
Visibly Pushdown Transducers

Emmanuel Filiota, Jean-François Raskina, Pierre-Alain Reynierb, Frédéric Servaisa,c, Jean-Marc Talbotb

aUniversité Libre de Bruxelles
bLaboratoire d’Informatique Fondamentale de Marseille, Université Aix-Marseille-CNRS

cHaute École de Bruxelles

Abstract

Visibly pushdown transducers (VPT) extend visibly pushdown automata (VPA) with outputs. They read
nested words, i.e. finite words on a structured alphabet partitioned into call, return and internal symbols,
and produce output words, which are not necessarily nested. As for VPA, the behavior of the stack is
synchronized with the types of input symbols: on reading a call symbol, exactly one stack symbol is pushed
onto the stack; on reading a return symbol, exactly one stack symbol is popped from the stack; and the
stack is untouched when reading internal symbols. Along their transitions VPT can append words on their
output tape, whose concatenation define the resulting output word. Therefore VPT define transformations
from nested words to words and can be seen as a subclass of pushdown transducers. In this paper, we study
the algorithmic, closure and expressiveness properties of VPT.

Keywords: Visbily Pushdown Automata, Transducers, Functionality

1. Introduction

General context

Over the years, XML [9] has become a standard formalism for data exchange over the internet. XML
data, also known as XML documents, are essentially a textual representation of information. Compared to
the traditional relational databases, the main feature of XML is its weak structure that is embodies by XML
tags. Problems for XML databases are rather similar to the ones of relational databases. To cite a few,
validation (“does an XML document has a correct shape wrt to some declaration ?”), querying (“what are
the information associated with the tag 〈a〉 in the XML document ?”), computation of views/transformations
(“compute from the XML document representing a library a document enumerating for each author the list
of books he has contributed to”) can be considered.

This XML formalism induced the development of practical tools [57, 26, 13, 8, 42] as well as theoretical
studies on formal tools for manipulating XML documents. This latter has led to define and study new
formal objects or to consider well-known ones with a new perspective, impacting significantly research in
formal language theory.

More concretly, an XML document is built from information (or data) that are grouped by means of
tags using a well-parenthesing policy. As for parenthesis, there exist some opening (e.g. 〈article〉) as well
as closing tags (e.g. 〈/article〉). Such a document is examplified on Fig. 1.

As pairs of tags can be nested one into the other, this nesting induces a tree structure of the document,
often refered to as the DOM (Document Object Model) tree. Hence, tree automata are good candidates
as theoretical foundations of XML processing tools. Indeed, some new tree automata models, motivated
by XML, have been developped and investigated [44, 45]. An alternative is to consider the document in

Email addresses: efiliot@ulb.ac.be (Emmanuel Filiot), jraskin@ulb.ac.be (Jean-François Raskin),
pierre-alain.reynier@lif.univ-mrs.fr (Pierre-Alain Reynier), frederic.servais@gmail.com (Frédéric Servais),
jean-marc.talbot@lif.univ-mrs.fr (Jean-Marc Talbot)

Preprint submitted to Elsevier July 15, 2018

its textual form, as a sequence of symbols together with an additional nesting structure that associates an
opening tag with its closing matched tag. This point of view has been adopted in the XML manipulating
library SAX [42]. Words together with this implicit nesting given by tags are a particular case of nested
words. Automata, named visibly pushdown automata, running on these objects have first been introduced
in [4].

Our contribution to this research area is the design and the study of a formal mathematical tool to
process nested words; the present paper proposes for this purpose visibly pushdown transducers (VPT),
that extend visibly pushdown automata (VPA) with outputs, as an abstract model of machines for defining
transformations of nested words.

Nested Words

Nested words are finite sequences of symbols equipped with a nesting structure. The term nesting
structure refers to a structure that is organized on the basis of layers some of which are contained into the
others. Special symbols, namely call and return symbols, can be used to add a nesting structure, through
a call/return matching relation. Other (untyped) symbols are called internal symbols. Formally, a nested
word is defined as a word over a structured alphabet. In a nested word, some call symbols (resp. return
symbols) may be pending if they do not match any return symbol (resp. call symbol). Nested words without
any pending symbols are called well-nested words.

