
Two-Way Visibly Pushdown Automata and Transducers ∗

Luc Dartois Emmanuel Filiot
Université Libre de Bruxelles, Belgium
{ldartois,efiliot}@ulb.ac.be

Pierre-Alain Reynier Jean-Marc Talbot
LIF, Aix-Marseille University, CNRS, France
firstname.lastname@lif.univ-mrs.fr

Abstract
Automata-logic connections are pillars of the theory of regular lan-
guages. Such connections are harder to obtain for transducers, but
important results have been obtained recently for word-to-word
transformations, showing that the three following models are equiv-
alent: deterministic two-way transducers, monadic second-order
(MSO) transducers, and deterministic one-way automata equipped
with a finite number of registers. Nested words are words with a
nesting structure, allowing to model unranked trees as their depth-
first-search linearisations. In this paper, we consider transforma-
tions from nested words to words, allowing in particular to produce
unranked trees if output words have a nesting structure. The model
of visibly pushdown transducers allows to describe such transfor-
mations, and we propose a simple deterministic extension of this
model with two-way moves that has the following properties: i) it is
a simple computational model, that naturally has a good evaluation
complexity; ii) it is expressive: it subsumes nested word-to-word
MSO transducers, and the exact expressiveness of MSO transduc-
ers is recovered using a simple syntactic restriction; iii) it has good
algorithmic/closure properties: the model is closed under composi-
tion with a unambiguous one-way letter-to-letter transducer which
gives closure under regular look-around, and has a decidable equiv-
alence problem.

Keywords Transductions, Pushdown automata, Logic.

1. Introduction
Pillars of word language theory The theory of languages is one
of the deepest and richest theory in computer science, with success-
ful applications such as, computer-aided verification and synthesis.
A major reason for this success is the strong connections between
models of languages, with quite different flavours, that are based
on two important pillars: computation and logic. Perhaps one of
the most famous example is the effective correspondence for reg-
ular languages of finite words between a low-level computational

∗ Emmanuel Filiot is research associate at FNRS. This work is supported by
the ARC project Transform (French speaking community of Belgium), the
Belgian FNRS PDR project Flare, and the French ANR project ExtStream.
This work has been carried out thanks to the support of the ARCHIMEDE
Labex (ANR-11-LABX-0033) and the A*MIDEX project (ANR-11-IDEX-
0001-02) funded by the Investissements dAvenir French Government pro-
gram, managed by the French National Research Agency (ANR).

[Copyright notice will appear here once ’preprint’ option is removed.]

model, finite state automata, and a high-level declarative formal-
ism, monadic second-order logic (MSO). Similar connections have
been obtained for other structures (e.g. infinite words, finite and
infinite trees, nested words) (Thomas 1997; Comon-Lundh et al.
2007). In some cases, it has been even possible to build a third pil-
lar based on algebra. The class of regular languages for instance is
known to be the class of languages with finite syntactic congruence.

The logic/two-way/one-way trinity of word transductions To
model functions from (input) words to (output) words, i.e. word
transductions, and more generally word binary relations, automata
have been extended to transducers, i.e. automata with outputs.
Whenever a transducer reads an input symbol, it can produce on the
output a finite word, the final output word being the right concate-
nation of all the finite words produced along the way. To capture
functions mirroring or copying twice the input word, transducers
need to read the input word in both directions: this yields the class
of two-way finite state transducers (2FST). Two-way transduc-
ers have appealing properties: they are closed under composition
(Chytil and Jákl 1977) and if they are deterministic, their equiva-
lence problem is decidable (in PSpace) (Gurari 1982; Culik and
Karhumaki 1987) and the transduction can be evaluated in constant
space (for a fixed transducer), the output being produced on-the-fly.

Impressively, in the late 90s, deterministic two-way transducers
have been shown in (Engelfriet and Hoogeboom 2001) to corre-
spond to monadic second-order transducers (MSOT), a powerful
logical formalism introduced in (Courcelle 1994) in a more gen-
eral context, with independent motivations. It was the first logic-
transducer connection obtained for a class of word transductions
expressive enough to capture interesting and desirable transduc-
tions. This correspondence has been extended to finite tree trans-
ductions (Engelfriet and Maneth 1999, 2003; Bloem and Engelfriet
2000).

Recently, an MSOT-expressive one-way model, streaming string
transducers (SST), has been introduced in (Alur and Černý 2010,
2011): it uses registers that can store output words and can be com-
bined and updated along the run in a linear (copyless) manner (a
register content cannot be used twice in an update). The main ad-
vantage of this model is its one-wayness, but the price to pay is the
space complexity of evaluation: it depends also on the size of the
register contents.

The models MSOT, deterministic 2FST and deterministic SST
have the same expressive power, and we refer to this correspon-
dence as the logic/two-way/one-way trinity. This trinity has been
extended to transductions of infinite words (Alur et al. 2012) and
ranked trees (Courcelle and Engelfriet 2012; Alur and D’Antoni
2012). For trees, bi-directionality is replaced by a tree walking abil-
ity: the transducer can move along the edges of the tree in any di-
rection. However, to capture MSOT, the transducer needs to have
regular look-around, i.e. needs to be able to test regular properties
of the context of the tree node in which it is currently positioned
(Courcelle and Engelfriet 2012). Look-arounds can be removed at

2-way Visibly Pushdown Automata & Transducers 1 2016/8/29

the price of adding a pushdown store (Courcelle and Engelfriet
2012). For one-way machines, uni-directionality is modeled by fix-
ing the traversal of the tree to be a depth-first left-to-right traversal
and, as for words, to capture MSOT, the transducer needs to have
registers (Alur and D’Antoni 2012). Tree-walking transducers with
look-around, and tree transducers with registers are strictly more
expressive than MSOT, but restrictions have been defined that cap-
ture exactly MSOT. Finally, let us mention the macro tree trans-
ducers, the first computational model shown to capture, with suit-
able restrictions, MSOT ranked tree transductions (Engelfriet and
Maneth 1999, 2003; Bloem and Engelfriet 2000). This model has
parallel computations, like a top-down tree automaton, and regis-
ters.

Nested words In this paper, we consider transductions of nested
words to words. Nested words are words with a nesting structure,
built over symbols of two kinds: call and return symbols1. In par-
ticular, nested words can model ordered unranked trees, viewed as
their depth-first, left-to-right, linearisation, and in turn are a natural
model of tree-structured documents, such as XML documents. Vis-
ibly pushdown automata (VPA) have been introduced in (Alur and
Madhusudan 2009) as a model of regularity for languages of nested
words. They are pushdown automata with a constrained stack pol-
icy: whenever a call symbol is read, exactly one symbol is pushed
onto the stack, and when reading a return symbol, exactly one sym-
bol is popped from the stack. Therefore, at any point, the height
of the stack corresponds to the nesting level (call depth) of the
word. Roughly, VPA are tree automata over linearised trees, and
as such they inherit all the good closure and algorithmic proper-
ties of tree automata. However, viewing trees as nested words has
raised motivating questions in the context of tree streams, such as
streaming XML validation (Picalausa et al. 2011; Segoufin and Sir-
angelo 2007), streaming XML queries (Kumar et al. 2007; Gauwin
et al. 2011), as well as streaming XML transformations (Filiot et al.
2011) (see also (Alur 2016) for other applications of VPA).

By using a matching predicate M(x, y) that holds true if x is a
call symbol, y is a return symbol and is the matching return of x,
MSO logic can be extended from words to nested words, and it is
known to correspond to regular nested word languages (Alur and
Madhusudan 2009).

Nested word to word transductions Besides the motivations
given before for considering nested words instead of unranked
trees, we argue that seeing unranked trees as nested word yields
a natural and simple two-way model for transductions of nested
words, presented later. On the output, we do not require the words
to have a particular structure. It is not a weakness: nested words
are words, and the model we introduce in this paper can as well
produce output words that are nested.

VPA have been extended with output, yielding the class of
visibly pushdown transducers (VPT, (Filiot et al. 2010)). When
reading an input symbol, VPT can generate a word on the output.
VPT have good algorithmic and closure properties, and are well-
suited to a streaming context (Filiot et al. 2011). However, VPT
suffer from a low expressive power, as they are only one-way,
without registers.

Based on MSO for nested words, one can define MSO trans-
ducers à la Courcelle to define nested word to word transductions.
From now on, we refer to such MSO transducers as MSOT. A one-
way model has already been defined in (Alur and D’Antoni 2012)
that captures exactly MSOT. They extend VPA with registers that
can store partial output words. Whenever a call symbol is read, the

1 Sometimes, internal symbols are also considered but in this paper, to ease
the presentation, we omit them. This is wlog as an internal symbol a can be
harmlessly replaced by a call symbol ca followed by a return symbol ra.

contents of the registers are pushed onto the stack and all the regis-
ters reset. On reading return symbols, they can combine the content
of the current registers with the content of the registers stored on the
stack, in a copyless fashion. The space complexity of evaluation for
such transducers is linear in the length of the input nested word, and
they have decidable equivalence problem.

Objective and two-way visibly pushdown transducers Our main
goal in this paper is to establish a logic/two-way/one-way trinity
for nested word to word transductions. Since the logic/one-way
connection has already been shown in (Alur and D’Antoni 2012),
we want in particular to define a two-way computational model with
the following requirements: it must be conceptually simple, at least
as expressive as MSOT and have decidable equivalence problem.

To this aim, we introduce deterministic two-way visibly push-
down transducers (D2VPT) and show it meets the later require-
ments. D2VPT read their input in both directions, and their stack
behaviour not only depends on the type of symbols they read, but
also on the reading mode they are in, either backward or forward. In
a forward mode, they behave just like VPT. On the backward mode,
they behave like VPT where the call and return types are swapped:
when reading a return symbol backward, they push a symbol onto
the stack, and when reading a call symbol backward, they pop a
symbol from the stack. They can change their mode at any moment,
and produce words on the output.

Let us give now an illustrating example of a transduction fs of
nested words, which will be formalised in Example 1. Assume a
set of call symbols {1, . . . , n} ordered by the total order on nat-
ural numbers, and one return symbol {r}. The transduction fs
sorts an input nested word in ascending order, recursively nest-
ing level by nesting level, according to the order on calls. We
assume inputs start and end with special symbols . and / (call
and return resp.). E.g., fs maps .22r1rr1r3r/ to .1r21r2rr3r/
and .23r1r2rr2r3r1r/ to .1r21r2r3rr2r3r/ (see Figure 1). To
make fs a function in case the same call symbol occurs twice at the
same level, fs preserves their order of appearance. The tree repre-
sentation of this mapping is given in Figure 1 (omitting return sym-
bols). The transduction fs is easily implemented with a D2VPT
Ts. To process a sequence of siblings at level k, Ts works as fol-
lows: for i from 0 to n, Ts performs a forward pass on the siblings
(note that a sibling is actually a tree whose linearisation is of the
form jwr where w is again a sequence of linearised trees). During
this forward pass, Ts transforms a sibling jwr into ε if j 6= i, and
into iw′r otherwise, wherew′ is the result of sorting recursivelyw.
To implement the loop, when Ts has finished the i-th forward pass,
i.e. when it reads a return symbol at level j − 1, it comes back to
its matching call and starts from there the (i + 1)-th forward pass,
if i < n.

Contributions By linearising input trees, the simple and well-
known concept of bi-directionality can be generalised naturally
from words to trees. While D2VPT, as we show in this paper, allow
one to lift known results from word transductions to nested word to
word transductions, we think that D2VPT are an appealing model
for the following reasons:

memory efficiency Regarding the complexity of evaluation, for a
fixed D2VPT, computing the output word of an input nested
word w can be done in space O(d(w)), where d(w) is the
depth of w. Indeed, only the stack and current state need to
be kept in memory when processing an input nested word. It
is an appealing property when transforming large but not deep
tree-structured documents, such as XML documents in general.

expressiveness At the same time, we show that this efficiency does
not entail expressive power: D2VPT can express all MSOT
transductions. They are strictly more expressive than MSOT

2-way Visibly Pushdown Automata & Transducers 2 2016/8/29

.

2 2 3 1

3 1 2

⇒

.

1 2 2 3

1 2 3

. 2 3 r 1 r 2 r r 2 r 3 r 1 r /

. 1 r
2 1 r

2 r
3 r r 2 r

3 r /

Figure 1. On top, the transformation of the input. Between siblings
with the same labeling, the original order is preserved. Below, the
run of the transducer. Dashed lines are non producing sequences.

as they can for instance express transduction of exponential
size increase, while MSOT are only of linear size increase. By
putting a simple decidable restriction on D2VPT, called single-
useness, D2VPT capture exactly MSOT transductions.

algorithmic properties Despite their high expressive power, D2VPT
still have decidable equivalence problem. We also prove that
preprocessing the input of a D2VPT by a letter-to-letter unam-
biguous VPT does not increase its expressive power, as their
composition is again a D2VPT.

The proof of expressiveness relies on an existing correspon-
dence between tree-walking and MSO transducers of ranked trees
to words (Courcelle and Engelfriet 2012), and on the classical first
child-next sibling (fcns for short) encoding of unranked trees into
binary trees. As in (Courcelle and Engelfriet 2012), we use an in-
termediate automata model equipped with MSO look-around, and
then show that these look-around tests can be removed. For the
latter property, our proof differs from that of (Courcelle and Engel-
friet 2012) in which a pushdown stack is used to update informa-
tion on MSO-types. On binary trees, their model pushes the stack
while moving to the first-child, but also while moving to the second
child. This latter push corresponds, through the fcns encoding, to
pushing a symbol while moving to the next sibling, an operation
that is not allowed with a visibly pushdown stack. Hence, in order
to prove that look-around tests can be removed in our model, we
need a more involved construction, that extends a non-trivial result
proven in (Hopcroft and Ullman 1967) for two-way automata on
words. Decidability of D2VPT equivalence is done by reduction
to deterministic top-down tree to word transducer equivalence, a
problem which was opened for long and recently solved in (Seidl
et al. 2015).

Application 1: Unranked tree to word walking transducersD2VPT
can easily be translated into a pushdown walking model of un-
ranked tree to word transductions. It works exactly as in the ranked
tree case of (Courcelle and Engelfriet 2012): one stack symbol is
pushed while going downward and popped while going upward.
While moving along sibling relations, the stack is untouched. As a
consequence of our results, this model, with single-use restriction,
captures exactly MSOT. This model is discussed in the last section.

Application 2: Query 2VPA Deterministic two-way VPA have
been introduced in (Madhusudan and Viswanathan 2009) as an
equi-expressive model for MSO-definable unary queries on nested
words. Using (Neven and Schwentick 2002; Niehren et al. 2005),
such queries can be shown to be equivalent to unambiguous VPA
with special states which select the nested word positions that are

answers to the query. As shown in (Madhusudan and Viswanathan
2009), unambiguity can be traded for determinism, at the price of
adding two-wayness. This result comes as a consequence of ours: a
one-way unambiguous selecting VPA can be seen as a deterministic
VPT with look-around, that annotates the input positions selected
by the VPA (look-around resolves nondeterminism), which can be
transformed into a D2VPT using our results. The main ingredient
of the proof of (Madhusudan and Viswanathan 2009) is also a
Hopcroft-Ullman construction, but in a setting simpler than ours 2.

Organisation of the paper In Section 2, we introduce two-way
VPA and two-way VPA with look-around, define the notion of
transition algebra for 2VPA and use this to show that they are
equivalent to one-way VPA. As a consequence, they have decidable
(exptime-c) emptiness problem. In Section 3, we introduce D2VPT
and D2VPT with look-around, show that they are equivalent, and
study their algorithmic properties. Section 4 is devoted to the ex-
pressiveness of D2VPT, with a comparison to MSOT and to other
known models of nested word to word transductions. Due to lack
of space, some results are proved in Appendix. Finally, all our ex-
pressiveness equivalences are effective.

