode programs which can be instantiated in
the framework of constraint-based analyses.
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3.1 Reachability Analysis of Program Variables

In [6], we presented a new abstract domain for the static analysis of reachability between program vari-
ables, through dynamically allocated memory locations. Reachability from a program variable v to a
program variable w in a state σ states that from v it is possible to follow a path of memory locations
(specified by σ) that leads to the object bound to w . This information is important for improving the pre-
cision of other static analyses, such as side-effects, field initialization, cyclicity and path-length analysis,
as well as more complex analyses built upon them, such as nullness and termination analysis of our static
analyzer Julia (www.juliasoft.com). Our Reachability Analysis is a static analysis which determines,
for each program point p of a Java bytecode program, a set of pairs of variables 〈v ,w〉 such that v might
reach w at p, i.e., an over-approximation of the actual reachability information available at p. Therefore,
this is a possible analysis of our framework. The approximation obtained this way is state-independent,
i.e., it holds for any possible execution of the program. We formally prove the soundness of this analysis
by showing that all the requirements specified by the framework introduced in the previous section (e.g.,
ACC condition on the abstract domain, monotonicity and consistence of propagation rules) are satisfied.
The formal proof of correctness can be found in the extended version of the paper, which has been sub-
mitted for publication [4]. We have implemented the analysis inside Julia. Our experiments of analysis
of non-trivial Java and Android programs (written by Google) show the improvement of precision due to
the presence of reachability information. Figure 4 presents our experiments with the nullness tool of Julia
when our reachability analysis is included and excluded. In 8 cases over 24, the reachability informa-
tion improves the precision of the nullness tool. Moreover, the presence of the reachability information
actually reduces the total runtime of the tool. This is because reachability helps subsequent analyses, in
particular side-effects analysis, and prevents them from generating too much spurious information.

3.2 Definite Expression Aliasing Analysis

Another novel static analysis for Java bytecode, called Definite Expression Aliasing has been introduced
in [5]. It infers, for each variable v at each program point p, a set of expressions whose value at p
is always equal to the value of v at p, for every possible execution of the program. Namely, it deter-
mines which expressions must be aliased to the local variables and the stack elements of the Java Virtual
Machine available at the point of interest. This is a useful piece of information for an inter-procedural
static analyzer, such as Julia, since it can be used to refine other analyses at conditional statements or
assignments. This definite constraint-based static analysis has been formalized (by instantiating different
parameters of our formal framework) and implemented inside the Julia tool. Moreover, in the extended
version of the paper [3], submitted for publication, we show that our Definite Expression Aliasing Anal-
ysis is correct by showing that different requirements specified by our framework are satisfied. We
have shown the benefits of our analysis for nullness and termination analyses with Julia by analysing
some real-life benchmarks. For example, we use our analysis at the then branch of each comparis-

Figure 4: Comparison of the number of warn-
ings (possible dereference of null, possibly
passing null to a library method) produced
by the nullness tool of Julia (top) and of the
runtimes (in seconds) of that tool (bottom)
when our reachability analysis is present and
absent
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Figure 5: Comparison of the number of warn-
ings (possible dereference of null, possibly
passing null to a library method) produced
by the nullness tool of Julia (top) and of the
runtimes (in seconds) of that tool (bottom)
when our definite aliasing analysis is present
and absent

son if (v!=null) to infer that the definite aliases of v are non-null there, and at each assignment
w.f=exp to infer that expressions E.f are non-null when exp is non-null and when E is a definite alias
of w whose evaluation does not read nor write f. Figure 5 reports the precision and the runtime of our
nullness analysis: we performed it first without and then with the help of our aliasing analysis. A clear
difference between the two runs is that the runtime of the nullness analysis increased by 9.88%, when
the definite expression aliasing analysis is activated, but its precision improved by 45.98%.

4 Conclusion

Our parametrized formal framework for non-trivial, interprocedural constraint-based static analyses of
Java bytecode programs has found various instantiation inside of our static analyzer Julia. Field Initial-
ization, Reachability of Program Variables, Sharing, Definite Aliased Expressions, Side-Effects are only
some of Julia’s static analyses obtained as particular instantiation of our framework.
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Abstract
We utilize Monitor-DPN to precisely model concurrent programs with unbounded recursion,

dynamic thread creation and synchronization via well-nested locks based on finite abstractions of
procedure- and thread-local state. One obtains a tree-regular characterization of reachable configu-
rations by using acquisition structures to check for lock-sensitive schedulability. This technique can
then be iterated using additional release structures. This then allows to solve for instance bit-vector
problems. The techniques have been implemented for the analysis of Java programs and applied for
data race detection and improvement of an information flow control analysis.

1 Introduction

Esparza and Knoop [3] demonstrated how automata theoretic approaches can be used to solve data-
flow problems like bit-vektor analyses. We utilize an automata theoretic approach which handles full
recursion, thread creation and synchronization via reentrant well-nested locks. The underlying model
is that of Dynamic Pushdown Networks (DPN) which where introduced (without locks) by Bouajjani
et al. [1] in 2005. They showed how the pre∗ operator for calculating predecessor sets of configurations
– words over an alphabet of control and stack symbols – preserves regularity. Later the DPN-model
was enriched by Lammich et al. [8] to allow for scheduling restrictions based on well-nested locks.
This was done by extending techniques from Kahlon et al. [7, 6] and thereby obtaining a tree-regular
characterization of lock-sensitive schedulability. This could then be encoded into the control states of
the DPN. The converse set of configurations reachable from a given configuration (post∗) was shown to
be non-regular in the word semantics [1]. Gawlitza et al. [4] then switched from configuration words to
execution trees. An execution tree describes the steps of an execution as well as the reached configuration.
The tree structure makes visible both the parallel execution of steps in different threads and the nesting
structure of procedure calls and returns. This allowed them to obtain a tree-regular representation of the
set of execution trees reachable from a fixed initial single thread configuration. Here we describe recent
extensions [9] which also allow to obtain such a representation for arbitrary tree-regular sets of reachable
configurations, this again allows to solve for instance bit-vector problems.

Motivation

This work was motivated by an application for an information flow control analysis for parallel Java
programs based on system dependence graphs (SDG) as described for example by Giffhorn [5]. Besides

∗This work was founded by the DFG in project IFC for Mobile Components within priority program RS3 (SPP 1496).
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# main method t2’s run method

1 p r i n t ( x ) ;
t 2 . s t a r t ( ) ; x = 4 2 ;

2
synchronized ( a ) {

t 2 . s t a r t ( ) ;
p r i n t ( x ) ; }

synchronized ( a ) { }
x = 4 2 ;

3

t 2 . s t a r t ( ) ;
synchronized ( a ) {

x = 1 7 ;
p r i n t ( x ) ; }

synchronized ( a ) {
x = 4 2 ;

}

# main method t2’s run method

4

t 2 . s t a r t ( ) ;
synchronized ( a ) {

y = 4 2 ;
p r i n t ( x ) ; }

synchronized ( a ) {
x = y ;

}

5

t 2 . s t a r t ( )
synchronized ( a ) {

synchronized ( b ) {
x = 4 2 ; }

x = 1 7 ; }

synchronized ( b ) {
i f ( . . . ) {

synchronized ( a ) { }
} e l s e {

x = 1 7 ; }
p r i n t ( x ) ; }

Table 1: Spurious examples of data flows between threads

obtaining the first implementation for the previously developed techniques for real world applications,
the goal was to improve the handling of data flows between different threads in the SDG based analysis.
To illustrate the effects of locking and thread creation, consider the snippets of Java code in Table 1.
Assume the left code resides in the main -method and the right code in the run -method of a Thread
object t2 . That is execution starts with the code on the left in which t2.start() is called to start
parallel execution of the code on the right. The question for the analysis is: Can the programs print the
value 42? An analysis abstracting from thread creation would spuriously assume so in the first example.
The second example shows the interplay between thread creation and locking. The main thread holds a
lock while spawning the second thread and only prints the variable before releasing the lock. However,
the second thread needs to use the lock before writing 42 to the variable. In the third example the write
of 42 would need to be scheduled between the assignment x = 17 and the print which is imposible due
to the shared lock. The fourth example is similar from a scheduling point of view but there are two
transfers involved. While both transfers are feasible, there is no run exhibiting both. The last example
is more involved. Either there is an intervening kill or the program reaches a deadlock. A lock-sensitive
DPN-based analysis can treat all these effects precisely.

2 The Monitor-DPN Model

DPNs precisely model unbounded recursion and thread creation based on finite abstractions of method
local and thread state. Intuitively a DPN is a set of push down systems which are able to add new
push down systems as a side effect of their transitions. In a Monitor-DPN we also allow the threads
to communicate via a finite set of reentrant locks which are used in a well-nested fashion. Reentrance
means that a thread may acquire the same lock multiple times and releases it only after the matching
number of release-operations. We enforce well-nestedness syntactically by allowing locks only to be
acquired when pushing a local state to the stack and releasing it implicitly when the old stack level is
reached again. That is, lock acquisition and release is bound to procedure calls.

Definition 1. A Monitor-DPN M is a tuple (Act,P,Γ,X ,∆,(p0,γ0)) consisting of an initial configuration
(p0,γ0) ∈ P×Γ and finite sets of: actions Act, control states P, stack symbols Γ, locks X and a set ∆ of
transformation rules of the form:

(Base) pγ
a
↪−→ p′γ ′ (Call) pγ

a
↪−→ p′γ ′γr (Return) pγ

a
↪−→ p′

(Spawn) pγ
a
↪−→ psγs p′γ ′ (Monitor) pγ

a,x
↪−→ p′γ ′γr

where p, p′, ps ∈ P, a ∈ Act, x ∈ X , and γ,γ ′,γr,γs ∈ Γ . An ordinary DPN is a Monitor-DPN without
monitor rules.
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We fix a Monitor-DPN M =(Act,P,Γ,X ,∆,(p0,γ0)). In order to define a semantics for (Monitor-)DPNs,
we assume that there is an infinite set T of thread identifiers with a fixed initial identifier t0 ∈ T . More-
over, we extend the set of locks by a special symbol to X̄ = X ·∪ {z}, where we write ·∪ for disjoint
union. We assume that the sets P, Γ, X , ∆, and T are pairwise disjoint.

Definition 2. A thread configuration is a word from P(ΓX̄)∗. A DPN configuration is a finite set of
pairs of thread identifiers and thread configurations c ∈ CM = 2T×P(ΓX̄)∗ . The initial configuration is
{(t0, p0γ0z)}. The set of locks held by a DPN configuration c is l(c) = {x ∈ X | ∃t,w,w′. (t,wxw′) ∈ c}.
The transition rules are as follows:

c ·∪{(t, pγxw)} pγ
a
↪−→p′γ ′−−−−−→t c ·∪{(t, p′γ ′xw)}

c ·∪{(t, pγyw} pγ
a
↪−→p′−−−−→t c ·∪{(t, p′w)}

c ·∪{(t, pγyw)} pγ
a
↪−→p′γ ′γr−−−−−−→t c ·∪{(t, p′γ ′zγryw)}

c ·∪{(t, pγyw)} pγ
a
↪−→psγs p′γ ′−−−−−−−→t c ·∪{(t, p′γ ′yw) , (ts, psγsz)} ts fresh

c ·∪{(t, pγyw)} pγ
a,x
↪−→p′γ ′γr−−−−−−−→t c ·∪{(t, pγ ′xγryw)} if x 6∈ l(c) .

The lock-insensitive semantics for DPN is obtained by dropping the constraint x 6∈ l(c). The set
Π(M ) of executions of a DPN consists of all sequences of the form {(t0, p0γ0z)} η1−→t1 c1 . . .

ηn−→tn cn.