Nested words arise naturally in many applications as models of data which are both linearly and hierar-
chically ordered. Executions of structured programs as well as XML documents are examples of data that
are naturally modelled as nested words [5]. The sequence of calls and returns (resp. opening and closing
tags), adds nesting structures to program executions and XML data respectively. More generally, any tree-
structured data can be linearized into a nested word by considering a depth-first left-to-right traversal of
the tree.

As an example, consider the XML document of Fig.1 representing an article with its (simplified)
structure. Opening and closing tags correspond to call and return symbols, and the unstructured data
are words over internal symbols. More precisely, the alphabet is partitioned into call symbols Σc =
{〈article〉, 〈section〉, 〈title〉, 〈content〉}, return symbols Σr = {〈/article〉, 〈/section〉, 〈/title〉, 〈/content〉} and
internal symbols Σi = {a, . . . , z, A, . . . , Z}.

Automata for nested words

Alur and Madhusudan introduced visibly pushdown automata (VPA) as a pushdown machine to de-
fine languages of nested words [5], called visibly pushdown languages. More precisely, VPA operate on a
structured alphabet, partitioned into call, return and internal symbols. When reading a call symbol the
automaton must push one symbol on its stack, when reading a return symbol it must pop a symbol on
top of its stack, and when reading an internal symbol it cannot touch its stack. As nested words can be
naturally viewed as trees, visibly pushdown automata inherit all the good properties of tree automata [14].
Most notably, they are closed under all Boolean operations, and all the classical decision problems such
as emptiness, universality, finiteness are decidable. This is in contrast to general pushdown automata that
define context-free languages, for which it is well-known that most interesting problems are undecidable.
The fundamental reason why VPA enjoy good properties is that the stack behavior, i.e. whether it pops,
pushes or does not change, is driven by the input symbol. Therefore, all the stacks on a same input have
the same height (we say that the stacks are synchronized). Although VPA are equivalent to tree automata,
they run on words and operate from left to right. This perspective has led to many applications, such as
new logics for nested words [2], streaming XML validation and queries [1, 24, 36, 35], and program analysis
[31, 30, 3].

Transducers for nested words

Transducers are machines that define transformations (also called transductions) of input to output
words. Fig. 1 gives two examples of transformations. The first transformation R0 takes a nested word
representing an XML document and outputs an (unstructured) text version of it. The second transformation

2

〈article〉
〈title〉Visibly Pushdown Transducers〈/title〉
〈section〉

〈title〉Introduction〈/title〉
〈content〉
The present work proposes [...]

〈/content〉
〈/section〉
〈section〉

〈title〉Preliminaries〈/title〉
〈content〉
In this section [...]

〈/content〉
〈/section〉

. . .
〈/article〉

XML

Visibly Pushdown Transducers

Section: Introduction
The present work proposes [...]

Section: Preliminaries
In this section [...]

. . .

Text

〈html〉
〈body〉

〈h1〉Visibly Pushdown Transducers〈/h1〉
〈h2〉Introduction〈/h2〉
〈p〉
The present work proposes [...]

〈/p〉
〈h2〉Preliminaries〈/h2〉
〈p〉
In this section [...]

〈/p〉
. . .

〈/body〉
〈/html〉

HTML

R0

R1

Figure 1: Transformations from XML to Text and HTML

R1 transforms the XML document into an HTML document. While transformation R0 completely flattens
the input document, transformation R1 preserves its structure.

Word transducers usually extend automata by producing partial output words on their transitions.
The final output of an input word is obtained as the (left-to-right) concatenation of all the partial output
words produced along a successful computation. A notable example of word transducers is the finite state
transducers, that define rational relations, and are built on top of finite state automata. These transducers
have been deeply studied [7] but are not suitable to define transformations of documents with a nesting
structure. With such documents, before entering an additional level of nesting, it is usually important to
store some information about the current nesting level, and to recover it when leaving the nested layer. This
is normally implemented with a stack data structure. Another example is the pushdown transducers that
extend pushdown automata. Clearly, such transducers inherit the bad properties of pushdown automata,
and most problems of interest in the theory of transducers are undecidable for this class of transducers.

