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Abstract—Any two-way finite state automaton is equivalent
to some one-way finite state automaton. This well-known result,
shown by Rabin and Scott and independently by Shepherdson,
states that two-way finite state automata (even non-deterministic)
characterize the class of regular languages. It is also known
that this result does not extend to finite string transductions:
(deterministic) two-way finite state transducers strictly extend
the expressive power of (functional) one-way transducers. In
particular deterministic two-way transducers capture exactly the
class of MSO-transductions of finite strings.

In this paper, we address the following definability problem:
given a function defined by a two-way finite state transducer, is it
definable by a one-way finite state transducer? By extending Ra-
bin and Scott’s proof to transductions, we show that this problem
is decidable. Our procedure builds a one-way transducer, which
is equivalent to the two-way transducer, whenever one exists.

I. INTRODUCTION

In formal language theory, the importance of a class of
languages is often supported by the number and the diversity
of its characterizations. One of the most famous example is
the class of regular languages of finite strings, which enjoys,
for instance, computational (automata), algebraic (syntactic
congruence) and logical (monadic second order (MSO) logic
with one successor) characterizations. The study of regular
languages has been very influential and several generalizations
have been established. Among the most notable ones are the
extensions to infinite strings [1] and trees [2]. On finite strings,
it is well-known that both deterministic and non-deterministic
finite state automata define regular languages. It is also well-
known that the expressive power of finite state automata does
not increase when the reading head can move left and right,
even in presence of non-determinism. The latter class is known
as non-deterministic two-way finite state automata and it is no
more powerful than (one-way) finite state automata. The proof
of this result was first shown in the seminal paper of Rabin
and Scott [3], and independently by Shepherdson [4].

The comfortable picture of automata models over finite
strings changes substantially when, instead of languages, string
transductions, i.e. relations from strings to strings, are consid-
ered. Transducers generalize automata as they are equipped
with a one-way output tape. At each step they read an
input symbol, they can append several symbols to the output
tape. Their transition systems can be either deterministic or
non-deterministic. Functional transducers are transducers that
define functions instead of relations. For instance, determin-
istic transducers are always functional. In this paper, we are
interested in transducers that define functions, but that can be
non-deterministic.

As for automata, the reading head of transducers can
move one-way (left-to-right) or two-way. (One-way) finite
state transducers have been extensively studied [5], [6]. Non-
deterministic (even functional) one-way transducers (NFTs)
strictly extend the expressive power of deterministic one-way
transducers (DFTs), because some local transformations that
depend on properties of the future of the input string can be
defined using non-determinism.

Two-way finite state transducers define regular transfor-
mations that are beyond the expressive power of one-way
transducers [7]. They can for instance reverse an input string,
swap two substrings or copy a substring. The transductions
defined by two-way transducers have been characterized by
other logical and computational models. Introduced by Cour-
celle, monadic second-order definable transductions are trans-
formations from graphs to graphs defined with the logic MSO
[8]. Engelfriet and Hoogeboom have shown that the monadic
second-order definable functions are exactly the functions
definable by deterministic two-way finite state transducers
(2DFTs) when the graphs are restricted to finite strings [9].
Recently, Alur and Černý have characterized 2DFT-definable
transductions by a deterministic one-way model called stream-
ing string transducers [10] and shown how they can be applied
to the verification of list-processing programs [11]. Streaming
string transducers extend DFTs with a finite set of output string
variables. At each step, their content can be reset or updated by
either prepending or appending a finite string, or the content
of another variable, in a copyless manner. Extending 2DFTs
with non-determinism does not increase their expressive power
when they define functions: non-deterministic two-way finite
state transducers (2NFTs) that are functional define exactly
the class of functions definable by 2DFTs [9]. To summarize,
there is a strict hierarchy between DFT-, functional NFT- and
2DFT-definable transductions.

Several important problems are known to be decidable
for one-way transducers. The functionality problem for NFT ,
decidable in PTime [12], [13], asks whether a given NFT is
functional. The determinizability problem, also decidable in
PTime [14], [13], asks whether a given functional NFT can
be determinized, i.e. defines a subsequential function. Subse-
quential functions are those functions that can be defined by
DFTs equipped with an additional output function from final
states to finite strings, which is used to append a last string
to the output when the computation terminates successfully in
some final state. Over strings that always end with a unique
end marker, subsequential functions are exactly the functions
definable by DFTs. For 2NFTs, the functionality problem is



known to be decidable [15]. Therefore the determinizability
problem is also decidable for 2NFTs, since functional 2NFTs
and 2DFTs have the same expressive power. In the same line
of research, we address a definability problem in this paper.
In particular we answer the fundamental question of NFT-
definability of transductions defined by functional 2NFTs.

Theorem 1. For all functional 2NFTs T , it is decidable
whether the transduction defined by T is definable by an NFT.

The proof of Theorem 1 extends the proof of Rabin and
Scott [3] from automata to transducers1. The original proof of
Rabin and Scott is based on the following observation about
the runs of two-way automata. Their shapes have a nesting
structure: they are composed of many zigzags, each zigzag
being itself composed of simpler zigzags. Basic zigzags are
called z-motions as their shapes look like a Z. Rabin and Scott
prove that for automata, it is always possible to replace a z-
motion by a single pass. Then from a two-way automaton A
it is possible to construct an equivalent two-way automaton B
(called the squeeze of A) which is simpler in the following
sense: accepting runs of B are those of A in which some z-
motions have been replaced by single pass runs. Last, they
argue2 that after a number of applications of this construction
that depends only on the number of states of A, every zigzag
can be removed, yielding an equivalent one-way automaton.

The extension to 2NFTs faces the following additional
difficulty: it is not always possible to replace a z-motion of a
transducer by a single pass. Intuitively, this is due to the fact
that 2NFTs are strictly more expressive than NFTs. As our
aim is to decide when a 2NFT T is NFT-definable, we need
to prove that the NFT-definability of T implies that of every
z-motion of T , to be able to apply the squeeze construction.
The main technical contribution of this paper is thus the study
of the NFT-definability of z-motions of transducers. We show
that this problem is decidable, and identify a characterization
which allows to prove easily that the NFT-definability of T
implies that of every z-motion of T .

This characterization expresses requirements about the out-
put strings produced along loops of z-motions. We show
that when z-motions are NFT-definable, the output strings
produced by the three passes on a loop are not arbitrary, but
conjugates. This allows us to give a precise characterization of
the form of these output strings. We show that it is decidable
to check whether all outputs words have this form. Last, we
present how to use this characterization to simulate an NFT-
definable z-motion by a single pass.
Applications By Theorem 1 and since functionality is decid-
able for 2NFTs, it is also decidable, given a 2NFT , whether
the transduction it defines is definable by a functional NFT .
Another corollary of Theorem 1 and the fact that functionality
of 2NFTs and determinizability of NFTs are both decidable is

1Shepherdson [4] and then Vardi [16] proposed arguably simpler con-
structions for automata. It is however not clear to us how to extend these
constructions to transducers.

2To our knowledge, there is no published proof of this result, thus we prove
it in this paper as we use it for transducers.

the following theorem:

Theorem 2. For all 2NFTs T , it is decidable whether the
transduction defined by T is a subsequential function.

A more practical instance of definability problems is the
verification of memory consumption for document processing
applications in streaming, such as validation, queries and trans-
formations of texts, lists and XML documents. In this scenario,
the input data is received and processed as a stream of events.
This huge amount of data is not stored, and minimal memory
consumption is expected. Streamable operations are operations
that can be evaluated with constant memory, independently
of the input size. The streamability problem, which asks
whether a given processing task is streamable, can be seen
as a particular class of definability problems. For instance,
streamability of validation against a DTD amounts to decide,
given a DTD, whether there exists an equivalent finite state
automaton, when restricted to well-formed XML documents.
It has been partially solved in [17], [18]. Streamability of
XML queries [19] and transformations [20] also started to
be addressed. Over finite strings, a transformation defined by
a functional NFT T is streamable iff the transduction defined
by T is subsequential, which is decidable. Theorem 2 can be
seen as a generalization of this decidability result to regular
transformations, i.e. transformations defined by functional
2NFTs, MSO transducers or streaming string transducers.

Related work Most of the related work has already been
mentioned. To the best of our knowledge, it is the first result
that addresses a definability problem between two-way and
one-way transducers. In [21], two-way transducers with a two-
way output tape are introduced with a special output policy:
each time a cell at position i of the input tape is processed,
the output is written in the cell at position i of the output tape.
With that restriction, it is shown that two-way and one-way
transducers (NFTs) define the same class of functions. In [22],
the result of Rabin and Scott, and Shepherdson, is extended to
two-way automata with multiplicities. In this context, two-way
automata strictly extend one-way automata.

Organization of the paper Section II introduces necessary
preliminary definitions. In Section III, we describe the general
decision procedure for testing NFT-definability of functional
2NFTs. We introduce z-motion transductions induced by
2NFTs and show that their NFT-definability is necessary. The
decidability of this necessary condition as well as the construc-
tion from z-motion transducers to NFTs are the most technical
results of this paper and are the subject of Section IV. We
finally discuss side results and further questions in Section V.

II. ONE-WAY AND TWO-WAY FINITE STATE MACHINES

Words, Languages and Transductions Given a finite alpha-
bet Σ, we denote by Σ∗ the set of finite words over Σ, and
by ε the empty word. The length of a word u ∈ Σ∗ is its
number of symbols, denoted by |u|. For all i ∈ {1, . . . , |u|},
we denote by u[i] the i-th letter of u. Given 1 ≤ i ≤ j ≤ |u|,
we denote by u[i..j] the word u[i]u[i+1] . . . u[j] and by u[j..i]



the word u[j]u[j − 1] . . . u[i]. We say that v ∈ Σ∗ is a factor
of u if there exist u1, u2 ∈ Σ∗ such that u = u1vu2. By u we
denote the mirror of u, i.e. the word of length |u| such that
u[i] = u[|u| − i+ 1] for all 1 ≤ i ≤ |u|.

The primitive root of u ∈ Σ∗ is the shortest word v such
that u = vk for some integer k ≥ 1, and is denoted by µ(u).
Two words u and v are conjugates, denoted by ∼, if there
exist x, y ∈ Σ∗ such that u = xy and v = yx, i.e. u can be
obtained from v by a cyclic permutation. Note that ∼ is an
equivalence relation. We will use this fundamental lemma:

Lemma 1 ([23]). Let u, v ∈ Σ∗. If there exists n ≥ 0 such
that un and vn have a common factor of length at least |u|+
|v| − gcd(|u|, |v|), then µ(u) ∼ µ(v).

Note that if µ(u) ∼ µ(v), then there exist x, y ∈ Σ∗ such
that u ∈ (xy)∗ and v ∈ (yx)∗.

A language over Σ is a set L ⊆ Σ∗. A transduction over
Σ is a relation R ⊆ Σ∗ × Σ∗. Its domain is denoted by
dom(R), i.e. dom(R) = {u | ∃v, (u, v) ∈ R}, while its image
{v | ∃u, (u, v) ∈ R} is denoted by img(R). A transduction
R is functional if it is a function.

Automata A non-deterministic two-way finite state automaton
(2NFA) over a finite alphabet Σ is a tuple A = (Q, q0, F,∆)
where Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states, and ∆ is the transition relation,
of type ∆ ⊆ Q × Σ × Q × {+1,−1}3. It is deterministic if
for all (p, a) ∈ Q × Σ, there is at most one pair (q,m) ∈
Q×{+1,−1} such that (p, a, q,m) ∈ ∆. In order to see how
words are evaluated by A, it is convenient to see the input as
a right-infinite input tape containing the word (starting at the
first cell) followed by blank symbols. Initially the head of A
is on the first cell in state q0 (the cell at position 1). When A
reads an input symbol, depending on the transitions in ∆, its
head moves to the left (−1) if the head was not in the first
cell, or to the right (+1) and changes its state. A stops as soon
as it reaches a blank symbol (therefore at the right of the input
word), and the word is accepted if the current state is final.

A configuration of A is a pair (q, i) ∈ Q × (N − {0})
where q is a state and i is a position on the input tape. A
run ρ of A is a finite sequence of configurations. The run
ρ = (p1, i1) . . . (pm, im) is a run on an input word u ∈ Σ∗

of length n if p1 = q0, i1 = 1, im ≤ n + 1, and for all
k ∈ {1, . . . ,m− 1}, 1 ≤ ik ≤ n and (pk, u[ik], pk+1, ik+1 −
ik) ∈ ∆. It is accepting if im = n + 1 and pm ∈ F . The
language of a 2NFA A, denoted by L(A), is the set of words
u such that there exists an accepting run of A on u.