Execution Trees

We now construct the trees on which our actual analysis is based. Given an execution π of a DPN
M we identify each transition η with it’s position in the trace such that π can be seen as a sequence of
distinguishable unique operations. The projection of π to the operations performed by thread t is denoted
as π t . These subtraces correspond to traces of ordinary push down systems and their class is therefore
equivalent to that of context free languages. Similar to the insight that the set of parsing trees of a context
free grammar is tree-regular, we can transform the traces π t into trees 	(π t). This is done by matching
return transitions to corresponding calls. For convenience, we add a special node pγ to the end of π t , if
the configuration reached by t has a non empty stack, where p is the reached control state and γ is the top
of stack. Let π t = η0 . . .ηiηi+1 . . .η jη j+1ηk and let ηi be the first call in π t matched by a return, say η j.
Then we transform π t to the tree η0 . . .ηi(ηi+1 . . .η j , η j+1 . . .ηk ) and continue recursively with the new
subtraces. As usual we represent trees by terms. By recursively hooking in the 	(π t) trees, for all threads
but the main thread, as left children of the η nodes which spawned them we obtain what Gawlitza et al.
[4] called an execution tree also denoted by 	(π). By convention the execution tree corresponding to the
empty trace is the initial node p0γ0. We define the lock sensitive successors of a set A of execution trees
as lspost∗M (A) = {	(ππ ′) | π,ππ ′ ∈Π(M ), 	(π) ∈ A}. Moreover the lock-insensitive version post∗M
is the one corresponding to the lock-insensitive version of the semantics. Note that different traces
may produce the same execution tree as the tree does not capture the relative order of the transitions
of different threads completely. An execution that produces a given execution tree is called a schedule.
The configuration reached by an execution can easily be reconstructed from an execution tree up to the
naming of threads. Alternatively one can interpret execution trees as a form of decorated configurations.

We introduce additional notations for execution trees: We denote a node which corresponds to a base
transition η as BASEη . An unary call node is denoted as NCALLη a binary one as RCALLη . RETη

denotes a return leaf and NILp
γ a pγ leaf. Monitor transitions are denoted like calls as ACQη

x,r and USEη
x,r
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SPAWNη0

BASEη1 ACQη2
y,⊥

ACQη3
x,⊥ USEη4

y,⊥

RETη5

NILp1
γ1

USEη6
x,⊥

RETη7

NILp2
γ2

SPAWN CUT USEx

RET

NIL

ACQx CUT NIL

SPAWN USEy NIL

CUT USEx RET

RET

USEx NIL

CUT USEy RET

RET

Figure 1: A not lock-sensitively schedulable execution tree and two execution trees with cut.

where we assume additional annotations of the used lock x and a bit r ∈ B= {⊥,>} (interpreted as false
and true) indicating whether the operation was reentrant.

An example of an execution tree reachable only in the lock-insensitive semantics is given in Figure 1.
The left child of each branch grows downwards. One thread wants to acquire x and then use y. The other
thread wants to acquire y and then use x. This is not possible as one would unavoidably reach a deadlock.

Gawlitza et al. [4] showed that the set of reachable execution trees for DPN is effectively tree-regular.
We pick up this approach and extend it to reentrant locks. After introducing the concept of a cut of
an execution tree, we use acquisition and release structures [8] to also obtain an iterable tree-regular
characterization of reachable configurations. All this is done by defining appropriate finite tree automata.

A finite tree automaton T over a ranked alphabet Σ is a triple (Q,Q f ,δ ) consisting of finite sets of
states Q, accepting states Q f ⊆ Q, and rules δ of the form f q1 . . .qn→ q, where f ∈ Σ is a symbol of
rank n and q,q1, . . . ,qn ∈ Q. If a tree automaton can recognize the trees t1, . . . , tn with states q1, . . . ,qn

respectively and it contains the above rule, it can recognize the tree f (t1, . . . , tn) with state q. It accepts a
tree if it can be recognized with an accepting state. The language L (T ) is the set of all trees accepted
by the automaton. A set of trees is called tree-regular if it is the language of a finite tree automaton. The
intersection of tree-regular sets is again tree-regular (accepted by the product automaton) and emptiness
of the language of a given tree automaton is decidable in linear time. For an introduction to tree automata
we refer to Comon et al. [2]. When defining concrete automata we leave out sub- and superscripts of
nodes which do not influence the automata and write an underscore to denote arbitrary values, e.g.,
NIL→ _ denotes NILp

γ →U for all p, γ and U .

Definition 3. The lock-insensitive execution trees of a Monitor-DPN M are accepted by the tree au-
tomaton TM . The state space is P×Γ×P×{N,T}×2X and the accepting states are {p0}×{γ0}×P×
{N,T}×{ /0}. For all η ∈ ∆, t ∈ {N,T}, p ∈ P, γ ∈ Γ and ls⊆ X the automaton contains the following
rules. We write f q1...qn

q to denote the rule f q1 . . .qn→ q.

NILp
γ

(p,γ,p,N,ls) ,
RETη

(p,γ,p′,T,ls) if η = pγ
a
↪−→ p′,

BASEη (p′,γ ′,p′′,t,ls)
(p,γ,p′′,t,ls) if η = pγ

a
↪−→ p′γ ′, RCALLη (p′,γ ′,p′′,T,ls) (p′′,γ ′′,p′′′,t,ls)

(p,γ,p′′′,t,ls) if η = pγ
a
↪−→ p′γ ′γ ′′,

NCALLη (p′,γ ′,p′′,N,ls)
(p,γ,p′′,N,ls) if η = pγ

a
↪−→ p′γ ′γ ′′, SPAWNη (p′,γ ′,_,_, /0) (p′′,γ ′′,p′′′,t,ls)

(p,γ,p′′′,t,ls) if η = pγ
a
↪−→ p′γ ′p′′γ ′′,

ACQη
x,r (p′,γ ′,p′′,N,ls∪{x})
(p,γ,p′′,N,ls) ,

USEη
x,r (p′,γ ′,p′′,T,ls∪{x}) (p′′,γ ′′,p′′′,t,ls)

(p,γ,p′′′,t,ls) if η = pγ
a,x
↪−→ p′γ ′γ ′′, r =>⇔ x ∈ ls.

Proposition 4. L (TM ) = post∗M ({NILp0
γ0 })

Lock-Sensitive Analysis

As lspost∗M ({NILp0
γ0 })⊆ post∗M ({NILp0

γ0 }) one can obtain the set of lock-sensitively reachable execution
trees by filtering out those which do not have a lock-sensitive schedule. To do so we check the acquisition
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structure restricted to non-reentrant actions. The acquisition structure precisely models the restrictions
to a possible schedule imposed by the final acquisitions and usages of locks. The restriction to the non-
reentrant actions is safe because a reentrant action can always be executed as no other process may hold
the lock and it does not introduce new restrictions to other threads due to well-nestedness.

Definition 5. From the set of lock-insensitively reachable execution trees the following tree automaton
Tah accepts those which possess a lock-sensitive schedule. The state space is 2X × 2X × 2X×X with
accepting states 2X × 2X ×{G ∈ 2X×X | G is acyclic}. We write sets of nodes to denote a rule for each
node of the given set. The rules are as follows for all x ∈ X :

NIL→ ( /0, /0, /0) RET→ ( /0, /0, /0) BASE α → α NCALL α → α ACQx,> α → α

{RCALL,USEx,>,SPAWN} (A,U,G) (A′,U ′,G′)→ (A∪A′, U ∪U ′, G∪G′) if A∩A′ = /0

USEx,⊥ (A,U,G) (A′,U ′,G′)→ (A∪A′, U ∪U ′∪{x}, G∪G′) if A∩A′ = /0

ACQx,⊥ (A,U,G)→ (A∪{x}, U ∪{x}, G∪{(x,u)|u ∈U}) if x /∈ A

Proposition 6. L (TM )∩L (Tah) = lspost∗M ({NILp0
γ0 })

Example 7. A simple application is calculation of may-happen-in-parallel information. That is, given
two sets R and W of stack symbols: Is it possible that two threads reach simultaneously a topmost stack
symbol of the corresponding sets? The relevant execution trees are accepted by the tree automata Trw

with state space 2{r,w}, single accepting state {r,w} and the following rules:

NILγ →{r} for γ ∈ R NILγ →{w} for γ ∈W NILγ → /0 for γ /∈ (R∪W ) RET→ /0

{ACQ,BASE,NCALL} α → α {RCALL,SPAWN,USE} α β → α ∪β

By checking whether L (TM )∩L (Tah)∩L (Trw)
?
= /0 one can prove absence of a data race on a

variable if R represents the set of stack symbols where the variable is read or written and W the set of
stack symbols where it is written. This rules out all spurious data races in the examples in Table 1.

Iterable Analysis

We extend this technique to answer reachability questions starting from arbitrary tree-regular sets of
reachable execution trees. We exploit the fact that all execution trees of prefixes of an execution are
closely related to prefixes of the final tree: They are obtained by cutting the final tree, replacing subtrees
by NIL-nodes and turning returning calls or usages into returning calls or acquisitions as necessary.
Note however, that not all prefixes of an execution tree correspond to prefixes of its schedules. We use an
additional type of node (a CUT-node) to mark an intermediate configuration in the tree. Firstly one needs
to check that these nodes actually mark an intermediate configuration, we say the tree is cut-wellformed.
This can be done by a tree automaton (Tcw f ). In a second step one can use a tree-transducer (a tree
automaton with output) to obtain the execution tree corresponding to the configuration marked by the cut
(Tct). Note that the inverse image of tree-regular sets under a tree transducer is effectively tree-regular.

Proposition 8. For tree-regular A⊆ post∗M ({NILp0
γ0 }) it holds that

post∗M (A) = (L (TM )∩L (Tcw f )∩T −1
ct (A))|CUT

Here, |CUT denotes the projection which removes all cut nodes from the tree which can be done by a
simple tree transducer.

Iterable Lock-Sensitive Analysis

In the lock-sensitive case, it remains to check whether the final configuration can lock-sensitively be
reached from the intermediate configuration marked by the cut. Two prototypical examples where this
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is not possible are shown in the right of Figure 1. To obtain a sufficient criterion we additionally use so
called release structures which, analogously to acquisition structures for acquisitions, model restrictions
for releasing held locks [8] . Firstly one must ensure that all locks used at the cut can actually be released
afterwards (right part of Figure 1). Secondly one must check that no lock finally acquired before the cut
is used by another thread after the cut (center part of Figure 1).
Proposition 9. There exists a tree-automata Trs such that for tree-regular A⊆ lspost∗M ({NILp0

γ0 })
lspost∗M (A) = (L (TM )∩L (Trs)∩L (Tcw f )∩T −1

ct (A))|CUT∩L (Tah)

Implementation

We implemented our approach for the analysis of concurrent Java programs. The implementation is
based on the T.J. Watson Libraries for Analysis (WALA)1, which provides control flow and points-to
information. Following Esparza and Knoop [3], we encoded the local state in the stack symbols of the
DPN, which consist, in the general setting, only of the control point of the program. The control states
are used to model the thread state (e.g. thrown exceptions) and return information of synchronized blocks
as these are modeled as multi-exit procedures. We translate the generated models to tree automata which
are encoded as logical programs for the XSB system2, a logic programming and deductive database
system. The required tree-automata operations like intersection and checking for emptiness can straight
forwardly be implemented in this environment.
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Abstract

This paper describes our current research on safety assessment of artificial agents learning control
policies in an uncertain world. In this study, a robotic manipulator learns to play game of air hockey,
through Reinforcement Learning(RL). RL is a widely used paradigm in Artificial Intelligence to
implement an adaptive behaviour for an agent in little known environment. Here, agent learns through
exercising various actions in different states and through feedbacks received while performing those
actions. However, some of these actions might be unsafe for the agent in some states. Firstly, we
model game of playing air hockey as a task which involves implicit risks related with high-velocities
of robotic arm. Secondly, we show that though it is indeed possible to learn stochastic policy via
RL where such unsafe situations are penalized, it is not possible to eliminate such risk altogether.
Thirdly, we would strive to repair this policy without sacrificing effectiveness of skill thus learnt. To
summarise, we apply formal methods to obtain a general and effective intelligent behaviour from an
artificial agent. This is in contrast with other methods, such as domain-specific Lyapunov candidate
based control or risk-sensitive rewarding based learning.

1 Learning by Reinforcement

Learning by reinforcement – see, e.g., [11] – is one of the most widely adopted paradigms to obtain
intelligent behaviour from agents actively engaged in interactions with a surrounding environment. The
basic idea behind this type of learning is that an agent is capable of perceiving the current state of the
environment wherein it is situated, as well as a feedback signal that occurs each time the agent acts
in the environment. Feedback can be either an immediate reward or penalty, and the ultimate goal of
the agent is to find a course of action that is guaranteed to maximize accumulated rewards over time.
In this sense, learning by reinforcement – also Reinforcement Learning (RL) – can be seen as a way to
synthesize (optimal) control programs for agents whose actual knowledge about the external environment
is very limited [12]. RL algorithms have shown robust and efficient learning on a variety of problems,
particularly in robotics – see, e.g. [8, 7] – and artificial game playing – see, e.g., [13].