In this paper, we introduce visibly pushdown transducers (VPT), that extend VPA with outputs. The
output alphabet is, however, not structured. VPT are therefore nested word to word transducers. If the
output alphabet is structured, then obviously VPT output nested words. The goal of this paper is to show
that, like VPA, VPT enjoy good properties and form a robust class of transducers.

Example 1. As a first example, consider the VPT T0 of Fig. 2 that implements the XML-to-text transfor-
mation R0 of Fig. 1. Its runs start in state q0. When reading the call symbol 〈article〉, T0 pushes the symbol
γ on the stack (+γ), outputs the empty word ε, and moves to state q1, from which it can read only 〈title〉,
outputs ε, pushes γ and moves to state q2. At this point, the input document is expected to be a sequence
of characters in Σi that corresponds to the title of the article. On the loop on q2, α is intended to be any
internal symbols from Σi. On that loop, nothing is pushed on the stack and α is simply copied to the output.

3

q0 q1 q2 q3 q4

q4

〈article〉|ε,+γ 〈title〉|ε,+γ

α|α

〈/title〉|\n\n,−γ 〈/article〉|ε,−γ

〈section〉|Section: ,+γ

〈/section〉|ε,−γ

〈content〉|ε,+γ〈/content〉|ε,−γ

α|α

Figure 2: VPT implementing the transformation T0 of Fig. 1

q0 q1 q2 q3 q4

q6q7q8q9q10

〈article〉|〈html〉〈body〉,+γ 〈title〉|〈h1〉,+γ

α|α

〈/title〉|〈/h1〉,−γ 〈/article〉|〈/body〉〈/html〉,−γ

α|αα|α

〈section〉|ε, +γ〈/section〉|ε, −γ

〈title〉|〈h2〉, +γ〈/title〉|〈/h2〉, −γ〈content〉|〈p〉,+γ〈/content〉|〈/p〉, −γ

Figure 3: VPT implementing the transformation T1 of Fig. 1

The only way to exit that loop is to read the closing symbol 〈/title〉. If it is the case, then two ”new line”
symbols are appended to the output and γ is popped from the stack (−γ).

The other transitions of T0 are self-intuitive. Note that T0 accepts only well-matched input nested words;
for instance, the only way to match 〈article〉 is to close it with 〈/article〉. In general, the definition of nested
words does not impose any well-matched restriction on the call and return symbols in the input word but it
is something that can be syntactically ensured, for instance by using a different stack symbol for each pair
of corresponding call/return symbols.

Finally, the domain of T0, i.e. the set of all input nested words that have at least one output by T0, is
a visibly pushdown language that can be defined by the VPA obtained by projecting away the output words
of the transitions of T0. Note that this domain also contains documents where the sections can be nested in
other sections, since it is not necessary to close an opening tag 〈section〉 before opening a new one.

Example 2. The transformation R1 can be implemented by the VPT T1 of Fig. 3. The output alphabet is
assumed to be structured, where call symbols are opening HTML tags and return symbols are closing HTML
tags. Observe that in this VPT, sections cannot nest other sections, therefore T1 and T0 do not have the same
domain. The main title of the article is processed by states q1, q2 and q3, while section titles are processed
by states q6, q7 and q8, and those states can be accessed only if 〈section〉 is read on the input. Note that
on reading 〈article〉, two call symbols are output. Similarly on reading 〈/article〉, two return symbols are
output.

4

Contributions

In this paper, we study the closure and algorithmic properties of classes and extensions of VPT. The
results are summarized in Table 1. First we distinguish three classes of VPT:

• the class of deterministic VPT (dVPT), whose underlying input VPA is deterministic (and thus, define
only functions),

• the class of functional VPT (fVPT), which might be non-deterministic but which define functions,

• the class of VPT, which can be non-deterministic and define relations of arbitrary arity.

Closure properties. Closure by Boolean operators usually do not carry over to transducers. As for finite
state transducers, VPT-transductions are not closed by intersection, nor by complement (because any input
has a finite number of outputs, while an output may have an infinite number of pre-images). Closure by
union is however obtained classically by using non-determinism. Closure under composition is a desirable
property of transducers. This property holds for FST. Unfortunately VPT are not closed under composition.
We introduce later the class of well-nested VPT to recover closure by composition.