2. Two-way visibly pushdown automata
2.1 Definitions
We introduce in this section two-way visibly pushdown automata,
following the definition of (Madhusudan and Viswanathan 2009).

We consider a structured alphabet Σ defined as the disjoint
union of call symbols Σc and return symbols Σr . The set of words
over Σ is Σ∗. As usual, ε denotes the empty word. Amongst words,
the set of nested words N (Σ) is defined as the least set such that
ε ∈ N (Σ) and if w1, w2 ∈ N (Σ) then both w1w2 and cw1r (for
all c ∈ Σc and r ∈ Σr) belong to N (Σ). In the following, we
assume that input words of our models are always nested words.
This is not restrictive as all our models can recognize and filter
nested words.

For a word w ∈ Σ∗, its length is denoted by |w| and we
denote by w(i) its ith symbol. Its set of positions is pos(w) =
{1, . . . , |w|}, and for i, j ∈ pos(w) such that i < j, we say
that (i, j) is a matching pair of w if w(i) ∈ Σc, w(j) ∈ Σr
and w can be decomposed into w = w1w(i)w2w(j)w3, where
w1, w3 ∈ Σ∗, w2 ∈ N (Σ) and |w1| = i − 1, |w2| = j − i − 1.
Note that if w ∈ N (Σ), then necessarily, w1w3 ∈ N (Σ).

When dealing with two-way machines, we assume the struc-
tured alphabet Σ to be extended into Σ by adding two special sym-
bols ., / in Σc and Σr respectively, and we consider words with
left and right markers from .Σ∗/.

DEFINITION 1. A two way visibly pushdown automaton (2VPA
for short) A over Σ is given by (Q, qI , F,Γ, δ) where Q is a finite
set of states, qI ∈ Q is the initial state, F ⊆ Q is a set of final
states and Γ is a finite stack alphabet. Given the set D = {←,→}
of directions, the transition relation δ is defined by δpush∪δpop where

• δpush ⊆ ((Q×{→}×Σc)∪(Q×{←}×Σr))×((Q×D)×Γ)
• δpop ⊆ ((Q×{←}×Σc×Γ)∪(Q×{→}×Σr×Γ))×(Q×D)

Additionally, we require that for any states q, q′ and any stack
symbol γ, if (q,←, ., γ, q′, d) ∈ δpop then d =→ and if (q,→
, /, γ, q′, d) ∈ δpop then d =←.

Informally, a 2VPA has a reading head pointing between sym-
bols (and possibly on the left of . and on the right of /). A con-
figuration of the machine is given by a state, a direction d and a

2 They provide a construction for the composition of a co-deterministic
VPA with an unambiguous VPA, while we study that of a D2VPA with
an unambiguous VPA.

2-way Visibly Pushdown Automata & Transducers 3 2016/8/29

stack content. The next symbol to be read is on the right of the
head if d =→ and on the left if d =←. Note that when reading the
left marker from right to left← (resp. the right marker from left to
right→), the next direction can only be→ (resp.←). The structure
of the alphabet induces the behaviour of the machine regarding the
stack when reading the input word: when reading on the right, a call
symbol leads to push onto the stack while a return symbol pops a
symbol from the stack. When reading on the left, a dual behaviour
holds (hence, at a given position in the input word, the height of
the stack is always constant at each visit to that position in the run).
Finally, the state and the direction are updated.

Let w ∈ N (Σ). We set w(0) = . and w(|w| + 1) = /. For a
move d and 0 ≤ i ≤ |w|, we denote by

• move(d, i) the integer i− 1 if d =← and i+ 1 if d =→.
• read(w, d, i) the symbol w(i) if d =← and w(i+ 1) if d =→.

Formally, a stack σ is a finite word over Γ. The empty stack/word
over Γ is denoted ⊥. For a word .w/ where w ∈ N (Σ) and
a 2VPA A = (Q, qI , F,Γ, δ), a configuration of A is a triple
(q, i, d, σ) where q ∈ Q, 0 ≤ i ≤ |w|+ 1, d ∈ D and σ is a stack.
A run of A on a word w is a finite non-empty sequence of config-
urations (q0, i0, d0, σ0)(q1, i1, d1, σ1) . . . (q`, i`, d`, σ`) where for
all 0 ≤ j ≤ `, the configuration (qj+1, ij+1, dj+1, σj+1) satisfies
ij+1 = move(ij , dj) and

• if read(w, dj , ij) ∈ Σc and dj =→ or read(w, dj , ij) ∈ Σr
and dj =← then (qj , dj , read(w, dj , ij), qj+1, dj+1, γ) ∈
δpush and σj+1 = σjγ.
• if read(w, dj , ij) ∈ Σc and dj =← or read(w, dj , ij) ∈ Σr

and dj =→ then (qj , dj , read(w, dj , ij), γ, qj+1, dj+1) ∈
δpop and σj+1γ = σj .

By the special treatment of . and / ensured by the definition of
2VPA, the indices ij all belong to {0, . . . , |w|+ 1}. Note also that
any configuration is actually a run on the empty word ε. A run on
a nested word w is accepting whenever q0 = qI , i0 = 0, d0 =→,
σ0 = ⊥ and q` ∈ F , i` = |w|+ 1, d` =→, σ` = ⊥.

Note that A being a visibly pushdown automaton, for any
two configurations in a run of A at the same position i in the
word (q, i, d, σ) and (q′, i, d′, σ′), the stack σ, σ′ have the same
height/length.

The language L(A) defined by A is the set of nested words w
from Σ∗ such that there exists an accepting run of A on .w/.

DEFINITION 2. A two-way visibly pushdown automaton is

• deterministic (D2VPA for short) if we may write δpush, δpop as
functions from ((Q × {→} × Σc) ∪ (Q × {←} × Σr)) to
(Q × D) × Γ and from ((Q × {←} × Σc × Γ) ∪ (Q × {→
} × Σr × Γ)) to Q× D respectively.
• codeterministic if we may write δpush, δpop as injective applica-

tions, with the same type as in the previous item.
• unambiguous iff for any word w, there exists at most one ac-

cepting run on w.

Obviously, if A is (co)deterministic, for any word w from
N (Σ̄), there exists a unique run on w in A from any fixed con-
figuration. Hence, any (co)deterministic 2VPA is unambiguous.
Note also that the determinism of A implies that any configuration
can occur only once in some accepting run (otherwise, the machine
would loop without reaching a final configuration).

A two-way visibly pushdown automaton is a (one-way) visibly
pushdown automaton (VPA for short) whenever d′ = d =→ for
all (q, d, α, q′, d′, γ′) in δpush and for all (q, d, α, γ, q′, d′) in δpop.

For VPA, we may omit directions in the transition relation,
configurations and runs.

Finally, we will denote DVPA the class of deterministic VPA.
In this case, the transition relation is defined as a function omitting
directions.

2.2 Transition algebra for 2VPA

Nested words from N (Σ) (or N (Σ)) induce a natural algebra
W = (N (Σ), ., {fc,r | c ∈ Σc, r ∈ Σr}, ε) where ’.’ is a binary
operation, the fc,r form a family of unary operations and ε is a
constant. The semantics of ε is the empty word, of . is concatenation
and for any w in N (Σ), fc,r(w) = cwr. Obviously, the operators
finitely generates N (Σ) which can be seen as the free generated
algebra over this signature quotiented by the associativity of ’.’ and
the neutrality of ε wrt the concatenation ’.’.

The traversal congruence ∼ Inspired by works on two-way au-
tomata on words (Pécuchet 1985; Shepherdson 1959), we study
traversals of a 2VPA A. A traversal of some nested word w ab-
stracts a run of A keeping track only of the fact that it starts read-
ing the word from the left or from the right (depending on the ini-
tial direction) in some state p and leaves it in some state q. Now,
formally, for any states p, q, and any two directions d1, d2 ∈ D,
((p, d1), (q, d2)) belongs to the traversal of w if there exists a run
ofA onw starting in the configuration (p, pos(d1), d1,⊥) and end-
ing in (q, pos(d2), d2,⊥), where{

pos(d1) = 0 if d1 =→ and pos(d1) = |w| otherwise
pos(d2) = |w| if d2 =→ and pos(d2) = 0 otherwise

Note that the reading starts either at the beginning or at the end
of w depending on the initial current direction and that the final
direction indeed leads to leave the word. One may associate with
a nested word the set of its traversals and define a relation ∼ on
nested words such that u ∼ v if u and v have the same traversals.

Obviously, ∼ is an equivalence relation over N (Σ) and we
denote by [w]∼ the set of traversals of a nested word w. We prove
that ∼ is actually a congruence, that is if w1 ∼ w2 and w′1 ∼ w′2
then fc,r(w1) = cw1r ∼ cw2r = fc,r(w2) and w1.w

′
1 ∼ w2.w

′
2

for any nested words w1, w
′
1, w2, w

′
2 inN (Σ).

PROPOSITION 1. The relation ∼ is a congruence of finite index.

The transition algebra TA Based on Proposition 1, the congru-
ence relation ∼ induces a finite algebra TA = (TravA, .TA , {fTA

c,r |
c ∈ Σc, r ∈ Σr}, εTA) where the support is TravA the set of all
traversals induced by A, .TA is a binary operation which is asso-
ciative, each fTA

c,r is a unary operation and εTA is a constant from
TravA and a neutral element for .TA . More specifically, εTA = [ε]∼,
[u]∼.

TA [v]∼ = [uv]∼ and fTA
c,r ([u]∼) = [cur]∼. These operations

are well-defined since ∼ is a congruence.
Hence, there exists a unique and canonical morphism µTA from

W, the algebra of nested words, onto TA, that satisfies µTA(w) =
[w]∼. We also denote [w]∼ as wTA since it can be considered as
the interpretation of w (which is an element W) in TA.

The correction of this morphism µTA directly implies:

PROPOSITION 2. Let A = (Q, qI , F,Γ, δ) be a 2VPA. L(A) =
µ−1
TA({m ∈ TravA | m ∩ ({(qI ,→)} × F × {→}) 6= ∅}).

Note that this statement corresponds to the classical notion of
recognizability by some finite algebra.

2.3 From two-way visibly pushdown automata to visibly
pushdown automata

In this subsection we give a reduction from 2VPA to VPA. While
this result can be inferred from (Madhusudan and Viswanathan
2009), our Shepherdson-inspired approach gives an upper bound
on the complexity of the procedure. We first recall the notion
of recognizability by finite algebra and show that this notion is

2-way Visibly Pushdown Automata & Transducers 4 2016/8/29

equivalent to recognazibility by DVPA. Then we prove the main
result of this section appealing to the transition algebra TA.

Let A = (DA, .
A, (fA

c,r)(c,r)∈Σc×Σr , ε
A) be a finite algebra

such that .A is associative having εA as neutral element. There exists
a unique morphism µA from the algebra of nested words W onto A.

DEFINITION 3. A language L ⊆ N (Σ) is recognized by A if there
exists a set LA ⊆ DA such that L = µ−1

A (LA).

As an example, as shown in Proposion 2, a language L defined
by a 2VPA is recognized by the transition algebra TA. We show
that recognability by finite algebra implies DVPA recognizability.

LEMMA 1. If L is recognized by a finite algebra A then it is recog-
nizable by a DVPA BA. Moreover, the size of BA is polynomial in
the size of DA, the support of A.

Proof. For A and the set LA ⊆ DA, we define the DVPA
BA = (DA, ε

A,LA,Σc × DA, δBA) where δBA = δpush
BA
∪ δpop

BA

and δpush
BA

(mA, c) = (εA, (c,mA)), δpop
BA

(m′A, r, (c,mA)) = mA ◦
fA
c,r(m

′A). Obviously, BA is deterministic. Its correctness can be
proved by induction on nested words showing for all w ∈ N (Σ),
there exists a run in BA on w from (mA, 0,⊥) to (m′A, |w|,⊥)
iff m′A = mA.AµA(w). And so, for an accepting run on w from
(εA, 0,⊥) to (m′A, |w|,⊥) withm′A ∈ LA,m′A = µA(w). Hence,
L(BA) = µ−1

A (LA). Finally, note that the number of states of BA
is precisely the cardinality of the support of A. �

We can now come to the main result of this section.

THEOREM 1. For any 2VPA A, one can compute (in exponential
time) a DVPA B such that L(A) = L(B) and the size of B is
exponential in the size of A.

Proof. One can build from the 2VPA A the elements of {[w]∼ |
w ∈ N (Σ)} and thus, the transition algebra TA, in exponential
time. Then, by Lemma 1, a VPA BTA is built from TA. The
correctness follows from Proposition 2 for LTA = {mTA ∈
TravA | mTA ∩ ({(qI ,→)} × F × {→}) 6= ∅}. �

COROLLARY 1. For any 2VPA A, deciding the emptiness of A (ie
L(A) = ∅) is EXPTIME-C. The same result holds for D2VPA.

Proof. We prove the upper-bound for 2VPA and the lower bound
for D2VPA. For the upper-bound, it suffices to build from A in ex-
ponential time a equivalent DVPA B possibly exponentially larger
than A (Theorem 1). Then, emptiness of B can be tested in poly-
nomial time (Alur and Madhusudan 2009).

The proof of the lower bound proceeds by a reduction of the
emptiness problem of intersection of k deterministic top-down tree
automata, that is known to be EXPTIME-C.

2.4 2VPA with look-around
As we will later on need the notion of look-around for transducers,
we introduce it first for automata to ease the presentation. Hence,
we extend the model of 2VPA with look-around. The feature will
add a guard to each transition of the machine. This guard will
require to be satisfied for the transition to be applied.

DEFINITION 4. A 2VPA with look-around (2VPALA for short) is
given by a triple (A, λ,B) such that A is a 2VPA and B a unam-
biguous VPA and λ is a mapping from the transitions of A to the
states of B.

The notion of runs is adapted to take into account look-around
as follows: in any run on some nested word w, for any two suc-
cessive configurations (qj , ij , dj , σj)(qj+1, ij+1, dj+1, σj+1) ob-
tained by a transition t, we require that there exists a unique accept-

ing run on w in B and that this run contains a configuration of the
form (λ(t), read(w, dj , ij), σ).

The definition of accepting runs remains the same and the lan-
guage defined by such machines is defined accordingly.

The notion of one-wayness extends trivially to 2VPA with look-
around. For determinism, we ask the look-around to be disjoint
on transitions with the same left hand-side: for any two different
transitions ofA, t1 = (q, d, a, q′1, d

′
1, γ1), t2 = (q, d, a, q′2, d

′
2, γ2)

in δc (resp. t1 = (q, d, a, γ, q′1, d
′
1), t2 = (q, d, a, γ, q′2, d

′
2) in δr),

it holds that λ(t1) 6= λ(t2).
Non-surprisingly, 2VPA are closed under look-around:

THEOREM 2. Given a 2VPALA (A, λ,B), there exists a VPA A′

such that L((A, λ,B)) = L(A′).

3. Two-way visibly pushdown transducers
3.1 Definitions
Let Σ,∆ be two finite alphabets such that Σ is structured. Two-way
visibly pushdown transducers (2VPT) from Σ to ∆ extend 2VPA
over Σ with a one-way-left-to-right output tape. They are defined as
a pair T = (A,O) whereA is a 2VPA over Σ and O is a morphism
from the set of rules of A to words in ∆∗.

A run of a 2VPT T = (A,O) on an input word w ∈ N (Σ)
is a run ρ of A on w. We say the run is accepting if it is in A. A
run ρ may be simultaneously a run on a word w and on a word
w′ 6= w, however, when the underlying input word w is given,
there is a unique sequence of transitions t1t2 . . . tn associated with
ρ and w. In this case, the output produced by the run ρ on w is
defined as the word v = O(t1)O(t2) . . .O(tn) ∈ ∆∗. This word is
denoted by outw(ρ). If ρ contains a single configuration, then we
let outw(ρ) = ε. The transduction defined by T is the relation

JT K = {(w, outw(ρ)) ∈ N (Σ)×∆∗ | ρ is an accepting run of T on w}.
We say that T is functional if JT K is a function, and that T is
deterministic (resp. unambiguous) if A is deterministic (resp. un-
ambiguous). The class of deterministic two-way visibly pushdown
transducers is denoted D2VPT. Observe that if T is determinis-
tic or unambiguous, then it is trivially functional. Last, when T is
functional, we may interpret the relation JT K as a partial function
on N (Σ): given a word w ∈ N (Σ), denote by JT K(w) the unique
word v ∈ Σ∗ such that (w, v) ∈ JT K, whenever it exists. To ease
readability, we may simply write T to denote JT K when it is clear
from the context, for example when considering composition of
functions.