∗This is preliminary discussion of current and unpublished work
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1.1 Preliminaries of Reinforcement Learning

Essential components of RL are: states, actions, rewards and policy. An agent perceives the current state
st and using some policy, which is a mapping π(s)→ a from state to action, takes an action at . As a
consequence of this action, environment might change and a reward rt+1 ∈ R is observed by the agent.
Consider a sequence of states and rewards in some finite horizon t ∈ (t,T ) as st ,rt+1,st+1, . . .rT ,sT . Also
suppose we discount the rewards in future by a factor γ with γ ∈ [0,1) so that rewards received sooner
are preferred over those received later. Then, we have average reward given by

Rt = rt+1 + γrt+2 + γ
2rt+3 + · · ·+ γ

T−t−1rT

Now we define, value V π(s) ∈ R, as expected value of this average-reward Rt where st = s. Given
this, approximating optimum value, V ∗(s) is achieved through an iterative process

V (st)→V (st)+α(Rt −V (st))

where α ∈ R is a step-size parameter. In order to avoid calculating Rt , we use the fact that if the
algorithm converges, value of state V (st+1) should be accurate estimate of expected return. In other
words, E(Rt) = E(rt+1)+ γV (st+1) and update rule is:

V (st)→V (st)+αδ , δ = (rt+1 + γV (st+1)−V (st)) (1)

The rule can also be applied previously visited state, using a factor called eligibility traces. Eligibility
trace, et decays with factor λ and may also be reset, each time an exploratory action is chosen. Intuitively
speaking, eligibility traces is an algebraic trick to compensate for model-free nature of this kind of
learning. Using eligibility traces, rewards are propagated backwards along the states of current trajectory,
without any mechanism to explicitly store these states.

Analogous to value, we define quality Q(st ,at) as expected value:

Eπ(Rt |st = s,at = a)

The benefit of doing so is, that if we have update of form similar to 1:

Q(st ,at)→ Q(st ,at)+αδ , δ = rt+1 + γ argmax
a

Q(st+1,a)−Q(st ,at) (2)

we can have so called off-policy learning, where policy followed during learning is irrelevant to
learning optimal Q-values. In some practical scenario, this is desirable since it implies that we could do
away with costly operation of policy improvement during each update.

1.2 Case Study

Taking up the work of [6], the task assigned to the learning agents is to play defense in the air hockey
game. Air hockey is played by two players. They use round paddles (mallets) to hit a flat round puck
across a low-friction table. At each end of the table there is a goal area. The objective of the game
is to hit the puck so that it goes into the opponent’s goal (offense play), and it does not go into your
own goal (defense play). Air hockey has already been explored as a benchmark task in robotics and
vision – see, e.g., [2, 3] – because it is fast, demanding, and complex, once the various elements of the
physical setup are taken into account. The setup considered in [6] is composed of a robot – an industrial
manipulator with a mallet fitted on the end effector – playing against a human opponent. What makes
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Figure 1: Sketch of the artificial air-hockey setup

this setup interesting also from the verification viewpoint, is that an agent learning to play the game
has a non-negligible chance to behave hazardously. For instance, in [6] predicting target positions that
are outside the robot’s safe operational range is considered unsafe. This is because, given the robot’s
speed and mass, the energy involved in a collision, e.g., against the table, can easily damage the table
and the manipulator. In this study we extend the notion of unsafe behaviour to include the possibility of
generating speed profiles which are incompatible with the operating range of the manipulator. Given the
kind of game, it is not unlikely that an agent learning by experience tries to observe as long as possible
the current trajectory of the puck – to improve prediction of the intercept position – and then move the
manipulator as quickly and precisely as possible – to reach the intercept position “right on time”.

The task of Learner is to become skilled in defending the robot’s goal area across a series of
episodes, i.e., shots fired by the opponent. As can be seen in figure 1, the state space is three-dimensional
S = S1× S2× S3, where each state (p,α,θ) ∈ S encodes the current puck trajectory and robotic arm
position. Put differently, (p,α), encode linear trajectory of puck, in perpendicular form while θ encodes
angular position of robotic arm. The output action space A is mono-dimensional where each action
∆θ ∈ A defines the suggested angular displacement of the robot’s mallet, and we keep time-duration of
this action ∆t fixed to 0.2 seconds for the sake of simplicity.1

In our implementation, we consider RL algorithms in the class of Temporal Difference (TD) methods
as described before – for details see Chapter 3 of [11]. More specifically, LEARN is an implementation
of the Sarsa[10] algorithm obtained by defining the auxiliary functions as follows.

• UPDATE is based on the key idea of learning an action-value function instead of a state-value
function in order to combine policy improvement with value estimation. In particular, the value of
action a∈ A performed in state s∈ S – denoted as Q(s,a) – is estimated iteratively by the following
update equation2.

Q(st ,at)→ Q(st ,at)+α [rt+1 + γQ(st+1,at+1)−Q(st ,at)] (3)

where t, γ and α have the same meaning as described before. Notice that, in contrast with (2),
Sarsa uses Q-values for the next state, Q(st+1,at+1), and is also an on-policy learning method. If
the episode ends with st+1, then Q(st+1,at+1) is defined to be zero for all actions a∈ A. Since there
are finitely many states s ∈ S and actions a ∈ A, all the values Q(s,a) can be saved in a finite-sized
lookup-table.

• COMPUTEPOLICY selects, in any given state s, the action a∗ such that a∗ = argmaxaQ(s,a) most

1In our current implementation p and α are quantized over 58 and 37 values, respectively, and θ is quantized over 31 values,
yielding 66526 possible states. The number of possible actions ∆θ is 31.

2The fact that equation (3) uses the quintuple (st ,at ,rt+1,st+1,at+1) gives the name to the algorithm.
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of the times and, with a small probability ε , it selects a∗ at random – this is known as ε-greedy
policy in the literature [11].

• COMPUTEREWARD works according to two different schemes. The safety oblivious scheme con-
siders a baseline value R ∈ R+ which is awarded to the agent when it saves a goal. A smaller
reward, R

5 is given when the puck is hit even if the current trajectory is not leading to a goal. A
negative reward (penalty) −R is assigned when the puck hits the robot’s goal area. Finally, to
speed up learning, a small positive reward R

50 is assigned to each non-terminal state. The safety
aware scheme is identical to the first one, with the exception of a penalty −R

5 assigned when the
speed-warning flag w becomes true.

Overall algorithm for learning is as described in 1:

Algorithm 1 Pseudo-code for learning to play Air hockey using Reinforcement Learning
Initialize Q← 0; ∆t← 20ms
function LEARN(Ne, Nb, Nr)

for all i ∈ {1, . . . ,Ne} do
Send Start signal to Simulator
j← 1
repeat

Receive s j ← (p j,α j,θ j) from Simulator
∆θ j ← COMPUTEPOLICY(Q,s j)
Send (∆θ j,∆t) to Simulator
Receive s j+1← (p j+1,α j+1,θ j+1) and

f j+1← (m,g,w,r)
r j+1 ← COMPUTEREWARD((s j+1, f j+1)
E j ← (s j,∆θ j,r j+1,s j+1, f j+1)
Q← UPDATE(Q, E j)
j← j+1
if ( j = Nb) then

for all k ∈ {1, . . . ,Nr} do
Choose random m ∈ {1, . . . ,Nb}
Q← UPDATE(Q, E j)

end for
j← 1

end if
until r = TRUE

end for
return Q

end function

2 Verification and Repair

After learning, the agent follows a stochastic policy. To be precise, the policy is a Softmax-distribution
[11] over state-action Q-value where both states as well as actions are discrete. Assuming stationarity
of the environment, such an agent-environment system could be modeled as a Discrete Time Markov
Chain (DTMC), D , where the transition probabilities are assigned by the policy learnt. Overall safety
of the policy learnt, could be assessed by analysing frequency of reaching the bad states and probability
with which this frequency exceeds a given threshold. Alternatively, safety could be assessed by more
stringent requirement of reachability of unsafe states. We have investigated both the approaches and will
describe the latter in more detail. In this case, in order to be safe, policy must not allow reachability to
unsafe states with probability greater than some threshold probability, Pbound . Hence goal of verification
is to assert that overall reachability to unsafe states is within a probability bound Pbound . In other words,
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Figure 2: Effectiveness and safety across learning trials: Learning without considering safety (first row), Learning with safety-sensitive
rewards (second row); First top-left shows skill of defense-play learned by agent, while top-right shows how this does not make agent safer in
both learning and test phase. Bottom-left is when unsafe transitions are treated as faults while bottom-right is when they are treated as failures.
The plots visualize performances of the LEARN algorithm over an increasing number of learning episodes Ne reported on the x-axis. For each
such number, the plots report percentage of saved goals and percentage of unsafe actions while learning. We also report average percentage of
unsafe transitions and of saved goals over test trials.

the property is P = P<Pbound (♦s = sunsa f e). We used probabilistic model checker PRISM [5] to check
the stochastic policy learnt. Our preliminary results, before verification, as seen in figure 2 confirm that,
though risk-sensitive rewarding in learning could help agent behave safer, the overall risk to the agent is
still quite significant. Here, safety is measured as overall ratio of visit to bad states and skill as ratio of
goals saved to total shots in direction of goal. Both these measures are averaged over 50 episodes. There
is clearly a tension between learning to acquire a skill and maintaining self-safety. Verification enabled
us to confirm this quantitatively.

As mentioned before, through probabilistic model checking, we are able to determine quantitatively
the risk inherent in the system. We are currently working on generating counter-examples in efficient as
well as automated fashion, using tools such as COMICS [4]. Moreover, we seek to use them to repair
the learnt policy so that it meets minimum safety guarantee, set a-priori by physical requirements of the
agent. To be precise, a probability bound Pbound is imposed on total reachability of bad states in DTMC
D .

For this we have approached the problem, seeking to repair the causes of unsafe behaviour of the pol-
icy. The root cause of avoidable unsafe behaviour, lies in action selection of the agent. Action-selection
in a learning scenario has been explored more in cognitive science and psychology, for example [9], and
there was a recent EuCogII conference dedicated to it [1]. We are however, interested in quantitative
probabilistic nature of this action selection, a part of which might lead to unsafe states with overall prob-
ability higher than Pbound . In a more specific setting of Sarsa learning and associated DTMC D that we
verify, this amounts to changing the policy learnt. While changing the policy too much might invalidate
learning, changing it too little might not make it safe enough. In addition to this, making a significant
local change to policy might also destabilize learning. Hence, to solve this problem in a principled and
generalised way, we are working on an approach Repair, inspired from eligibility traces, where we grad-
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ually penalise a state based on its proximity to a bad state. The pseudo-code for such a repair is given in
2. Here, Punsa f e is obtained from D , using a model checker, and D is repaired until it no longer negates
property P with bound Punsa f e. At this point, model checker is used again, to generate new Punsa f e and
D is repaired again. This continues till the system satisfies P with bound Pbound .

Algorithm 2 Pseudo-code for Verification and Repair of Learn
Given agent A , learning algorithm Learn 1 , safety bound Pbound
Using A perform Learn
Obtain policy π(s,a)
Construct a DTMC D from policy π(s,a)
Use MRMC or PRISM on D to obtain Punsa f e of violating P
repeat

repeat
Use COMICS to generate set of all paths Sunsa f e negating P with bound Punsa f e
Apply Repair on Sunsa f e

until Sunsa f e = {φ}
Punsa f e← Punsa f e− ε , ε ∈ (0,Punsa f e−Pbound ]

until Punsa f e < Pbound
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1 Extended Abstract

In open-system verification, a fundamental area of research is the study of modal logics for strategic
reasoning [1, 7, 10]. An important contribution in this field has been the development of Alternating-
Time Temporal Logic (ATL∗, for short), introduced by Alur, Henzinger, and Kupferman [1]. Formally,
it is obtained as a generalization of the logic CTL∗ [8], where the path quantifiers there exists “E” and
for all “A” are replaced with strategic modalities of the form “〈〈A〉〉” and “[[A]]”, for a set A of agents.
These modalities are used to express cooperation and competition among agents in order to achieve a
temporal goal. Several decision problems have been investigated about ATL∗; both its model-checking
and satisfiability problems are decidable in 2EXPTIME [23], just like they are for CTL∗.