Decision Problems. First, the emptiness problem asks whether the transduction defined by a VPT is empty.
Clearly, it is a property of the domain of the transduction, which is defined by the VPA underlying the
VPT (obtained by projecting the output words). Therefore, emptiness is decidable in PTime for VPT. The
translation membership problem asks, given a pair (u, v) of input and output words and a VPT T , whether
T translates u into v. It is decidable in PTime for all classes of VPT we consider in this paper.

The typechecking problem is motivated by practical applications. It asks, given a VPT T , and an input
and an output types given as VPA, whether any input document of the given input type is transformed
into an output document of the given output type. In the setting of XML for instance, this amounts to
check, given an XSLT transformation, an input and an output XML schemas, whether the image of any
XML document, valid for the input schema, is a document valid for the output schema. This problem is
unfortunately undecidable for VPT because one can define any context-free language (CFL) as the co-domain
of a VPT, and as we show, testing the inclusion of a CFL into a visibly pushdown language is undecidable.

One of the most desirable property of transducers is decidable equivalence checking, i.e. testing whether
two given transducers define the same relation. However even for finite state transducers this problem
is undecidable. The classical way to recover decidability is to bound the arity of the relations defined
by the transducers. Given k ∈ N, a transducer is k-valued if every input word has at most k different
translations. In particular, 1-valued transducers define exactly the class of functional transducers. For
finite-state transducers, equivalence of k-valued transducers is decidable [58]. For VPT, the decidability
of equivalence for k-valued transducers is still open, but we show that equivalence of functional VPT is
Exptime-complete, and even decidable in PTime for dVPT, which makes this class very appealing.

Although functionality and more generally k-valuedness are semantical properties, we show that they
are both decidable, in PTime for functionality and in coNP for k-valuedness. The PTime complexity is a
nice consequence of strong result by Plandowski who shows that testing the equivalence of two morphisms
applied on a context-free language is decidable in PTime [47]. For k-valuedness, one reduces the problem
to deciding language emptiness of a reversal-bounded counter pushdown machine, which is known to be
decidable [29], and we show that it is in coNP.

All these decision problems but emptiness and translation membership are undecidable for (non-visibly)
pushdown transducers, making VPT an appealing class lying in between finite state transducers and push-
down transducers.

Well-nested VPT. Visibly pushdown transducers form a reasonable subclass of pushdown transductions,
but, contrarily to the class of finite state transducers, it is not closed under composition and the type
checking is undecidable against VPA. A closer exam of these weaknesses, shows that they are due to the
fact that the output alphabet is not structured, or more precisely, to the fact that the stack behavior is
not synchronized with the output word. We introduce the class of well-nested visibly pushdown transducers

5

(wnVPT). They are visibly pushdown transducers that produce output on a structured alphabet and whose
output is somehow synchronized with the stack and thus, the input. We show that this class is closed
under composition and that its type checking problem against visibly pushdown automata is decidable.
This makes this class a very attractive one, as its properties are nearly as good as the properties of finite
state transducers, but they enjoy an extra expressiveness that is desirable for dealing with documents with
a nesting structure. Results on wnVPT and functional wnVPT are summarized in Table 1.

Moreover, the class of well-nested VPT define, modulo linearization, unranked tree to unranked tree
transformations. We precisely compare the expressiveness of well-nested VPT with that of known classes
of (unranked) tree transducers, most notably, top-down tree transducers running on binary encodings of
unranked trees [14], uniform tree transducers [38], and macro tree transducers [19]. While VPT are incom-
parable to the first two classes, we show that they are strictly less expressive, modulo some tree encoding,
than macro tree transducers.

VPT with regular look-ahead. We then study the extension of visibly pushdown transducers with look-ahead
(VPTla). They are visibly pushdown transducers that have the ability to inspect the suffix of the word.
We show that this ability does not add expressiveness, and we exhibit a construction for removing, at an
exponential cost, the look-ahead. Moreover, we show that the deterministic VPT with look-ahead exactly
capture the functional VPT transductions. Finally, we show that, while they are exponentially more suc-
cinct than VPT, testing equivalence or inclusion is done with the same complexity. Results on VPTla and
deterministic VPTla are summarized in Table 1.