A non-deterministic (one-way) finite state automaton (NFA)
is a 2NFA such that ∆ ⊆ Q × Σ × Q × {+1}, therefore we
will often see ∆ as a subset of Q × Σ × Q. Any 2NFA is
effectively equivalent to an NFA. It was first proved by Rabin
and Scott, and independently by Shepherdson [3], [4].
Transducers Non-deterministic two-way finite state transduc-
ers (2NFTs) over Σ extend NFAs with a one-way left-to-

3We follow the definition of Vardi [16], but without stay transitions. This
is without loss of generality though.

right output tape. They are defined as 2NFAs except that
the transition relation ∆ is extended with outputs: ∆ ⊆
Q × Σ × Σ∗ × Q × {−1,+1}. If a transition (q, a, v, q′,m)
is fired on a letter a, the word v is appended to the right of
the output tape and the transducer goes to state q′. Wlog we
assume that for all p, q ∈ Q, a ∈ Σ and m ∈ {+1,−1}, there
exists at most one v ∈ Σ∗ such that (p, a, v, q,m) ∈ ∆. We
also denote v by out(p, a, q,m).

A run of a 2NFTs is a run of its underlying automaton,
i.e. the 2NFAs obtained by ignoring the output. A run ρ
may be simultaneously a run on a word u and on a word
u′ 6= u. However, when the underlying input word is given,
there is a unique sequence of transitions associated with
ρ. Given a 2NFT T , an input word u ∈ Σ∗ and a run
ρ = (p1, i1) . . . (pm, im) of T on u, the output of ρ on u,
denoted by outu(ρ), is the word obtained by concatenating
the outputs of the transitions followed by ρ, i.e. outu(ρ) =
out(p1, u[i1], p2, i2−i1) · · · out(pm−1, u[im−1], pm, im−im−1).
If ρ contains a single configuration, we let
outu(ρ) = ε. When the underlying input word u is
clear from the context, we may omit the exponent
u. The transduction defined by T is the relation
R(T ) = {(u, outu(ρ)) | ρ is an accepting run of T on u}.
We may often just write it T when it is clear from the
context. A 2NFT T is functional if the transduction it defines
is functional. The class of functional 2NFTs is denoted by
f2NFT . In this paper, we mainly focus on f2NFTs. The
domain of T is defined as dom(T ) = dom(R(T )). The
domain dom(T ) is a regular language that can be defined
by the 2NFA obtained by projecting away the output part of
the transitions of T , called the underlying input automaton.
A deterministic two-way finite state transducer (2DFT) is a
2NFT whose underlying input automaton is deterministic.
Note that 2DFTs are always functional, as there is at most one
accepting run per input word. A non-deterministic (one-way)
finite state transducer (NFT) is a 2NFT whose underlying
automaton is an NFA4. It is deterministic (written DFT) if
the underlying automaton is a DFA.

We say that two transducers T, T ′ are equivalent, denoted
by T ≡ T ′, whenever they define the same transduction, i.e.
R(T ) = R(T ′). For all transducer classes C, we say that a
transduction R ⊆ Σ∗ × Σ∗ is C-definable if there exists T∈C
such that R=R(T ). Given two classes C, C′ of transducers, and
a transducer T ∈ C, we say that T is (effectively) C′-definable
if one can construct an equivalent transducer T ′ ∈ C′.

The (C, C′)-definability problem takes as input a transducer
T ∈ C and asks to decide whether T is C′-definable. If so, one
may want to construct an equivalent transducer T ′ ∈ C′. In this
paper, we prove that (f2NFT,NFT)-definability is decidable.

It is known that whether an NFT T is functional can be
decided in PTime [12]. The class of functional NFTs is denoted
by fNFT . Functional NFTs are strictly more expressive than
DFTs. For instance, the function that maps any word u ∈

4This definition implies that there is no ε-transitions that can produce
outputs, which may cause the image of an input word to be an infinite
language. Those NFTs are sometimes called real-time in the literature.



{a, b}+ to a|u| if u[|u|] = a, and to b|u| otherwise, is fNFT-
definable but not DFT-definable. This result does not hold for
2NFTs: functional 2NFTs and 2DFTs define the same class of
transductions (Thm 22 of [9]).

Examples Let Σ = {a, b} and # 6∈ Σ, and consider the
transductions

1) R0 = {(u, a|u|) | u ∈ Σ+, u[|u|] = a}
2) R1 = {(u, b|u|) | u ∈ Σ+, u[|u|] = b} ∪R0

3) R2 = {(#u#,#u#) | u ∈ Σ∗}.
R0 is DFT-definable: it suffices to replace each

letter by a and to accept only if the last letter
is a. Therefore it can be defined by the DFT
T0=({qa, qb}, qb, {qa}, {(qx, y, a, qy) | x, y ∈ Σ}).
R1 is fNFT-definable but not DFT-definable:

similarly as before we can define a DFT T ′0 =
({pa, pb}, pa, {pb}, {(px, y, b, py) | x, y ∈ Σ}) that defines the
transduction {(u, b|u|) | u ∈ Σ+, u[|u|] = b}, and construct an
NFT T1 as follows: its initial state is some fresh state p0, and
when reading x ∈ Σ the first time, it non-deterministically
goes to T0 or T ′0 by taking the transition (p0, x, a, qx) or
(p0, x, b, px), and proceeds in either T0 or T ′0. Even if R1

is functional, it is not DFT-definable, as the transformation
depends on the property of the last letter, which can be
arbitrarily faraway from the beginning of the string.
R2 is 2DFT-definable: it suffices to go to the end of the

word by producing ε each time a letter is read, to go back
to the beginning while copying each input letter, and return
to the end without outputting anything, and to accept. Hence
it is defined by T2 = ({q0, q1, q2, q3, qf}, q0, {qf}, δ2) where
states q1, q2, q3 denote passes, and δ2 is made of the transitions
(q0,#, ε, q1,+1), (q1, x∈Σ, ε, q1,+1) (during the first pass,
move to the right), (q1,#, ε, q2,−1), (q2, x∈Σ, x, q2,−1),
(q2,#,#, q3,+1), (q3, x∈Σ, ε, q3,+1), (q3,#,#, qf ,+1).

Crossing Sequences, Loops and Finite-Crossing 2NFTs The
notion of crossing sequence is a useful notion in the theory
of two-way automata [4], [24], that allows one to pump runs
of two-way automata. Given a 2NFA A, a word u ∈ Σ∗ and a
run ρ of A on u, the crossing sequence at position i, denoted
by CS(ρ, i) is given by the sequence of states q such that
(q, i) occurs in ρ. The order of the sequence is given by
the order in which the pairs of the form (q, i) occur in ρ.
E.g. if ρ = (q1, 1)(q2, 2)(q3, 1)(q4, 2)(q5, 1)(q6, 2)(q7, 3) then
CS(ρ, 1) = q1q3q5, CS(ρ, 2) = q2q4q6 and CS(ρ, 3) = q7.
We write CS(ρ) the sequence CS(ρ, 1), . . . , CS(ρ, |u|+ 1).

Crossing sequences allow one to define the loops of a run.
Given a run ρ of the 2NFA A on some word u of length n, a
pair of positions (i, j) is a loop 5 in ρ if (i) 1 ≤ i ≤ j ≤ n,
(ii) CS(ρ, i) = CS(ρ, j) and (iii) u[i] = u[j]. Let u1 =
u[1..(i− 1)], u2 = u[i..(j− 1)] and u3 = u[j..n]. If (i, j) is a
loop in ρ and u ∈ L(A), then u1(u2)ku3 ∈ L(A) for all k≥0.
We say that a loop (i, j) is empty if i = j, in this case we

5Observe that we include the input letter in the notion of loop. We use this
to avoid technical difficulties due to backward transitions (which do not read
the local symbol, but its successor).
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••
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• •
run of T3 = squeeze3(T )

Fig. 1. Zigzags removal by applications of squeeze.

have u2 = ε. The notions of crossing sequence and loop carry
over to transducers through their underlying input automata.

Given a 2NFT T , N ∈ N and a run ρ of T on a word
of length n, ρ is said to be N -crossing if |CS(ρ, i)| ≤ N
for all i ∈ {1, . . . , n}. The transducer T is finite-crossing if
there exists N ∈ N such that for all (u, v) ∈ R(T ), there is an
accepting N -crossing run ρ on u such that out(ρ) = v. In that
case, T is said to be N -crossing. It is easy to see that if T is N -
crossing, then for all (u, v) ∈ R(T ) there is an accepting run
ρ on u such that out(ρ) = v and no states repeat in CS(ρ, i)
for all i ∈ {1, . . . , |u|}. Indeed, if some state q repeats in some
CS(ρ, i), then it is possible to pump the subrun between the
two occurrences of q on CS(ρ, i). This subrun has an empty
output, otherwise T would not be functional.

Proposition 1. Any f2NFT with N states is N -crossing.

III. FROM TWO-WAY TO ONE-WAY TRANSDUCERS

In this section, we prove the main result of this paper, i.e.
the decidability of (f2NFT,NFT)-definability.

A. Rabin and Scott’s Construction for Automata

The proof of Theorem 1 relies on the same ideas as Rabin
and Scott’s construction for automata [3]. It is based on the
following key observation: Any accepting run is made of
many zigzags, and those zigzags are organized by a nesting
hierarchy: zigzag patterns may be composed of simpler zigzag
patterns. The simplest zigzags of the hierarchy are those that
do not nest any other zigzag: they are called z-motions. Rabin
and Scott described a procedure that removes those zigzags
by iterating a construction that removes z-motions.

A one-step sequence is an indexed sequence s = a1, . . . , an
of positions such that ai ∈ {1, 2 . . . ,m}, a1 = 1, an = m,
and |ai+1 − ai| = 1.The sequence s is N -crossing if for all
x ∈ {1, 2 . . . ,m} we have |{i | ai = x}| ≤ N . The reversals



of s are the indexes 1 < r1 < r2 < · · · < rl < n such that
ari+1 = ari−1. In the sequel we let r0 = 1 and rl+1 = n.

A z-motion z in s is a subsequence ae, ae+1, ...af such that
there is 0 < i < l with ri−1 ≤ e < ri < ri+1 < f ≤ ri+2,
and ae = ari+1

and af = ari . We may denote z by the pair of
reversals (ri, ri+1). E.g. the sequences z1 = 1, 2, 3, 2, 1, 2, 3
and z2 = 4, 3, 2, 3, 4, 3, 2 are z-motions. The shape of a run ρ
is defined as the second projection of ρ, written shape(ρ). A
run ρ is a z-motion run if shape(ρ) is a z-motion. When there
is no ambiguity, z-motion runs are just called z-motions.

If T is a 2NFA, it is possible to construct a new automaton
denoted by squeeze(T ) such that, for all accepting runs ρ of T
on some input word u, there exists a “simpler” accepting run
of squeeze(T ) on u, obtained from ρ by replacing some z-
motions by one-way runs that simulate three passes in parallel.
It is illustrated by Fig. 1. For instance at the first step, there
are two z-motions from q1 to q2 and from q3 to q4 respec-
tively. Applying squeeze(T ) consists in non-deterministically
guessing those z-motions and simulating them by one-way
runs. This is done by the NFA RT (q1, q2) and RT (q3, q4)
respectively. Depending on whether the z-motions enter from
the left or the right, z-motions are replaced by runs of NFAs
RT (., .) (that read the input backwardly) or LT (., .) , as
illustrated by the second iteration of squeeze on Fig. 1.

An N -crossing run ρ can be simplified into a one-way run
after a constant number of applications of squeeze. This result
is unpublished so we prove it in this paper. In particular, we
show that if ρ is N -crossing, then its zigzag nesting depth
decreases after N steps. Moreover, if ρ is N -crossing, then its
zigzag nesting depth is also bounded by N . Therefore after
N2 applications of squeeze, ρ is transformed into a simple
one-way run. It is sufficient to prove those results at the level
of integer sequences. In particular, one can define squeeze(s)
the set of sequences obtained from a one-step sequence s
by replacing some z-motions of s by strictly increasing or
decreasing subsequences. The following is formalized and
shown in Appendix:

Lemma 2. Let s be an N -crossing one-step sequence over
{1, . . . ,m}. Then 1, 2, . . . ,m is in squeezeN

2

(s).

At the automata level, it is known that for all words u
accepted by a 2NFA T with N states, there exists an N -
crossing accepting run on u. Therefore it suffices to apply
squeeze N2 times to T . One gets an equivalent 2NFA T ∗

from which the backward transitions can be removed while
preserving equivalence with T ∗, and so T .

B. Extension to transducers: overview

The construction used to show decidability of NFT-
definability of f2NFT follows the same ideas as Rabin and
Scott’s construction. The main difference relies in the trans-
formation of the local transducers defined by z-motion runs
(that we call ZNFTs) into NFTs. Our procedure is built over
a ZNFT-to-NFT procedure. It is seen as a black-box in this
section, but is the subject of the next section.