Despite its powerful expressiveness, ATL∗ suffers from two strong limitations: 1) strategies are treated
only implicitly through modalities that refer to games between competing coalitions and 2) strategic
modalities represent coupled ∃∀ and ∀∃ quantifications over strategies. To overcome this problem, Chat-
terjee, Henzinger, and Piterman introduced Strategy Logic (CHP-SL, for short) [6],which treats strate-
gies in two-player turn-based games as first-order objects. The explicit treatment of strategies makes
this logic very useful and more expressive than ATL∗, however, it still suffers from severe limitations. In
particular, it is limited to two-player turn-based games and does not allow different players to share the
same strategy, suggesting that strategies have yet to become truly first-class objects in this logic. For ex-
ample, it is impossible to describe the classic strategy-stealing argument of many real-life combinatorial
games.

These considerations has led us to introduce and investigate a new Strategy Logic, denoted SL, as a
more general framework than CHP-SL, for explicit reasoning about strategies in multi-agent concurrent
games [14]. Syntactically, SL extends the logic LTL [18] by means of strategy quantifiers, the existential
〈〈x〉〉 and the universal [[x]], as well as agent binding (a,x), where a is an agent and x a variable. Intu-
itively, these elements can be read as “there exists a strategy x”, “for all strategies x”, and “bind agent
a to the strategy associated with x”, respectively.

The price that one has to pay for the expressiveness of SL w.r.t. ATL∗ is the lack of important model-
theoretic properties and an increased complexity of related decision problems. In particular, in [13, 14],
it was shown that SL does not have the bounded-tree model property and the satisfiability problem is
highly undecidable, precisely, Σ1

1-HARD. Moreover, in [12], it was shown that the model checking prob-
lem is nonelementary-complete (we recall that also for CHP-SL it is known to be nonelementary, while

1Università degli studi di Napoli "Federico II"
2Rice University, Houston, Texas, USA
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it is open the question whether it is decidable).
The negative complexity results on the decision problems of SL with respect to ATL∗, provide motiva-

tions for an investigation of decidable fragments of SL, strictly subsuming ATL∗, with a better complexity.
In particular, by means of these sublogics, one may understand why SL is computationally more difficult
than ATL∗.

The main fragments we have investigated and studied are Nested-Goal, Boolean-Goal, and One-
Goal Strategy Logic, respectively denoted by SL[NG], SL[BG], and SL[1G]. They encompass formulas in
a special prenex normal form having nested temporal goals, Boolean combinations of goals, and a single
goal at a time, respectively. For goal we mean an SL formula of the type [ψ , where [ is a binding prefix
of the form (α1,x1), . . . ,(αn,xn) containing all the involved agents and ψ is an agent-full formula. In
SL[1G], each temporal formula ψ is prefixed by a quantification-binding prefix ℘[ that quantifies over a
tuple of strategies and binds them to all agents.

As main results about these fragments, we have proved that the satisfiability and model-checking
problems for SL[1G] are 2EXPTIME-COMPLETE, thus not harder than the one for ATL∗. On the con-
trary, for SL[NG], the model checking problem is nonelementary and the satisfiability is undecidable.
Finally, we observe that SL[BG] includes CHP-SL, the relative model-checking problem relies between
2EXPTIME and NONELEMENTARYTIME, while the satisfiability problem is undecidable.

To achieve all positive results about SL[1G], we use a fundamental property of the semantics of
this logic, called elementariness, which allows us to strongly simplify the reasoning about strategies by
reducing it to a step-by-step reasoning about which action to perform. This intrinsic characteristic of
SL[1G], which unfortunately is not shared by the other two fragments, asserts that, in a determined his-
tory of the play, the value of an existential quantified strategy depends only on the values of strategies,
from which the first depends, on the same history. This means that, to choose an existential strategy, we
do not need to know the entire structure of universal strategies, as for SL, but only their values on the
histories of interest.

By means of elementariness, we can solve the SL[1G] decision problems via alternating tree automata
in such a way that we avoid the projection operations by using a dedicated automaton that makes an ac-
tion quantification for each node of the tree model. As this automaton is only exponential in the size
of the formula (and independent from its alternation number) and its nonemptiness can be computed in
exponential time, we get that both model-checking and satisfiability for SL[1G] are 2EXPTIME. Clearly,
the elementariness property also holds for ATL∗, as it is included in SL[1G]. In particular, although it has
not been explicitly stated, this property is crucial for most of the results achieved in literature about ATL∗

by means of automata.
All the results reported in this paper come from [13, 12, 14]. The interested reader can refer to these

works to find more motivations, examples and related material.

1.1 Informal definitions and examples

Due to lack of space, we report here only the informal definitions of the syntax and the semantic frame-
work of Strategy Logic. For a complete and more precise treatment, we strongly recommend to refer
to [13].

SL syntactically extends LTL by means of two strategy quantifiers, the existential 〈〈x〉〉 and the uni-
versal [[x]], and agent binding (a,x), where a is an agent and x is a variable. Intuitively, these new
elements can be respectively read as “there exists a strategy x”, “for all strategies x”, and “bind agent a
to the strategy associated with the variable x”. SL formulas are built inductively from the sets of atomic
propositions AP, variables Var, and agents Ag, by using the following grammar, where p ∈ AP, x ∈ Var,
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and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a,x)ϕ .

SL denotes the infinite set of formulas generated by the above rules.
In order to practice with the syntax of our logic and express game-theoretic concepts through formu-

las, we describe two examples of important properties that are possible to write in SL, but neither in ATL∗

nor in CHP-SL. The first concept we introduce is the well-known deterministic concurrent multi-player
Nash equilibrium for Boolean valued payoffs.

Example 1 (Nash Equilibrium). Consider the n agents α1, . . . ,αn of a game, each of them having, re-
spectively, a possibly different temporal goal described by one of the LTL formulas ψ1,. . .,ψn. Then,
we can express the existence of a strategy profile (x1, . . . ,xn) that is a Nash equilibrium (NE, for short)
for α1, . . . ,αn w.r.t. ψ1, . . . ,ψn by using the SL sentence ϕNE , 〈〈x1〉〉(α1,x1) · · · 〈〈xn〉〉(αn,xn)ψNE , where
ψNE ,

∧n
i=1(〈〈y〉〉(αi,y)ψi)→ ψi. Informally, this asserts that every agent αi has xi as one of the best

strategy w.r.t. the goal ψi, once all the other strategies of the remaining agents α j, with j 6= i, have been
fixed to x j. Note that here we are only considering equilibria under deterministic strategies.

As in physics, also in game theory an equilibrium is not always stable. Indeed, there are games
having Nash equilibria that are instable. One of the simplest concepts of stability that is possible to think
is called stability profile.

Example 2 (Stability Profile). Think about the same situation of the above example on NE. Then, a
stability profile (SP, for short) is a strategy profile (x1, . . . ,xn) for α1, . . . ,αn w.r.t. ψ1, . . . ,ψn such that
there is no agent αi that can choose a different strategy from xi without changing its own payoff and
penalizing the payoff of another agent α j, with j 6= i. To represent the existence of such a profile, we can
use the SL sentence ϕSP , 〈〈x1〉〉(α1,x1) · · · 〈〈xn〉〉(αn,xn)ψSP, where ψSP ,

∧n
i, j=1,i6= j ψ j → [[y]]((ψi ↔

(αi,y)ψi)→ (αi,y)ψ j). Informally, with the ψSP subformula, we assert that, if α j is able to achieve his
goal ψ j, all strategies y of αi that left unchanged the payoff related to ψi, also let α j to maintain his
achieved goal. At this point, it is very easy to ensure the existence of an NE that is also an SP, by using
the SL sentence ϕSNE , 〈〈x1〉〉(α1,x1) · · · 〈〈xn〉〉(αn,xn)ψSP∧ψNE .

As semantic framework for our logic language, we use a graph-based model for multi-player games
named concurrent game structure [1]. Intuitively, this mathematical formalism provides a generalization
of Kripke structures and labeled transition systems, modeling multi-agent systems viewed as games, in
which players perform concurrent actions chosen strategically as a function on the history of the play.

A concurrent game structure (CGS, for short) is a tuple G , 〈AP,Ag,Ac,St,λ ,τ,s0〉, where we
respectively have that AP and Ag are finite non-empty sets of atomic propositions and agents, Ac and St
are enumerable non-empty sets of actions and states, s0 ∈ St is a designated initial state, and λ : St→
2AP is a labeling function that maps each state to the set of atomic propositions true in that state. Let
Dc , AcAg be the set of decisions, i.e., functions from Ag to Ac representing the choices of an action for
each agent. Then, τ : St×Dc→ St is a transition function mapping a pair of a state and a decision to a
state.

A track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states ρ ∈ St+ (resp.,
π ∈ Stω ) such that, for all i ∈ [0, |ρ|−1[ (resp., i ∈ N), there exists a decision d ∈ Dc such that (ρ)i+1 =
τ((ρ)i,d) (resp., (π)i+1 = τ((π)i,d)). 3 The set Trk ⊆ St+ (resp., Pth ⊆ Stω ) contains all tracks (resp.,
paths). Moreover, Trk(s) (resp., Pth(s)) indicates the subsets of tracks (resp., paths) starting at a state
s ∈ St.

3The notation (w)i ∈ Σ indicates the element of index i ∈ [0, |w|[ of a non-empty sequence w ∈ Σ∞.
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A strategy in a CGS G is a function f : Trk→ Ac that maps each track to an action. The set of all
strategies is denoted by Str.

An assignment in a CGS G is a function χ : Var∪Ag→ Str that maps variables in a given set Var
and agents to the set of strategies. The set of assignments over a certain set of variables Var is denoted
by Asg(Var).

Given a CGS G , for all SL formulas ϕ , states s ∈ St, and assignments χ ∈ Asg(Var), with Var be the
set of variables occurring in ϕ , the modeling relation G ,χ,s |= ϕ is inductively defined as follows.

1. If ϕ is an atomic proposition or its principal scope is a Boolean or temporal operator, the semantic
is defined as usual in LTL.

2. For a variable x ∈ Var and a formula ϕ , it holds that:

(a) G ,χ,s |= 〈〈x〉〉ϕ if there exists a strategy f ∈ Str such that G ,χ[x 7→ f] 4,s |= ϕ;
(b) G ,χ,s |= [[x]]ϕ if for all strategies f ∈ Str it holds that G ,χ[x 7→ f],s |= ϕ .

3. For an agent a∈Ag, a variable x∈Var, and a formula ϕ , it holds that G ,χ,s |= (a,x)ϕ if G ,χ[a 7→
χ(x)],s |= ϕ .

Intuitively, at Items 2a and 2b, respectively, we evaluate the existential 〈〈x〉〉 and universal [[x]] quantifiers
over strategies, by associating them to the variable x. Moreover, at Item 3, by means of an agent binding
(a,x), we commit the agent a to a strategy associated with the variable x.

Finally, we say that a CGS G is a model of an SL sentence ϕ , in symbols G |= ϕ , if G ,χ,s0 |= ϕ for
all assignments χ . An SL sentence ϕ is satisfiable if there is a model for it.

1.2 Work in Progress and Future Directions

In [14], Strategy Logic has been introduced as a new powerful formalism for reasoning about strategies.
There, it has been shown that the satisfiability problem is undecidable. In the extended version [13]
of [14], fragments of SL have been introduced and investigated as far as the model-checking problem is
concerned. In particular, it turns out that while for SL the model-checking is NONELEMENTARYTIME-
COMPLETE, it is 2EXPTIME-COMPLETE for SL[1G] (thus not harder than that for ATL∗). The question
about SL[BG] is open. In [12], the satisfiability problem for the fragments we have introduced in [12] has
been investigated. It turns out that this problem is undecidable for SL[BG] while it remains 2EXPTIME-
COMPLETE for SL[1G] (as for ATL∗).

Out of the above picture, SL[1G] is the biggest known decidable fragment of SL, strictly subsuming
ATL∗. On the other side, the bigger (but undecidable) logic SL[BG] is of major interest. Indeed, it can
describe several interesting properties non expressible in SL[1G] such as Nash equilibrium, strong Nash
equilibrium, sub-game perfect equilibrium, coalition proof Nash equilibrium, etc. (for a survey about
Nash Equilibrium and the like, see [16, 15]). For these reasons, it is our intention to keep investigating
SL[BG]. It is worth noting that SL[BG] is strictly more expressive than CHP-SL, for which the exact
complexity of the model-checking problem is still open. So, solving the model-checking problem for
SL[BG] would solve the problem for CHP-SL as well. A possible way to attack the model-checking
problem is to proceed by steps, introducing some new fragment of SL[BG] (subsuming SL[1G]) and solv-
ing their model-checking problem. In this direction, Mogavero, Murano, and Sauro have defined in [11]
a fragment in which it is allowed only the conjunction of goals, while the disjunction is avoided This
logic is called Strategy Logic Conjunctive Goal. They also proved that such a fragment has the elemen-
tariness property and then, by applying the procedure explained in [14], its model-checking problem is

4By χ[x 7→ f] we are denoting the assignment obtained from χ by substituting only the value of χ(x) with f.
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2EXPTIME-COMPLETE.
Since ATL∗ and SL[1G] have the same complexities for both the model-checking and satisfiability

problems, a natural question that arises is whether to lift the most common extensions of ATL∗ to SL[1G],
in order to retain the model properties and the complexities of the related decision problems.