Application: streaming transformations

Perhaps the best application and motivation for studying the VPT model, as they can read linearisations
of trees as nested words, is streaming XML transformations. While this paper is a thorough study of the
fundamental properties of VPT, we have also investigated various streamability problems in [20] for VPT

transformations. Let us briefly mention here the main results. Deterministic VPT can efficiently processed
XML documents in streaming with a memory that depends only on the height of the stack (i.e. the depth
of the XML tree). However, there are some VPT transformations that can still be evaluated with height-
dependent memory but are not realizable by any deterministic VPT. In [20], we have shown that checking
whether a function realized by a (non-deterministic) VPT can be evaluated with a memory that depends
only on the depth of the tree, is a decidable problem. The memory may however be exponential in the
depth of the tree. Nevertheless, we have shown that the class VPT-definable functions that can be evaluated
with a memory that depend only polynomially on the depth of the XML tree is decidable. Streamability
problems for more expressive classes of tree transducers (such as macro tree transducers) have not yet been
investigated, but the extra expressive power of those transducers (such as copying or moving subtrees)
makes the transformations they define more likely to be non streamable. Related results on the application
of visibly pushdown automata to stream validation and queries have also been obtained in [52, 35, 23, 24].

Content and organization of the paper

Visibly pushdown transducers have been first introduced in [48] and some (negative) results sketched in
this publication are exposed in the present article. However, [48] focusses on transducers that allow produc-
tive ε-moves, leading to very powerful machines. Therefore, for such machines, most of the problems that
we investigate here are undecidable. Instead for consider here the real-time version of these transducers.
This article gathers material on visibly pushdown transducers that appeared as short version in conference
proceedings; in particular, the results from [21] and [22] are extensively presented here. Additionaly, mo-
tivatived by XML applications, we consider visibly pushdown transducers as tree transformers. As a new
contribution, we will draw a comparison betwwen visibly pushdown transducers and several classes of tree
transducers that have been previously defined.

In Section 2, we introduce the basic notions used along this paper. Section 3 introduces visibly pushdown
automata and surveys the main known results. In Section 4, we define VPT and study their closure properties.
Section 5 presents our results on the decision problems introduced previously for the class of VPT, most

6

dV
P
T

fV
P
T

V
P
T

fw
nV
P
T

w
nV
P
T

dV
P
T l
a

V
P
T l
a

Decision Problems
Emptiness P P P P P ExpC ExpC

Translation Membership P P P P P P P

Typechecking (against VPA) und und und ExpC ExpC und und

Functionality - - P - P - ExpC

k-Valuedness - - coNP - coNP - coNExp

Equivalence P ExpC und ExpC und ExpC und

Closure Properties

Union % % " % " % "

Intersection % % % % % % %

Composition % % % " " % %

Inverse % % % % % % %

Table 1: Decision Problems and closure properties for all classes of VPT

notably, functionality, equivalence of functional VPT and k-valuedness. In Section 6 we introduce the class
of well-nested VPT and show their closure under composition and study the typechecking problem. We
also provide a detailed comparison with tree transducers in Section 7. Finally in Section 8, we study the
extension of VPT with regular look-ahead.

2. Preliminaries

2.1. Words.

An alphabet Σ is a non-empty finite set, its elements are called symbols or letters. A word u over Σ is a
finite, possibly empty, sequence of letters of Σ, i.e. u = a1 . . . an, with ai ∈ Σ for all i ≤ n. The length of
the word u is n, its number of letters. The empty word is denoted by ε and its length is 0. The set of all
words over Σ is denoted by Σ∗.

Let u, v ∈ Σ∗ be two words over Σ. The mirror image of u = a1 . . . an ∈ Σ∗, denoted by ur, is the word
an . . . a1. We write u � v if u is a prefix of v, i.e. v = uw for some w ∈ Σ∗, and we write u−1v for the
word obtained after removing the prefix u from v, i.e. u−1v = w. We denote by w = u∧ v ∈ Σ∗ the longest
common prefix of u and v, i.e. w is the longest word such that w � u and w � v.