We consider classes of one-way visibly pushdown transduc-
ers, obtained by considering the corresponding classes of one-way
visibly pushdown automata. The notions of functional, determin-
istic and unambiguous transducers are naturally defined for these
transducers, and we denote by (D)VPT the class of (deterministic)
one-way visibly pushdown transducers. Last, we say that a VPT
T = (A,O) from Σ to ∆ is letter-to-letter if ∆ is a structured al-
phabet and if O maps every call transition ofA to an element of ∆c

and every return transition of A to an element of ∆r .
2VPT (resp. D2VPT) can be extended with look-around, as we

did for 2VPA. Formally, a two-way visibly pushdown transducer
with look-around (2VPTLA for short) is a pair T = (A′,O) where
A′ = (A, λ,B) is a 2VPALA and O is a morphism from the set
of rules of A to words in ∆∗. We say that such a machine is
deterministic if the 2VPALA A is deterministic, the resulting class
being denoted by D2VPTLA.

EXAMPLE 1. We now formally express the transduction given in
the introduction (see Figure 1). Let Q = {q1, . . . , qn} ∪ {qi,j |
1 ≤ i, j ≤ n or i = .} ∪ {qf} be the set of states with initial state
q1 and final state qf , a set of stack symbols Γ = {⊥} ∪ {i | i =

2-way Visibly Pushdown Automata & Transducers 5 2016/8/29

1, . . . , n}, and for all i, j, k ∈ {., 1, . . . , n}, we have the rules:

qi,→
i|i,+i−−−−→ q1,→ qn,→

r|r,−j−−−−→ qj ,→
qi,→

(j,r)−−−→ qi,→ if j 6= i qi,j ,←
(j,r)−−−→ qi,j ,→

qi,→
r|ε,−j−−−−→ qi,j ,← if i < n qi,j ,→

k|ε,+j−−−−→ qi+1,→

The markers are treated as letters, except that they push ⊥ in-
stead of . and upon popping ⊥ in state qn, the transducer goes to
qf and accepts. The transitions labeled by (j, r) are macros cor-
responding to moves along matching relation, which can easily be
implemented.

Evaluation Observe here that if a transformation is given as a
D2VPT T , then one can evaluate it using a memory linear in the
depth of the input word w (we assume w can be accessed as we
want on some media). Indeed, one simply needs to store the current
configuration of T , given as a state and a stack content.

3.2 Closure under composition
We prove in this subsection that 2VPT are closed by composition
with a letter-to-letter unambiguous VPT, extending a similar result
for transducers on words (Hopcroft and Ullman 1967). This will
reveal useful to show that D2VPT are closed under look-around.
First, we extend to nested words a result that was known for finite
transducers:

LEMMA 2. Any unambiguous VPT T can be written as the com-
position of two VPT T1 ◦ T2, where T1 is deterministic and T2 is
letter-to-letter and co-deterministic. Furthermore, if T is letter-to-
letter, so is T1.

THEOREM 3. Given a letter-to-letter DVPTA and a 2VPTB, we
can construct a 2VPT C that realizes the composition C = B ◦A.

If furthermore B is deterministic, then so is C.

Proof. We first notice that since we are considering visibly push-
down machines and the first machine is letter-to-letter, the stacks
of both machines are always synchronized, meaning that they have
the same height on each position. Then, let us remark that when the
2VPT moves to the right, we can do the simulation in a straight
forward fashion by simulating it on the production of the one-way.
It becomes more involved when it moves to the left. We then need
to rewind the run of the one-way, and nondeterminism can arise. To
bypass this, let us recall that a similar construction from (Hopcroft
and Ullman 1967) exists for classical transducers, and that the
rewinding is done through a back and forth reading of the input,
backtracking the run up to a position where the nondeterminism is
cleared, and then moving back to the current position. The method
is to compute the set of possible candidates for the previous state,
and keep moving to the left until we reach a position i where there
is only one path left leading to the starting position j. Afterward,
we simply follow this path along another one from position i + 1.
As we know that they will merge at position j, we can stop at po-
sition j − 1 with the correct state. If we reach the beginning of
the word with multiple candidates, we do the same procedure, the
correct path being the one starting from the initial state.

This cannot be done as such on pushdown transducers since
rewinding the run might lead to popping the stack, and losing in-
formation. However, if at each push position, we push not only the
stack symbols but also the current state, we are able, when rewind-
ing the run, to clear the nondeterminism as soon as we pop this
information by using it as a local initial state, limiting the back and
forth reading to the current subhedge. The overall construction can
be seen as a classical Hopcroft-Ullman construction on hedges, ab-
stracted as words over the left-to-right traversals of their subhedges,
which are called summaries in (Alur and Madhusudan 2009) (see

c • r

c1 • r1

w1

c2 • r2

w2

cn • rn
wn

· · ·
u :

Figure 2. The nested word cc1w1r1c2w2r2 . . . cnwnrnr is ab-
stracted as a word u over letters (ci, Si, ri) where Si is the sum-
mary of wi. The position labelled by c serves as initial position of
the word and the corresponding state was pushed to the stack upon
reading it.

Figure 2). These summaries can be computed on-demand by a one-
way automaton.

Finally, note that to apply this construction, we need to push
this local initial state each time we enter a subhedge, whether we
enter from the right or from the left. This can be maintained since
when entering from the left, it simply corresponds to the current
state and when entering from the right, this state is computed by
the Hopcroft-Ullman construction. Note also that the Hopcroft-
Ullman routine is deterministic, and consequently the construction
preserves determinism. �

THEOREM 4. Let A be a D2VPT and relab be an unambiguous
letter-to-letter VPT. Then the compositionA◦relab can be defined
by a D2VPT.

Proof. The proof is straightforward using previous results. First,
Lemma 2 states that relab can be decomposed in T1 ◦T2, where T1

is a deterministic VPT and T2 is a co-deterministic one, and both
are letter-to-letter, i.e A ◦ relab = A ◦ T1 ◦ T2. Now Theorem 3
states that we can construct a D2VPT A′ that realizes the compo-
sition A ◦ T1. Finally, as a co-deterministic VPT can be seen as a
deterministic one going right-to-left, a symmetric construction of
Theorem 3 on A′ ◦ T2 gives a D2VPT that realizes A ◦ relab. �

A look-around can be viewed as an MSO formula with one free
variable, and it is satisfied iff the formula is satisfied at this posi-
tion. In (Madhusudan and Viswanathan 2009), the authors consider
MSO queries on nested words. An MSO query is an MSO formula
with one free variable that annotates the positions of the input word
that satisfies it. They proved, using a Hopcroft-Ullman argument,
that MSO queries were also implemented by D2VPA. Theorem 4
proves that looks-around can be done on the fly while following the
run of an other D2VPA. Since a look-around can be encoded as an
unambiguous letter-to-letter VPT, we get the following corollary,
that subsumes the result by (Madhusudan and Viswanathan 2009).

COROLLARY 2. D2VPT = D2VPTLA.

3.3 Decision problems
We consider the following type-checking problem: given a VPA
A1 on Σ, a finite-state automaton A2 on ∆, and a D2VPT T from
N (Σ) to ∆∗, decide whether for every word w ∈ L(A1), JT K(w)
belongs to L(A2). This property is denoted by T (A1) ⊆ A2

3. The
equivalence problem asks whether given two D2VPT as input, they
define the same transduction. We prove the following result:

THEOREM 5. 1. The inverse image of a regular language of words
by a D2VPT is recognizable by a VPA.

2. The type-checking problem for D2VPT is EXPTIME-complete.
3. The equivalence problem for D2VPT is decidable.

3 If A2 is a VPA, the problem is known to be undecidable even for T a
DVPT (Raskin and Servais 2008).

2-way Visibly Pushdown Automata & Transducers 6 2016/8/29

Proof. We prove the three results independently.
(1) Given a D2VPT T = (A,O) and an automaton on words

B, we can define a 2VPA A′ as a product construction of A and
B which simulates B on the production by O. States of A′ are
simply pairs of states ofA andB, andA′ recognizes {w ∈ N (Σ) |
JT K(w) ∈ L(B)} = JT K−1(L(B)). Observe that the construction
is linear in the sizes of A and B, and that as B may be non-
deterministic, A′ may also be non-deterministic.

(2) EXPTIME membership: as in the proof of the previous item,
we can build a 2VPA A whose size is linear in the sizes of T and
A2, and such that L(A) = JT K−1(L(A2)). Thus, T (A1) ⊆ A2

holds iff L(A1) ⊆ L(A) holds. This can be checked in EXPTIME
thanks to Theorem 1.

EXPTIME hardness: we reduce the problem of emptiness of a
D2VPA A. From A, we build a D2VPT T = (A,O) such that O
maps every transition of A to the empty word ε. Then, we let A1

be a VPA such that L(A1) = N (Σ) and A2 such that L(A2) = ∅.
Then T (A1) ⊆ A2 holds iff L(A) = ∅.

(3) As proved in Section 4, D2VPT are included in the class
of deterministic hedge-to-string transducers with look-ahead, i.e.
deterministic top-down tree-to-string transducers with look-ahead,
run on the first-child-next-sibling encoding of the input hedge. The
equivalence problem for these machines has recently been proven
decidable in (Seidl et al. 2015). �

4. Expressiveness of Two-Way Visibly Pushdown
Transducers

In this section, we study the expressiveness of D2VPT by com-
paring them with Courcelle’s MSO-transductions casted to nested
words, the one-way model of (Alur and D’Antoni 2012), and a top-
down model for hedges, inspired by top-down tree-to-string trans-
ducers.

4.1 MSO-definable Transductions
We first define MSO for nested words and words, as done in
(Alur and Madhusudan 2009), and then MSO-transductions from
nested words to words, based on Courcelle’s MSO-definable graph
transductions (Courcelle 1994).

MSO on nested words and words Let Σ be a structured alphabet.
A nested word w ∈ N (Σ) is viewed as a structure with pos(w) as
domain, over the successor predicate S(x, y) interpreted as pairs
(i, i + 1) for i ∈ pos(w)\{|w|}, the label predicates σ(x) for
σ ∈ Σ, interpreted by the positions labeled by σ, and the matching
predicate M(x, y) interpreted as the set of matching pairs in w.

Monadic second-order logic (MSO) extends first-order logic
with quantification overs sets. First-order variables x, y, . . . are
interpreted by positions of words, while second-order variables
X,Y, . . . are interpreted by sets of positions. MSO formulas for
nested words over Σ are defined by the following grammar:

ϕ ::= σ(x) | x ∈ X | S(x, y) |M(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where σ ∈ Σ. The semantics of an MSO formula is defined
in a classical way, and for ϕ an MSO formula, w ∈ N (Σ), ν
a valuation of the free variables of ϕ into positions and sets of
positions of w, we write w, ν |= ϕ to mean that w is a model
of ϕ under the valuation ν. When ϕ is a sentence, we just write
w |= ϕ. We denote by MSOnw[Σ] the set of MSO formulas
for nested words over Σ (and just MSOnw when Σ is clear from
the context). Since we are interested in transductions from nested
words to words, we also define MSO for words. Similarly as nested
words, words are seen as structures but in that case we do not have
the matching pair predicate M(x, y). MSO formulas on words are
defined accordingly to this smaller signature.

EXAMPLE 2. We interpret MSOnw[Σ] on nested words rather that
on words in Σ∗. It is not a restriction since checking whether a
given relation M(x, y) is a valid matching relation is definable by
an MSO formula φwn. This formula expresses thatM is a bijection
between call and return symbols, and that it is well-nested (there is
no crossing), as follows:
¬∃xc, xr, yc, yr.M(xc, xr) ∧M(yc, yr) ∧ xc ≺ yc ≺ xr ≺ yr
∧ bij(M) ∧ ∀x, y.M(x, y)→ x ≺ y

where ≺ is the transitive closure of S (well-known to be MSO-
definable) and bij(M) expresses that M maps bijectively call and
return symbols (it is trivially MSO-definable).

MSO transducers from nested words to words MSO-transducers
define (partial) functions from nested words to word structures. The
output word structure is defined by taking a fixed number k of
copies of the input structure domain. Nodes of these copies can be
filtered out by MSOnw formulas with one free first-order variable.
In particular, the nodes of the c-th copy are the input positions that
satisfy some given MSOnw formula φcpos(x). The label predicates
σ(x) and the successor predicate S(x, y) of the output structure
are defined by MSOnw formulas with respectively one and two free
first-order variables, interpreted over the input structure. Formally,
an MSO-transducer from nested words to words is a tuple T =

(k, φdom, (φ
c
pos(x))1≤c≤k, (φ

c
σ(x))1≤c≤k

σ∈Σ

, (φc,dS (x, y))1≤c,d≤k)

where k ∈ N and the formulas φdom, φcpos, φca and φc,dS are MSOnw

formulas. We denote by MSO[nw2w] the class of MSO-transducers
from nested words to words.

An MSO-transducer T defines a function from nested word
structures over Σ to word structures over Σ, denoted by JT K.
The domain of JT K consists of all nested word structures u such
that u |= φdom. Given a nested word structure u ∈ dom(JT K),
the output structure v such that (u, v) ∈ JT K is defined by the
domain Dv ⊆ pos(u) × {1, . . . , k} such that Dv = {(i, c) | i ∈
pos(u), c ∈ {1, . . . , k}, u |= φcpos(i)}, a node (i, c) ∈ Dv

of the output structure is labeled a ∈ Σ if u |= φca(i), and a
node (j, d) ∈ Dv is the successor of a node (i, c) ∈ Dv if
u |= φc,dS (i, j). Note that the output structure is not necessarily a
word, because for instance, nothing guarantees that an output node
is labeled by a unique symbol, or that the successor relation forms a
linear order on the positions. However, it is not difficult to see that
it is decidable whether an MSO[nw2w] transducer produces only
words (see for instance (Filiot 2015)).

We say that a function f from nested words to words is MSO-
definable if there exists an T ∈ MSO[nw2w] such that JT K = f .
By definition of MSO[nw2w] transducers, for any MSO-definable
function f there exists k ∈ N such that for all u ∈ Dom(f),
|f(v)| ≤ k.|u| (by taking k as the number of copies of the
MSO[nw2w] transducer defining f). We say in that case that f
is of linear-size increase.

EXAMPLE 3. This example transforms a nested word into the se-
quence of calls of maximal depth (the leaves). E.g., c1c2r2c3c4r4r3r1

is mapped to c2c4. This transformation is MSO-definable. The do-
main is defined by the formula φwn (see Example 2). One needs
only one copy of the input word, whose positions are filtered out
by the formula φ1

pos(x) = ∃y.M(x, y) ∧ S(x, y) which holds true
iff x is a call position and its successor position y is its matching
return position. The labels are preserved: φ1

a(x) = a(x) for all
a ∈ Σ. Finally, the successor relation is defined by φ1,1

S (x, y) =
φ1
pos(x) ∧ φ1

pos(y) ∧ x ≺ y ∧ ¬∃z.φ1
pos(z) ∧ x ≺ z ≺ y.

4.2 Logical equivalences
An MSO[nw2w] T is said to be order-preserving if for any word u
of the domain of T , any positions i, j of u and any copies c, d of T ,

2-way Visibly Pushdown Automata & Transducers 7 2016/8/29

if u |= φc,dS (i, j) then i ≤ j. This means that the output arrows can
not point to the right. It is emphasized by the next theorem, which
echoes a similar result on words proved in (Bojanczyk 2014; Filiot
2015).