A very interesting extension in this direction is the use of graded modalities. Such modalities al-
low to generalize the existential and universal quantifiers to express that, for a natural number n, there
exists at least n elements or for all except n elements that satisfy a formula. Several logics have been
extended with graded modalities and the complexities of the related decision problems have been deeply
investigated. In [9], Kupferman et al. introduced Graded µ-calculus to extend µ-calculus with graded
modalities. They proved that such extension is exponentially more succinct than µ-calculus, while the
satisfiability problem is EXPTIME-COMPLETE, thus not harder than for µ-calculus (for a recent and
complete survey of the subject, please read [5]). In [3, 4, 2], Bianco, Mogavero, and Murano intro-
duced Graded Computation-Tree Logic (GCTL, for short), a modal logic that extends CTL by replacing
the universal (A) and existential (E) quantifiers with their graded versions A<n and E≥n. They proved
that, despite such extension is strictly more expressive than CTL, the satisfiability problem for GCTL is
EXPTIME-COMPLETE, as it is for CTL, even in the case that the graded numbers are coded in binary.
Our aim is to investigate the expressive power and the complexities of the classical decision problem for
Graded-SL (GSL, for short). Precisely, GSL is obtained by replacing the universal ([[x]]) and existential
(〈〈x〉〉) strategy quantifiers in SL[1G] with graded modalities of the form [[x]]<n and 〈〈x〉〉≥n. Informally
speaking, these two operators have the meaning of “there exists at least n different non-equivalent strate-
gies ...” and “for all except at most n non-equivalent strategies ...” respectively. Despite this extension is
natural and all the reasons introduced in GCTL seem to be easily liftable to this new logic, there is deep
work to do regarding the equivalence among strategies. Indeed, to deal with this logic, a suitable concept
of non-equivalent strategies has to be provided. We expect that GSL is strictly more expressive than SL.
We plan to investigate the complexities of both the model-checking and the satisfiability problems for
GSL and its fragments and to retain the same complexity results.

Another extension we would like to address is SL with coalition modalities. Coalition Logic (CL,
for short) has been introduced in [17] for reasoning about games. It can be viewed as the fragment of
ATL in which only the next operator, combined with the universal ([A]) and existential (〈A〉) quantifiers
over set of agents, is allowed. In [21, 22], Ågotnes, van der Hoek, and Wooldridge introduced Quantified
Coalition Logic (QCL, for short) as an extension of CL in which the quantifications over sets of agents
are replaced with universal ([P]) and existential (〈P〉) quantifications over properties of coalitions. They
have shown that QCL is as expressive as CL but exponentially more succinct. Moreover, they proved
that the complexity of model-checking and satisfiability problem for QCL is no worse than the ones for
CL. By using a similar idea, we intend to lift to SL and, in particular, to SL[1G] the reasoning about
coalition with the aim to find a more succinct representation of formulas without blowing up their com-
plexities.

Last but not least, another possible extension of SL regards the concept of normative systems intro-
duced in [24, 25] that are used to reason about coordination of multi-agent systems. In [19, 20], Ågotnes,
van der Hoek, Rodriguez-Aguilar, Sierra, and Wooldridge exploited such concept to extend CTL with
Normative Temporal Logic and proved that its model-checking problem is EXPTIME-HARD. By using
the same idea, it is possible to extend also SL and, in particular, SL[1G] with normative systems and
study the related decision problems.
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Abstract
Runtime enforcement is a powerful technique to ensure that a running system respects some

desired properties. Using an enforcement monitor, an (untrustworthy) input execution (in the form
of a sequence of events) is modified into an output sequence that complies to a property. Runtime
enforcement has been extensively studied over the last decade in the context of untimed properties.

This work introduces runtime enforcement of timed properties. We revisit the foundations of
runtime enforcement when time between events matters. We show how runtime enforcers can be
synthesized for any safety or co-safety timed property. Proposed runtime enforcers are time retardant:
to produce an output sequence, additional delays are introduced between the events of the input
sequence to correct it. Runtime enforcers have been prototyped and our simulation experiments
validate their effectiveness.

1 Introduction
Runtime verification [1, 2, 3, 4, 5, 6] (resp. enforcement [7, 8, 9]) refers to the theories, techniques, and
tools aiming at checking (resp. ensuring) the conformance of the executions of systems under scrutiny
w.r.t. some desired property. A central concept is the verification or enforcement monitor that is generally
synthesized from the property expressed in a high-level formalism. When the monitor is only dedicated to
verification, it is a decision procedure emitting verdicts stating the correctness of the (partial) observed
trace generated from the system execution. In runtime enforcement, an enforcement monitor (EM) is
used to transform some (possibly) incorrect execution sequence into a correct sequence w.r.t. the property
of interest. Some of the results on how untimed properties can be enforced at runtime are [7, 8, 9].
Regarding timed properties, most of the results sofar are related to how to verify them at runtime [10,
12, 13], but not about how to enforce them. More details on related work are provided in [15]. We focus
on online enforcement of timed properties. To the best of our knowledge, no approach was proposed to
enforce timed properties. Motivations for extending runtime enforcement to timed properties abound.
First, timed properties are a more precise tool to specify desired behaviors of systems since they allow to
explicitly state how time should elapse between two events. Moreover, several applications of runtime
enforcement of timed properties can be considered. For instance, in the context of security monitoring,
enforcement monitors can be used as firewalls to prevent denial of service attacks by ensuring a minimal
delay between input events (carrying some request for a protected server). On a network, enforcement
monitors can be used to synchronize streams of events together, or, ensuring that a stream of events
conforms to the pre-conditions of some service.

Contributions.We propose a context where, under some reasonable assumptions, runtime enforce-
ment of timed properties is possible. Runtime enforcement monitors are built from safety and co-safety
properties expressed by timed automata. In contrast with previous runtime enforcement approaches, we
afford only the primitives of being able to delay the input events to our enforcer. By possibly increas-
ing delays between events of the input sequence, the output timed sequence conforms to the property.
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Delays are modified by monitors using an internal memory where (sequence of) events are stored and
released after appropriate delays. Experiments have been performed on prototype monitors to show their
effectiveness and the feasibility of our approach.

2 Preliminaries and Notation
Untimed notions. An alphabet is a finite set of elements. A (finite) word over an alphabet A is a finite
sequence of elements of A. The length of a word w is noted |w|. The empty word over A is denoted by
εA or ε when clear from context.The set of all (resp. non-empty) words over A is denoted by A∗ (resp.
A+). A language over A is a subset L ⊆ A∗. The concatenation of two words w and w′ is noted w ·w′. A
word w′ is a prefix of a word w, noted w′ 4 w, whenever there exists a word w′′ such that w = w′ ·w′′. For
a word w and 1≤ i≤ |w|, the i-th letter (resp. prefix of length i, suffix starting at position i) of w is noted

w(i) (resp. w[···i], w[i··· ]) – with the convention w[···0]
def
= ε . pref(w) denotes the set of prefixes of w and

by extension, pref(L )
def
= {pref(w) | w ∈L } the prefix of L . L is said to be prefix-closed whenever

pref(L ) = L and extension-closed whenever L = L ·A∗. Given a tuple of symbols e = (e1, . . . ,en),

Πi(e) is the projection of e on its ith element (Πi(e)
def
= ei).

Timed languages. Let R≥0 denote the set of non negative real numbers, and Σ a finite alphabet of
actions. A pair (δ ,a) ∈ (R≥0× Σ) is called an event. We note del(δ ,a) = δ and act(δ ,a) = a the
projections of events on delays and actions, respectively. A timed word over Σ is a finite sequence
of events ranging over (R≥0× Σ)∗. For σ = (δ1,a1) · (δ2,a2) · · ·(δn,an), δi (2 ≤ i ≤ n) is the delay
between ai−1 and ai and δ1 the time elapsed before the first action. Note that the alphabet is infinite
in this case. Nevertheless, notions and notations defined above (related to length, concatenation, prefix,
etc) naturally extend to timed words. The sum of delays of a timed word σ is noted time(σ). Given
t ∈ R≥0, and a timed word σ ∈ (R≥0×Σ)∗, we define the observation of σ at time t as the timed word

obs(σ , t) def
= max{σ ′ | σ ′ 4 σ ∧ time(σ ′)≤ t}, i.e., the longest prefix of σ with a sum of delays less than

t. The untimed projection of σ is ΠΣ(σ)
def
= a1 ·a2 · · ·an in Σ∗ (i.e., delays are ignored). A timed language

is any subset L ⊆ (R≥0× Σ)∗. We define the following order on timed words: σ ′ delays σ (noted
σ ′ 4d σ ) if ΠΣ(σ

′)4 ΠΣ(σ) and ∀i≤ |σ ′|,del(σ(i))≤ del(σ ′(i)).
Timed Automata. Let X = {X1, . . . ,Xk} be a finite set of clocks. A clock valuation for X is a function ν

from X to RX
≥0 where RX

≥0 denotes the valuations of X . For ν ∈RX
≥0 and δ ∈R≥0, ν +δ is the valuation

assigning ν(Xi)+δ to each clock Xi of X . Given a set of clocks X ′ ⊆ X , ν [X ′← 0] is the clock valuation
ν where all clocks in X ′ are assigned to 0. G (X) denotes the set of clock constraints defined as boolean
combinations of simple constraints of the form Xi ./ c with Xi ∈ X , c∈N and ./∈ {<,≤,=,≥,>}. Given
g ∈ G (X) and ν ∈ RX

≥0, we write ν |= g when g(ν)≡ true.
Definition 1 (Timed automaton). A timed automaton (TA) is a tuple A = 〈L, l0,X ,Σ, ∆,G〉, s.t. L is a
finite set of locations with l0 ∈ L the initial location, X is a finite set of clocks, Σ is a finite set of events,
∆⊆ L×G (X)×Σ×2X ×L is the transition relation, and G⊆ L is a set of accepting locations.

The semantics of a TA is a timed transition system [[A ]] = 〈Q,q0,Γ,→,FG〉 where Q = L×RX
≥0 is

the (infinite) set of states, q0 = (l0,ν0) is the initial state where ν0 is the valuation that maps every clock
to 0, FG = G×RX

≥0 is the set of of accepting states, Γ = R≥0×Σ is the set of transition labels, i.e., pairs
composed of a delay and an action. The transition relation→⊆ Q×Γ×Q is a set of transitions of the

form (l,ν)
(δ ,a)−−−→(l′,ν ′) with ν ′ = (ν + δ )[Y ← 0] whenever there exists (l,g,a,Y, l′) ∈ ∆ s.t. ν + δ |= g

for δ ≥ 0.
In the following, we consider a timed automaton A = 〈L, l0,X ,Σ,∆,G〉 with its semantics [[A ]]. A

is deterministic whenever for any (l,g1,a,Y1, l′1) and (l,g2,a,Y2, l′2) in ∆, g1∧g2 is false. A is complete
whenever for any location l ∈ L and every event a ∈ Σ, the disjunction of the guards of the transitions
leaving l and labeled by a is true. In the remainder of this paper, we shall consider only deterministic
timed automata.
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l0 l1 l2

Σ1 \ {r}
r,

x := 0

Σ1 \ {r}

r, x ≥ 5,
x := 0

r, x<5

Σ1

(a) A safety TA for ϕ1

l0 l1

l2

l3
r, x := 0

Σ2 \ {r}

Σ2 \ {g};
g, x < 10 ∨ x > 15

g,
10≤x ≤15

Σ2

Σ2

(b) A co-safety TA for ϕ2

Figure 1: Example of Timed Properties

A run ρ from q ∈Q is a sequence of moves in [[A ]] of the form: ρ = q0
(δ1,a1)−−−−→ q1 · · ·qn−1

(δn,an)−−−−→ qn.
The set of runs from q0 ∈ Q is denoted Run(A ) and RunFG(A ) denotes the subset of runs accepted by
A , i.e., ending in FG. The trace of a run ρ is the timed word (δ1,a1) ·(δ2,a2) · · ·(δn,an). We note L (A )
the set of traces of Run(A ). We extend this notation to LFG(A ) in a natural way.