2.2. Morphism.

Let Σ,∆ be two finite alphabets. A morphism is a mapping Φ : Σ∗ → ∆∗ such that Φ(ε) = ε and for all
u, v ∈ Σ∗, Φ(uv) = Φ(u)Φ(v). A morphism can be finitely represented by its restriction on Σ, i.e. by the set
of pairs (a,Φ(a)) for all a ∈ Σ. Therefore, for all words u = a1 . . . an ∈ Σ∗, we have Φ(u) = Φ(a1) . . .Φ(an).
The size of Φ is |Σ|+Σa∈Σ|Φ(a)|.

2.3. Languages.

Let Σ be an alphabet. A set of words over Σ, L ⊆ Σ∗, is called a language over Σ. The concatenation of
two languages L1 and L2 is the language L1 ·L2 = {u1u2 | u1 ∈ L1 ∧u2 ∈ L2}; when clear from the context,
we may omit the · operator and write L1L2 instead of L1 · L2. The set of words, Ln, is the set of words
obtained by concatenating exactly n words of L, for n > 0, and L0 = {ε}. The star language of L is defined
as L∗ =

⋃

n≥0 L
n, and L+ denotes the set

⋃

n≥1 L
n. The mirror, resp. the complement, of L is defined as

Lr = {ur | u ∈ L}, resp. as L = Σ∗ \ L. A class of languages L is a set of languages, i.e. L ⊆ 2Σ
∗

.
We denote by NFA (resp. NPA) the class of non-deterministic finite state automata (resp. non-

deterministic pushdown automata). It is well-known that NFA (resp. NPA) define the class of regular
languages (resp. context-free languages). We denote by CFL the class of context-free languages.

7

2.4. Transductions.

Let Σ and ∆ be two alphabets. A transduction R from Σ∗ to ∆∗ is a binary relation between words of
Σ∗ and words of ∆∗, i.e. R ⊆ Σ∗ ×∆∗. We say that v is a transduction, or an image, of u by R whenever
(u, v) ∈ R. The set of all images of u by R is denoted R(u) = {v ∈ ∆∗ | (u, v) ∈ R}. We extend this
notation to sets of words, let L ⊆ Σ∗, we denote by R(L) = ∪u∈LR(u) the set of all transductions by R of
words in L. The domain of R, denoted by dom(R), is the set {u ∈ Σ∗ | ∃v ∈ ∆∗ : (u, v) ∈ R}. The range of
R, denoted by range(R), is the set {v ∈ ∆∗ | ∃u ∈ Σ∗ : (u, v) ∈ R}.

Transductions are subsets of Σ∗ ×∆∗, as such, the set-related operations do apply to transductions. For
example, the intersection of two transductions R1 ∩R2 = {(u, v) | (u, v) ∈ R1 ∧ (u, v) ∈ R2} is the standard
set intersection. The inverse transduction of a transduction R from Σ∗ to ∆∗ is the relation R−1 = {(u, v) |
(v, u) ∈ R} from ∆∗ to Σ∗. The composition of a transduction R1 from Σ1

∗ to Σ2
∗ and R2 from Σ2

∗ to ∆∗ is
the transduction R2 ◦R1 from Σ1

∗ to ∆∗ such that R2 ◦R1 = {(u, v) | ∃w ∈ Σ2
∗ : (u,w) ∈ R1∧(w, v) ∈ R2}.

The restriction of a transduction R to a language L is a transduction, denoted by R|L, such that its domain
is the domain of R restricted to words that belong to L, and the image of a word is the image of this word
by R, i.e. R|L = {(u, v) | (u, v) ∈ R ∧ u ∈ L}.

Transducers are machines to define transductions. They usually extend automata with outputs. Two
famous examples of transducers are the non-deterministic finite state transducers (NFT) and the non-
deterministic pushdown transducers (NPT) that respectively extend NFA and NPA with outputs [7].

2.5. Structured Alphabets and Nested Words.

A structured alphabet, Σ, is a triple Σ = (Σc,Σi,Σr), where Σc, Σi, and Σr, are disjoint alphabets that
contain the call, the internal, and the return symbols respectively (or simply the calls, the internals and the
returns). We identify Σ with the alphabet Σc ∪ Σi ∪ Σr and write a ∈ Σ when a ∈ Σc, a ∈ Σi or a ∈ Σr.