THEOREM 6. An order-preserving transduction is definable in
MSO[nw2w] if, and only if, it is definable by a functional4 VPT.

In the following, we show that D2VPT are strictly more ex-
pressive than MSO[nw2w], and define a restriction that capture
exactly MSO[nw2w]. The fact that D2VPT are more expressive
than MSO[nw2w] can be easily shown, based on a similar result
for ranked trees established in (Courcelle and Engelfriet 2012).
Since D2VPT can, using their stack, express transductions of
exponential-size increase, while MSO-transductions are of linear-
size increase, they are strictly more expressive than MSO[nw2w].

To capture exactly MSO[nw2w], one defines the single-use re-
striction for D2VPT (and D2VPTLA). Intuitively, this restriction
requires that when a D2VPT passes twice at the same position
with the same state, then necessarily the transitions fired from these
states produces ε.

DEFINITION 5 (Single-use restriction). A D2VPT (resp. D2VPTLA)
T = (A,O) with A = (Q, qI , F,Γ, δ) a 2VPA (resp. 2VPALA)
is single-use with respect to a set P ⊆ Q if any transition t
from a state q 6∈ P satisfies O(t) = ε, and if for all runs
r = (q0, i0, d0, σ0) . . . (q`, i`, d`, σ`) of T on a word w and all
states p ∈ P , r does not visit twice the same position in state p, i.e.
if (qα, iα) = (qβ , iβ) for α 6= β, then qα = qβ 6∈ P .

A D2VPT (resp. D2VPTLA) is single-use if it is single-use w.r.t.
some set P ⊆ Q, and strongly single-use if it is single-use w.r.t. Q.

We denote by D2VPTsu (resp. D2VPTLA
su) the class of single-

use D2VPT (resp. D2VPTLA). By reduction to the D2VPA empti-
ness, we get:

PROPOSITION 3. Deciding the single use property on a 2VPT is
EXPTIME-C.

A single-use restriction was already defined in (Courcelle and
Engelfriet 2012) for deterministic tree-walking transducers with
look-around to capture MSO-transductions from trees to trees (and
words). It requires that in any accepting run, every node is visited at
most once by a state. It is therefore more restrictive than our single-
restriction and, as a matter of fact, corresponds to what we call the
strongly single-use restriction. However, the following result shows
that the strongly single-use restriction is not powerful enough, in
our context, to capture all MSO-definable transductions, even with
regular look-arounds.

LEMMA 3. There is an MSO-definable nested word to word trans-
duction f which is not definable by strongly single-use D2VPTLA.

We now proceed to the first logical equivalence, between our
model and MSO-transductions, which is mainly a consequence of
results from (Courcelle and Engelfriet 2012).

THEOREM 7. Let f be a transduction from nested words to words.
Then f is MSO-definable iff it is definable by a (look-around)
D2VPTsu, i.e.,

MSO[nw2w] = D2VPTLA
su = D2VPTsu.

Sketch of proof. We show that both other models are equiva-
lent to D2VPTLA

su . We have already seen that look-around can be

4 Within the class of VPT, the class of functional VPT is decidable in
PTime (Filiot et al. 2010)

removed from D2VPTLA (Theorem 2), while preserving their ex-
pressive power. Our Hopcroft-Ullman’s construction can add expo-
nentially more visits to the same positions, but these visits are only
ε-producing. In other words, our Hopcroft-Ullman’s construction
does not preserve the strongly single-use restriction, but it preserves
the single-use restriction. As a consequence of this observation and
Corollary 2, we obtain that D2VPTsu = D2VPTLA

su .
To show MSO[nw2w] ⊆ D2VPTLA

su , we rely on the equiva-
lence of (Courcelle and Engelfriet 2012) between deterministic bi-
nary tree to word walking transducers with look-around (DTWTla)
and MSO-transductions from binary trees to words (MSO[b2w]).
Informally, DTWTla can follow the directions of binary trees (1st
child, 2nd child and parent) and take their transitions based on reg-
ular look-around information. Due to determinism, they are always
strongly single-use, in the sense that any position is not visited
twice by the same state. Such a machine, running on first-child
next-sibling encoding of nested words, is easily encoded into an
equivalent D2VPTLA

su . In this encoding, a nested word over Σ is en-
coded as a binary tree over (Σc×Σr)∪{⊥}, inductively defined as
fcns(cw1rw2) = (c, r)(fcns(w1), fcns(w2)) and fcns(ε) = ⊥. In
this encoding, moving to a 1st child corresponds to moving from
c to w1, which can be done by a D2VPTLA

su , and moving to a
2nd child corresponds to moving from c to w2. This can be done
also by a D2VPTLA

su , but it needs to traverse all the word cw1r,
while producing ε only. Similarly, one can encode moves to par-
ent nodes. The two latter moves implies that the D2VPTLA

su is not
strongly single-use anymore, but it remains single-use: the extra
moves are all ε-producing. The result follows as MSO[nw2w] =
MSO[b2w] ◦ fcns.

To show D2VPTLA
su ⊆ MSO[nw2w], we rely on another cor-

respondence shown in (Courcelle and Engelfriet 2012), between
MSO[b2w] and deterministic (visibly) pushdown binary tree to
word walking transducers with look-around of linear-size increase
(DPTWTlalsi). These transducers extend DTWTla with a pushdown
store with a visibly condition: when moving to a child, they push
one symbol, and moving up, they pop one symbol. The lsi restric-
tion is semantical: they restrict the class to transducers that define
lsi transductions. Any D2VPTLA

su defines an lsi transduction, and
can be easily encoded into a DPTWTlalsi running on fcns encod-
ings, which mimics the moves of the D2VPTLA

su . Again, the result
follows by the equality MSO[nw2w] = MSO[b2w] ◦ fcns. �

4.3 Comparison with other transducer models
In this section, we relate D2VPT to two other transducer mod-
els, namely streaming tree-to-string transducers and determinis-
tic hedge-to-string transducers with look-ahead. Streaming tree-to-
string transducers with a simple copyless restriction of updates will
serve as the third edge of our trinity. Deterministic hedge-to-string
transducers with look-ahead is a natural model for which equiva-
lence is known to be decidable.

Streaming tree-to-string transducers are deterministic one-way
machines (Alur and D’Antoni 2012) equipped with registers stor-
ing words. We fix a finite alphabet ∆ and, given two finite sets X
andY , denote by U(X ,Y) the set of mappings fromX to (∆∪Y)∗.

DEFINITION 6. A streaming tree-to-string transducer S (STST for
short) is a deterministic machine defined over a structured alphabet
Σ and given by the tuple (Q, qI ,Γ,X , δ, µF) whereQ is a finite set
of states, qI ∈ Q is the initial state, Γ is a finite set of stack symbols
and X is a finite set of registers. Finally, µF is a partial mapping
fromQ to (∆∪X)∗ and δ = δpush]δpop where δpush : Q×Σc →
Q×Γ×U(X ,X) and δpop : Q×Σr×Γ→ Q×U(X ,X ∪X ′),
X ′ being a disjoint copy of X .

2-way Visibly Pushdown Automata & Transducers 8 2016/8/29

Let V∆
X be the set of mappings from from X to ∆∗. These

mappings are extended to (X∪∆)∗ by considering them as identity
over ∆. An accepting run of a STST S on a nested word w
is a (non-empty) sequence (q0, θ0, σ0, w0) . . . (q`, θ`, σ`, w`) of
quadruples from Q × V∆

X × (Γ × V∆
X)∗ × Σ∗ such that q0 = qI ,

w0 = w, w` = ε, θ0 is the mapping θε which associates ε to anyX
in X , σ0, σ` are equal to ⊥ the empty stack and for all 0 ≤ i < `,
one has either

• wi = cwi+1 and there exists (qi, c, qi+1, γ, ν) ∈ δpush,
θi+1 = θε and σi+1 = σi(γ, θi ◦ ν),
• wi = rwi+1 and there exists (qi, r, γ, qi+1, ν) ∈ δpop, σi =
σi+1(γ, θ) and θi+1 = θ′ ◦ θi ◦ ν, where θ′ ∈ V∆

X ′ is defined
by θ′(X ′) = θ(X) for all X ∈ X .

The semantics [[S]] of the STST S is a partial mapping from
N (Σ) to ∆∗ such that [[S]](w) = v if there exists an accepting
run on w in S ending in some configuration (q`, θ`,⊥, ε) and
v = θ`(µF (q`)).

Using a restriction on the updates U used in STST (so-called
copyless updates), (Alur and D’Antoni 2012) proved that copyless
STST and MSO[nw2w] are expressively equivalent. As a conse-
quence, we obtain the logic/two-way/one-way trinity announced in
the introduction:

THEOREM 8. MSO[nw2w] = D2VPTsu = copyless STST

A well-known class of transducers running on ranked trees is
the class of deterministic top-down tree transducers with look-
ahead. This class can be defined to output strings. We consider
now the extension of this class to unranked trees, or more precisely
sequences of unranked trees, that is, hedges.

DEFINITION 7. An hedge automaton (HA for short) over the struc-
tured alphabet Σ 5 is a tuple (Q,F, δ) where Q is a finite set of
states, F ⊆ Q is a set of final states and δ is a transition relation
such that δ ⊆ Q× Σc × Σr ×Q×Q.

An hedge automaton is said to be bottom-up deterministic if
whenever (q, c, r, q1, q2) and (q′, c, r, q1, q2) belongs to δ, it holds
that q = q′. The semantics of an HA B is given by means of sets
LBq ⊆ N (Σ) defined for each q ∈ Q inductively as follows: (i)
ε ∈ LBq for all q and (ii) cwrw′ ∈ LBq if (q, c, r, q1, q2) ∈ δ and
w ∈ LBq1 , w′ ∈ LBq2 . The language defined by an HA B is then⋃
q∈F L

B
q . Note that when B is bottom-up deterministic whenever

q1 6= q2, it holds that LBq1 ∩ L
B
q2 = ∅.

DEFINITION 8. A deterministic hedge-to-string transducer with
look-ahead (dH2SLA) H over the structured alphabet Σ and the
output alphabet ∆ is given by a tuple (Q, I, F, δ, B) where Q is a
finite set of states, qI ∈ Q is an initial state, F ⊆ Q is a set of final
states, B is a deterministic bottom-up hedge automaton with states
Q′, and δ is a transition relation given by a partial mapping

δ : Q× Σc × Σr ×Q′ ×Q′ → ∆∗Q

∆Q is the finite set of symbols (∆∪{q(xi) | 1 ≤ i ≤ 2, q ∈ Q})∗.

The semantics of a dH2SLA is first given by a partial map-
ping [[H]] from N (Σ) × Q onto ∆∗ defined inductively as: (i)
[[H]](ε, q) = ε if q ∈ F , and (ii) for w = cw1rw2 with
w1, w2 ∈ N (Σ), [[H]](w, q) = ω[qi(xij) ← [[H]](wij , qi)]
where ω[qi(xij) ← [[H]](wij , qi)] denotes the word ω in which
each occurrence of qi(xij) has been replaced by [[H]](wij , qi) if

5 Usually, such automata are given over a classical unstructured but unary
alphabet. However, for having a uniform presentation, we choose wlog this
definition which corresponds somehow to consider a pair from Σc ×Σr as
single symbol.

δ(q, c, r, q′, q′′) = ω, w1 ∈ Lq
′

B and w2 ∈ Lq
′′

B and undefined
otherwise.

Then, the transduction [[H]] defined by H is given by {(w, s) |
w ∈ N (Σ), s = [[H]](w, qI)}.

THEOREM 9. D2VPT (STST and D2VPT (dH2SLA

Sketch of proof. The two results rely on a same intermediate
model that extends the transition algebra described in Section 2.
This algebra allows to describe the possible traversals of a D2VPA.
One can extend it to D2VPT by storing in matrices the words
produced by traversals. This yields an infinite algebra, realized by a
finite set of operations. We use this to describe effective translations
into STST and dH2SLA.

As an illustration, in order to build of an equivalent STST,
the set of variables considered is the set Ξ = {x(p,d),(p′,d′) |
(p, d), (p′, d′) ∈ Q× D}, i.e. one variable for each traversal. This
generalizes the construction described in (Alur and Černý 2010;
Alur et al. 2012) in order to translate a deterministic two-way
transducer (on words) into a streaming string transducer.

The fact that the inclusions are strict relies on a simple argument
based on size increase: on nested words of bounded depth, D2VPT
are linear-size increase, while STST and dH2SLA are not. �

5. Discussion
Unranked tree to word transductions Since unranked trees t
can be linearised into nested words lin(t), our result also gives
a model for unranked tree to word transductions. If one denotes
by MSO[u2w] the transductions from unranked trees to words
definable by an MSO transducer (over the signature of unranked
trees that has the child and next-sibling predicates), it is easy to
show that MSO[u2w] = D2VPTsu ◦ lin.

One could argue that D2VPT for realising transductions of un-
ranked trees is not an adequate model, because it performs unnec-
essary ε-producing moves to navigate, for instance, from a node n
to its next-sibling. Indeed, the D2VPT needs to walk through the
whole subtree rooted at n.

First, while it is true from an operational point of view, we think
that the simplicity of D2VPT makes them a good candidate as
a specification model of unranked tree transductions, and to this
aim, it is easy to define, as we did for next-sibling moves (rules

q
(c,r)−−−→ p), macros that realise moves given by the predicates

of unranked trees (and their inverse). Second, for instance in the
context of stream processing of XML documents, it cannot be
always assumed that the input document is given by its DOM (with
the unranked tree predicates) as sometimes, it is just stored as plain
text, i.e. as its linearisation.

Finally and most importantly, our result allows one to get an ex-
tension of a known model of ranked tree to word transductions, to
unranked tree to word transductions, namely, deterministic push-
down unranked tree to word walking transducers (DPUWT). To
avoid technical details, we define formally this model only in Ap-
pendix, and rather give intuitions here. DPUWT can walk through
the unranked tree following the next-sibling and first-child pred-
icates (and their inverse), while producing words on the output.
They are also equipped with a pushdown store with a visibly con-
dition: whenever they go down the tree by one level, they have to
push one symbol onto the stack, and going up, they pop one sym-
bol. They let the stack unchanged when moving horizontally be-
tween siblings. With the single-use restriction, defined similarly as
for D2VPT, we get that MSO[u2w] = DPUWTsu. Therefore, if
the input is given by an unranked tree, one can rather use a DPUWT
or a D2VPT on the linearisation.

2-way Visibly Pushdown Automata & Transducers 9 2016/8/29

Nested word to nested word transductions As we claimed earlier,
D2VPTsu can be used to define unranked tree transformations
represented as nested word to nested word transducers, that is, as
nested word to word tranduscers with a structured output alphabet.

On the logical side, MSO[nw2w] transductions can be extended
with binary formulas ϕc,dM (x, y) aiming at representing the match-
ing relation existing on output nested words. As checking whether
a relation denotes a matching relation is MSO definable (see Ex-
ample 2), one can decide whether any input nested word is indeed
transformed by the MSO[nw2w] transducer into a nested word by
testing the validity of the sentence obtained from the logical defi-
nition of the matching M (Example 2) by replacing the predicate
M with

∨
c,d ϕ

c,d
M . So, starting from an MSO[nw2w] transducer

with a matching relation defined on its output, one may forget this
matching and view this transducer as an ordinary MSO[nw2w]
transducer; this machine turns out to be equivalent in the sense
that remaining call and returns symbols induce uniquely the erased
matching. Finally, by the results presented in this paper, one can
from this MSO[nw2w] transducer build an equivalent D2VPTsu

whose range will indeed contain only nested words and thus, de-
fines an unranked tree transformation.