•
i1 j1 i2 j2

x0 v1 x1 w1

x2

x4
v2 x3 w2

v3 x5 w3 x6

Fig. 2. Output decomposition in property P .

Compared to two-way automata, one faces an extra diffi-
culty caused by the fact that 2NFTs (and ZNFTs) are not
always NFT-definable. Therefore one defines a necessary
condition that has to be tested each time we want to apply
squeeze. Let us consider again Fig. 1 when T is a 2NFT . One
defines from T the transductions induced by local z-motion
runs from a starting state q1 to an ending state q2, and show
that those local transductions must be NFT-definable.

Once this necessary condition is satisfied, the construction
squeeze can be applied and works as for Rabin and Scott’s
construction: the new transducer squeeze(T ) simulates T and
non-deterministically may guess that the next zigzag of T
is a z-motion run from some state q1 to some state q2, and
thus can be simulated by a run of some NFT RT (q1, q2) or
LT (q1, q2), depending on whether it enters from the left or the
right. Then squeeze(T ) switches to RT (q1, q2) (if it entered
from the right) and once RT (q1, q2) reaches an accepting state,
it may come back to its normal mode.

C. z-motion transducers

z-motion transducers are defined like 2NFTs except that
they must define functions and to be accepting, a run on
a word of length n must be of the form ρ.(qf , n + 1)
where ρ is a z-motion run and qf is an accepting state.
Note that it implies that shape(ρ) is always of the form
1, . . . , n, n−1, . . . , 1, . . . , n. The class of z-motion transducers
is denoted by ZNFTs. Note that z-motion transducers are
incomparable with f2NFTs. Indeed, z-motion transducers can
for instance define the transduction u ∈ Σ∗ 7→ u, which is not
f2NFT-definable as there are no ending markers.

Let T ∈ ZNFT and ρ = (p1, 1) . . . (pn, n)
(qn−1, n−1) . . . (q1, 1)(r2, 2) . . . (rn+1, n + 1) be a run
of T on a word of length n. We let qn = pn and r1 = q1

and define the following shortcuts: for 1 ≤ i ≤ j ≤ n,
out1[i, j] = out((pi, i) . . . (pj , j)), and out2[i, j] =
out((qj , j) . . . (qi, i)) and out3[i, j] = out((ri, i) . . . (rj , j)),
and out3[i, n + 1] = out((ri, i) . . . (rn+1, n + 1)). In the
sequel, any accepting run ρ on a word of length n will have
the previous form.

We characterize the NFT-definability of a ZNFT by a prop-
erty that we prove to be decidable. Intuitively, this property
requires that the outputs produced by loops can be produced
by a single forward pass:

Definition 1 (P-property). Let T be a ZNFT. We say that T
satisfies the property P , denoted by T |= P , if for all words
u ∈ dom(T ), for all accepting runs ρ on u, and for all pairs
of loops (i1, j1) and (i2, j2) of ρ such that j1 ≤ i2, there
exist β1, β2, β3, β4, β5 ∈ Σ∗, f, g : N2 → Σ∗ and constants



c1, c
′
1, c2, c

′
2 ≥ 0 such that c1, c2 6= 0 and for all k1, k2 ≥ 0,

f(k1, k2)x0v
η1
1 x1w

η2
1 x2w

η2
2 x3v

η1
2 x4v

η1
3 x5w

η2
3 x6g(k1, k2)

= β1β
k1
2 β3β

k2
4 β5

where ηi = kici + c′i, i ∈ {1, 2}, and, xi’s, vi’s and w′is are
words defined as depicted in Fig. 2.

The following lemma will be proved in Section IV.

Lemma 3. Let T ∈ ZNFT. T |= P iff T is NFT-definable.
Moreover, P is decidable and if T |= P , one can (effectively)
construct an equivalent NFT.

Definition 2 (z-motion transductions induced by a 2NFT).
Let T = (Q, q0, F,∆) be a f2NFT and q1, q2 ∈ Q. The
transduction LT (q1, q2) (resp. RT (q1, q2)) is defined as the
set of pairs (u2, v2) such that there exist u ∈ Σ∗, two positions
i1 < i2 (resp. i2 < i1), an accepting run ρ of T on u, which
can be decomposed as ρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 such that
u2 = u[i1..i2] and
• (q1, i1)ρ2(q2, i2) is a z-motion run
• out((q1, i1)ρ2(q2, i2)) = v2

z-motions can be of two forms: either they start from the
left and end to the right, or start from the right and end to the
left. In order to avoid considering these two cases each time,
we introduce the notation T that denotes the mirror of T : it is
T where the moves +1 are replaced by −1 and the moves −1
by +1. Moreover, the way T reads the input tape is slightly
modified: it starts in position n and a run is accepting if it
reaches position 0 in some accepting state. All the notions
defined for 2NFTs carry over to their mirrors. In particular,
(u, v) ∈ R(T ) iff (u, v) ∈ R(T ). The z-motion transductions
RT (q1, q2) and LT (q1, q2) are symmetric in the following
sense:RT (q1, q2) = LT (q1, q2) and LT (q1, q2) = RT (q1, q2).

Proposition 2. The transductions RT (q1, q2) and LT (q1, q2)
are ZNFT-definable.

Proof: We only consider the case LT (q1, q2), the other
case being solved by using the equality RT (q1, q2) =
LT (q1, q2). We first construct from T a ZNFT Z ′T (q1, q2)
which is like T but its initial state is q1, and it can move to an
accepting state whenever it is in q2. However Z ′T (q1, q2) may
define input/output pairs (u2, v2) that cannot be embedded
into some pair (u, v) ∈ R(T ) as required by the definition of
LT (q1, q2). Based on Shepherdson’s construction, we modify
Z ′T (q1, q2) in order to take this constraint into account. The
full proof is in Appendix.

In the next subsection, we show that RT (q1, q2) and
LT (q1, q2) must necessarily be NFT-definable for T to be
NFT-definable. For that purpose, it is crucial in Definition
2 to make sure that the z-motion (q1, i1)ρ2(q2, i2) can be
embedded into a global accepting run of T . Without that
restriction, it might be the case that LT (q1, q2) or RT (q1, q2)
is not NFT-definable although the 2NFT T is. Indeed, the
domain of LT (q1, q2) or RT (q1, q2) would be too permissive
and accept words that would be otherwise rejected by other
passes of global runs of T . This is another difficulty when

lifting Rabin and Scott’s proof to transducers, as for automata,
the context in which a z-motion occurs is not important.

D. Decision procedure and proof of Theorem 1

We will show that the construction squeeze(T ) can be
applied if the following necessary condition is satisfied.

Lemma 4 (Necessary Condition). If T is NFT-definable,
then so are the transductions RT (q1, q2) and LT (q1, q2)
for all states q1, q2. Moreover, it is decidable whether the
transductions RT (q1, q2) and LT (q1, q2) are NFT-definable.

Sketch of proof: We have seen in Lemma 3 that NFT-
definability of an ZNFT is characterized by Property P . Let
Z ∈ ZNFT that defines LT (q1, q2) for some q1, q2, we will
thus sketch the proof that Z |= P .

Consider two loops (i1, j1), (i2, j2) of a run ρ of Z on
some word u, as in the premises of Property P . They induce
a decomposition of u as u = u1u2u3u4u5 with u2 = u[i1..j1−
1] and u4 = u[i2..j2 − 1]. By definition of the transduction
LT (q1, q2), any word in dom(Z) can be extended into a word
in dom(T ). By hypothesis, T is NFT-definable, thus there
exists an equivalent NFT T ′. As T ′ has finitely many states,
it is possible, by iterating the loops (i1, j1) and (i2, j2), to
identify an input word of the form

u′ = αu1u
c1
2 u

c2
2 u

c3
2 u3u

c′1
4 u

c′2
4 u

c′3
4 u5α

′

and a run ρ′ of T ′ on this word which has two loops on the
input subwords uc22 and uc

′
2

4 . It is then easy to conclude.

Construction of squeeze(T ) Assuming that the necessary
condition is satisfied, we now explain how to construct
the f2NFT squeeze(T ). By hypothesis, the transductions
LT (q1, q2) and RT (q1, q2) are NFT-definable for all q1, q2

by NFT LT (q1, q2) and RT (q1, q2) respectively (they exist
by Proposition 2 and Lemma 3). As already said before, the
main idea to define squeeze(T ) is to non-deterministically
(but repeatedly) apply LT (q1, q2), RT (q1, q2), or T , for some
q1, q2 ∈ Q. However when applying RT (q1, q2), the head of
squeeze(T ) should move from the right to the left, so that we
have to mirror the transitions of RT (q1, q2).

The transducer squeeze(T ) has two modes, Z-mode or T-
mode. In T-mode, it works as T until it non-deterministically
decides that the next zigzag is a z-motion from some state
q1 to some state q2. Then it goes in Z-mode and runs
LT (q1, q2) or RT (q1, q2), in which transitions to an accepting
state have been replaced by transitions from q2 in T , so that
squeeze(T ) returns in T-mode. From those transitions we
also add transitions from the initial states of LT (q2, q3) and
RT (q2, q3) for all q3 ∈ Q, in case squeeze(T ) guesses that the
next z-motion starts immediately at the end of the previous z-
motion. We detail the construction of squeeze(T ) in Appendix.

Proposition 3. Let T ∈ f2NFT such that T is NFT-definable.
Then squeeze(T ) is defined and equivalent to T .

Let T ∈ f2NFT. If T is NFT-definable, then the operator
squeeze can be iterated on T while preserving equivalence



T ∈ ZNFT T ′ ∈ εZNFT T ′′ ∈ fNFT

T |= P ⇒ T ≡ T ′ T ′ |= P ⇒ T ′ ≡ T ′′

ε

Fig. 3. From ZNFT to NFT .

with T , by the latter proposition. By Proposition 1 T is N -
crossing, and therefore, based on Lemma 2, it suffices to iterate
squeeze N2 times to remove all zigzags from accepting runs
of T , as stated by the following lemma:

Lemma 5. Let T be a f2NFT with N states. If T is fNFT-
definable, then squeezeN

2

(T ) is defined and equivalent to T ,
and moreover, for all (u, v) ∈ R(T ), there exists an accepting
run ρ of squeezeN

2

(T ) on u such that out(ρ) = v and ρ is
made of forward transitions only.

Proof of Theorem 1 In order to decide whether a f2NFT T
is NFT-definable, it suffices to test whether squeeze can be
applied N2 times. More precisely, it suffices to set T0 to T ,
i to 0, and, while Ti satisfies the necessary condition (which
is decidable by Lemma 4) and i ≤ N2, to increase i and set
Ti to squeeze(Ti−1). If the procedure exists the loops before
reaching N2, then T is not NFT-definable, otherwise it is
NFT-definable by the NFT obtained by removing from TN2

all its backward transitions.

IV. FROM ELEMENTARY ZIGZAGS TO LINES

This section is devoted to the proof of Lemma 3 that
characterizes NFT-definable ZNFT by the property P and
states its decidability. Moreover, we give a ZNFT-to-NFT
construction when P is satisfied.

We will first prove that Property P is a necessary condition
for NFT-definability. To prove the converse, we will proceed
in two steps, as it is simpler than in a single step 6. First,
we define a procedure that tests whether a given ZNFT T
is equivalent to a ZNFT that does not output anything on
its backward pass (called εZNFT), and then define another
procedure that tests whether the latter ZNFT is equivalent to
an NFT . We show that it is always true whenever T |= P .
This approach is depicted in Fig. 3. The two steps are similar,
therefore we mainly focus on the first step.

A. Property P is a necessary condition

We show that Property P only depends on transductions.

Lemma 6. Let T, T ′∈ZNFT. If T |=P and T≡T ′ then T ′|=P .

Proof: Consider two loops (i1, j1), (i2, j2) as in Property
P in a run of T ′ on some word u. They induce a decomposition
of u as u = u1u2u3u4u5 where u2 = u[i1..(j1 − 1)] and
u4 = u[i2..(j2 − 1)], with u1u

k1
2 u3u

k2
4 u5 ∈ dom(T ′) for all

k1, k2 ≥ 0.
As T is equivalent to T ′ and has finitely many states, there

exist iterations of the loops on u2 and u4 which constitute

6We could proceed in a single step but the analysis of the output words
would be much more complex.

•

`w x

t3 y

w′

xy ∈ t1t∗2

Fig. 4. Decomposition of the output according to Property P1.

loops in T on powers of u2 and u4. Formally, there exist
integers d1, e1, h1, d2, e2, h2 with e1, e2 > 0 such that T has
a run ρ on the input word u1u

d1
2 u

e1
2 u

h1
2 u3u

d2
4 u

e2
4 u

h2
4 u5 which

contains a loop on the input subwords ue12 and ue24 .
We conclude easily by using the fact that T |= P .
As a consequence, we obtain that Property P is a necessary

condition for NFT-definability.

