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Abstract. Timed automata constitute a well adapted model for real-time aspects.
However, a classical forward analysis algorithm used to verify safety properties
has been showed to be incorrect in the general framework of timed automata.
Nevertheless, it is correct when we restrict the class to timed automata with only
non-diagonal guards. The aim of this work is to understand the role of diagonal
guards and propose a method that provides correct algorithms in the general case.

1 Introduction

Safety properties constitute basic and fundamental properties in verification. Several
tools implement algorithms which decide whether a system satisfies such properties.
Most of them implement a classical version of a forward analysis algorithm. It has
been proved recently that this classical forward analysis algorithm is not correct for the
whole class of timed automata [Bou04]. This has been a big surprise since tools have
been used by the past successfully.
Several solutions have been proposed, which basically remove diagonal guards from the
automaton, but this suffers from a combinatorics explosion. In our approach, we will
propose a new scheme based on a selection of diagonal guards which are responsible of
spurious results in order to avoid this combinatorial explosion.
The structure of the paper is the following: we first recall some background on timed
automata and we describe the implementation of the forward analysis algorithm that we
study (section 2); we then motivate our choice of a counter-example guided refinement
method (section 3) and show that the crucial step will be the detection of guilty guards,
step that we develop in section 4. Full explanations can be found in my DEA report
[Rey04].

2 Timed Automata and Forward Analysis

A timed automaton is a classical finite automaton with a set of variables called clocks.
We consider a timed domain such as or . In the following, we fix a set of
clocks . A clock valuation is a mapping that assigns to each clock a time value.



Guards. Given a set of clocks , the set of clock constraints (we simply say guards)
over , denoted , is defined by the following grammar:

where .
The constraints of the form are called diagonal guards.
A clock constraint is -bounded if it involves only constants between and .

Timed Automata. A timed automaton over is a tuple , where
is a finite alphabet of actions, is a finite set of states, is a finite set of clocks,

is a finite set of transitions, is the subset of initial
states and is the subset of final states.

A configuration of a timed automaton is a pair where is a state and is a val-
uation of clocks. Two evolutions are possible. Firstly, we can stay in the same location
and let time elapse: every clock increases of the same duration . Secondly, we can
fire a discrete transition . This require that is enabled, i.e. that
the valuation satisfies the guard . Then we move to state and reset the clocks of .

Symbolic Representation. Because of the large number of possible configurations, al-
gorithms and tools use a symbolic representation of sets of valuations: a zone is a set
of valuations defined by a clock constraint. A zone is -bounded if it is defined by
a -bounded constraint. We define an operator on zones called the -approximation
and denoted Approx . Given a zone , it computes the smallest (for the inclusion) -
bounded zone containing Z.

The Forward Analysis Algorithm. The problem of deciding emptiness of the lan-
guage accepted by a timed automaton is PSPACE-complete ([AD94,AL02]). However,
in practice, on-the-fly zone algorithms are implemented. In order to enforce termination,
different kinds of abstractions are proposed to limit computations to a finite number of
zones. One of the forward analysis algorithms for classical timed automata uses the -
approximation we have defined before. This algorithm is presented here as Algorithm
1. The operator Post computes the successor in one step by letting time elapse and then
fire enabled transitions. Algorithm 1 simply iterates this operator following a breadth-
first search.

Correctness Problem. The question of correctness has been well studied in [Bou04].
A first important remark is that Algorithm 1 computes an overapproximation of reach-
able states since we have Approx . The following results allow us to well
understand the situation. Theorem 1 is exactly the result we have anounced in the intro-
duction:

Theorem 1 There exists a timed automaton with 4 clocks and with diagonal constraints
such that Algorithm 1 is not correct on this input, whatever the integer is.

The next theorem explains why this bug has not been discovered before while many case
studies have been successfully analyzed [HSLL97,BBP02]: most case studies didn’t use
diagonal guards.



Algorithm 1 Classical forward analysis algorithm for timed automata.
Require: a timed automaton, the constant of extrapolation
Ensure: ?
1: Visited ;
2: Waiting Approx ; /* initial zone */
3: repeat
4: Get and Remove from Waiting;
5: if is a final state then
6: Return “A final state is reachable.”;
7: else
8: if there is no Visited such that then
9: Visited Visited ;
10: Successor Approx Post transition from to ;
11: Waiting Waiting Successor;
12: end if
13: end if
14: untilWaiting ;
15: Return “No final state is reachable.”;

Theorem 2 Algorithm 1 is correct for timed automata that have no diagonal guards.

This latter theorem leads naturally to study the role of the diagonal guards. The follow-
ing result has been a great help in the work we will present here after.

Theorem 3 ([BDGP98]) Given a timed automaton containing a diagonal guard ,
we can construct a timed automaton not containing anymore the guard such that

. The size of the new automaton is twice the size of the previous one.

Theorem 3 gives naturally a solution to our problem. Indeed, it is easy to see that given a
timed automaton , we can compute a new timed automaton , containing no diagonal
guards, and which is equivalent to with respect to the accepted language. We can
then apply Algorithm 1 to and by Theorem 2, we obtain correctness of this method.
Unfortunately, the size of is exponential in the size of . Therefore, this solution is
not efficient in terms of complexity.