Let us point out that our results do not entail the trinity for tree-
to-tree transformations: the class of D2VPT which produce only
nested words/trees as output may be a good candidate to complete
the missing part (the equivalence between MSO transformations
and streaming tree transducers has already been established in
(Alur and D’Antoni 2012)). Nonetheless, deciding this class seems
to be challenging and moreover, there is actually no guarantee that
it corresponds to the other two cited members of this trinity.

Input streaming In an input streaming scenario, one assumes
that the input nested word is given as a stream of call and return
symbols. In such a scenario, one wants to transform the input
stream as soon as possible, on-the-fly, and it is not reasonable
to load the whole stream in memory. An interesting question is
whether a given D2VPT really needs its two-way ability ? In other
words, can we decide whether a given D2VPT is equivalent to a
(one-way) VPT? For words and two-way finite transducers, this
question has been shown to be decidable in (Filiot et al. 2013). As
future work, we want to extend this result to D2VPT.

References
R. Alur. Nested words, 2016. URL https://www.cis.upenn.edu/

~alur/nw.html.

R. Alur and P. Černý. Expressiveness of streaming string transducers. In
FSTTCS, volume 8, pages 1–12, 2010.

R. Alur and P. Černý. Streaming transducers for algorithmic verification of
single-pass list-processing programs. In POPL, pages 599–610, 2011.

R. Alur and L. D’Antoni. Streaming tree transducers. In ICALP (2), volume
7392 of LNCS, pages 42–53. Springer, 2012.

R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM,
56(3), 2009.

R. Alur, E. Filiot, and A. Trivedi. Regular transformations of infinite strings.
In LICS, pages 65–74, 2012.

R. Bloem and J. Engelfriet. A comparison of tree transductions defined by
monadic second order logic and by attribute grammars. J. Comput. Syst.
Sci., 61(1):1–50, 2000.

M. Bojanczyk. Transducers with origin information. In ICALP, volume
8573 of LNCS, pages 26–37. Springer, 2014.

M. Chytil and V. Jákl. Serial composition of 2-way finite-state transducers
and simple programs on strings. In ICALP, volume 52 of LNCS, pages
135–147. Springer, 1977.

H. Comon-Lundh, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques

and Applications. online, Nov. 2007. URL http://www.grappa.
univ-lille3.fr/tata/.

B. Courcelle. Monadic second-order definable graph transductions: a sur-
vey. Theoretical Computer Science, 126(1):53–75, 1994.

B. Courcelle and J. Engelfriet. Book: Graph structure and monadic second-
order logic. A language-theoretic approach. Bulletin of the EATCS, 108:
179, 2012.

K. Culik and J. Karhumaki. The equivalence problem for single-valued
two-way transducers (on NPDT0L languages) is decidable. SIAM J. on
Computing, 16(2):221–230, 1987.

J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational
Logic, 2(2):216–254, 2001.

J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars,
and mso definable tree translations. Information and Computation, 154
(1):34–91, 1999.

J. Engelfriet and S. Maneth. Macro tree translations of linear size increase
are MSO definable. SIAM J. of Computing, 32(4):950–1006, 2003.

E. Filiot. Logic-automata connections for transformations. In ICLA, volume
8923 of LNCS, pages 30–57. Springer, 2015.

E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties
of visibly pushdown transducers. In MFCS, volume 6281 of LNCS,
pages 355–367. Springer, 2010.

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of nested
word transductions. In FSTTCS, volume 13 of LIPIcs, pages 312–324,
2011.

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. From two-way to one-
way finite state transducers. In LICS, pages 468–477. IEEE, 2013.

O. Gauwin, J. Niehren, and S. Tison. Queries on XML streams with
bounded delay and concurrency. Information and Computation, 209(3):
409–442, 2011.

E. Gurari. The equivalence problem for deterministic two-way sequential
transducers is decidable. SIAM J. on Computing, 11, 1982.

J. E. Hopcroft and J. D. Ullman. An approach to a unified theory of
automata. BELLTJ: The Bell System Technical Journal, 46:1793–1829,
1967.

V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown au-
tomata for streaming XML. In WWW, pages 1053–1062. ACM, 2007.

P. Madhusudan and M. Viswanathan. Query automata for nested words. In
MFCS, volume 5734 of LNCS, pages 561–573. Springer, 2009.

F. Neven and T. Schwentick. Query automata over finite trees. Theoretical
Computer Science, 275, 2002.

J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree
automata. In DBLP, volume 3774 of LNCS, pages 217–231. Springer,
2005.

J. Pécuchet. Automates boustrophedon, semi-groupe de Birget et monoide
inversif libre. RAIRO - ITA, 19(1):71–100, 1985.

F. Picalausa, F. Servais, and E. Zimányi. XEvolve: an XML schema
evolution framework. In SAC, pages 1645–1650. ACM, 2011.

J. Raskin and F. Servais. Visibly pushdown transducers. In ICALP,
volume 5126 of LNCS, pages 386–397. Springer, 2008. doi: 10.
1007/978-3-540-70583-3 32. URL http://dx.doi.org/10.1007/
978-3-540-70583-3_32.

L. Segoufin and C. Sirangelo. Constant-memory validation of streaming
XML documents against DTDs. In ICDT, volume 4353 of LNCS, pages
299–313. Springer, 2007.

H. Seidl, S. Maneth, and G. Kemper. Equivalence of deterministic top-down
tree-to-string transducers is decidable. In FOCS, pages 943–962. IEEE,
2015.

J. C. Shepherdson. The reduction of two-way automata to one-way au-
tomata. IBM Journal of Research and Development, 3(2):198–200,
1959.

W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozen-
berg, editors, Handbook of Formal Languages, volume 3, Beyond
Words. Springer, Berlin, 1997.

2-way Visibly Pushdown Automata & Transducers 10 2016/8/29

A. Appendix
A.1 Two-way visibly pushdown automata
PROPOSITION 1. The relation ∼ is a congruence of finite index.

Proof. We consider R the set of binary relations over Q × D.
Obviously, R is finite. As traversals are subsets of R, ∼ is of finite
index. Let us now prove that ∼ is a congruence relation for the
binary operation . and the unary ones, fc,r (for c ∈ Σc, r ∈ Σr).

From ∼, we define four equivalence relations ∼ll,∼lr,∼rl,∼rr

on Q×Q such that for (α, β ∈ {l, r}), we have u ∼αβ v if

[u]∼ ∩ (Q× {bdir(α)} ×Q× {edir(β)}) =

[v]∼ ∩ (Q× {bdir(α)} ×Q× {edir(β)})

where bdir(l) = edir(r) =→ and bdir(r) = edir(l) =←.
Intuitively, (p, q) belongs to [w]∼ll (respectively to [w]∼lr) if

there exists a run of A on w starting reading w from the left side,
ie, with direction→ in state p and leaves the word on the left, ie,
with direction← (resp. on the right, ie, with direction→) in state
q.

The relation ∼ is uniquely determined by the four relations
∼ll,∼lr,∼rl,∼rr and in particular, ∼ is a congruence iff all the
∼ll,∼lr,∼rl,∼rr are congruences.

Let us first notice that for ε, one has [ε]∼ll = [ε]∼rr = ∅ whereas
[ε]∼lr , [ε]∼rl are the identity relation.

Let us consider u, u′, v, v′ in N (Σ) and assume that u ∼ u′

(and thus, u ∼ll u
′, u ∼lr u

′, u ∼rl u
′, u ∼rr u

′) and v ∼ v′. We
consider u.v and u.′v′ and prove that u.v ∼ u.′v′.

From the definition of runs and traversals, one has

[u.v]∼ll = [u]∼ll ∪ [u]∼lr ◦ ([v]∼ll ◦ [u]∼rr)
∗ ◦ [v]∼ll ◦ [u]∼rl

[u.v]∼lr = [u]∼lr ◦ ([v]∼ll ◦ [u]∼rr)
∗ ◦ [v]∼lr

[u.v]∼rl = [v]∼rl ◦ ([u]∼rr ◦ [v]∼ll)
∗ ◦ [u]∼rl

[u.v]∼rr = [v]∼rr ∪ [v]∼rl ◦ ([u]∼rr ◦ [v]∼ll)
∗ ◦ [u]∼rr ◦ [v]∼lr

Hence, [u.v]∼αβ = [u′.v′]∼αβ for all α, β ∈ {l, r} and so,
u.v ∼ u′.v′. Let us point out that these definition are similar to
those defined for words in the case of two-way finite state automata
(Shepherdson 1959) and that [(u.v).w]∼αβ = [u.(v.w)]∼αβ and
[u.ε]∼αβ = [ε.u]∼αβ for all α, β ∈ {l, r}.

Now, let us consider u, u′ in N (Σ) and assume that u ∼ u′.
We consider cur = fc,r(u) and cu′r = fc,r(u

′) and show
that cur ∼ cu′r. Expressing traversals on cur is much more
intricate. To ensure that traversals abstract properly runs, we need
to forget about stack contents and thus, reason again only on nested
words when composing sub-runs of cwr. Hence, new notations are
needed: we let for d in {←,→} and w ∈ N (Σ)

Zcll,d =
{

(p, q) | (p,→, c, p′,←, γ) ∈ δpush , (p′,←, γ, c, q, d) ∈ δpop
}

Zcwll,d =
⋃
γ∈Γ

 ⋃
(−→p

c,+γ−−−→−→p′)

{(p, p′)} ◦ [w]∼ll ◦
⋃

(
←−
q′
c,−γ−−−→(q,d))

{(q′, q)}

Zrrr,d =

{
(p, q) | (p,←, r, p′,→, γ) ∈ δpush , (p′,→, r, γ, q, d) ∈ δpop

}

Zcwrr,d =
⋃
γ∈Γ

 ⋃
(←−p

r,+γ−−−→←−p′)

{(p, p′)} ◦ [w]∼rr ◦
⋃

(
−→
q′
r,−γ−−−→(q,d))

{(q′, q)}

The expressions Zcll,d and Zcwll,d stands both for left-to-left traver-

sal reading twice the initial letter c; the former one represents a
back-and-forth move on c whereas Zcwll,d implies that between the
readings of c a left-to-left traversal of w is performed. If the last
direction d is← then the reading head leaves the word, otherwise

the next reading will be c again. The expressions Zrrr,d and Zwrrr,d are
defined dually.

T cwrlr,d =
⋃
γ∈Γ

 ⋃
(−→p

c,+γ−−−→−→q

{(p, q)}

◦[w]∼lr◦

 ⋃
(−→p

r,−γ−−−→(q,d))

{(p, q)}

T cwrrl,d =
⋃
γ∈Γ

 ⋃
(←−p

r,+γ−−−→←−q

{(p, q)}

◦[w]∼rl◦

 ⋃
(←−p

c,−γ−−−→(q,d)

{(p, q)}

The expression T cwrlr,d represents a direct traversal from left-to-

right, going once through c and r.
Finally, the classes [cwr]∼ll , [cwr]∼lr , [cwr]∼rl and [cwr]∼rr are

defined in Figure 3.
Hence, we indeed have that [fc,r(u)]∼αβ = [cur]∼αβ =

[cu′r]∼αβ = [fc,r(u
′)]∼αβ for all α, β ∈ {l, r}. �

COROLLARY 1. For any 2VPA A, deciding the emptiness of A (ie
L(A) = ∅) is EXPTIME-C. The same result holds for D2VPA.

Proof. We detail the hardness proof by reduction from the
emptiness of k DVPA. The latter problem can be shown to be
EXPTIME-hard from the EXPTIME-hardness of intersection empti-
ness of k deterministic top-down tree automata and a polyno-
mial translation of deterministic top-down tree automata into
DVPA (Alur and Madhusudan 2009). We can then encode this
problem as emptiness of a D2VPA as follows: the D2VPA simu-
lates one after the other the DVPA’s A1, . . . , Ak; once the word
is read from left to right simulating Ai, if a final state of Ai is
reached, one enters a state that move the reading head at the be-
ginning of the word and then switches to the initial state of Ai+1

to read the input word once again. Hence, starting initially in the
initial state of A1, if the final state of Ak is reached then the input
nested word belongs to all the Ai’s. �

A.2 Two-way visibly pushdown transducers
LEMMA 2. Any unambiguous VPT T can be written as the com-
position of two VPT T1 ◦ T2, where T1 is deterministic and T2 is
letter-to-letter and co-deterministic. Furthermore, if T is letter-to-
letter, so is T1.

Proof. It has been proved in (?) that every unambiguous VPT
can be transformed into a DVPT equipped with a look-ahead lim-
ited to the current hedge. Formally, such a transducer is defined as
a triple (T,A, λ) where T is a DVPT, A is a VPA with no initial
states, and λ is a mapping from call transitions of T to states of A.
Given a state p of A, we denote by Ap the VPA defined from A by
letting {p} be the set of initial states. A call transition t of T can
then be fired at some position of an input wordw only if the longest
nested subword of w from this position belongs to L(Ap).

Intuitively, the decomposition of a DVPT with look-ahead
works as follows: the co-deterministic letter-to-letter VPT does
a first pass enriching the alphabet with the results of the look-ahead
tests. Then the deterministic VPT simulates the DVPT with look-
ahead using this additional information.

Formally, let (T,A, λ) be a DVPT with look-ahead from Σ to
∆, with A = (Q,F,Γ, δ). We first define the structured alphabet
Σ′ as the disjoint union of the set of call symbols Σc× 2Q, and the
set of return symbols Σr . We define the co-deterministic letter-to-
letter VPT T2 = (A2,O2) from Σ to Σ′, where A2 is defined as
the co-determinisation of A. Formally, let us denote by idX the set
{(q, q) | q ∈ X}. We defineA2 = (2Q×Q, I2, idF ,Σr×2Q×Q, α)
where I2 = {S ⊆ Q×Q | S ∩ I × F 6= ∅} and the transitions of
A2 are defined as follows:

2-way Visibly Pushdown Automata & Transducers 11 2016/8/29

[cwr]∼ll =
(
Z
c/cw
ll,→ ∪

(
T cwrlr,← ◦ (Z

r/wr
rr,←)∗ ◦ T cwrrl,→

))∗ (
Z
c/cw
ll,← ∪

(
T cwrlr,← ◦ (Z

w/wr
rr,←)∗ ◦ T cwrrl,←

))
[cwr]∼lr =

(
Z
r/wr
ll,→ ∪

(
T cwrlr,← ◦ (Z

r/wr
rr,←)∗ ◦ T cwrrl,→

))∗ (
T cwrlr,→ ∪

(
T cwrlr,← ◦ (Z

r/wr
rr,←)∗ ◦ Zr/wrrr,→

))
[cwr]∼rl =

(
Z
r/wr
rr,← ∪

(
T cwrrl,→ ◦ (Z

c/cw
ll,→)∗ ◦ T cwrlr,←

))∗ (
T cwrrl,← ∪

(
T cwrrl,→ ◦ (Z

c/cw
ll,→)∗ ◦ Zc/cwll,←

))
[cwr]∼rr =

(
Z
c/cw
rr,← ∪

(
T cwrrl,→ ◦ (Z

c/cw
ll,→)∗ ◦ T cwrlr,←

))∗ (
Z
r/wr
rr,→ ∪

(
T cwrrl,→ ◦ (Z

c/cw
ll,→)∗ ◦ T cwrlr,→

))
Figure 3. Relations of the transition congruence on cwr, where Zc/cwll,d and Zr/wrll,d are defined respectively by Zcll,d ∪ Zcwll,d and Zrll,d ∪ Zwrll,d .

p′′ q′′
S′′

p q
c,+γ r,−γ

Update(c, S, r)

• Return transitions: idQ
r,−(r,S)−−−−−→ S, with r ∈ Σr and S ⊆

Q×Q

• Call transitions: S
c,+(r,S′)−−−−−−→ S′′ with c ∈ Σc, r ∈ Σr and

S, S′, S′′ ⊆ Q × Q, iff S = update(c, S′′, r) ◦ S′ where
update(c, S′′, r) = {(p, q) ∈ Q × Q | ∃γ ∈ Γ.∃(p′′, q′′) ∈
S′′.p

c,+γ−−−→ p′′ and q′′
r,−γ−−−→ q}

The mapping O2 associates ε to every return transition, and as-
sociates {p ∈ Q | ∃q ∈ F.(p, q) ∈ S} to the call transition

S
c,+(r,S′)−−−−−−→ S′′. This set corresponds to the set of states p such

that the look-ahead constraint p is satisfied.
The DVPT T1 from Σ′ to ∆ can then easily be derived from the

DVPT with look-ahead T as the look-aheads tests can be checked
on the enriched alphabet Σ′. �

THEOREM 3. Given a letter-to-letter DVPTA and a 2VPTB, we
can construct a 2VPT C that realizes the composition C = B ◦A.