Lemma 7. Let T ∈ ZNFT. If T is NFT-definable, then T |= P .

Proof: Let T ′ be an NFT equivalent to T . It is easy to
turn T ′ into a ZNFT T ′′ that performs two additional backward
and forward passes which output ε. Consider two loops (i1, j1)
and (j1, j2) in a run of T ′′, and let us write the output of this
run as depicted on Fig. 2. These loops are also loops of T ′,
and thus we can define β1 (resp. β2, β3, β4 and β5) as x0

(resp. v1, x1, w1 and x2), and f, g as the constant mappings
equal to ε. Hence T ′′ |= P , and we conclude by Lemma 6.

B. From ZNFT to εZNFT

The goal is to devise a procedure that tests whether the
first and second passes (forward and backward) of the run
can be done with a single forward pass, and constructs an
NFT that realizes this single forward pass. Then, in order to
obtain an εZNFT , it suffices to replace the first pass of T
by the latter NFT and add a backward pass that just comes
back to the beginning of the word and outputs ε all the time.
The procedure constructs an εZNFT , and tests whether it is
equivalent to T . It is based on the following key property
that characterizes the form of the output words of the two
first passes of any ZNFT satisfying P . Intuitively, when these
words are long enough, they can be decomposed as words
whose primitive roots are conjugate.

Definition 3 (P1-property). Let T ∈ ZNFT with m states, and
let (u, v) ∈ R(T ) where u has length n. Let K = 2.o.m3.|Σ|
where o = max{|v| | (p, a, v, q,m) ∈ ∆}. The pair (u, v)
satisfies the property P1, denoted by (u, v) |= P1, if for all
accepting runs ρ on u, there exist a position 1 ≤ ` ≤ n and
w,w′, t1, t2, t3 ∈ Σ∗ such that v ∈ wt1t∗2t3w′ and:

out1[1, `] = w out2[1, `] = t3 out1[`, n]out2[`, n]∈t1t∗2
out3[1, n+ 1] = w′ |ti| ≤ 2K,∀i ∈ {1, 2, 3}

This decomposition is depicted in Fig. 4. T satisfies property
P1, denoted T |= P1, if all (u, v) ∈ R(T ) satisfy it.

Proposition 4. Let T ∈ ZNFT. If T |= P , then T |= P1.

Proof: • If |out2[1, n− 1]| ≤ K, then clearly, it suffices
to take ` = n, t1 = out2[n−1, n], t2 = ε, t3 = out2[0, n−1],
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u[i] = u[j], qi = qj , pi = pj
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Fig. 5. Decomposition of the two first passes of a z-motion run with loop.

w = out1[1, n] and w′ = out3[1, n+ 1].
• Otherwise, |out2[1, n − 1]| > K. Therefore u is of length
2.m3.|Σ| at least and there exists a (non-empty) loop (i, j) in
ρ. We can always choose this loop such that |out2[1, i]| ≤ K
and 1 ≤ |out2[i, j]| ≤ K (see Lemma 16 in Appendix).

The loop partitions the input and output words into factors
that are depicted in Fig. 5 (only the two first passes are de-
picted). Formally, let u = u1u2u3 such that u2 = u[i..(j−1)].
Let x0 = out1[1, i], v1 = out1[i, j], x1 = out1[j, n]out2[j, n],
v2 = out2[i, j], x2 = out1[1, i], x3 = out3[1, i], v3 =
out3[i, j] and x4 = out3[j, n+1]. In particular, we have |x2| ≤
K, 1 ≤ |v2| ≤ K and x0v1x1v2x2x3v4x4 ∈ T (u). Since (i, j)
is a loop we also get x0v

k
1x1v

k
2x2x3v

k
3x4 ∈ T (u1u

k
2u3) for

all k ≥ 0. We then distinguish two cases:
1) If v1 6= ε. We can apply Property P by taking the second

loop empty. We get that for all k ≥ 0

f(k)x0v
kc+c′

1 x1v
kc+c′

2 x2x3v
kc+c′

3 x4g(k) = β1β
k
2β3

where f, g : N → Σ∗, c ∈ N>0, c′ ∈ N, and β1, β2, β3 ∈ Σ∗.
Since the above equality holds for all k ≥ 0, we can apply
Lemma 1 and we get µ(v1) ∼ µ(β2) and µ(β2) ∼ µ(v2), and
therefore µ(v1) ∼ µ(v2). So there exist x, y ∈ Σ∗ such that
v1 ∈ (xy)∗ and v2 ∈ (yx)∗. One can show (see Lemma 17
in Appendix) that v1x1v2 ∈ x(yx)∗. Then it suffices to take
` = i, w = x0, t1 = x, t2 = yx and t3 = x2.

2) The second case (v1 = ε) is more complicated as it
requires to use the full Property P , using two non-empty loops.
First, we distinguish two cases whether |out1[j, n]| ≤ K or
not. For the latter case, we identify a second loop and then
apply Property P . Details can be found in the Appendix B.

Construction of an εZNFT from a ZNFT We construct an
εZNFT T ′ from a ZNFT T such that R(T ′) = {(u, v) ∈
R(T ) | (u, v) |= P1}. Intuitively, the main idea is to perform
the two first passes in a single forward pass, followed by
a non-producing backward pass, and the final third pass is
exactly as T does. Therefore, T ′ guesses the words t1, t2
and t3 and makes sure that the output v is indeed of the
form characterized by P1. This can be done in a one-way
fashion while simulating the forward and backward passes in
parallel and by guessing non-deterministically the position `.
In addition, the output mechanism of T ′ exploits the special
form of v: the idea is to output powers of t2 while simulating
the two first passes.

First, let us describe how T ′ simulates the forward and
backward passes in parallel during the first forward pass. It

guesses both the state of the backward pass, and the current
symbol (this is needed as the symbol read by the backward
transition is the next symbol). The first state (q∗) guessed for
the backward pass needs to be stored, as the last (forward)
pass should start from q∗. The transducer can go from state
(p, q, σ) to state (p′, q′, σ′) if the current symbol is σ and there
is a (forward) transition (p, σ, x, p′,+1) and a (backward)
transition (q′, σ′, y, q,−1). Therefore if Q is the set of states
of T , T ′ will use, on the first pass, elements of Q×Q×Σ in
its states. The transducer T ′ can non-deterministically decide
to perform the backward and non-producing backward pass
whenever it is in some state (q, q, σ) and the current symbol
is σ. This indeed happens precisely when the forward and
backward passes are in the same state q. If the current symbol
is not the last of the input word, then the whole run of T ′ will
not be a z-motion and therefore will not be accepting.

Second, we describe how the εZNFT T ′, with the guess of
t1, t2, t3, verifies during its first forward pass that the output
has the expected form, and how it produces this output. During
the first pass, T ′ can be in two modes: In mode 1 (before the
guess `), T ′ verifies that the output on the simulated backward
pass is t3 and proceeds as T in the first forward pass (it outputs
what T outputs on the forward pass). Mode 2 starts when the
guess ` has been made. In this mode, T ′ first outputs t1 and
then verifies that the output of the forward/backward run from
and to position ` is of the form t1t

∗
2. It can be done by using

pointers on t1 and t2. There are two cases (guessed by T ′):
either t1 ends during the forward pass or during the backward
pass (using notations of Fig.4, either t1 is a prefix of x, or x
is a prefix of t1).

In the first case, T ′ needs a pointer on t1 to make sure that
the output of T in the forward pass starts with t1. It also needs
a pointer on t2, initially at the end of t2, to make sure that the
output of T on the simulated backward pass is a suffix of t∗2
(the pointer moves backward, coming back to the last position
of t2 whenever it reaches the first position of t2). Once the
verification on t1 is done, T ′ starts, by using a pointer initially
at the first position in t2, to verify that the output of T in
the forward pass is a prefix of t∗2. Once the forward and the
simulated backward passes merge, the two pointers on t2 must
be at the same position, otherwise the run is rejected.

During this verification, T ′ also has to output a power of t2
(remind that it has already output t1). However the transitions
of T may not output exactly one t2, nor a power of t2, but
may cut t2 before its end. Therefore T ′ needs another pointer
h to know where it is in t2. Initially this pointer is at the first
position of t2 (h = 1). Suppose that T ′ simulates T using
the (forward) transition (p, σ, x, p′,+1) and the (backward)
transition (q′, σ′, y, q,−1). If this step occurs before the end
of t1, then T ′ outputs tω2 [h..(h + |y|)] (tω2 is the infinite
concatenation of t2), and the pointer h is updated to 1+((h+
|y|− 1) mod |t2|). Otherwise,T ′ outputs tω2 [h..(h+ |x|+ |y|)]
and h is updated to 1 + ((h+ |x|+ |y| − 1) mod |t2|).

The second case (when T ′ guesses that t1 ends during the
backward pass) is similar. T ′ has to guess exactly the position
in the output where t1 ends. On the first pass it verifies that
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Fig. 6. Decomposition of the output according to Property P2.

the output is a prefix of t1, and on the simulated backward
pass, it checks that the output is a suffix of t∗2 (and outputs
as many t2 as necessary, like before), until the end of t1 is
guessed to occur. From that moment it enters a verification
mode on both passes.

The main property of this construction is that no wrong
output words are produced by T ′, due to the verification and
the way the output words are produced, i.e. for all (u, v) ∈
R(T ′), we have (u, v) ∈ R(T ).

Proposition 5. Let T ∈ ZNFT. R(T ′) = {(u, v) ∈
R(T ) | (u, v) |= P1}.

Lemma 8. Let T ∈ ZNFT. If T |= P , then T is equivalent to
the εZNFT T ′. Moreover, the latter is decidable.

Proof: If T |= P , then by Proposition 4, T |= P1.
Therefore by Proposition 5, T and T ′ are equivalent.

We know that R(T ′) ⊆ R(T ), and since T and T ′ are both
functional, they are equivalent iff dom(T ) ⊆ dom(T ′). Both
domains can be defined by NFAs. Those NFAs simulate the
three passes in parallel and make sure that those passes define
a z-motion. Therefore testing the equivalence of T and T ′

amounts to test the equivalence of two NFAs.

C. From εZNFT to NFT
We have seen how to go from a ZNFT to an εZNFT . We

now briefly sketch how to go from an εZNFT to a (functional)
NFT . Given an εZNFT T ′, we define an fNFT T ′′ such that
T ′ and T ′′ are equivalent as soon as T ′ |= P . The ideas are
very similar to the previous construction therefore we do not
give all the details here.

We exhibit a property on the form of output words produced
by an εZNFT that verifies P . Intuitively, apart from the
beginning of the first pass, and the end of the second pass, if
the two passes produce long enough outputs, then these outputs
can be decomposed so as to exhibit conjugate primitive roots.

Definition 4 (P2-property). Let T ′ ∈ εZNFT with m states,
and let (u, v) ∈ R(T ′) where u has length n. Let K =
2.o.m3.|Σ| where o = max{|v| | (p, a, v, q,m) ∈ ∆}. The
pair (u, v) satisfies the property P2, denoted by (u, v) |= P2,
if for all accepting runs ρ on u, there exist two positions
1 ≤ `1 ≤ `2 ≤ n and w,w′, t1, t2, t3 ∈ Σ∗ such that:

out1[1, `1] = w |ti| ≤ 3.K, ∀i ∈ {1, 2, 3}
out3[`2, n+ 1] = w′ |out1[`2, n]| ≤ 3.K
out1[`1, n]out3[1, `2] ∈ t1t∗2t3 |out3[1, `1]| ≤ 3.K

This decomposition is depicted in Fig. 6. T ′ satisfies property
P2, denoted T |= P2, if all (u, v) ∈ R(T ′) satisfy it.

The proof of the following proposition uses the same
structure and techniques as that of Proposition 4, however it
has much more cases to consider and are therefore the most
technical proof of this paper. Using a case analysis, we identify
loops in the runs, and apply Property P to show that the output
words have the expected form.

Proposition 6. Let T ′ ∈ εZNFT. If T ′ |= P , then T ′ |= P2.

We can now sketch the construction of an fNFT T ′′ which
recognizes the subrelation of T ′ defined as {(u, v) ∈ R(T ′) |
(u, v) |= P2}. Again, the construction is rather similar and
uses the same techniques to that of T ′ starting from T .

The transducer T ′′ simulates, in a single forward pass,
the three passes of T ′. Hence it also checks that the run
of the ZNFT T ′ it simulates is a z-motion run, which is a
semantic restriction of accepting runs of ZNFTs. The fNFT
T ′′ also guesses positions `1 and `2, and uses three modes
accordingly. It also guesses the words t1, t2 and t3, and words
for out3[1, `1] and out1[`2, n], which are all of bounded length
(see Property P2). The output of T ′′ is produced according to
the mode, using pointers to check the guesses, similarly to T ′.