3 Counter-Example Guided Refinement

Motivations. Algorithm 1 computes an overapproximation of reachable states. The
only problem thus stands in that some states may be found reachable whereas they
are not. It is easy to check if a path found by the algorithm is a spurious or a real path.
We could think it is thus sufficient to reuse the classical algorithm 1 and add a proce-
dure that checks its answers. Unfortunately, we can show that this method doesn’t work
because of the inclusion test of line 8. Indeed, approximations made during the discover
of a spurious counter-example can prevent the algorithm from discovering later a real
counter-example. This leads us to use a more complicated method.



Counter-example guided refinement. We have seen in section 2 that there exists a
procedure that builds an equivalent automaton which does not contain anymore diago-
nal guards but this has an expensive cost in terms of complexity. The idea we will use
here relies on the fact that the bug may depend only on one or two diagonal guards of
the system, and surely not on all diagonal guards. Therefore, we will try to choose “in
a clever way” the guards we remove. The general scheme is depicted on figure 1.
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Fig. 1. Counter-example guided refinement.

As we claimed before, the test whether a counter-example is spurious is not difficult. We
have also mentioned the procedure for removing a given diagonal guard. The only part
that remains to be explained is the detection of guilty diagonal guards. This constitutes
the difficult part of this method. Different approaches can be planned. On one side, we
can try to find a guard, or a set of guards, that ensures that after having removed this
guards, the algorithm will not obtain the same spurious counter-example anymore. On
the other side, we can prefer having an algorithm with a lower complexity, but which
may not have the strong property above.

4 Detection of Guilty Guards

We focus now on the analysis of a spurious counter-example to find “guilty” guards. It
means that we consider a path in a timed automaton such that the computation made
by the algorithm leads to a non-empty zone at the end of the path, whereas the exact
computation of successors along this path leads to an empty zone. As we know that the
algorithm is correct when there is no diagonal guards, we have that there is at least one
diagonal guard along this path. Our goal is then to detect “guilty” diagonal guards along
this path. Therefore we develop a method that checks whether a diagonal guard can be
“simulated” by non-diagonal ones.

Definition 1 Let be the first diagonal guard of a transition on a spurious counter-
example in a timed automaton. We assume that is a simple guard and that is the



last transition of . The diagonal guard is said to be non-diagonal equivalent if there
exists a timed automaton with no diagonal guards and a path in this automaton such
that the zones computed by algorithm 1 at the end of and are the same.

Since we have seen that the computations made by algorithm 1 on automata with no
diagonal guards are correct with respect to reachability, this definition guarantees that
Algorithm 1 has not made yet any mistake.

To check whether this criteria is satisfied, we can use the construction associated to
Theorem 3. We consider the first diagonal guard appearing along the path of a spuri-
ous counter-example, and we remove this guard by adding constraints on the last reset
of one of the two clocks appearing in the guard. This procedure is illustrated on figure
2. If this construction does not lead to a satisfying automaton, we can consider that the
guard is suspicious.

* *

* *

Fig. 2. Local refinement step.

This test gives us a way to detect suspicious guards. Morover, we can obtain a procedure
which has the strong property described above. Indeed, we can iterate this procedure in
order to build a set of guards which ensures to eliminate the spurious counter-example
studied in this refinement step. In fact we just have to remove successively each diago-
nal guard according to the local refinement step described above. At the end, we have
no more diagonal guard on this path and because of Theorem 2, the new computation
will announce that the final state along this path is no more reachable since the studied
counter-example is spurious.

To conclude this section, we discuss an other aspect. As we explained before, it can also
be interesting to have a simple and low cost procedure to choose diagonal guards, even
if this procedure does not build a relevant or complete set of guilty guards. For exam-
ple, we can choose randomly a diagonal guard appearing along the spurious counter-
example, or take the first or the last one. There are thus several way to implement such
a procedure.

5 Conclusion

The problem we have addressed here is related to verification of timed systems. It has
been proved that a classical forward analysis algorithm used to decide safety and reach-



ability properties is not correct as soon as diagonal guards are allowed. Our aim was to
understand the role of diagonal guards and to propose correct algorithms in the general
framework.
We have presented in section 2 the precise context of the problem we want to tackle:
ensure correctness of a forward computation for timed automata using diagonal guards.
The construction of [BDGP98] gives raise to a first algorithm which consists in re-
moving all the diagonal guards. Unfortunately, this has an exponential cost. Another
algorithm based on a related idea has been proposed in [BY03]. But it also suffers from
the same drawback. Whereas there seems to be very few bugs in timed automata built
from real systems, and whereas it seems that not every guard is responsible, the two
methods above systematically apply the procedure which removes a diagonal guard to
every guard appearing in the automaton. That’s why we have tried to develop a method
that reduces the number of calls to this procedure by using counter-example guided re-
finement. We have explained this general approach in section 3, and detailed a possible
refinement step in section 4. This leads to numerous solutions whose efficiency has not
been tested in practice yet.
Future work will consist in developping another procedure for detecting guilty diagonal
guards based on a real-time history of errors made by algorithm 1. We also would like
to compare all the different algorithms we have proposed.
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