If furthermore B is deterministic, then so is C.

Proof. We first notice that since we’re considering visibly push-
down machines, the stacks of both machines are always synchro-
nized, meaning that they have the same height on each position.
Then, let us remark that when the 2VPT moves to the right, we can
do the simulation in a straight forward fashion by simulating it on
the production of the one-way, which we can compute. It becomes
more involved when it moves to the left. We then need to rewind
the run of the one-way, and nondeterminism can arise. To bypass
this, let us recall that a similar construction from (Hopcroft and Ull-
man 1967) exists for classical transducers, and that the rewinding
is done through a back and forth reading of the input, backtracking
the run up to a position where the nondeterminism is cleared, and
then moving back to the current position.

The main idea is that if we were to consider a hedge as a
word over subhedges (see Figure 4), we can use the Hopcroft-
Ullman construction, given that we know the initial state, i.d. the
state in which the one-way enters the hedge. To overcome this, we
will ensure the invariant that the stack contains not only the stack
symbols from the two transducers, but also at each step it contains
the state in which the one-way enters a hedge. Remark that thanks
to this, upon moving to the left of a call letter, the state of the one-
way is directly given by the information in the stack.

We now explain how we can treat subhedges as letters. First,
while the subhedge alphabet is infinite, we are actually interested in
their behaviour in the one-way. Thus we consider an automaton not
over the subhedge, but over their summaries, which are finite. We
can thus compute a finite automaton of the summaries, and apply
the Hopcroft-Ullman construction on it. Consequently, we need to

c • r

c1 • r1

w1

c2 • r2

w2

cn • rn
wn

· · ·
u :

Figure 4. The well nested word cc1w1r1c2w2r2 . . . cnwnrn can
be seen as a word u over letters (ci, Si, ri) where Si is the summary
of wi. The position labelled by c serves as initial position of the
word.

be able to compute the summaries of a given subhedge. This is eas-
ily done on the fly using the determinisation procedure of the VPAs.
Finally, note that applying the Hopcroft-Ullman construction to the
automaton of summaries gives the state in which the one-way en-
ters the previous subhedge (when rewinding a run). This allows us
to maintain the invariant, and by reading this subhedge we can com-
pute the state of the one-way at the previous position (from where
we started).

Note that the Hopcroft-Ullman routine is deterministic, and
consequently the construction preserves determinism.

Formal construction. Let A = ((Q, i, F,Γ, δ),O1) be a letter-
to-letter DVPT and B = ((P, j,G,Θ, α),O2) be a 2VPT that
can be composed with A. We assume that A works on the alphabet
equipped with left and right markers and preserves them. Note that
it can easily be extended if it is not the case.

We construct C = ((N, k,H,Ω, β),O3) a 2VPT that realizes
the composition.

• N = Nm]Nb]Nf]Ns where Nm, Nb and Nf correspond
to the classical sets of the Hopcroft-Ullman construction, and
Ns is used to compute the summary of a subhedge. We have the
main modeNm = P×Q, the back modeNb = P×Q]P×QQ
and the further mode Nf = P × Q2, while Ns = QQ.
Note that there are also other states like read or states from
P ×Q×{end} that were omitted. The total size of the omitted
states is linear in P and Q.
• k = (i, j) is the initial state.
• H = F ×G is the set of final state.
• Ω can similarly to N be written as the disjoint union of stack

alphabets for the different modes. We have Ωm = Q× Γ×Θ,
Ωb = P × (QQ]Q)×Σr , Ωf = P × ((Q×Γ)] (Q×Γ)2)
and Ωs = QQ × Σr .

We now give the transition function β. Lowercase letters denote
element of its uppercase counterpart. The direction of a transition
is given by the sense of an arrow, and the resulting direction is
omitted if it doesn’t change. Push transitions are denoted with a
+ symbol while pop transitions are denoted by a − symbol. For

2-way Visibly Pushdown Automata & Transducers 12 2016/8/29

example, we write (q,←, r, q′,←, γ) in δpush as q′
r,+γ←−−− q and

(q,→, r, q′,←, γ) in δpop as q
r,−γ−−−→ q′,←.

• The first three items describe the cases when we are able to di-
rectly advance in the two runs. These are the simpler cases. The
fourth corresponds to the end of the Hopcroft-Ullman construc-
tion, where all the needed information was computed. In these
cases, the production of O3 is the one of the corresponding tran-
sition of O2. Note that in all other cases, the production of O3

will be empty and thus omitted.

(p, q)
c,+(q,γ,θ)−−−−−−→ (p′, q′), d if O1(q

c,+γ−−−→ q′) = c′ and

p
c′,+θ−−−→ p′, d.

(p, q)
r,−(q,γ,θ)−−−−−−→ (p′, q′), d if O1(q

r,−γ−−−→ q′) = r′ and

p
r′,−θ−−−→ p′, d.

(p′, q′), d
c,−(q′,γ,θ)←−−−−−−− (p, q) if O1(q′

c,+γ−−−→ q) = c′ and

p′, d
c′,−θ←−−− p.

(p′, q′), d
r,+(q,γ,θ)←−−−−−− (p, q, q′, γ) where there exists q′′

such that O1(q′
r,−γ−−−→ q′′) = r′ and p′, d

r′,+θ←−−− p.
• When B moves to the left on a recall letter, we engage in the

Hopcroft-Ullman construction. In order to do that, we need to
compute the summary of the subhedge we are about to read.
Note that a similar transition happens when the automaton on
summaries rewinds one more step. Thus we have the following
transitions:

idQ
r,+(p,q,r)←−−−−−− (p, q).

idQ
r,+(p,R,r)←−−−−−−− (p,R).

• Computing a summary amounts to determining a VPA. Note
that we stop when we reach the height we are interested in,
which is where the stack first contains a state of B, which is
handle by the next item. Given a summary S and c, r a call
and return letter respectively, we define Update(c, S, r) =

{(q, q′) | ∃(q1, q2) ∈ S and γ q
c,+γ−−−→ q1 and q2

r,−γ−−−→ q′}.
This will reveal to be useful in the remainder of the construc-
tion.

idQ
r,+(S,r)←−−−−− S.

S′′
c,−(S′,r)←−−−−−− S where S′′ = S′ ◦ Update(c, S, r).

• After reading the first subhedge, we get to the point where
the top stack symbol is of the form (p, q, r). If there is only
one candidate, then there is no ambiguity. Otherwise, we start
rewinding the runs.

(p, q′, end),→ c,−(p,q,r)←−−−−−− S if q′ is the only state such that
(q′, q) belongs to Update(c, S, r).

(p,R)
c,−(p,q,r)←−−−−−− S where R = {(q′, q′) | (q′, q) ∈

Update(c, S, r)}.
• After reading the following subhedges, similar subcases appear,

depending on whether the nondeterminism is cleared or not.
If there is only one candidate left, we store a state leading to
from the next subhedge, as well as a state leading to another
candidate. They will be used to know when we got to the correct
position. Otherwise we just update the set of partial runs.

(p, q, q′),→ c,−(p,R,r)←−−−−−−− S ifR(q) is defined,R◦Update(c, S, r) ⊆
Q×{R(q)} and ifR(q′) is defined and different fromR(q).

(p,R′)
c,−(p,R,r)←−−−−−−− S whereR′ = R◦Update(c, S, r) and

R′ 6⊆ Q× {q} for any q.
• It can happen that the nondeterminism has not been cleared

until we reach the beginning of the hedge. In the same way
that the Hopcroft-Ullman uses the initial state, we then use the
information on the top of the stack to decide the candidate.

(p, q, θ, q′),→ c,−(q,γ,θ)←−−−−−− (p,R) where if q′′ is such that
q
c,+γ−−−→ q′′, bothR(q′) andR(q′′) are defined and different.

• Due to the definition, the model of 2VPT does not allow for di-
rect u-turns. Consequently, the u-turns have been parametrized
by specific states in the previous cases. We know explicit how
we handle them:

(p, q, end)
c,+(p,q,γ)−−−−−−→ q′ where q

c,+γ−−−→ q′. We also have
a subroutine that follows run of A on this subhedge until it
ends.

(p, q, q′)
c,+(p,q,q′)−−−−−−−→ read where the state read is a sub-

routine that only reads the subhedge until it pops the stacked
information.

read
r,−(p,q,q′)−−−−−−−→ (p, q, q′). At the end of the read subrou-

tine, we start following two runs in parallel, in the same way
as in the next subcase.

(p, q, θ, q′)
c,+(q,γ,θ)−−−−−−→ (p, q′′, q′) where q

c,+γ−−−→ q′′.
• When we are in states ofNf , i.d. states of the form (p, q, q′), we

simply follow the two runs in parallel, stacking p and the current
states on the current height and the stack letters of both runs
at each step nonetheless. This subroutine ends upon popping a
stack letter that contains p where the two runs collide, meaning
we reached the original position. We now explicit what happens
on this position:

q
r,−(p,q′,γ)−−−−−−−→ (p, q′, q, γ),←.

(q, q′)
r,−(p,q1,γ,q2,γ

′)−−−−−−−−−−−→ (p, q1, q, γ),← if there exists q′′

such that q
r,−γ−−−→ q′′ and q′

r,−γ′−−−→ q′′.

�

A.3 Expressiveness of Two-Way Visibly Pushdown
Transducers

THEOREM 6. An order-preserving transduction is definable in
MSO[nw2w] if, and only if, it is definable by a functional6 VPT.

Proof. The proof relies on the similar result for finite words
from (Filiot 2015) and the equivalence between VPA and MSOnw

from (?). Let T be a functional VPT. From (?), we know that we
can construct an equivalent unambiguous VPT T ′ realizing the
same function. Using (?), we can construct an MSOnw formula
ϕ of the form ∃X1 . . .∃X|Q| ψ(X1, . . . , X|Q|) that recognizes
dom(T ′). Moreover, given u in dom(T ′), there exists a unique
assignment of the variables Xi satisfying ψ, such that a variable
x ∈ Xi if, and only if, x quantify a position j such that the
unique accepting run of T ′ on u is in state qi on position j. Using
ϕ, we can then easily construct an MSO[nw2w] transduction T ′′

using |Q| copies. The domain formula is ϕ, position formulas are
φqpos(x) = ϕ ∧ x ∈ Xq . The successor transition is given by
φq,q

′

S (x, y) = S(x, y) ∧ φqpos(x) ∧ φq
′
pos(y) and we label the q

copy of a node by the possibly empty production of the transducer

6 Within the class of VPT, the class of functional VPT is decidable in
PTime (Filiot et al. 2010)

2-way Visibly Pushdown Automata & Transducers 13 2016/8/29

in state q reading the label of the node. We have, for v a production

of T , φqv(x) =
∨
a∈Aq,v a(x) where Aq,v = {a ∈ A | ∃q′ q a|v−−→

q′}. Note that labeling by possibly empty words is not restrictive
as MSO transductions are closed under composition, and a simple
transduction can extend words into linear graphs and compress the
ε-labeled paths.

Now given an order-preserving MSO[nw2w] T , we construct
an unambiguous VPT that recognizes the same function. As T is
order-preserving, for every u = u1 . . . un in dom(T), we can de-
compose T (u) in v1 . . . vn where vi corresponds to the production
from position i. Let us callB the finite set of all possible vi appear-
ing in a such decomposition. For any v in B, we use the formulas
of T to construct a formula φv(x) that holds on an input word u
and a position i if in the decomposition of T (u), vi = v. For any
sequence I = (c1, . . . , ck) of |v| different copies of T , we de-
fine φvI (x) =

∧
i<k φ

ci,ci+1

S (x, x) ∧
∧
i≤k φ

ci
pos(x) ∧ φcivi(x) ∧∧

x/∈I ¬φ
c
pos(x). The formula φv(x) is simply defined as the dis-

junction of the formulas φvI (x) on all possible sequences I .
Then using these formulas, we construct a formula ψ over the fi-

nite alphabet Σ×B that recognizes the language L = {(u, T (u)) |
u ∈ dom(T)}. We define ψ = φ′dom ∧ ∀x (a, v)(x) → φv(x)
where φ′dom is obtained from φdom by replacing every predicate
a(x) by

∨
v∈B(a, v)(x). Now thanks to (?), we can construct a

DVPA that recognizes L = L(ψ). Finally, we transform it into a
VPT by replacing transitions reading (a, v) into transitions read-
ing a and producing v. Since T realizes a function, we obtain a
functional VPT, concluding the proof. �

PROPOSITION 3. Deciding the single use property on a 2VPT is
EXPTIME-C.

Proof. We prove that this problem is equivalent to deciding
the emptiness of a D2VPA, which concludes the proof thanks to
Corollary 1.

Let us first remark that if A is single use, it is single use with
respect to the set of all states that can produce a non empty word.
Let A be a 2VPT on an input alphabet Σ. We define a 2VPA B
on the marked alphabet Σ × {0, 1} as follows. The transducer B
first reads its input to ensure that there is exactly one position with
a 1. It then nondeterministically chooses a producing state q and
simulates A on its input. It finally accepts if it visits the marked
position twice in state q. Then A is single use if, and only if, the
language recognised by B is empty. Since the size of B is linear in
the size of A, deciding the single use property is Exptime.

Conversely, let B be a 2VPA. We construct a 2VPT A as
follows. All existing transitions of B are set to produce the empty
word, and every accepting transition is replaced by a back and
forth move on the last position, producing a single letter. Then
the producing transitions can only be fired in A if there is a run
of B that fires an accepting transition. If it is the case, then the
corresponding run on A will visit the state q twice in the last
position while producing non empty words. Thus the language
recognised by B is empty if, and only if, A is single-use. As the
size of A is linear in the size of B, we get the Exptime-hardness of
the single use problem. �

LEMMA 3. There is an MSO-definable nested word to word trans-
duction f which is not definable by strongly single-use D2VPTLA.

Proof. We explicit a transformation that is definable by an
MSO[nw2w] transduction but not by a strongly single-use D2VPTLA.

Consider an alphabet Σ with some special letters c and r from
Σc and Σr respectively. We define the transformation f which as-
sociates to a word w0cw1cw2 . . . wn−1cwnrw

′
n−1 . . . w

′
2rw

′
1rw0

where all wi, w′i are non empty nested words and do not any con-
tain c, for 0 ≤ i ≤ n, the word w0w

′
0w1w

′
1 . . . wn−1w

′
n−1wn. Its

w0 w′0

w1 w′1

wn−1 w′n−1

c r

c r

c r

c r

· · · · · ·

wn

Figure 5. The transformation f alterns n times between positions
left and right of wn. Thus it has to read wn at least 2n times.

domain is then the set of nested words where any c is matched by
an r, and all letters c appear successively nested on a given branch.
The transformation is illustrated in Figure 5.

Before giving the MSO[nw2w] that defines f , we explain how
it is not definable by a strongly single use D2VPTLA. As thewi and
w′i are unbounded, they cannot be guessed by look-around. Thus a
machine realizing it has to visit these subwords in the order they
are output. But each walk from wi to w′i has to cross wn. Thus wn
is read at least 2n times. As n is not bounded, f cannot be realized
by a strongly single use D2VPTLA.