If all the guesses happen to be verified, it outputs the
correct output word, otherwise the input word is rejected. As
a consequence, T ′′ recognizes a subrelation of T ′ and thus
checking the equivalence of T ′ and T ′′ amounts to checking
the equivalence of their domains (as the two transducers are
functional), which is decidable. Thanks to Proposition 6, we
obtain the following result:

Lemma 9. Let T ′ ∈ εZNFT. If T ′ |= P , then T ′ is equivalent
to the fNFT T ′′. Moreover, the latter property is decidable.

Proof of Lemma 3. Lemma 7 states that if T is NFT-definable,
then T |= P . Conversely, if T |= P , then by Lemma 8, the first
construction outputs an equivalent εZNFT T ′. By Lemma 6,
we have T ′ |= P . By Lemma 9, the second construction
outputs an equivalent NFT T ′′. Therefore T is NFT-definable
by T ′′. In order to decide whether T |= P , it suffices to
construct T ′, check that T and T ′ are equivalent, and then
construct T ′′ and check whether T ′ and T ′′ are equivalent.
Both problems are decidable by Lemma 8 and 9.

V. DISCUSSION

Complexity The procedure to decide (f2NFT,NFT)-
definability is non-elementary exponential. This is due to the
ZNFT-to-NFT construction which outputs an NFT of doubly
exponential size. Indeed, the first step of this construction
transforms any ZNFT with n states into an εZNFT with at
least |Σ|4on3|Σ| states, as the εZNFT has to guess words
of length 4on3|Σ|, where o is the maximal output word of
a transition. The εZNFT-to-NFT construction also outputs
an exponentially bigger transducer. Therefore the squeeze
operation outputs a transducer which is doubly exponentially
larger. Since this operation has to be iterated N2 times in the
worst case, where N is the number of states of the initial
f2NFT , this leads to a non-elementary procedure.



On the other hand, the best lower bound we have for this
problem is PSpace (a simple proof that reduces the emptiness
problem of the intersection of n DFAs is given in Appendix).

This leaves a huge complexity gap which we think can be
reduced by an improved (elementary) upper bound. Indeed,
given an initial f2NFT T with n states, the length of the
words that have to be guessed each time the ZNFT-to-NFT
construction is applied is likely to be only exponential in n,
for the following reason. Consider a loop (i, j) of an accepting
run of T . The difference |i−j| can be bounded by n!, otherwise
there is a crossing sequence that is repeated inside this loop
and we can therefore find a smaller loop. All the output words
produced on this loop by the respective passes of the run
must be conjugates if T is NFT-definable, and therefore in
the ZNFT-to-NFT construction, it suffices to guess primitive
roots of length at most n!.

Succinctness It is already known that 2DFAs are exponentially
more succinct than NFAs [25]. Therefore this result carries
over to transducers already for transducers defining identity
relations on some particular domains. However we show here
a stronger result: the succinctness of 2NFTs also comes from
the transduction part and not only from the domain part. We
can indeed exhibit a family of NFT-definable transductions
(Rn)n that can be defined by 2DFTs that are exponentially
more succinct than their smallest equivalent NFT , and such
that the family of languages (dom(Rn))n does not show an
exponential blow up between 2DFAs and NFAs.

For all n ≥ 0, we define Rn whose domain is the set of
words #u# for all u ∈ {a, b}∗ of length n, and the transduc-
tion is the mirror transduction, i.e. Rn(#u#) = #u#.

Clearly, Rn is definable by a 2DFT with O(n) states that
counts up to n the length of the input word by a forward pass,
and then mirrors it by a backward pass. It is also definable by
an NFT with O(2n) states: the NFT guesses a word u of
length n (so it requires O(2n) states), outputs its reverse, and
then verifies that the guess was correct. It is easy to prove that
any NFT defining Rn needs at least 2n states by a pumping
argument. On the other hand, the domain of Rn can be defined
by a DFA with O(n) states that counts the length of the input
word up to n. Note that the alphabet does not depend on n.

Further Questions We have shown that (f2NFT,NFT)-
definability is decidable, however with a non-elementary pro-
cedure. We would like to characterize precisely the complexity
of this problem. Our procedure works for functional 2NFTs.
They are known to be equivalent to 2DFTs. Therefore we
could have done our proof directly for 2DFTs. However (func-
tional) non-determinism was added with no cost in the proof
so we rather did it in this more general setting. Nevertheless, it
is still unknown whether our result extends to relations instead
of functions.

Our proof is an adaptation of the proof of Rabin and
Scott [3] to transducers. Alternative constructions based on
the proofs of Shepherdson [4] or Vardi [16] would also be
of interest. Moreover, we could have taken models equivalent
to f2NFTs as input, like streaming string transducers [10] or

MSO transformations [8], [9].
We would like to investigate transducers on infinite strings,

as, in some contexts, streams may not terminate. We also
plan to consider trees instead of strings, following our initial
motivation from XML applications.
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APPENDIX A
COMPLEMENTS TO SECTION III

A. Iterative z-motions removal (proof of Lemma 2)

We define the crossing number of the position x ∈
{1, . . . ,m} as the number |{i | ai = x}|. Hence the sequence
s is K-crossing if all its positions x ∈ {1, 2 . . . ,m} have a
crossing number less or equal than K.

We say that two z-motions z1 = (ri, ri+1), z2 = (rj , rj+1)
are consecutive, resp. positionally disjoint, if j = i+ 2, resp.
max(ari , ari+1

) < min(arj , arj+1
) (or max(arj , arj+1

) <
min(ari , ari+1)). Moreover we say that z1 and z2 are disjoint
if they are not consecutive or if they are positionally disjoint.
Equivalently, the z-motions z1 = ak1 , ak1+1, . . . , ak2 and
z2 = ak3 , ak3+1, . . . , ak4 are disjoint if and only if k2 < k3

or k4 < k1.

Lemma 10. If s is K-crossing, then for all z1, z2, . . . , zt
consecutive z-motions, for all i ≤ t − K, zi and zi+K are
positionally disjoint.

Proof: Let j ∈ {1, . . . , l} such that z1 = (rj , rj+1), z2 =
(rj+2, rj+3), . . . and, wlog, assume arj < arj+1

. As a
consequence of the definition of z-motions, consecutive z-
motions form a stair, that is, we have arj+2i ≤ arj+2(i+1)

and
arj+2i+1

≤ arj+2(i+1)+1
. If zi and zi+K are not positionally

disjoint, all zk for i ≤ k ≤ i+K share the leftmost position
of zi, i.e. they share arj+2(i−1)

. Therefore s is not K-crossing.

We say that a position x is in between the positions y and
z whenever y ≤ x ≤ z or z ≤ x ≤ y. We say that the pair of
reversals (or a z-motion) (r, s) is nested into the pair (r′, s′)
if ar and as are in between ar′ and as′ .

Lemma 11. Let (ri, rj), with i < j, be a pair of reversals
and z = (r, r′) be a z-motion. If ar is in between ari and arj ,
and r ∈ {ri+1, rj+1}, or if ar′ is in between ari and arj , and
r′ ∈ {ri−1, rj−1}, then z is nested in (ri, rj).

Proof: Suppose that z = (ri−2, ri−1) (the other cases are
proved similarly). Wlog assume arj ≤ ari , so by hypothesis
we have arj ≤ ari−1 ≤ ari . Then, as a consequence of basic
properties of reversals, ari−1

≤ ari−2
(because ari−1

≤ ari ).
Moreover as (ri−2, ri−1) is a z-motion we have ari−2

≤ ari .
Therefore we have the inequalities: arj ≤ ari−1

≤ ari−2
≤

ari , which means that z is nested in (ri, rj).
The one-step sequence s′ is obtained from s = a1, . . . , an

by removing the z-motion z = ak1 , . . . , ak2 also defined by its
reversals as z = (ri, ri+1), if s′ = a1, . . . , ari , ak2+1, . . . , an.
Note that the sequence s′ is a one-step sequence because s is
one and because ari = ak2 . The sequence s′ has exactly 2 less
reversals than s and each reversal of s not in z corresponds to
one of the reversals of s′, each z-motion z′ = (rj , rj+1) of s
such that rj , rj+1 /∈ {ri, ri+1} is also a z-motion in s′ (up to
an index shift). Note also that positionally disjoint z-motions
in s are still positionally disjoint in s′.

We define the function squeeze(s) as the function that asso-
ciates to a one-step sequence s the set of one-step sequences

that can be obtained from s by removing some pairwise
disjoint z-motions of s.

We say that a set Z of z-motions of s is consistent if no two
z-motions of Z share a reversal, that is, if (r, r′), (s, s′) ∈ Z,
then r, r′ 6= s and r, r′ 6= s′. The consistent set Z is maximal
if it is not strictly contained into any other consistent set of
z-motions of s.

Lemma 12. Let s be a K-crossing one-step sequence. If Z
is a consistent set of z-motions of s then there is some s′ ∈
squeezeK(s) that contains no z-motion of Z.

Proof: Let Z = {z1, z2, . . . }, where the z-motion are
ordered, i.e., if zi = (r, r + 1) and zi+1 = (s, s + 1) then
r + 1 < s. We define s0 = s, and, for all 0 < i ≤ K, si is
obtained from si−1 by removing zi, zi+K , zi+2K . . . . Clearly
si+1 ∈ squeezei+1(s) if zi+jK and zi+j′K are disjoint in si.
We consider two cases. Either zi+jK and zi+j′K belong to
a sequence of z-motions in Z that are consecutive in s, in
that case we can apply Lemma 10 which shows that they are
disjoint. Otherwise, zi+jK and zi+j′K do not belong to such
a sequence of z-motions in Z, that is, there exists a reversal
r that does not appear in any z-motion of Z and which is
between the second reversal of zi+jK and the first reversal of
zi+j′K , but then they cannot be consecutive in s′ (they are
also separated by r in s′), so, by definition, they are disjoint.

Proof of Lemma 2: Let s1 = s, and for all i ≥ 1, let
Zi be a maximal consistent set of z-motions of si, and si+1

be the one-step sequence obtained from si by removing Zi.
We show that each z-motion z in Zi has one of its positions
whose crossing in s is at least i+ i′ where i′ is the crossing
of the corresponding (some shift might be applied) position in
si+1. This trivially holds for s1 = s, so suppose it holds for i
and let us show it also holds for i + 1. Let r′1, r

′
2, . . . , r

′
l′ be

the reversals of si, let z = (r′i′ , r
′
j′) be a z-motion in Zi+1

(recall that we abuse notation and refer to the reversals of si+1

using the reversals of si though there is a shift of index for
some of them). As Zi is maximal, z is not a z-motion in si,
so there is a z-motion z′ = (r′k, r

′
k+1) ∈ Zi such that one of

the following holds:

• k = i′ + 1 or k = j′ + 1 and ar′k is in between ar′
i′

and
ar′

j′

• k = i′ − 2 and ar′k+1
is in between ar′

i′
and ar′

j′

Intuitively the above property states that one of the z-motions,
z′, in Zi must prevent z to be a z-motion in si, that is, z′ is
somehow ’in’ z. In each of these two cases we can apply
Lemma 11 which states that z′ is nested in z. By induction
hypothesis, one of the position of z′ has a crossing number
in s of at least i+ i′, where i′ is the crossing number of the
corresponding position in si+1. As si+2 is obtained from si+1

after removing z, we have i′ ≥ 1+ i′′ where i′′ is the crossing
number of the corresponding position in si+2. So we have
proved that the crossing number of this position is at least
(i+ 1) + i′′.

To conclude, as s is K-crossing, all positions are at most



K-crossing, therefore the property we just proved implies that
si for i > K has no z-motion, that is si = 1, 2, . . . ,m.
By Lemma 12, K applications of squeeze are sufficient to
remove a consistent set of z-motions, therefore 1, 2, . . . ,m is
in squeezeK

2

(s).

B. Proof of Proposition 2

A crossing sequence s is repetition-free if each state occurs
at most once in s. If Q is the set of states of A, we denote by
CS(Q) the set of repetition-free crossing sequences of A.

Based on Shepherdson’s construction, it is possible to
construct a one-way automaton whose states are sequences
of states, such that any run ρ of A maps to the sequence
of crossing sequences of ρ, and conversely any sequence of
crossing sequences of this automaton maps to a run of A.
This automaton may have infinitely many states, but it is
well-known it is sufficient to consider repetition-free crossing
sequences of states only [24].

Lemma 13 ([24]). For all 2NFAs A with set of states Q, it
is possible to construct an equivalent NFA CS(A) whose set
of states is CS(Q), and such that for all accepting runs ρ′ of
CS(A) on u, there exists an accepting run ρ of A on u such
that CS(ρ) = ρ′.