Timed Properties A timed property is defined by a timed language ϕ ⊆ (R≥0×Σ)∗. Given a timed
word σ ∈ (R≥0×Σ)∗, we say that σ satisfies ϕ (noted σ |= ϕ) if σ ∈ ϕ . In the sequel, we shall be
interested in safety and co-safety timed properties. Informally, safety (resp. co-safety) properties state
that “nothing bad should ever happen” (resp. “something good should happen within a finite amount of
time”). Safety (resp. co-safety) properties can be characterized by prefix-closed (resp. extension-closed)
languages. We consider only the sets of safety and co-safety properties that can be represented by timed
automata (Definition 1).

Definition 2 (Safety and Co-safety TA). A complete and deterministic TA 〈L, l0,X ,Σ, ∆,G〉, where G⊆ L
is the set of accepting locations, is said to be:

• a safety TA if l0 ∈ G∧@〈l,g,a,Y, l′〉 ∈ ∆, l ∈ L\G ∧ l′ ∈ G;

• a co-safety TA if l0 /∈ G∧@〈l,g,a,Y, l′〉 ∈ ∆, l ∈ G ∧ l′ ∈ L\G.
It is easy to check that safety and co-safety TAs define safety and co-safety properties.

Example 3 (Safety and co-safety TA). Fig. 1a and 1b present two properties formalized with safety and
co-safety TA. Accepting locations are represented by squares. The safety TA formalizes the property ϕ1
defined over Σ1 = {a,r}: “There should be a delay of at least 5 time units between any two user requests
(r)”. The co-safety TA formalizes the property ϕ2 defined over Σ2 = {r,g,a}: “The user can perform
an action a only after a successful authentication, i.e., after sending a request r and receiving a grant g.
After an r, g should occur between 10 and 15 time units”.

3 Enforcement Monitoring in a Timed Context
Roughly speaking, both in the timed and untimed settings, the purpose of an enforcement monitor (EM) is
to read some (possibly incorrect) input sequence σ produced by a running system (input to the enforcer),
and to transform it into an output sequence o that is correct w.r.t. a property ϕ , here modeled by a TA.

Definition 4. For a given property ϕ , an enforcement function is a function E from (R≥0×Σ)∗×R≥0 to
(R≥0×Σ)∗.

Enforcement
function

ϕ

σ, t E(σ, t) |= ϕ

Figure 2: Enforcement
function E

An enforcement function E transforms some timed word σ given as
input and possibly incorrect w.r.t. the desired property (see Fig. 2). The
resulting output E(σ , t) at time t is a timed word with same actions, but
possibly increased delays between actions so that it satisfies the property.
Similar to the untimed setting, additional constraints on E(σ , t), namely
soundness and transparency, are required on actions. However, in the timed setting, those constraints
also depend on both delays between events and the class of the enforced property, as we shall discuss
later.

An enforcement function E is realized by an enforcement monitor EM. This monitor is equipped
with a memory and a set of enforcement operations used to store and dump some timed events to and
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from the memory, respectively. The memory of an EM is basically a queue containing a timed word, the
received actions with increased delays that have not been released yet.

In the following sections, we will present enforcement monitors for both safety and co-safety prop-
erties and analyze constraints on the associated enforcement functions.

4 Enforcement of Safety Properties
In this section we focus on the enforcement of a safety property ϕ specified by a safety automaton
A = 〈L, l0,X ,Σ,∆,G〉 and its associated semantics [[A ]] = 〈Q,q0,Γ,→, FG〉. Without loss of generality,
we assume that the set of locations L \G is reduced to a singleton {Bad}. Given ϕ , and a timed word
σ , an enforcement function E for ϕ should satisfy the following soundness, transparency and optimality
conditions.
Definition 5 (Soundness, transparency and optimality). Let E : (R≥0×Σ)∗×R≥0→ (R≥0×Σ)∗ be an
enforcement function for a safety property ϕ . E is:
- sound if ∀σ ∈ (R≥0×Σ)∗,∀t ∈ R≥0, E(σ , t) |= ϕ;
- transparent if ∀σ ∈ (R≥0×Σ)∗,∀t ∈ R≥0, E(σ , t)4d obs(σ , t)∧ time(E(σ , t))≤ t.
If E is both sound and transparent, we say that it is optimal if, for any input σ ∈ (R≥0×Σ)∗, at any time
t ∈ R≥0, the following constraints hold:
(Op1) @ω ′,ω ′ |= ϕ ∧ ω ′ 4d obs(σ , t) ∧ |ω ′|> |E(σ , t)|

(Op2) ∀i ∈ [1, |E(σ , t)|],¬@δ ′′ ∈ R≥0, del(obs(σ , t)(i))≤ δ ′′ ≤ del(E(σ , t)(i))
∧E(σ , t)[···i−1] · (δ ′′,act(E(σ , t)(i))) |= ϕ

Soundness means that, at any time t, the produced timed word should satisfy the property ϕ . Trans-
parency means that, at any time instant t, the output E(σ , t) delays the input obs(σ , t): the enforcement
function should not modify the order of events, should not reduce the delays between consecutive events,
and should not produce outputs faster than inputs. Optimality means that the enforcement function should
provide the output as soon as possible. The optimality condition (Op1) extends the requirement on the
output sequences of the enforcement function in the untimed case (cf. [9]): at any time instant t, the
output sequence E(σ , t) should be the longest correct timed word delaying the input sequence obs(σ , t).
Here, taking physical time into account, (Op2) requires that the input and output sequences are as close
as possible w.r.t. physical observation, i.e., every prefix of E(σ , t) has the shortest possible last delay.

We now design an enforcement monitor whose semantics effectively realizes the enforcement func-
tion as described Definition 5.
Definition 6 (Enforcement Monitor for safety). An enforcement monitor for ϕ is a transition system
EM = 〈C,C0, ΓEM, ↪→〉 s.t.:
• C = (R≥0×Σ)∗×R≥0×R≥0×B×Q is the set of configurations;

• the initial configuration is C0 = 〈ε,0,0,tt,q0〉 ∈C;

• ΓEM =
(
(R≥0×Σ)∪{ε}

)
×Op×

(
(R≥0×Σ)∪{ε}

)
is the input-operation-output alphabet, where

Op = {store(·),dump(·),del(·)};
• ↪→⊆C×ΓEM×C is the transition relation defined as the smallest relation obtained by the following

rules applied in the following order:

– store: 〈σs,δ ,d,tt,q〉
(δ ,a)/store(δ ′,a)/ε

↪→ 〈σs · (δ ′,a),0,d,(δ ′ 6= ∞),q′〉 with:
∗ δ ′ = updates(q,a,δ ), where updatesis the function defined as:

Q×Σ×R≥0 → R≥0

(q,a,δ ) 7→

{
∞ if ∀δ ′ ∈ R≥0,∀q1 ∈ Q,(δ ′ ≥ δ ∧q

(δ ′,a)→ q1)⇒ q1 6∈ FG

min{δ ′ ∈ R≥0 | ∃q1 ∈ FG,q
(δ ′,a)→ q1∧δ ′ ≥ δ}

∗ q′ is defined as q
(δ ′,a)→ q′ if δ ′ < ∞ and q′ = q otherwise;
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– dump:
〈
(δ ,a) ·σs,s,δ ,b,q

〉 ε/dump(δ ,a)/(δ ,a)
↪→ 〈σs,s,0,b,q〉 if δ 6= ∞;

– delay: 〈σs,s,d,b,q〉
ε/del(δ )/ε

↪→ 〈σs,s+δ ,d +δ ,b,q〉.
A configuration 〈σs,s,d,b,q〉 of the EM consists of the current stored sequence (i.e., the memory

content) σs, two clock values s and d indicating respectively the time elapsed since the last store and
dump operations, a Boolean b indicating whether the underlying enforced property is satisfied or not
on the output sequence, and q the current state of [[A ]] reached after processing the sequence already
released followed by the timed word in memory. Regarding its alphabet, in the input (resp. output)
sequence, the EM either lets time elapse and no event is read or released, or reads and stores (resp.
dumps and releases) a symbol event after some delays. Semantics rules can be understood as follows:
• The store rule is executed upon the reception of an event (δ ,a). The timed event (δ ′,a) is appended

to the memory content, where δ ′ is the minimal delay that has to be waited so that the property
remains satisfied – if such a delay exists. The value of s is then reinitialized to 0. If a delay can
be found through the updates function, q is updated to the state that will be reached by appending
the timed event (δ ′,a) to the output sequence concatenated with the contents of the memory, and
b remains tt and becomes ff otherwise.
• The dump rule is executed when the value of d is equal to the delay of the first timed event in the

memory. The value of d is then reinitialized to 0. The first event in memory is suppressed (and
released from the enforcer). Other elements of the configuration remain unchanged.
• The delay rule adds the time elapsed δ to the current values of s and d when no store nor dump

operation is possible.
We define the language of runs of an enforcement monitor EM:

L (EM)⊆ (ΓEM)∗ =
((

(R≥0×Σ)∪{ε}
)
×Op×

(
(R≥0×Σ)∪{ε}

))∗
It is worth noticing that enforcement monitors are deterministic. Hence, given σ ∈ (R≥0×Σ)∗ and

t ∈ R≥0, let w ∈L (EM) be the unique maximal sequence such that
Πε

(⊙
i∈[1,|w|](Π1(w(i)))

)
= obs(σ , t), where Πε is the projection that erases ε from words in

((R≥0×Σ)∪{ε})∗. Now, we define the enforcement function E associated to EM as
∀σ ∈ (R≥0×Σ)∗, ∀t ∈ R≥0, E(σ , t) = Πε

( ⊙
i∈[1,|w|]

(Π3(w(i)))
)

(1)

Proposition 7. Given an enforcement monitor EM for a safety property ϕ and E defined as in Eq. (1), E
verifies the soundness, transparency and optimality conditions of Definition 5.

5 Enforcement of Co-safety Properties
Let us now focus on the enforcement of co-safety properties. An EM for a co-safety property, starts
to release events only after observing the minimal sequence of input events which can lead to a good
location. The sum of the delays of this minimal sequence is optimized rather than each delay as was the
case for a safety property. An EM for a co-safety property is defined as a transition system similar to
an EM for as safety property with some minor adaptations. Definitions and detailed explanation with
examples are presented in [15].

6 Implementation and Experiments
The implementation of an enforcement monitor (EM) consists of two processes running concurrently
(Store and Dump) and a memory. The Store process models the store rules. The memory contains the
timed words σs. The Dump process reads events stored in the memory and releases them as output after
the required amount of time. The algorithms are presented and described in detail in [15].

Enforcement monitors for safety and co-safety properties, have been implemented in prototype tool
of 500 LOC using Python. The tool also uses UPPAAL [11] as a library to implement the update function
and the pyuppaal library to parse UPPAAL models written in XML. More details about the experiments
and performance evaluation using a simulated system are described in [15].
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7 Conclusion and Future Work
This work introduces runtime enforcement for timed properties and provides a complete framework. We
consider safety and co-safety properties described by timed automata. We propose adapted notions of
enforcement monitors with the possibility to delay some input actions in order to satisfy the required
property. For this purpose, the enforcement monitor can store some actions for a certain time period.
We propose a set of enforcement rules ensuring that outputs not only satisfy the required property (if
possible), but also with the “best” delay according to the current situation. We describe how to realize
the enforcement monitor using concurrent processes, how it has been prototyped and experimented.

We introduced the first steps to runtime enforcement of (continuous) timed properties. However,
several research questions remain open. As this approach targets explicitly safety and co-safety proper-
ties, it seems desirable to investigate whether more expressive properties can be enforced. We expect to
extend our approach to Boolean combinations of timed safety and co-safety properties, and more general
properties. This requires further investigation since the update function would have to be adapted. A
precise characterization of enforceable timed properties would thus be possible, as was the case in the
untimed setting [4, 14]. A more practical research perspective is to study the implementability of the
proposed approach, e.g., using robustness of timed automata.
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Abstract

A contextual net is a Petri net extended with read arcs, which allow transitions to check for tokens
without consuming them. Contextual nets allow for better modelling of concurrent read access than
Petri nets, and their unfoldings can be exponentially more compact than those of a corresponding
Petri net. In this talk, we overview the theoretical results that lead to the implementation of the first
contextual net unfolder and reachability checker. We provide experimental evidence supporting the
thesis that verification based on contextual unfoldings is at least as efficient as, and often more than,
verification based on ordinary unfoldings.