Now we define a MSO[nw2w] T that realizes f . In order to do
that, we define a binary predicate H(x, y) which holds is x and y
are call or return positions of a same hedge. LetHtc(X) be defined
by the formula:

∀x ∈ X Σc(x)→
(
∀y M(x, y) ∨ (S(y, x) ∧ Σr(y))→ y ∈ X

)
∧ Σr(x)→

(
∀y M(y, x) ∨ (S(x, y) ∧ Σc(y))→ y ∈ X

)
with Σl(x) =

∨
σ∈Σl

σ(x) for l = c, r. Then a set X satisfies
Htc(X) if, and only if, it is closed by the relation belong to the
same hedge. We then simply set H(x, y) = ∀X x ∈ X ∧
Htc(X) → y ∈ X . We also define the parent relation P (x, y) =
∃z H(x, z)∧ (∀z′ H(z, z′)→ z ≤ z′)∧S(y, z) which holds if y
is the call corresponding to the parent of x.

We can now define the domain formula φdom = ∀x c(x) →
(∀y (M(x, y) → r(y)) ∧ (P (x, y) → c(y)) ∧ (H(x, y) ∧
c(y) → x = y) stating exactly what was mentioned earlier. The
transducer T uses 1 copy, the position formula φpos(x) = ¬(c(x)∨
(∃y M(y, x) ∧ c(y))) simply erases the c labeled positions and
their matching, the labeling formulas simply maintain the labels,
and finally the successor formula φS(x, y) is defined by:

∃z S(x, z) ∧ ¬(c(z) ∨ (∃w M(w, z) ∧ c(w))) ∧ y = z)

∨
(
c(z) ∧ ∃z′ M(z, z′) ∧ S(z′, y)

)
∨
(
∃z′, z′′ M(z′, z) ∧ c(z′) ∧Nextc(z′, z′′) ∧ S(z′′, y)

)
where Nextc(x, y) = x < y ∧ c(y)∧ ∀z x < z < y → ¬c(z). �

THEOREM 7. Let f be a transduction from nested words to words.
Then f is MSO-definable iff it is definable by a (look-around)
D2VPTsu, i.e.,

MSO[nw2w] = D2VPTLA
su = D2VPTsu.

Proof. We prove the equivalence MSO[nw2w] = D2VPTLA
su .

Proof overview This result is based on several results of (Cour-
celle and Engelfriet 2012), on the class of deterministic tree-to-
word walking transducers (DTWT), possibly augmented with vis-
ibly pushdown stack (then denoted DPTWT) and a regular look-
around ability (denoted by an exponent la), and possibly restricted
to linear-size increase the class of linear-size increase transductions
(denoted by subscript lsi), or to strongly single-use (denoted by

2-way Visibly Pushdown Automata & Transducers 14 2016/8/29

subscript ssu). We will define the most general model formally in
the sequel.

Let us also denote by MSO[b2w] the class of MSO-definable
transductions from (ranked) trees to words. Then, it is shown in
(Courcelle and Engelfriet 2012) that

MSO[b2w] = DTWTla = DPTWTlalsi

The inclusion MSO[nw2w] ⊆ D2VPTLA
su is proved using the

equality MSO[b2w] = DTWTla. Due to determinism, DTWTla

are always strongly single-use (otherwise they could be stuck in
a loop), i.e., DTWTla = DTWTlassu (see (Courcelle and Engel-
friet 2012), in which it is just called single-use). Using a first-
child next-sibling encoding of nested words w into binary trees
fcns(w), we have MSO[nw2w] = MSO[b2w]◦ fcns, and therefore
MSO[nw2w] = DTWTlassu ◦ fcns. Then, we show that DTWTlassu ◦
fcns ⊆ D2VPTLA

su by simulating DTWTlassu that runs on fcns en-
coding of nested words by D2VPTLA

su . In particular, when simulat-
ing tree walking moves, one do not preserve the strong single-use
restriction, but the resulting D2VPTLA

su is single-use.
To show inclusion D2VPTLA

su ⊆ MSO[nw2w], we use the
equality MSO[b2w] = DPTWTlalsi. Using fcns encoding, we get
that MSO[nw2w] = DPTWTlalsi◦fcns = (DPTWTla ◦ fcns)∩ LSI,
where LSI denotes the class of linear-size increase transductions.
Then, we establish the inclusion D2VPTLA

su ⊆ (DPTWTla ◦
fcns) ∩ LSI . The single-use restriction of D2VPTLA

su ensures that
they define only transductions in LSI. Then, a D2VPTLA

su can be
simulated by a DPTWTla running on fcns encodings of nested
words. Due to the encoding, pushdown moves of the D2VPT are
simulated by pushdown moves to the 1st child by the DPTWT
and the look-around are translated in a straightforward fashion.
The resulting DPTWT does not use the stack while moving to 2nd
children.

As a matter of fact, putting things altogether, our result also
shows that DPTWTla could be strengthen when they run on binary
trees, to the following pushdown behaviour, while retaining MSO-
expressiveness: they only need to push a symbol when moving to
left children, and not when moving to right children.

To summarize, we show the following chain of inclusions:

D2VPTLA
su ⊆ (1) (DPTWTla ◦ fcns) ∩ LSI

⊆ (5) ⊇ (2)
DTWTlasu ◦ fcns ⊇ (4) MSO[b2w] ◦ fcns = MSO[nw2w] (3)

where (1) and (5) are shown in this paper, (3) is immediate, (2) and
(4) come from (Courcelle and Engelfriet 2012). We now proceed to
the detailed proof.

Tree Walking Transducers Let Λ be a ranked alphabet of binary
and constant symbols (i.e.Λ is partitioned into Λ2 and Λ0). A tree
t of Λ is a term inductively defined by t ::= f(t, t) | a, where
f ∈ Λ2 and a ∈ Λ0. We denote by TreesΛ the set of trees over
Λ. The set of nodes, denoted by Nt of a tree t ∈ TreesΛ, is a
prefix-closed subset of {1, 2}∗ inductively defined as Na = {ε}
and Nf(t1,t2) = {ε} ∪ {i.π | π ∈ Nti , i ∈ {1, 2}}. For a node
n ∈ Nt, we denote by t(n) the label of node n in t. Let Σ be a finite
(unranked) alphabet. A tree to word transduction is a function from
TreesΛ into Σ∗.

Let us explain informally the different classes of tree walking
transducers we consider in this proof. A deterministic tree to word
walking transducer walks through the edges of a binary tree (start-
ing from the root node), and writes a word from left to right on
some output tape. In a state q of a tree t and at a node n, depending
on the label of n, and the state q, the transducer can move either
to the father of n (if it exists, otherwise the run rejects), the first or
second child of n (if it exists, otherwise the run rejects), change its
internal state to a new state, and produces some partial word on the

output. It can also decide to stop the walk by going to a stopping
state qs.

Such transducers can be augmented with look-around. We de-
fine look-around by an unambiguous bottom-up tree automaton.
Prior to starting the computation of the tree walking transducer,
the tree, if accepted by the look-around automaton, is labeled by
the states of the accepting run of the automaton. Then, transitions
are taken depending also on the look-around states.

Finally, walking transducers can be augmented by a (visibly)
pushdown store. Initially at the root the pushdown stack contains
an initial symbol γ0, and whenever the transducer goes one step
downward, it has to push one symbol on the stack. If it moves one
step upward, it has to pop one symbol. At any moment, it can also
read the top symbol of the stack.

Formally, a deterministic pushdown tree to word walking trans-
ducer with look-around from TreesΛ to Σ∗ is a tuple T =
(L,Q, q0, qs,Γ, γ0, R) where L is an unambiguous bottom-up tree
automaton7 over a finite set of states P (the look-around automa-
ton), Q is a finite set of states, q0 is the initial state, qs the stopping
state, Γ is a finite stack alphabet with initial symbol γ0, R is a
transition function such that

R : Q×P ×Λ×Γ→ Σ∗×({qs}∪Γ×Q×{1, 2}∪Q×{−1})

A configuration of T on a tree t is a triple (q, n, β, u) ∈ Q ×
Nt × Γ+ × Σ∗. For all trees t ∈ TreesΛ, if t is accepted by the
look-around automaton, we define →t a binary relation between
consecutive configurations as follows: for all q, q′ ∈ Q, all n, n′ ∈
Nt, all β, β′ ∈ Γ∗, all γ ∈ Γ, all u, v ∈ Σ∗, (q, n, βγ, u) →t

(q′, n′, β′, uv) if the accepting run of L labels n by a state p ∈ P
such that (q, p, t(n), γ) ∈ Dom(R) and either

• (stopping move) R(q, p, t(n), γ) = (v, qs) and q′ = qs, n′ =
n, β′ = βγ, or
• (downward move) R(q, p, t(n), γ) = (v, γ′, q′, i) for i ∈
{1, 2} and β′ = βγγ′, t(n) ∈ Λ2, and n′ is the i-th child
of n, or
• (upward move) R(q, p, t(n), γ) = (v, q′,−1) and n 6= ε (i.e.
n is not the root node), β′ = β, and n′ is the father of n.

A run of T on a tree t is a finite sequence of configurations
c0c1 . . . cm such that ci →t ci+1 for all i = 0, . . . ,m − 1. It is
accepting if c0 = (q0, ε, γ0, ε) and cm = (qs, n, β, u) for some
n ∈ Nt, β ∈ Γ+, u ∈ Σ∗. Since R is a function and L is
unambiguous, there exists at most one accepting run per input tree
t, and we call u the output of t. The transduction realized by T
is the set of pairs (t, u) such that t is accepted by the look-around
automaton, and there exists an accepting run of T on twhose output
is u. The class of deterministic pushdown tree to word walking
transducers 8 is denoted by DPTWTla.

7 We refer the reader to (Comon-Lundh et al. 2007) for a definition of
bottom-up tree automata
8 We have slightly changed the definition of (Courcelle and Engelfriet
2012) to simplify our presentation, but in an equivalent way, and have
specialized it to the tree-to-word setting. In (Courcelle and Engelfriet 2012),
look-around are MSO-formulas on trees, with one free first-order variable,
attached to the transitions of the transducer: a transition can be fired only if
its look-around formula holds at the current node. It is known that such
an MSO formula φ(x) is equivalent to an unambiguous bottom-up tree
automaton Aφ (Niehren et al. 2005; Neven and Schwentick 2002) in the
following sense: the automaton as a special set of selecting states S, such
that on a tree t accepted by the automaton, a node n is such that t |= φ(n)
iff this node is labeled by a state of S in the accepting run of the automaton
on t. If φ1(x), . . . , φn(x) are the look-around formulas appearing on the
transitions of the tree walking transducer, then by taking the product of the
unambiguous automata Aφi , one obtains an unambiguous automaton Ala

2-way Visibly Pushdown Automata & Transducers 15 2016/8/29

The class DTWTla denotes the class of deterministic tree to
word walking transducers with look-around (without pushdown
store), defined similarly as DPTWTla but with a pushdown alpha-
bet Γ that consists of one symbol {γ0} only. In that case, we can
omit the pushdown symbols in the transitions, except the initial
pushdown symbol γ0 that allows to know whether the current node
is the root of the tree or not. Instead of keeping the symbol γ0 in
the transitions, we use a boolean value which is true if the current
node is the root, and false otherwise. Therefore, in DTWTla, the
transitions function has the following type:

R : Q× P × Λ→ Σ∗ × ({qs} ∪ Q× {−1, 1, 2})

We say that a DTWTla is strongly single-use if one any accepting
run c0 . . . cn on a tree, a node n ∈ Nt is not visited twice in the
same state. As a matter of fact, it turns out that DTWTla are always
strongly single-use (Courcelle and Engelfriet 2012).

MSO[b2w] is defined similarly as MSO[nw2w], except that
MSO formulas over the signature {S1(x, y), S2(x, y), (a(x))a∈Λ}
are used to define the transduction, where Si(x, y) holds if y is the
i-th child of x. It is easy to show that MSO[nw2w] and MSO[b2w]
are equivalent, modulo suitable encodings. In particular, we will
need the following equality:

MSO[nw2w] = MSO[b2w] ◦ fcns (1)

where fcns encodes nested words into binary trees. Let us describe
this encoding formally: Let Σ = Σc]Σr be a structured alphabet.
We define the binary alphabet Λ2 = Σc × Σr , and the unary
alphabet Λ0 = {⊥}. We define fcns the encoding of nested words
to binary trees inductively as follows, for all w,w′ ∈ N ([)Σ],
c ∈ Σc, r ∈ Σr:

fcns(cwrw′) = (c, r)(fcns(w), fcns(w′)) fcns(ε) = ⊥
We are now equipped to show the following two inclusions, which
will prove the desired result:

(2) DTWTla ◦ fcns ⊆ D2VPTLA
su

(3) D2VPTLA
su ⊆ (DPTWTla ◦ fcns) ∩ LSI

Proof of inclusion (2) Let T = (L,Q, q0, qs, R) be DTWTla.
We construct a D2VPTLA

su T
′ such that JT K ◦ fcns = JT ′K.

Transitions of T are simulated only on call symbols, i.e. the
moves of T are simulated by moves in T ′ between call symbols.
For instance, let c1c2r2c3c4r4r3c5r5r1 be a nested word, whose
fcns encoding is the tree

(c1, r1)((c2, r2)(⊥, (c3, r3)((c4, r4), (c5, r5)(⊥,⊥))))

If T moves from (c3, r3) to its father (c2, r2), then T ′ will move
from c3 to c2. If T moves from (c3, r3) to its first child (c4, r4),
then T ′ will move from c3 to c4. If T moves from (c3, r3) to its
second-child (c5, r5), then T ′ will move from c3 to c5.

Therefore, one-step moves of T in a binary encoding tw of a
nested wordw are simulated by sequences of moves of T ′ inw. It is
easy to see however that those sequences of moves can be achieved
by a D2VPT. The trivial case is a first-child move: it suffices to

such that, on a tree t accepted by Ala, the state label of a node n of t
in the accepting run of Ala contains enough information to decide which
look-arounds φi(x) hold at that node or not.
Another modification of the definition of (Courcelle and Engelfriet 2012) is
that we do not have 0-moves, i.e. transitions that stay at the same node. This
is circumvented by adding the possibility of producing several symbols by
a single transition, in contrast to (Courcelle and Engelfriet 2012).
Finally, our transducers produce words over Σ∗, while in (Courcelle and
Engelfriet 2012), they produce unary trees, i.e. a sequence of unary symbols
followed by a constant symbol. As a consequence, when a constant is
produced, the transducers of (Courcelle and Engelfriet 2012) stop. In our
definition, we rather have added a stopping state.

move one-step to the right in w. For the second-child move, T ′

has to move to the next call symbol at the right of current one, at
the same nesting depth: this is done by pushing one special symbol
γ2 when reading the first call, and moving to the right, until γ2 is
popped. For a father move, it suffices to move left: if the previous
symbol is a call, then T ′ has arrived to the call corresponding to
the father node. Otherwise, the left symbol is a return symbol:
again, a special symbol γf is pushed, to know, when T ′ walks left,
whenever it is at the same depth as the initial call symbol. If after
popping γf , a call symbol is read again, then it corresponds to the
father. Note that these walks do not produce anything on the output.

The look-around L of T is transformed into a look-around of
T ′ such that, if L labels a tree node labelled (c, r) by a state p, then
T ′ will label the call symbol c by the state p, as well as the call
symbol r. It is possible, since bottom-up tree automata and visi-
bly pushdown automata correspond modulo first-child next-sibling
encodings, while preserving unambiguity (Alur and Madhusudan
2009). Therefore, if P is the set of states of L, then the set of states
of the look-around automaton of T ′ is P × Σr .

Then, a transition (q, p, (c, r), u, (q′, d)) where d ∈ {−1, 1, 2}
is simulated by T ′ by a sequence of transitions (depending on
whether d = −1, d = 1 or d = 2) that starts in state q (with
look-around state (p, r)) and ends in state q′, and performs moves
as explained before.