Lemma 14. Let A be a 2NFA with set of states Q, and
q1, q2 ∈ Q. Let Mq1,q2 be the language of words u2 such
that there exists a word u ∈ L(A), an accepting run ρ of A
on u such that ρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 and u2 = u[i1..i2].
Then Mq1,q2 is regular.

Proof: Given two sequences of states s1 and s2, the
language Accs1,s2 is defined as the set of words u2 ∈ Σ∗

such that there exist a word u ∈ Σ∗, two positions i1 ≤ i2
such that u2 = u[i1..i2], and an accepting run ρ on u
such that CS(ρ, i1) = s1 and CS(ρ, i2) = s2. In other
words, s2 is accessible from s1 by u2. It is easy to show
that for all s1, s2, there exists repetition-free sequences s′1, s

′
2

such that Accs1,s2 = Accs′1,s′2 . Therefore one can consider
repetition-free sequences only. We have seen (Lemma 13) that
one can construct an NFA whose states are the repetition-
free crossing sequences of the runs of T . An easy reacha-
bility analysis of this NFA allows one to construct an NFA
Aq1,q2 whose states are repetition-free crossing sequences of
T and such that Mq1,q2 =

⋃
{Accs1,s2 | q1 ∈ s1, q2 ∈

s2, s1, s2 are repetition-free}.
Proof: The transduction LT (q1, q2) is a function, other-

wise T would not be functional.
We define an intermediate ZNFT Z ′T (q1, q2) that mimics

T but starts initially in the state q1 and whenever it reaches
the state q2, it non-deterministically decides to go to a
fresh accepting state q′f . Formally, Z ′T (q1, q2) = (Q ∪
{q′f}, q1, {q′f},∆′) where ∆′ = ∆ ∪ {(q2, a, ε, q

′
f ,+1) | a ∈

Σ}. Clearly, to any accepting run of Z ′T (q1, q2) on a word
u2 ∈ Σ∗ corresponds a z-motion run of T on u2 of the form
ρ′2 = (q1, 1)ρ2(q2, |u2|) and conversely. However Z ′T (q1, q2)
is too permissive as it does not check that ρ′2 can be embedded

into a global accepting run of T . We now show how to restrict
the domain of Z ′T (q1, q2) to take this further constraint into
account.

By a simple adaptation of Shepherdson’s construction (see
Lemma 14), the language Mq1,q2 of words u2 such that there
exists u ∈ dom(T ) and an accepting run ρ of T on u such
that ρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 and u2 = u[i1..i2], can be
defined by an NFA Aq1,q2 .The transducer ZT (q1, q2) is finally
defined as Z ′T (q1, q2) where during the third and last pass, it
also checks that the input word is in Mq1,q2 by running Aq1,q2
in parallel via a product construction.

Let us briefly explain why this construction is correct.
Suppose that (u2, v) ∈ ZT (q1, q2). We have u2 ∈ Mq1,q2 ,
therefore there exist u ∈ Σ∗ and two positions i1 < i2 such
that u2 = u[i1..i2], and an accepting run ρ of T of the
form ρ1(q1, i1)ρ2(q2, i2)ρ3. The subrun (q1, i1)ρ2(q2, i2) is
not necessarily a z-motion, and it does not necessarily outputs
v. However since (u2, v) ∈ ZT (q1, q2), we also have that
(u2, v) ∈ Z ′T (q1, q2), and therefore there exists a z-motion
run ρ′ of T from q1 to q2 on u2. One can therefore substitute
(q1, i1)ρ2(q2, i2) by ρ′ in ρ (modulo a shift of the positions
occurring in ρ′), and one gets a new run γ = ρ1ρ

′ρ2. The
run γ is still an accepting run of T on u, and therefore
(u2, v) ∈ LT (q1, q2). The converse is easy by applying the
definitions.

C. Proof of Lemma 4

Proof: As in the proof of Proposition 2, we consider only
the transductions LT (q1, q2), the other case being solved by
using the equality RT (q1, q2) = LT (q1, q2). Let Z ∈ ZNFT
that defines LT (q1, q2) for some q1, q2 and suppose that T is
NFT-definable. By Lemma 3 we have to show that Z |= P . Let
u ∈ dom(Z) of length n and ρ = (p1, 1) . . . (pn, n)(qn−1, n−
1) . . . (q1, 1)(r2, 2) . . . (rn+1, n+ 1) an accepting run of Z on
u. Let (i1, j1) and (i2, j2) be two loops of ρ such that j1 ≤ i2.
These loops induce a decomposition of the input word u as
u = u1u2u3u4u5 with u2 = u[i1..j1− 1] and u4 = u[i2..j2−
1].

As (i1, j1) and (i2, j2) are loops in ρ, for any k1, k2 ≥ 0,
we have u1u

k1
2 u3u

k2
4 u5 ∈ dom(Z). By definition of the

transduction LT (q1, q2), any word in dom(Z) can be ex-
tended into a word in dom(T ). Thus, for any k1, k2 ≥ 0,
there exists αk1,k2 , α

′
k1,k2

∈ Σ∗ such that u(k1, k2) =

αk1,k2u1u
k1
2 u3u

k2
4 u5α

′
k1,k2

∈ dom(T ).
In addition, by assumption, T is NFT-definable and thus

there exists an NFT T ′ such that T ≡ T ′. We consider such
an NFT T ′, and denote by N its number of states. Let us
consider k1 = k2 = N + 1. There exists an accepting run
ρ′ of T ′ on the word u(k1, k2). Consider the state in which
is this run just before the i-th iteration of the word u2, for
i ∈ {1, . . . , k1}. As k1 = N + 1, two of these states must be
equal. A similar reasoning can be done for the powers of the
word u4. As a consequence, there exist constants ci, c′i ≥ 0
with i ∈ {1, 2, 3} such that c2, c′2 > 0 and the word u(k1, k2)



can be decomposed as follows:

u(k1, k2) = αk1,k2u1u
c1
2 u

c2
2 u

c3
2 u3u

c′1
4 u

c′2
4 u

c′3
4 u5α

′
k1,k2

with the property that ρ′ contains two loops on the input
subwords uc22 and uc

′
2

4 .
To conclude, we let β1 (resp. β2, β3, β4, β5) be the

output produced by ρ′ on the input subword u1u
c1
2 (resp. uc22 ,

uc32 u3u
c′1
4 , uc

′
2

4 , uc
′
3

4 u5), and f(k1, k2) (resp. g(k1, k2)) be the
output produced by ρ′ on the input subword α(k1, k2) (resp.
α′k1,k2 ).

D. Definition of squeeze(T )

We let LT (q1, q2) = (Qq1,q2 , qq1,q20 , F q1,q2 ,∆q1,q2) and
RT (q1, q2) = (P q1,q2 , pq1,q20 , Gq1,q2 ,Γq1,q2) for all q1, q2 ∈ Q.

We let squeeze(T ) = (Q′, Q′0, F
′,∆′) and show formally

how to construct it. For more convenience here we assume
that squeeze(T ) can have a set of initial states. It will be
easy to transform it into a (usual) 2NFT . We let Q′ = Q ]⊎
{Qq1,q2]P q1,q2 | q1, q2 ∈ Q}, Q′0 = {q0}∪{qq1,q20 | q1, q2 ∈

Q} ∪ {pq1,q20 | q1, q2 ∈ Q}, F ′ = F and ∆′ is the least set
satisfying for all q1, q2 ∈ Q:
• ∆ ]

⊎
q1,q2∈Q ∆q1,q2 ⊆ ∆′;

• ∀(p, a, v, q1,m)∈∆, (p, a, v, qq1,q20 ,m)∈∆′;
• ∀q ∈ F q1,q2 , ∀(p, a, v, q,+1) ∈ ∆q1,q2 ,
∀(q2, a, v

′, q3,m) ∈ ∆, (p, a, vv′, q3,m) ∈ ∆′

• ∀q ∈ F q1,q2 , ∀(p, a, v, q,+1) ∈ ∆q1,q2 ,
∀(q2, a, v

′, q3,m) ∈ ∆, for all q4 ∈ Q,
(p, a, vv′, qq3,q40 ,m) ∈ ∆′

• ∀q ∈ F q1,q2 , ∀(p, a, v, q,+1) ∈ ∆q1,q2 ,
∀q3 ∈ Q, ∀(qq2,q30 , a, v′, q′,m) ∈ ∆q2,q3 ∪ Γq2,q3 ,
(p, a, vv′, q′,m) ∈ ∆′

and similarly:
•
⊎
q1,q2∈Q Γq1,q2 ⊆ ∆′;

• ∀(p, a, v, q1,m)∈∆, (p, a, v, pq1,q20 ,m)∈∆′;
• ∀q ∈ Gq1,q2 , ∀(p, a, v, q,−1) ∈ Γq1,q2 ,
∀(q2, a, v

′, q3,m) ∈ ∆, (p, a, vv′, q3,m) ∈ ∆′

• ∀q ∈ Gq1,q2 , ∀(p, a, v, q,−1) ∈ Γq1,q2 ,
∀(q2, a, v

′, q3,m) ∈ ∆, for all q4 ∈ Q,
(p, a, vv′, qq3,q40 ,m) ∈ ∆′

• ∀q ∈ Gq1,q2 , ∀(p, a, v, q,−1) ∈ Γq1,q2 ,
∀q3 ∈ Q, ∀(qq2,q30 , a, v′, q′,m) ∈ ∆q2,q3 ∪ Γq2,q3 ,
(p, a, vv′, q′,m) ∈ ∆′

E. Proof of Proposition 3

Proof: Since squeeze(T ) contains T as a subtrans-
ducer, we have R(T ) ⊆ R(squeeze(T )). Let us show that
R(squeeze(T )) ⊆ R(T ). Let (u, v) ∈ R(squeeze(T )). There-
fore there exists an accepting run ρ of squeeze(T ) on u that
outputs v. We are going to construct an accepting run of T
on u that outputs v, this can be done by induction on the
number of times ρ goes in Z-mode. If it never does so, ρ is
accepting run of T and we are done. Otherwise suppose that
ρ goes at least once in Z-mode for some q1, q2 ∈ Q. Note
that the set ∆′ consists of ∆, the sets ∆p,q and Γp,q for all

p, q ∈ Q, and new transitions of three kinds (of the form
(p, a, vv′, q3,m), (p, a, vv′, qq3,q40 ,m) and (p, a, vv′, q′,m) in
the definition). Consider the first use of such a transition t in
ρ. One can decompose ρ as ρ1ρ2tρ3 where ρ1 is in T-mode,
ρ2 in Z-mode, and assume that ρ2t is a forward run on a factor
u2 of u (the case of a backward run is symmetric).

Let us inspect the case where t = (p, a, vv′, q3,m). The
other two cases (depending on the form of t) are proved
similarly. Suppose that p ∈ Qq1,q2 . Then it means that
(u2, v) ∈ LT (q1, q2), and therefore one can easily reconstruct
a z-motion run ρ′2 of T on u2 from q1 to q2 that outputs v.
Then by definition of ∆′, we know that there exists a transition
from q2 to q3 that produces v′. By induction we can also
transform ρ3 into a run ρ′3 of T that ends in an accepting state
and outputs the same word. Therefore ρ′1ρ

′
2(q2, a, v

′, q3,m)ρ′3
is an accepting run of T on u that outputs the same word as
ρ. Therefore (u, v) ∈ R(T ).

APPENDIX B
COMPLEMENTS TO SECTION IV

A. Technical results

Lemma 15. Let Σ,Γ,Λ be three finite alphabets, Ψ a mor-
phism from Γ to Σ∗ and Φ a morphism from Γ to Λ. Let
M = max{|Ψ(γ)| | γ ∈ Γ}. For all words u ∈ Γ∗,
if |Ψ(u)| > (|Λ| + 1).M , then there exist two positions
1 ≤ k1 < k2 ≤ |u| such that7:

1) |Ψ(u[1..(k1 − 1)])| ≤ (|Λ|+ 1).M
2) 1 ≤ |Ψ(u[k1..(k2 − 1)])| ≤ (|Λ|+ 1).M
3) Φ(u[k1]) = Φ(u[k2]).

Proof: Let L(u) be the set of loops that are strictly
contained in u, i.e. L(u) = {(i, j) | 1 ≤ i < j ≤ |u|, (i 6=
1) ∨ (j 6= |u|), Φ(u[i]) = Φ(u[j])}. We first show the
following by induction on |u|:

(i)

 |Ψ(u)| > (|Λ|+ 1).M
=⇒

∃(i, j) ∈ L(u), 1 ≤ |Ψ(u[i..j])| ≤ (|Λ|+ 1).M

If |u| = 0 (resp. |u| = 1) then |Ψ(u)| = 0 (resp. |Ψ(u) ≤
M ) and therefore the above implication is obviously satisfied.
Otherwise suppose that |u| > 0 and |Ψ(u)| > (|Λ| + 1).M .
Therefore we have |u| > |Λ|+1 ≥ 2, and |u[2..|u|]| > |Λ|, and
so by the pigeon-hole principle there exist two positions i < j
in u[2..|u|] such that Φ(u[i]) = Φ(u[j]), so that L(u) 6= ∅.