Unfoldings of Petri nets. Petri nets are a means for reasoning about concurrent, distributed systems.
They explicitly express notions such as concurrency, causality, and independence. The unfolding of a
bounded Petri net N is a safe and acyclic Petri net UN equipped with a folding morphism f : UN→N that
maps transitions and places of UN , respectively called events and conditions, to transitions and places of
N, respectively. The unfolding satisfies three important properties:

1. The sequence f (σ) labelling any run σ of UN is a run of N.

2. For any marking m̂ reachable in UN , the labelling f (m̂) is a reachable marking of N.

3. For any marking m reachable in N, there is some reachable marking m̂ of UN with f (m̂) = m.

We actually call complete (w.r.t. N) any net satisfying (3). Every reachable marking of UN represents,
thus, a reachable marking of N, and all markings reachable in N are represented in UN . In Fig. 1, the
unfolding of the Petri net (b) is shown in (c).

In general UN is infinite. Ken McMillan was the first to note [11] that a finite complete prefix PN of
UN could be constructed by appropriately cutting off infinite branches of UN , provided that N has finitely
many states. He also realized that checking coverability or deadlock-freeness of N is PSPACE-complete
in N but only NP-complete in PN , due to its acyclic structure. Of course PN can be exponentially larger
than N, but this is often not the case for highly concurrent systems.

The publication of [11] triggered a large body of research. To name a few items, the necessary
size of PN has been reduced [6], efficient tools have been implemented [15, 10], and unfolding-based
verification methods have been developed [4, 7, 9]. See [5] for a survey.

∗This is joint work with Stefan Schwoon and Paolo Baldan.
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Figure 1: (a) a c-net; (b) its encoding into a Petri net; (c) unfolding of (b)

Contextual nets and contextual unfoldings. Contextual nets (c-nets) are Petri nets extended with read
arcs, i.e., arcs allowing a transition to check for the presence of tokens without consuming them. The
context t of a transition t is the set of places linked with a read arc to t. The context of a place is defined
analogously. Fig. 1 (a) shows a c-net with two read arcs connected to p4, where we have t2 = t3 = {p4}
and p4 = {t2, t3}. As ordinary Petri nets, c-nets can be unfolded into the so-called contextual unfoldings
[16, 3], acyclic and 1-safe c-nets. Infinite branches of the contextual unfolding can also be pruned with
a suitable algorithm, yielding a complete contextual prefix. Deciding reachability of a c-net using a
complete contextual prefixes is also NP-complete.

While contextual unfoldings have the advantages of ordinary unfoldings, they enjoy additional ones.
For every c-net N, one can build an equivalent Petri net N′ obtained by substituting read arcs in N for
consume-produce loops. In Fig. 1, (b) has been obtained in this way from (a). In interleaving semantics,
N and N′ have essentially the same firing sequences and reachable markings. Every c-net can thus be
encoded into, and verified as, a Petri net.

Crucially, the complete contextual unfolding prefix PN of N can be up to exponentially more com-
pact than PN′ . A place read by multiple transitions, e.g. p4 in Fig. 1 (a), yields in N′ a choice between
those transitions, which causes all their interleavings to be explicitly present in PN′ – unfoldings fail to
treat choices more intelligently. Such transitions are, however, treated as concurrent in PN , and therefore
compactly represented. Concurrent read access to common resources happens naturally in several appli-
cations, such as concurrent database access, concurrent constraint programs, or asynchronous circuits.
Other encodings from c-nets into Petri nets are possible, but they lead to similar problems [1].

The referred explosion is shown in Fig. 1. The unfolding of the (already acyclic) c-net (a) is a c-net
isomorphic to (a), with the isomorphism being the folding morphism f . In (c), the unfolding operation
has explicitly interleaved all occurrences of the reading transitions t2 and t3, that are in conflict in (b) –
but concurrent in (a). This led to 5 occurrences of t4. If (a) was generalized to n readers, the contextual
unfolding would still be isomorphic to the c-net, but the unfolding of its Petri-net encoding would at
least have n! occurrences of t4. Verification techniques based on contextual unfoldings can, thus, profit
of their additional conciseness and will lead, we believe, to better verification tools.

In recent work [2], Baldan et al. established theoretical foundations for constructing c-net unfoldings.
A fundamental phenomenon present in c-nets but not in Petri nets is asymmetric conflict between an event
reading a token and an event consuming it, for instance t2 and t4 in Fig. 1 (a). This phenomenon forces
the c-net unfolding construction to keep track of the so-called histories. If e is an event, then a history of
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e is any set H of events present in a run of UN that contains e and such that any run that fires exactly all
events in H, fires e last. In the unfolding of Fig. 1 (a), the event labelled by t4 has four histories (t2 and t3
may or may not be included).

Traditionally, the unfolding algorithm for Petri nets incrementally constructs a complete prefix start-
ing from the initial conditions and extending it with one event at a time. Computing such extensions re-
quires solving the coverability problem for the conditions enabling the event on the currently constructed
part of the prefix. To achieve this, Petri net unfolders often rely on a concurrency relation, which stores
coverability information in an implicit fashion. In order to keep the prefix finite, they additionally mark
certain events as cut-offs: the pruning points of the otherwise potentially infinite branches.

The need to deal with histories during c-net unfolding construction impacts all aspects of the unfold-
ing algorithm. Every event in the prefix is annotated with a set of its histories. Possible extensions are
not anymore events, but enriched events, pairs (e,H) where e is an event and H is a history of e. Com-
puting possible extensions requires now solving a variant of the coverability problem where histories are
involved. The notion of cut-off is also lifted to enriched events.

Results and current work. Building on [2], we proposed in [14] algorithms and data structures to
efficiently cope with the additional complexity introduced by histories. Specifically, we proposed algo-
rithms to compute the extensions of a prefix, to decide which events are cutoffs, and data structures to
represent histories.

Our algorithm stores every history in a node-labelled directed graph called the history graph. Histo-
ries have a compositional structure. Every history H of an event e is a union of {e} and the histories of
events in •(e), ••e, and (•e). Using this fact, H is implicitly represented in the history graph as a node
labelled with e, where outgoing edges point to the histories in the decomposition. Typical operations on
histories conveniently reduce to operations on the node and its neighborhood.

We also introduced the notion of enriched condition, pairs (c,H) where c is a condition of the unfold-
ing and H is either a history of any event in •c, or a union of histories of events in c. Enriched conditions
are at the heart of the algorithm for computing possible extensions, as we sketch now.

A concurrency relation on enriched conditions was presented as a means to compute the possible
extensions of the prefix. Intuitively, this relation contains pairs of enriched conditions (c,H), (c′,H ′)
such that c and c′ are marked when one fires together their histories, i.e., the set H∪H ′ is a configuration
that marks c,c′. Deciding if the prefix has a possible extension of the form (e,H), where f (e) = t,
amounts to searching for sets of conditions D, C where f (D) = •t, f (C) = t, and there exists one history
for every condition in D∪C such that the associated enriched conditions are concurrent.

Including new events and conditions in the prefix gives rise to new enriched conditions which may
be concurrent to existing enriched conditions. The concurrency relation needs, thus, to be updated after
every extension. To achieve this, we presented an inductive characterization of the concurrency relation,
which identifies an efficient algorithm for computing these udpates. The algorithm profits from the
concurrency information already present in the relation to compute the concurrency of new enriched
conditions.

The overhead imposed by histories questioned the practical interest of c-net unfoldings: while the
final unfolding could be quite compact, the intermediate product of the construction could be exponen-
tially larger than the result. We implemented the method in the tool CUNF [12]. We aimed at building
a competent c-net unfolder that could be compared to existing tools, ensuring that the theoretical gains
were put into practice. Experimental comparisons over a standard benchmark, thus containing nets not
specially targeted towards contextual unfolding, suggested that c-net unfolding is often faster and yields
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smaller unfoldings [14, 1].
Once the practical benefits of c-net unfoldings were established, we focused on verification methods

based on them. In [13], we presented a method for checking deadlock-freenness or coverability. Here,
these problems were reduced to the satisfiability of a propositional formula generated from the unfolding.
We also proposed a number of optimizations reducing the encoding size. A tool implementing this
method is distributed together with CUNF. In our benchmarks, the accumulated SAT solving time of this
tool beats that of previously existing verification tools.

Currently we work on the definition and construction of contextual merged processes. A merged
process is a condensed representation of the state space of a Petri net, which copes with certain sources
of state space explosion in net unfoldings, like sequences of choices or non-safeness [8]. Contextual
merged processes promise to yield an exponential gain in compactness over ordinary merged processes
for certain classes of nets.

Plan of the talk. In this talk, we present results about the construction and verification of unfoldings for
c-nets. After recalling the interest of c-net unfoldings in verification, we present an efficient method for
constructing contextual unfoldings [14], and report on experiments performed with CUNF. We provide
experimental evidence supporting the thesis that building contextual unfoldings is at least as efficient as,
and often more than, building ordinary unfoldings.

We next focus on the analysis of c-nets by means of their unfoldings. We present a reduction of the
deadlock and coverability problems into SAT [13]. Time permitting, we then compare, over a series of
experiments, the performance of our method and other unfolding-based verification tools.

All results presented in this talk have been published in [14], [13], and [1].
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Abstract
The context of this work is the reconstruction of Petri net models from experimental data. Our

approach aims at generating all possible models which explain a given set of experimental data.
This typically leads to big solution sets where, however, many solutions are similar or redundant. In
order to keep the solution set as small as possible, while guaranteeing its completeness, the idea is
to generate only “minimal” Petri nets in the sense that all other networks fitting the data contain the
reconstructed ones.

In this extended abstract we consider Petri nets with three types of extensions: capacities on
places, priorities on transitions and control-arcs. We define both an equivalence relation for Petri
nets and an inclusion relation for equivalent Petri nets, taking all above extensions into account.
Finally, we discuss the impact of our results to our approach of reconstructing Petri net models.

1 Introduction

Understanding different phenomena is one of the aims of system biology; e.g., observing responses of
cells to environmental changes, host-pathogen interactions, and effects of gene defects. Several different
types of mathematical models have been developed to model and explain experimental data, see for
instance [8, 11].

Here we focus on Petri nets, a framework which turned out to coherently model both static interac-
tions in terms of networks and the dynamic processes in terms of state changes [1,2,9,13,15]. In a Petri
net P = (P,T,A ,w) the set of places P reflects the involved components and the set of transitions T
reflects the interactions between the different components, linked to the places by directed arcs in A ,
equipped with arc weights w : A → N. System states are represented with tokens on the places, i.e.,
a system state is a vector x ∈ N|P|. In this work, we consider capacitated Petri nets (P,cap), i.e., a
Petri net P equipped with a capacity function cap : P→ N which reduces the potential state space to
X = {x ∈ N|P| | xp ≤ cap(p)}. The dynamic processes are represented by sequences of state changes,
performed by switching or firing enabled transitions (see Section 2).

To obtain models from experimentally observed sequences of state changes, an exact, exclusively
data-driven, combinatorial approach was developed in [5, 6, 12, 17]. This approach takes as input a
set P of places and discrete time-series data X ′ given by sequences (x1, . . . ,xm) of experimentally ob-
served system states. The first state x1 in such a sequence is called initial state. A capacitated Petri net
∗This work was founded by the French National Research Agency, the European Commission (Feder funds) and the Région

Auvergne in the Framework of the LabEx IMobS3.
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((P,T,A ,w),cap) is able to reproduce the data when T contains enough transitions to perform for each
x j ∈X ′ the experimentally observed state change to x j+1 ∈X ′ and is called X ′-conformal. The goal
is to determine all X ′-conformal capacitated Petri nets.

The approach of reconstructing Petri net models has been extended in two directions, for Petri nets
with priorities on the transitions [12, 16, 19], and for extended Petri nets [3, 4] involving control-arcs.

The concept of priority relations among the transitions of a network was proposed in order to allow
the modelization of deterministic systems. This means that for states where at least two transitions are
enabled, the decision between the different alternatives is not taken randomly, but the transition with
highest priority is forced to switch.

An extended Petri net is a Petri net with additionally two types of control-arcs; read- and inhibitor-
arcs, which allow to disable transitions in certain system states. Hence, extended Petri nets use control-
arcs as additional activation rules to prevent enabled transitions from switching.