There is a last additional technical difficulty: fcns encodings
contain the symbol⊥, unlike the encoded nested words. Therefore,
T ′ may move to ⊥, while T cannot. Moves to nodes labeled ⊥
can be simulated easily by T ′ by adding ε-transitions, which can
in turn be removed while preserving determinism. It is not difficult
but unnecessarily technical.

Finally, since T is necessarily single-use (due to non-determinism),
T ′ is also single-use (the extra states added to simulate one-step
moves of T by several moves of T ′ may be used several times at
the same tree node, but the transitions fired from those states are
ε-producing).

Proof of inclusion (3) Due to the single-use restriction, any
D2VPTLA

su transduction is LSI. It remains to show that a D2VPTLA
su

can be simulated by a DPTWTla. By using again the correspon-
dence between (unambiguous) visibly pushdown automata and (un-
ambiguous) bottom-up tree automata, one can simulate their look-
arounds. Since DPTWTla have the ability to push stack symbols in
both directions (first-child or second-child), it is not difficult to con-
struct a DPTWTla that simulates a D2VPTLA

su . As a matter of fact,
pushing symbols when moving to the second-child is not necessary
to simulate D2VPTLA

su : indeed, a second-child in a fcns encoding
correspond to a next-sibling in the nested word, and D2VPTLA

su do
not use their stack for processing symbols that are at the same depth
(they do not push “horizontally”). �

A.4 Inclusion into streaming transducers and
hedge-to-string transducers

THEOREM 9. D2VPT (STST and D2VPT (dH2SLA

Proof. The proofs of these two inclusions share a same inter-
mediate formal description of transformation. It turns out that this
representation will be an extension of the finite transition algebra
TA for some D2VPA A.

We recall that elements from the algebra TA are binary relations
over Q × D where Q is the set of states of A and can thus be
depicted as Boolean square matricesMTA over Q×D. Hence, the
morphism µTA associates with each word w from N (Σ) a matrix
from MTA such that µTA(w)((p1, d1), (p2, d2)) is true if there
exists a run on w from (p1, d1) to (p2, d2) in A.

One may extend this notion to transducers as follows. For a
D2VPT A, we consider square matrices NA over Q × D whose

2-way Visibly Pushdown Automata & Transducers 16 2016/8/29

values range over subsets of ∆∗. One can define a mapping µ
from N (Σ) to NA such that for all words w from N (Σ), µ(w)
is a matrix NA satisfying that NA((p1, d1), (p2, d2)) is equal
to L if for each v in L, there exists a run on w from (p1, d1)
to (p2, d2) in A producing v. Note in fact that A being de-
terministic, L is either a singleton or the empty set. One can
actually prove that one can define an (infinite) algebra NA =
(NA, .NA , (fc,r)(c,r)∈Σc×Σr

, εNA) such that .NA is associative and
εNA is its neutral element. Moreover, the considered mapping µ
turns out to µNA be the canonical morphism from W to NA. It is
worth noticing that for all (p, d), (p′, d′), µTA(w)((p, d), (p′, d′))
is false iff µNA(w)((p, d), (p′, d′)) 6= ∅.

The operations εNA , .NA and fNA
c,r can be represented as matri-

ces as well. To do so, let us first consider the two sets of symbols
Ξα = {x(p,d),(p′,d′)

α | (p, d), (p′, d′) ∈ Q × D} for α ∈ {1, 2}.
Then, let N̂A be the set of matrices defined over Q × D such that
for N̂A in N̂A, for all (p1, d1), (p2, d2), N̂A((p1, d1), (p2, d2))
is either the empty set ∅ or a singleton set included into the set
of words (∆ ∪ Ξ1 ∪ Ξ2)∗. Moreover, for εNA , the matrix is pre-
cisely the one with {ε} on its main diagonal and ∅ everywhere
else. For fNA

c,r , the elements of the matrix are actually included into
(∆ ∪ Ξ1)∗. The operation .NA deals with two matrices N̂1

A and
N̂2
A and produces the matrix N̂ ′′A satisfying that for all (p1, d1),

(p2, d2), N̂ ′′A((p1, d1), (p2, d2)) is obtained from N̂
′.′
A the ma-

trix of .NA by replacing everywhere in N̂
′.′
A ((p1, d1), (p2, d2)) the

symbol x(p,d),(p′,d′)
α by N̂α

A((p, d), (p′, d′)) for α ∈ {1, 2}. The
application for fNA

c,r represented by some matrix N̂fc,r
A is similar

with a single matrix as operand.
The matrices N̂

′.′
A and N̂fc,r

A can be defined by means of ex-
pressions similar to the ones defining recursively the equivalence
classes of traversals. Hence, these matrices are defined by means of
unions, concatenations and Kleene star entrywise; the fact that en-
tries of the matrices contain at most singletons and that Kleene star
can be expressed as finite concatenations relies on the determinism
of A.

From the infinite algebra NA and more specifically the matrices
representation of the operators N̂

′.′
A and N̂fc,r

A from this algebra,
we are going now to build a streaming tree-to-string transducer on
the one side and a dH2S on this other side.

For streaming tree-to-string transducers, the idea is to define
from a D2VPT A such a machine SA to simulate the computation
of µNA(w) for any word w or more precisely to compute the value
associated to ((qI ,→), (qf ,→)) in this matrix, qI being the initial
state of the D2VPT A and qf the (final) state reached by A after
reading w from qI .

We recall that we can define from A the finite algebra TA
whose domain is TravA and we consider Ξα = {x(p,d),(p′,d′)

α |
(p, d), (p′, d′) ∈ Q× D} for α ∈ {1, 2}.

For a D2VPAA, the STST SA is defined by (TravA, εTA ,Σc×
TravA,Ξ1, δSA , µ

SA
F) where

• δpushSA
(mTA , c) = (εTA , (c,mTA), νId)

• δpopSA
= (m′TA , r, (c,mTA)) = (mTA .TAfTA

c,r (m′TA), νc,r)

where νId is the identity on Ξ1 and νc,r associate with each
x(p,d),(p′,d′) the expression from N((p, d), (p′, d′)) where the
matrix N is defined as N1

Id.
NAfNA

c,r (N2
Id), the matrices Nα

Id

satisfying for all (p1, d1), (p2, d2), Nα
Id((p1, d1), (p2, d2)) =

x
(p1,d1),(p2,d2)
α (for all α ∈ {1, 2}).

Let us now consider the case of deterministic hedge-to-string
transducer. We first define the bottom-up deterministic look-ahead
automaton BA as (TravA, {εTA}, δBA) where δBA is the set of

rules of the form {(mTA .TAfTA
c,r (m′TA), c, r,mTA ,m′TA) with

mTA ,m′TA ∈ TravA.
Now, we define the dH2SHA as follows: the set of states QHA

is {qI} ∪ TravA × (Q × D)2, qI is the initial state, and the set of
final states is QHA . Now, for the transition function, we define

δ(qI , c, r, n
TA
1 , nTA

2) =

ω[x(q1,d1),(q2,d2)
α ← (nTA

α , ((q1, d1), (q2, d2)))(xα)]

δ((mTA , ((p, d), (p′, d′))), c, r,mTA) =

ω[x(q1,d1),(q2,d2)
α ← (mTA

α , ((q1, d1), (q2, d2)))(xα)]

where

• for any nTA
1 , nTA

2 such that (fTA
c,r (nTA

1).TAnTA
2)((qI ,→), (qf ,←

)) is true for some qf ∈ F .

• for any mTA
1 , mTA

2 such that fTA
c,r (mTA

1).TAmTA
2 = mTA and

((p, d), (p′, d′)) ∈ mTA and
• ω is equal to the word N((p, d), (p′, d′)), N being the matrix
fNA
c,r (N1

Id).
NAN2

Id, where the matrix Nα
Id satisfies for all α ∈

{1, 2}, for all (p1, d1), (p2, d2), Nα
Id((p1, d1), (p2, d2)) =

x
(p1,d1),(p2,d2)
α .

Let us prove now that the inclusions are strict. The transforma-
tion serving as a counter-example is the same for the two classes.
We consider a transformation T over the input alphabet Σc = {c}
and Σr = {r} and the output alphabet {a}. This transformation
takes as an input words such as (cr)n for any natural n and outputs
a2n−1. T is given by the dH2S with a single state q and with a
universal look-ahead automaton with q′ as unique state by

δ(q, c, r, q′) = aq(x1)q(x1)

The transformation T can also be defined by a STST with a single
state q, a unique register variable X and a unique stack symbol γ.
The transitions are given by

• δpush(q, c) = (q, γ, {X 7→ aXX})
• δpop(q, r, γ) = (q, {X 7→ X})

The transformation T cannot be realized by some D2VPT;
indeed, for such a machine with stack alphabet Γ on the shallow
inputs of the domain, the possible stacks occurring in runs are either
⊥ or the form γ for γ ∈ Γ. Hence, the possible behaviours of
such D2VPT are similar to the ones of a deterministic finite state
transducer. It is known that deterministic finite state transducers
realize only functions that are linear-size increase; this is not the
case of the transformation T . �

A.5 Unranked Tree Walking Transducers
Unranked Trees Let Λ be a finite set of symbols. Unranked trees
t over Λ are defined inductively as t ::= a | a(t1, . . . , tn), for
all a ∈ Λ, all n ≥ 1. Unranked trees over Λ can be identified
(modulo renaming of nodes) with structures over the signature UΛ

that consists of the first-child predicate fc(x, y) that relates a node
x to its first-child y, the next-sibling predicate ns(x, y) that relates
a node x to its next-sibling y in a sequence of unranked trees, and
a(x), for all a ∈ Λ, that holds true in node x if it is labeled a. In
addition, we also add a parent predicate parent(x, y) that relates
a node to its parent.

For instance, the unranked tree a(b, c(a), c) is identified with
the structure whose set of nodes is {ε, 1, 2, 3, 21}, where the first-
child predicate is {(ε, 1), (2, 21)}, the next-sibling predicate is
{(1, 2), (2, 3)}, the a predicate is {ε, 21}, the b predicate is {1}
and the c predicate is {2, 3}. The parent predicate is given by
{(1, ε), (2, ε), (3, ε), (21, 2)}.

2-way Visibly Pushdown Automata & Transducers 17 2016/8/29

Unranked Tree Walking Transducers They are defined similarly
as ranked tree walking transducers, except that they move along
the next-sibling and first-child predicates. They are equipped with
a (visibly) pushdown store such that whenever they go down the
first-child, they have to push some symbol, whenever they go up
to the parent of a node, they have pop one symbol from the stack.
However, when they move horizontally along next-sibling predi-
cates, they do not touch the stack. Before applying a transition,
they can test whether the current node is the root, is the first-child
of some node, the last-child, or a leaf. Their move have to be con-
sistent with the result of such a test. They are also equipped with
stay moves that stay at the same tree node.

Formally, a deterministic pushdown unranked tree to word
walking transducer (DPTuWT) from unranked trees over Λ to
Σ∗ is a tuple T = (Q, q0, qs,Γ, γ0, R) where Q is a finite set of
states, q0 is the initial state, qs the stopping state, Γ is a finite stack
alphabet with initial symbol γ0, R is a transition function such that

R : Q×Λ×Γ×{0, 1}4 → Σ∗×({qs}∪Γ×Q×{↓}∪Q×{→,←, ↑,	})

A configuration of T on a tree t with set of nodes Nt is a triple
(q, n, β, u) ∈ Q×Nt×Γ+×Σ∗. We define→t a binary relation
between consecutive configurations as follows: Let n ∈ Nt labeled
a ∈ Λ. Let b = (bfc, blc, br, bl) ∈ {0, 1}4 such that bfc = 1 iff n
is a first-child, blc = 1 iff n is a last-child, br = 1 iff n is the root,
bl = 1 iff n is a leaf. Then, for all q, q′ ∈ Q, all n′ ∈ Nt, all β, β′ ∈
Γ∗, all γ ∈ Γ, all u, v ∈ Σ∗, (q, n, βγ, u)→t (q′, n′, β′, uv) if

• (stopping move) R(q, a, γ, b) = (v, qs) and q′ = qs, n′ = n,
β′ = βγ, or
• (downward move) R(q, a, γ, b) = (v, γ′, q′, ↓), β′ = βγγ′,

and fc(n, n′), or,

• (upward move) R(q, a, γ, b) = (v, q′, ↑) and β′ = β, and
parent(n, n′), or,

• (left sibling move) R(q, a, γ, b) = (v, q′,←) and β′ = β, and
ns(n′, n), or,

• (right sibling move)R(q, a, γ, b) = (v, q′,→) and β′ = β, and
ns(n, n′).

• (stay move) R(q, a, γ, b) = (v, q′,) and β′ = β, and n = n′.

A run of T on an unranked tree t is a finite sequence of configu-
rations c0c1 . . . cm such that ci →t ci+1 for all i = 0, . . . ,m− 1.
It is accepting if c0 = (q0, r, γ0, ε), where r is the root node of t,
and cm = (qs, n, β, u) for some node n of t, β ∈ Γ+, and u ∈ Σ∗.
SinceR is function, there exists at most one accepting run per input
tree t, and we call u the output of t. The transduction realized by T
is the set of pairs (t, u) such that there exists an accepting run of T
on t whose output is u.

Equivalence between D2VPT and DPTuWT Modulo nested
word linearisation of unranked trees, the two models are equiva-
lent. Let us briefly sketch why.

Assume T is a DPTuWT and let us construct an equivalent
D2VPT T ′. First notice that when T is positioned at some node
n, its stack height is exactly the depth of node n in the tree, as
well as the depth of the call and return symbols corresponding
to n in the linearisation. Also note that T can always read the
top symbol of the stack, while T ′ only reads it when it pops a
symbol. This issue can be overcome by always keeping in the
state of T ′ the top stack symbol. It remains to see how T ′ can
simulate the moves of T and its tests (root, leaf, etc.). We assume
that if T is positioned at some tree node n, then T ′ is positioned
at the call position cn corresponding to n in the linearisation of
the input tree. Then, if T moves from n to its next-sibling n′, T ′

has to traverse the whole linearisation of the subtree rooted at n. It

can be easily done by pushing a special symbol when reading cn
forward, which is popped once the matching return position of cn
is met. Simulating previous-sibling moves is done symmetrically.
Suppose now that a tree node n′ is the parent of a tree node n. In
the linearisation, it means that there is a (sub) nested word of the
form cn′w1cnw2rnw3rn′ , where w1, w2, w3 are nested words. To
simulate a move of T ′ from n to n′, T ′ has to move backward from
cn to cn′ , traversing w1. Again, by using a special stack symbol
when traversing w1, T ′ can detect when it reads cn′ : It is the first
time it does not popped the special stack symbol. To simulate a stay
move, T ′ just move one-step forward and one-step backward.

Finally, we have to show how T ′ can simulate the tests (root,
leaf, etc.). By using a special bottom stack symbol, T ′ can know
when it is at the root. The other tests can easily be performed by
T ′: For instance, to detect that T ′ is positioned at a call position
that corresponds to a first-child, it suffices to go one-step backward
and check whether the previous symbol is call.

Conversely, let T be a D2VPT whose input are assumed to
be linearisations of unranked trees. To construct an equivalent
DPTuWT T ′, one again has to show how the moves of T are
simulated by moves of T ′.

If T moves forward by reading a call symbol cn, then its next
position can be either that of a call symbol cn′ (which means that
n′ is the first-child of n), or that of return symbol rn (which means
that n is a leaf). Using a test, T can decide whether it is at a leaf or
not. In the first case, it uses a stay transition and in the second case,
it uses a first-child transition.

Other cases are treated similarly: For instance, if T moves
forward by reading a return symbol rn, then if the next symbol
is a call symbol cn′ , it means that n′ is the next-sibling of n, and if
the next symbol is a return symbol rn′ , it means that n′ is a parent
of n. Using tests, T can decide what moves to perform, either next-
sibling or parent.

2-way Visibly Pushdown Automata & Transducers 18 2016/8/29