Suppose that for all (i, j) ∈ L(u), Ψ(u[i..(j−1)]) = ε. If we
remove maximally from u all the factors of u from position i to
position (j−1) for all (i, j) ∈ L(u), one obtains a word v such
that L(v) = ∅ and |Ψ(v)| = |Ψ(u)| > (|Λ|+1).M . Moreover
|v| ≤ |Λ| + 1 since L(v) = ∅, but this contradicts |Ψ(v)| >
(|Λ|+ 1).M by definition of M . Since L(u) 6= ∅, we get the
existence of (i0, j0) ∈ L(u) such that Ψ(u[i0..(j0 − 1)]) 6= ε.
If |Ψ(u[i0..(j0−1)])| ≤ (|Λ|+ 1).M we are done. Otherwise,
since |u[i0..(j0 − 1)]| < |u|, by induction hypothesis we get
the existence of a pair (i∗, j∗) ∈ L(u[i0..(j0 − 1)]) such that

7In this Lemma, if k1 = 1 then we let u[1..(k1 − 1)] = ε



1 ≤ |Ψ(u[i0..(j0 − 1)][i∗..(j∗ − 1)])| ≤ (|Λ| + 1).M , from
which we can conclude by taking i = i∗ + i0 − 1 and j =
j∗ + i0 − 1 (note that (i, j) ∈ L(u)).

This shows items (2) and (3) of the Lemma. Again by
induction on |u| and by using (i), we prove the lemma.
If |u| = 0 or |u| = 1, then the implication obviously
holds. Otherwise assume that |Ψ(u)| > (|Λ| + 1).M . By
(i) there exists (k1, k2) ∈ L(u) that satisfies (2) and (3). If
|Ψ(u[1..(k1 − 1)])| ≤ (|Λ|+ 1).M we are done, otherwise by
induction hypothesis, there exists (k′1, k

′
2) ∈ L(u[1..(k1− 1)])

which satisfies (1), (2) and (3), from which we can conclude.

Lemma 16. Let T ∈ ZNFT with m states. Let o be the
maximal length of an output word in a transition of T and
K = 2.o.m3.|Σ|. Let ρ be a run on a word u of length
n. We write ρ as the sequence (p1, 1) . . . (pn, n)(qn−1, n −
1) . . . (q1, 1)(r2, 2) . . . (rn+1, n + 1) and let qn = pn and
r1 = q1. Let 1 ≤ k < ` ≤ n such that |out2[k, `]| > K.
There exists a loop (i, j) in ρ such that k ≤ i < j ≤ ` and

1) |out2[k, i]| ≤ K
2) 1 ≤ |out2[i, j]| ≤ K.

Proof: We show this result by using Lemma 15.

We consider the alphabet ∆3 × Σ, where ∆ denotes the
set of transitions of T . Given a triple of transitions θ =
((s`, a`, u`, s

′
`)1≤`≤3), and a letter a ∈ Σ, we define the map-

pings Ψ and Φ as Ψ(θ, a) = u2 and Φ(θ, a) = (s1, s2, s3, a).
Then, we associate to the run ρ, considered between positions
k and `, a word over this alphabet of length `−k, indexed from
k to ` − 1, and defined as η = (σm)k≤m≤`−1, where σm is
composed of the three transitions used respectively to go from
configuration (pm,m) to configuration (pm+1,m + 1), from
configuration (qm+1,m + 1) to configuration (qm,m), and
from configuration (rm,m) to configuration (rm+1,m + 1),
and of the letter u[m].

Using these definitions, we have Ψ(η) = out2[k, `], and,
for any k ≤ m ≤ ` − 1, Φ(σk) = (pk, qk, rk, u[k]). Then it
suffices to apply Lemma 15 to get the result.

Lemma 17. Let x, y, z, t ∈ Σ∗ such that x 6= ε and y 6= ε.
Suppose that for all i ≥ 0, xiyzi is a prefix of tω . Then there
exists α1, α2 ∈ Σ∗ such that x ∈ (α1α2)∗, z ∈ (α2α1)∗ and
xyz ∈ α1(α2α1)∗.

Proof: By Lemma 1 µ(x) ∼ µ(t) and µ(z) ∼ µ(t), there-
fore µ(x) ∼ µ(z), i.e. there exists α1, α2 with x ∈ (α1α2)∗

and z ∈ (α2α1)∗. Moreover as xi is a prefix of tω for all
i > 0, clearly µ(t) = µ(x) = α1α2.

Now let xyz = (α1α2)kα a prefix of (α1α2)ω and let us
show that α = α1. So suppose αβ = α1 (the other case when
α1β = α is proved similarly). Therefore z = (α2α1)a =
(α2αβ)a but also xyz = (α1α2)kα implies that z = (βα2α)a.
So βα2α = α2αβ which means α1α2 is not primitive if β 6= ε.

B. Proof of Proposition 4

Proof: • If |out2[1, n− 1]| ≤ K, then clearly, it suffices
to take ` = n, t1 = out2[n−1, n], t2 = ε, t3 = out2[0, n−1],
w = out1[1, n] and w′ = out3[1, n+ 1].
• Otherwise, |out2[1, n − 1]| > K. Therefore u is of length
2.m3.|Σ| at least and there exists necessarily a (non-empty)
loop (i, j) in ρ. We can always choose this loop such that
|out2[1, i]| ≤ K and 1 ≤ |out2[i, j]| ≤ K (see Lemma 16).

The loop partitions the input and output words into factors
that are depicted in Fig. 5 (only the two first passes are de-
picted). Formally, let u = u1u2u3 such that u2 = u[i..(j−1)].
Let x0 = out1[1, i], v1 = out1[i, j], x1 = out1[j, n]out2[j, n],
v2 = out2[i, j], x2 = out1[1, i], x3 = out3[1, i], v3 =
out3[i, j] and x4 = out3[j, n+1]. In particular, we have |x2| ≤
K, 1 ≤ |v2| ≤ K and x0v1x1v2x2x3v4x4 ∈ T (u). Since (i, j)
is a loop we also get x0v

k
1x1v

k
2x2x3v

k
3x4 ∈ T (u1u

k
2u3) for

all k ≥ 0.
We then distinguish two cases:
1) If v1 6= ε. We can apply Property P by taking the second

loop empty. We get that for all k ≥ 0

f(k)x0v
kc+c′

1 x1v
kc+c′

2 x2x3v
kc+c′

3 x4g(k) = β1β
k
2β3

where f, g : N→ Σ∗, c ∈ N>0, c′ ∈ N, and β1, β2, β3 ∈
Σ∗. Since the above equality holds for all k ≥ 0, we
can apply Lemma 1 and we get µ(v1) ∼ µ(β2) and
µ(β2) ∼ µ(v2), and therefore µ(v1) ∼ µ(v2). So there
exist x, y ∈ Σ∗ such that v1 ∈ (xy)∗ and v2 ∈ (yx)∗.
By Lemma 17, we obtain that v1x1v2 ∈ x(yx)∗. Then
it suffices to take ` = i, w = x0, t1 = x, t2 = yx and
t3 = x2 to conclude the proof.

2) Otherwise, we have v1 = ε. We decompose x1 as x1 =
y1y2 where y1 = out1[j, n] and y2 = out2[j, n].
We again distinguish two cases:

a) We first consider the case when |y1| =
|out1[j, n]| > K. In this case, we can as before
decompose the input word u[j..n] to identify a
loop. More precisely, there exists a loop (r, s) in
ρ such that r ≥ j, |out1[j, r]| < K and 1 ≤
|out1[r, s]| ≤ K. This loop gives a decomposition
of u3 as u4u5u6 . We will then apply Property P to
the two loops (i, j) and (r, s). The loop (r, s) gives
a decomposition of y1 as z0w1z1, y2 as z2w2z3 and
x4 as z4w3z5. By Property P , there exist words βi,
i ∈ {1, . . . , 5}, and c1, c′1, c2, c

′
2, f, g such that, for

all k1, k2 ≥ 0,

f(k1, k2)x0v
η1
1 z0w

η2
1 z1z2w

η2
2 z3v

η1
2 x2

x3v
η1
3 z4w

η2
3 z5g(k1, k2) = β1β

k1
2 β3β

k2
4 β5

where ηi = kici+c
′
i, i ∈ {1, 2}. Recall that w1 6= ε

and v2 6= ε. As a consequence, we can, using
sufficiently large values of k1 and k2 and applying
Lemma 1, prove that µ(w1) ∼ µ(β4), that µ(v2) ∼
µ(β4), and thus deduce that µ(w1) ∼ µ(v2).
Therefore there exist x, y such that v2 ∈ (yx)∗

and w1 ∈ (xy)∗ from which we deduce that



w1z1z2w2z3v2 ∈ x(yx)∗. Recall that by the choice
of the loop (r, s) we have |z0| ≤ K. We can thus
define ` = i, w = x0, t1 = z0x, t2 = yx and
t3 = x2 to obtain the result.

b) The last case is when |y1| = |out1[j, n]| ≤ K.
We consider the length of y2 = out2[j, n]. First
observe that if we have |y2| ≤ K then we are done.
Indeed, we can define ` = j, t1 = y1, t2 = y2 and
t3 = v2x2. It is routine to verify that the conditions
of Property P1 are fulfilled.
We thus suppose that |y2| > K. In this case, we can
as before identify a loop (r, s) in the run ρ such that
r ≥ j, out2[s, n] ≤ K and 1 ≤ out2[r, s] ≤ K. We
do not give the details, but one can apply Property
P to the two loops (i, j) and (r, s) and use the fact
that out2[i, j] 6= ε and out2[r, s] 6= ε to prove that
µ(out2[i, j]) ∼ µ(out2[r, s]). Then, there exist x, y
such that out2[r, s] ∈ (xy)∗ and out2[i, j] ∈ (yx)∗

from which we deduce that out2[i, s] ∈ (xy)∗x.
Finally, we let ` = i, w = x0, t1 =
out1[i, n]out2[s, n], t2 = xy and t3 = xx2 to
obtain the result.

C. From εZNFT to NFT

We state the following Lemma whose proof is similar to
that of Lemma 16:

Lemma 18. Let T ∈ ZNFT with m states. Let o the
maximal length of an output word in a transition of T and
K = 2.o.(m3.|Σ|). Let ρ be a run on a word u of length
n. We write ρ as the sequence (p1, 1) . . . (pn, n)(qn−1, n −
1) . . . (q1, 1)(r2, 2) . . . (rn+1, n + 1) and let qn = pn and
r1 = q1. Let two indices 1 ≤ i ≤ j ≤ n. Then, we have:

1) if |out3[i, j]| > K, there exists a loop (k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out3[i, k1]| ≤ K
b) 1 ≤ |out3[k1, k2]| ≤ K

2) if |out3[i, j]| > K, there exists a loop (k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out3[k2, j]| ≤ K
b) 1 ≤ |out3[k1, k2]| ≤ K

3) if |out1[i, j]| > K, there exists a loop (k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out1[i, k1]| ≤ K
b) 1 ≤ |out1[k1, k2]| ≤ K

4) if |out1[i, j]| > K, there exists a loop (k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out1[k2, j]| ≤ K
b) 1 ≤ |out1[k1, k2]| ≤ K

Proof of Proposition 6
Proof: We let T = (Q, q0, F,∆) and K = 2.o.m3.|Σ|.

Recall that as T ′ ∈ εZNFT, we have out2[1, n] = ε.
Let us define the position ` as the largest positive integer

less than or equal to n such that out1[`, n] = ε.

out1

out3

1 k1 = `1 k2 ` = `2 n

≤ K

x2 6= ε z w′

≤ K

w x1 6= ε ε

Fig. 7. Decomposition of the output for case I.1)

We first observe that if |out3[1, `]| ≤ K, then we are done,
by considering `1 = `2 = `. Indeed, we then consider w =
out1[1, `], w′ = out3[`, n+ 1], t1 = out3[1, `], and t2 = t3 =
ε.

Thus, we now suppose that we have |out3[1, `]| > K. In
this case, we can apply Lemma 18, case 1): there exists a loop
(k1, k2) such that |out3[1, k1]| ≤ K and 1 ≤ |out3[k1, k2]| ≤
K.