An X ′-deterministic extended Petri net is a capacitated, extended Petri net with priorities on the
transitions that is able to correctly reproduce a given set of experimental time-series data X ′. In par-
ticular, in every observed state x j ∈X ′, exactly the transition has highest priority, which is required to
obtain the observed successor state x j+1 ∈X ′.

Already in the case of reconstructing standard Petri nets [6], standard Petri nets with priorities [12]
or extended Petri nets without priorities [3], there is typically no unique Petri net being able to reproduce
the given data, but a large set of solution alternatives. We expect that reconstructing X ′-deterministic
extended Petri nets results in even larger solution sets. To keep the solution set small, while still guaran-
teeing completeness, the idea is to generate only Petri nets being minimal in the sense that all other nets
fitting the data contain the reconstructed ones.

While minimality can be easily related to set inclusion of the transition sets of standard Petri nets, the
difficulty for extended Petri nets with priorities is that priority relations and control-arcs are concurrent
concepts to prevent enabled transitions from switching.

Our contribution is to define a notion of minimality taking both concepts into account. For that, we
define when two X ′-deterministic extended Petri nets are equivalent, and provide an inclusion relation
for such networks. This allows us to give a definition for minimal X ′-deterministic extended Petri nets
and to classify them by their set of transitions and their set of control-arcs (see Section 3).

2 Petri Nets

A Petri net P = (P,T,A ,w) is a weighted directed bipartite graph with two kinds of nodes, places and
transitions. The places p ∈ P represent the system components (e.g. proteins, enzymes, genes, receptors
or their conformational states) and the transitions t ∈ T stand for their interactions (e.g., chemical reac-
tions, activations or causal dependencies). The arcs in A ⊂ (P×T )∪(T ×P) link places and transitions,
and the arc weights w : A → N reflect stoichiometric coefficients of the reactions.

A state in a Petri net (P,T,A ,w) is a vector x ∈ N|P|, where each entry xp corresponds to a place
p ∈ P. In biological system, the components usually can be considered to be bounded. This leads to the
definition of capacitated Petri nets. A capacitated Petri net (P,cap) is a Petri net P together with a
capacity function cap : P→ N, restricting the possible state space to X = {x ∈ N|P| | xp ≤ cap(p)}.

Extended Petri nets (P,T,AS∪AR∪AI,w) have in addition to the set of standard-arcs AS two further
sets of arcs, the set of read-arcs AR and the set of inhibitor-arcs AI . The set AC = AR∪AI is called the
set of control-arcs.
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A transition t ∈ T is said to be enabled in a state x ∈X if all of the following conditions hold:

(i) xp ≥ w(p, t) for all p with (p, t) ∈ AS,

(ii) xp +w(t, p)≤ cap(p) for all p with (t, p) ∈ AS,

(iii) xp ≥ w(p, t) for all p with (p, t) ∈ AR,

(iv) xp < w(p, t) for all p with (p, t) ∈ AI .

We say that a transition t is disabled in x, if t is not enabled in x. If a transition t ∈ T is enabled in a state
x ∈ N|P| it may switch or fire, leading to a successor state x′ ∈ N|P|, with

x′p =


xp−w(p, t), for all p with (p, t) ∈ AS,

xp +w(t, p), for all p with (t, p) ∈ AS,

xp, otherwise.

In an extended Petri net there is usually more than only one transition enabled in a state. From
all enabled transitions, one is chosen non-deterministically to fire in that state. However, this is not
appropriate for biological or other deterministic systems, where a certain stimulation always results in
the same response. For this purpose priorities on transitions can be used. We call (P,O) an extended
Petri net with priorities, if P is an extended Petri net and O a priority relation on T . In this work, a
priority relation is a partial order on the set of transitions. Another possibility for defining a priority
relation is given in [16].

A capacitated, extended Petri net with priorities on transitions (P,O) which is able to reproduce a
given experimental time-series data X ′ is called X ′-deterministic extended Petri net.

3 Classification of X ′-Deterministic Extended Petri Nets

In this section we consider X ′-deterministic extended Petri nets, generated by reconstruction from ex-
perimental time-series data X ′ (see [18] for more information). To keep the solution set as small as
possible, while ensuring its completeness, we are interested in getting only those X ′-deterministic ex-
tended Petri nets, which are minimal in the sense that all other possible nets contain the generated ones.
We propose to formalize an inclusion relation between X ′-deterministic extended Petri nets on classes
of equivalent Petri nets.

In the literature there are several concepts for the equivalence of Petri nets, two often used ones
are marking equivalence1 (see, e.g., [7]) and bisimulation2 equivalence (see, e.g., [10, 14]). These two
concepts are not suitable for our purpose, as we need to compare two X ′-deterministic extended Petri
nets only taking states in X ′ into account, but starting from all initial states x1 ∈ X , not only for one
initial state.

In general, the reconstruction approach generates Petri nets not only from the observed sequences,
but also considers possible intermediate states between two observed states, to ensure the completeness
of the solution set (see, e.g., [17]). This implies that for two X ′-deterministic Petri nets not only the set
of control-arcs and priorities can be different, but also the set of places, transitions and standard-arcs.

1 Let P = (P,T,A ,w) be a Petri net equipped with an initial state. A sequence of transitions t1, . . . , tk in T is called
feasible switching sequence for a state x0 ∈X in P , if x j ∈X is the successor state of x j−1 switching the transition t j, for
all 1≤ j ≤ k. A state xk ∈X is reachable from an initial state x0 ∈X if there exists a feasible switching sequence from x0 to
xk. Two Petri nets are marking equivalent, if they have the same set of reachable states, starting from the same initial state.

2 Two Petri nets are bisimilar if every feasible switching sequence in one Petri net is a feasible switching sequence in the
other Petri net, and vice versa.
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Definition 1. Two X ′-deterministic extended Petri nets (P,cap,O) and (P̂,cap,Ô) are X ′-equivalent
if P = P̂, T = T̂ , AS = ÂS and w|AS = ŵ|ÂS

hold.

One can easily verify that this indeed defines an equivalence relation. On the induced equivalence
class we give an inclusion relation based on the concept of bisimulation equivalence. For that, we need
to introduce a further notion. Let (P,cap,O) be an X ′-deterministic extended Petri net; we call a
sequence of transitions t1, . . . , tk O-feasible switching sequence for a state x0 if t j ∈TP,O(x j−1) := {t ∈
T | t enabled in x j−1∧@t ′ ∈ T with t ′ enabled in x j−1 and (t < t ′) ∈ O, t 6= t ′}, for all 1≤ j ≤ k.

Definition 2. Consider two X ′-equivalent Petri nets (P,cap,O) and (P̂,cap,Ô). We say P is in-
cluded in P̂ , denoted by P ⊆ P̂ , if and only if for all states x ∈ X , every Ô-feasible switching
sequence for x in P̂ is a O-feasible switching sequence for x in P .

In Figure 1 two X ′-equivalent Petri nets (P,1,O) and (P̂,1,Ô) are shown, where X ′ is given by

(1 1 0 0)→ (1 0 0 1)→ (0 0 1 1) and (1 0 0 0)→ (0 0 1 0).

In this example we have P ⊆ P̂ .

A B

C D DC

BA

t1 t2 t2
t1

P = P̂ =

O = {t1 < t2} Ô = ∅

Figure 1: Consider two X ′-equivalent Petri nets, (P,1,O) and (P̂,1,Ô). For every state x ∈X \
{(1101)} both nets have the same O-feasible switching sequence (resp. Ô-feasible switching sequence)
for x. However, in the state x′=(1101), which is indicated as marking in the figure, we have TP,O(x′)=
{t1} but TP̂,Ô(x

′) = /0. Therefore, P ⊆ P̂ follows.

In order to formulate a minimality concept, we need the following notions. For an X ′-deterministic
extended Petri net ((P,T,AS∪AC,w),cap,O),
• a control-arc (p, t)∈AC is necessary if ((P,T,AS∪(AC\{(p, t)}),w),cap,O) is not X ′-conformal;
• a priority (t < t ′) ∈O is necessary if O \{(t < t ′)} is not a partial order or (P,cap,O \{(t < t ′)})

is not X ′-conformal;
• a priority (t < t ′) ∈ O is strictly necessary if (P,cap,O \{(t < t ′)}) is not X ′-conformal.

If a priority is not (strictly) necessary, we call this element (strictly) unnecessary.

Definition 3. Among all X ′-equivalent extended Petri nets, (P,cap,O) is minimal if and only if
(P,cap,O) does neither have unnecessary elements nor another X ′-deterministic extended Petri net
(P̂,cap,Ô) being X ′-equivalent to (P,cap,O) is included in P .

Based on this inclusion relation for X ′-equivalent Petri nets, we compare X ′-deterministic extended
Petri nets by distinguishing the following four cases:

(i) O ⊂ Ô and AC = ÂC,
(ii) O = Ô and AC ⊂ ÂC,

(iii) O ⊂ Ô and AC ⊂ ÂC,
(iv) Ô ⊂ O and AC ⊂ ÂC.

The idea behind this classification is to determine, when we can safely remove a priority or a control-
arc in order to get a “smaller” X ′-deterministic extended Petri net.

Theorem 4 (Case (i)). Let (P,cap,O) and (P̂,cap,Ô) be two X ′-equivalent Petri nets with O ⊂ Ô
and AC = ÂC. Then P ⊆ P̂ holds.
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One can find examples, so that in the cases (ii) and (iii) neither P ⊆ P̂ nor P̂ ⊆P follows, i.e.,
both X ′-deterministic extended Petri nets cannot be compared w.r.t. minimality. In this case, possibly
both Petri nets are minimal.

In Figure 2 one can see an example for two X ′-equivalent Petri nets, with X ′ given by the sequences

(1 0 0 0 0)→ (0 0 0 1 0), (0 1 1 0 0)→ (0 1 0 0 1) and (1 1 1 0 0)→ (1 1 0 0 1)→ (0 1 0 1 1).

In this example, case (ii) holds, i.e., O = Ô and AC ⊂ ÂC, but neither P ⊆ P̂ nor P̂ ⊆P holds.

A C

D EED

CA BB

t1 t2t2t1

Ô = {t1 < t2}O = {t1 < t2}

P̂ =P =

Figure 2: Consider two X ′-equivalent Petri nets, (P,1,O) on the left and (P̂,1,Ô) on the right. Both
nets have the same set of priorities on their transitions, but AC ⊂ ÂC. In the state x = (10100), shown
in the figure, we see that in P both transitions are enabled, but due to the priority (t1 < t2) only t2 is
allowed to switch. In P̂ the transition t2 is disabled. Therefore t1 switches in x. It follows that neither
the switching sequences starting from x in P is included in the switching sequence starting from x in
P̂ , nor vice versa; thus, neither P ⊆ P̂ nor P̂ ⊆P holds.

Conjecture 1 (Case (iv)). Let (P,cap,O) and (P̂,cap,Ô) be two X ′-equivalent Petri nets with Ô ⊂O
and AC ⊂ ÂC. Furthermore, let every control-arc in ÂC be necessary.

If for all (t < t ′) ∈ O \ Ô the following properties hold:
• there exists an inhibitor-arc (p, t) ∈ ÂI \AI , where p is a pre-place of t ′ in P , or there exists a

read-arc (p′, t) ∈ ÂR \AR, where p′ is a post-place of t ′ in P ,
• (t < t ′) is strictly necessary in O ,
• there does not exist a transition t ′′ with (t ′′ < t) ∈ Ô ,
• t and t ′ are not both enabled in any state in P̂ ,

then P ⊆ P̂ follows.

4 Conclusion

In this work, we address the problem of classifying capacitated extended Petri nets with priorities, re-
constructed from experimental time-series data X ′.

We defined both, an equivalence relation for such Petri nets, as well as an inclusion relation on
the networks within an equivalence class in order to identify minimal elements therein. For that, we
distinguished four cases for inclusions of O,Ô and AC, ÂC.

Obviously, the condition for Theorem 4 can be checked easily. The first condition of Conjecture 1
can be quickly tested, while the second condition is ensured by the reconstruction algorithm itself. The
other two conditions can be done in polynomial time by [16]. Hence, these conditions imply an inclusion
of two X ′-equivalent Petri nets that could indeed be applied practically to reduce the solution set of the
studied reconstruction approach.

Our further goals are to prove Conjecture 1 and to identify some properties for capacitated extended
Petri nets with priorities, so that also for the two cases (ii) and (iii) some sufficient conditions for their
inclusion can be imposed.
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