We again distinguish two cases:
Case I: |out3[k2, `]| ≤ K. For this case, we again distinguish
three cases, depending on the value of out1[k1, k2] and on the
length of |out1[k2, `]| ≤ K:

1) if we have out1[k1, k2] 6= ε. We will prove that the
output word out1[k1, n]out3[1, `] has the expected form
(t1t∗2t3). Therefore we use the P-property on the loop
(k1, k2) with an additional empty loop. We define:

w = out1[1, k1]
x1 = out1[k1, k2]
y = out1[k2, n]out3[1, k1]
x2 = out3[k1, k2]
z = out3[k2, `]
w′ = out3[`, n+ 1]

Property P entails that there exist β1, β2, β3, f, g, c, c
′

such that, for all k ≥ 0,

f(k)wxkc+c
′

1 yxkc+c
′

2 zw′g(k) = β1β
k
2β3

As we have x1 6= ε, and x2 6= ε, this entails, thanks
to the fundamental lemma (Lemma 1), that µ(x1) ∼
µ(x2). Let t2 be µ(x1). We can write t2 = z1z2 and
µ(x2) = z2z1. As a consequence, we obtain that x1yx2

is of the form t∗2.z1 by Lemma 17. We can thus set
t1 = ε, t3 = z1.z, `1 = k1 and `2 = `. It is routine to
verify that words w,w′, t1, t2, t3 verify the conditions of
P2-property.
This case is depicted on Figure 7.

2) if we have out1[k1, k2] = ε and |out1[k2, `]| ≤ K.
We will show that the result is easy. Indeed, consider
`1 = k1, `2 = `, t1 = out1[k1, n]out3[1, k1], t2 =
out3[k1, k2], and t3 = out3[k2, `]. It is routine to verify
that all the requirements of P2-property are met.
This case is depicted on Figure 8.

3) last, if we have out1[k1, k2] = ε and |out1[k2, `]| > K.
In this case, we will have to identify a loop in this part
([k2, `]) of the input word, to prove the expected form of



out1

out3

1 k1 = `1 k2 ` = `2 n

≤ K

b t2 6= ε t3

≤ K

ε a

≤ K

ε

t1 = ab

Fig. 8. Decomposition of the output for case I.2)

out1

out3

1 k1 = `1 k2 j1 j2 ` = `2 n

t3

≤ K

x2 6= ε z1 z2 z3 w′

≤ K

t1
w ε x1 6= ε ε

≤ K

Fig. 9. Decomposition of the output for case I.3)

the output words. Formally, we apply Lemma 18 as we
did before, except that we are interested in the output
produced in the first pass of the ZNFT , and not in that
produced in the third pass. We thus apply case 3) of
Lemma 18. We can thus exhibit a loop (j1, j2) with
k2 ≤ j1 < j2 ≤ `− 1 such that |out1[k2, j1]| ≤ K and
1 ≤ |out1[j1, j2]| ≤ K.
We are now ready to prove that the output word
out1[k1, n]out3[1, `] has the expected form (t1t∗2t3). To
this aim, we define:

u1 = u[1, k1 − 1] w = out1[1, k1]
u2 = u[k1, k2 − 1] t1 = out1[k1, j1]
u3 = u[k2, j1 − 1] x1 = out1[j1, j2]
u4 = u[j1, j2 − 1] y = out1[j2, n]out3[1, k1]
u5 = u[j2, `− 1] x2 = out3[k1, k2]
u6 = u[`, n] z1 = out3[k2, j1]

z2 = out3[j1, j2]
z3 = out3[j2, `]
w′ = out3[`, n+ 1]

As (k1, k2) and (j1, j2) are loops, we can apply Property
P . Using the fundamental lemma, we can deduce that
µ(x1) ∼ µ(x2), using a reasoning similar to that of the
proof of Proposition 4. Thus, we can set t2 = µ(x1), and
write t2 = α1α2 such that µ(x2) = α2α1, from which
we deduce x1yx2 ∈ t∗2α1 (Lemma 17). Finally, we let
z = z1z2z3, t3 = α1z, `1 = k1 and `2 = `. The reader
can verify that all the requirements of P2-property are
met.
This case is depicted on Figure 9.

Case II: we have |out3[k2, `]| > K. We distinguish three
cases, according to the length of the word out1[k2, `], and
to the value of out1[k1, k2]:

1) if we have |out1[k2, `]| ≤ K, we distinguish two cases:
a) We first consider the case when out1[k1, k2] = ε.

out1

out3

1 k1 = `1 = `2 k2 ` n

≤ K

6= ε

w′

w ε ε

≤ K

Fig. 10. Decomposition of the output, case II.1).a)

out1

out3

1 k1 = `1 k2 = `2 ` n

≤ K

6= ε

w′

w 6= ε

≤ K
ε

Fig. 11. Decomposition of the output for case II.1).b)

In this case, we can simply define `1 = `2 = k1,
and verify that the conditions of the P2-property
are met. This case is depicted on Figure 10.

b) The second case is when out1[k1, k2] 6= ε. This
case is easy as we can show that µ(out1[k1, k2]) ∼
µ(out3[k1, k2]), and deduce the expected form for
the output words, by setting `2 = k2. This case is
depicted on Figure 11.

2) if we have |out1[k2, `]| > K and out1[k1, k2] 6= ε. As
|out1[k2, `]| > K, we can apply Lemma 18, case 4), to
identify a loop (j1, j2) such that |out1[j2, `]| ≤ K and
1 ≤ |out1[j1, j2]| ≤ K. In this case, we set `1 = k1 and
`2 = j2.
There are three cases, according to out3[j1, j2] and
out3[k2, j1]:

a) We first consider the case when out3[j1, j2] 6=
ε. In this case, using Property P , we can
show that µ(out1[k1, k2]) ∼ µ(out1[j1, j2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[j1, j2]). This allows to
prove the expected form of the output words.

b) Second, we suppose that out3[j1, j2] = ε and that
out3[k2, j1] ≤ K. In this case, we can use the
word t3 to cover the output word out3[k2, j1]. Last,
using a reasoning on word combinatorics, we can
prove that µ(out1[k1, k2]) ∼ µ(out1[j1, j2]) ∼
µ(out3[k1, k2]) and conclude.
Cases a) and b) are depicted on Figure 12.

c) Last, we consider the case out3[j1, j2] = ε
and out3[k2, j1] > K. By Lemma 18, case
2), there exists a loop (p1, p2) included in
the interval [k2, j1] such that |out3[p2, j1]| ≤
K and 1 ≤ |out3[p1, p2]| ≤ K. We claim
that the result holds. The only difficult prop-
erty is the fact the output word has the ex-
pected form (t1t∗2t3). This can be proven using



out1

out3

1 k1 = `1 k2 j1 j2 = `2 ` n

≤ K

6= ε

≤ K
6= ε

6= ε 6= ε ε

≤ K

OR

Fig. 12. Decomposition of the output for case II.2).a) and b)

out1

out3

1 k1 = `1 k2 j1 j2 = `2 ` n

≤ K
6= ε 6= ε

w ε

≤ K

6= ε ε

t1

≤ K

conjugate

Fig. 13. Decomposition of the output for case II.3).a), out3[j1, j2] 6= ε

word combinatorics, by showing, using the Prop-
erty P , that µ(out1[k1, k2]) ∼ µ(out1[j1, j2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[p1, p2]).

3) last, if we have |out1[k2, `]| > K and out1[k1, k2] = ε.
We first let `1 = k1. As we have |out1[k2, `]| > K, we
can apply Lemma 18, case 3), to identify a loop (j1, j2)
included in the interval (k2, `) such that |out1[k2, j1]| ≤
K and 1 ≤ |out1[j1, j2]| ≤ K. We distinguish two
cases:

a) if |out1[j2, `]| ≤ K. We define `2 = j2. We
consider the value of out3[j1, j2].
If we have out3[j1, j2] 6= ε, then we can
conclude. Indeed, using word combinatorics, we
can prove µ(out1[j1, j2]) ∼ µ(out3[k1, k2]) ∼
µ(out3[j1, j2]) and prove that the output word
out1[k1, n]out3[1, j2] has the expected form. This
case is depicted on Figure 13.
Otherwise, we have out3[j1, j2] = ε. For this case
we distinguish two cases:
i) if out3[k2, j1] ≤ K: we can conclude directly.

Indeed, it is easy to show that µ(out1[j1, j2]) ∼
µ(out3[k1, k2]). The word out3[k2, j2] is not
necessarily conjugated with the previous words,
but its length is less than K by hypothesis, thus
we can use the word t3 to handle this part of
the output. This case is depicted on Figure 14.

ii) if out3[k2, j1] > K: we will apply Lemma 18,
case 2), to identify a loop (p1, p2) included in
the interval (k2, j1) such that |out3[p2, j1]| ≤
K and 1 ≤ |out3[p1, p2]| ≤ K. Then we can
prove that µ(out1[j1, j2]) ∼ µ(out3[k1, k2]) ∼
µ(out3[p1, p2]) and conclude.

b) if |out1[j2, `]| > K. We can apply Lemma 18,
case 4), to identify a loop (p1, p2) included in the

out1

out3

1 k1 = `1 k2 j1 j2 = `2 ` n

≤ K ≤ K

w′t3

6= ε ε

w ε

≤ K

6= ε ε

t1

≤ K

Fig. 14. Decomposition of the output for case II.3).a).i)

interval (j2, `) such that |out1[p2, `]| ≤ K and 1 ≤
|out1[p1, p2]| ≤ K. In the sequel, we let `2 be p2

and `1 be k1. We let α = out3[p1, p2] and α′ =
out3[j1, j2]. The situation is depicted on Figure 15.
We distinguish five cases:
i) if α 6= ε, we conclude easily by show-

ing that µ(out1[j1, j2]) ∼ µ(out1[p1, p2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[p1, p2]).

ii) if α = ε and |out3[j2, p1]| > K: we can
identify a loop in ρ, included in the interval
[j2, p1], such that out3 is non-empty on this
loop. We can then derive the result.

iii) if α = ε, |out3[j2, p1]| ≤ K and
α′ 6= ε, then we can show that
µ(out1[j1, j2]) ∼ µ(out1[p1, p2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[j1, j2]), and
conclude as the output out3[j2, p2] has length
less than K (t3 can be defined so as to cover
these words).

iv) if α = ε, |out3[j2, p1]| ≤ K, α′ = ε and
|out3[k2, j1]| > K, we can identify a loop
inside the interval [k2, j1]. This loop can be
used to prove the result, as we know that the
length of the word out3[j1, p2] is less than K.

v) else, i.e. if α = ε, |out3[j2, p1]| ≤ K, α′ = ε
and |out3[k2, j1]| ≤ K, then we are done as t3
can be defined as out3[k2, p2].

Construction of T ′′ from T ′

We provide here some additional details for the definition
of the NFT T ′′ from the εZNFT T ′.

First, the transducer T ′′ should, in a single forward pass,
simulate the three passes (forward, backward, and forward)
of T ′. Therefore it maintains a triple of states of T ′ and the
current symbol.

Second, it uses three modes: before the guess of position
`1, between positions `1 and `2, and after position `2.

Third, it should guess the words of bounded length t1, t2
and t3, and two additional words x and y of bounded length
(≤ 3.K) which intuitively correspond to words out3[1, `1] and
out1[`2, n] (see property P2).

Last, it verifies in the different modes that the output
has the expected form, and produces in a forward manner
the overall output word. Therefore it distinguishes between
different cases, whether t1 is a prefix of out1[`1, `2] or whether



out1

out3

1 k1 = `1 k2 j1 j2 p1 p2 = `2 ` n

≤ K α′ α

6= ε

w ε

≤ K

6= ε 6= ε ε

≤ K

Fig. 15. Decomposition of the output for case II.3).b)

t1 also covers out1[`2, n] or out3[1, `1], or even out3[`1, `2]. It
manipulates pointers in the different words of bounded length
it has guessed to verify the form of the output, and to produce
the correct output, as we did in the construction of T ′.

APPENDIX C
LOWER BOUND

Lemma 19. (2DFT, NFT)-definability is PSpace-Hard.

Proof: Consider n DFAs A1, . . . , An. Let us define the
following transduction (where # 6∈ Σ):

T : u 7→
{
u1 if u = #u1#u2# and u2 ∈

⋂
i L(Ai)

undefined otherwise.

Clearly, T is definable by a 2DFT . It suffices to first perform
n back and forth non-producing passes on u to determine
whether u2 ∈

⋂
i L(Ai), and then a last backward pass to

reverse u1.
Then, T is NFT-definable iff dom(T ) = ∅ iff

⋂
i L(Ai) =

∅. Indeed, if dom(T ) = ∅ then T is obviously NFT-
definable. Otherwise, there exists u2 ∈

⋂
i L(Ai), and there-

fore #Σ∗#u2# ⊆ dom(T ). If T is NFT-definable, then so
would be the reverse operation. Contradiction.