The structure of the alphabet Σ induces a nesting structure on the words over Σ. A call position signals
an additional level of nesting, while a return position marks the end of a nesting level. A word u is well-nested
if it is of the following inductive form:

(i) the empty word u = ε,

(ii) an internal symbol u = a with a ∈ Σi,

(iii) u = cvr, where c ∈ Σc is the matching call (of r), r ∈ Σr is the matching return (of c), and v is a
well-nested word, or

(iv) u = u1u2 where u1 and u2 are well-nested words.

Within a well-nested word, each call, resp. return, has a unique matching return, resp. call. The set of
well-nested words over Σ is denoted by Σ∗

wn.
For a nested word u from Σ∗

wn, itsnesting level is defined as: (i) 0 if u is equal to ε or to a for some a in
Σi, (ii) the nesting level of u′ plus one if u = cu′r for c in Σc and r in Σr, and (iii) the maximum of the
heights of u′, u′′ if u = u′u′′.

Example 3. Consider a structured alphabet Σ such that a ∈ Σi, and for all j, cj ∈ Σc and rj ∈ Σr. The
word u = c0c1aar1c2ar2r0c3r3 is well-nested. For all 0 ≤ i ≤ 3, the matching return of the call ci is the
return ri.

The word ar1c2ar2r0c3c4r4 is not well-nested. r1 and r0 are unmatched returns, while c3 is an unmatched
call. The matching return of c2, resp. c4, is r2, resp. r4.

3. Visibly Pushdown Automata

We introduce in this section visibly pushdown automata [4], which will be then generalized with output
to define visibly pushdown transducers.

8

A VPA is a pushdown automaton that operates on a structured alphabet. Its behavior is constrained by
the type of the input letter. This restriction on the use of the stack ensures that the height of the stack
along reading a word depends on the word only and not on the particular run used to read it. Therefore, the
stacks of all VPA reading a same input word have the same height at any given position in the input word.
This enables the important product construction and yields closure under intersection. The structure of the
input words and the restriction on the stack behavior make VPA very close to tree automata, as shown in
[5], so that they inherit all the good properties of tree automata.

We now formally define VPA, then we recall all closure properties and the main decision procedures for
this class of automata. Finally, we compare the expressive power of VPL, regular languages and context-free
languages. All results and proofs (and much more) can be found in [5].

3.1. Visibly pushdown automata

A VPA is defined by a set of states Q (some are initial and some are final), a stack alphabet Γ and
a transition relation δ. There are three types of transitions, call, return and internal transitions, which
correspond to the type of the input letter it reads. A call transition occurs when the automaton reads a
call symbol. In that case it must push exactly one symbol onto its stack (and cannot read the stack). A
return transition occurs when the automaton reads a return symbol. In that case it must pop exactly one
symbol from its stack. Additionally, a VPA can make return transitions on empty stack. The empty stack
is represented by the unremovable bottom of the stack symbol ⊥. An internal transition occurs when the
automaton reads an internal symbol. In that case the stack is neither touched nor read. A VPA starts its
execution in one of the predefined initial states and with its stack empty. It accepts a word if it terminates
its reading in one of the predefined final states, possibly with a non-empty stack.

Definition 4 (Visibly Pushdown Automata). A visibly pushdown automaton (VPA) on finite words over a
structured alphabet Σ = (Σc,Σi,Σr) is a tuple A = (Q, I, F,Γ, δ) where:

• Q is a finite set of states, I ⊆ Q, is the set of initial states, F ⊆ Q, is the set of final states,

• Γ is the (finite) stack alphabet, and ⊥ /∈ Γ is the bottom of the stack symbol,

• δ = δc ⊎ δi ⊎ δr is the transition relation where :

– δc ⊆ Q× Σc × Γ×Q are the call transitions,

– δr ⊆ Q× Σr × (Γ ∪ {⊥})×Q are the return transitions, and

– δi ⊆ Q× Σi ×Q are the internal transitions.

A configuration of A is a pair (q, σ) where q ∈ Q is a state and σ ∈ ⊥ ·Γ∗ a stack. Let w = a1 . . . al be a
word on Σ, and (q, σ), (q′, σ′) be two configurations of A. A run of the VPA A over w from (q, σ) to (q′, σ′)
is a sequence of transitions ρ = t1t2 . . . tl ∈ δ∗ (where δ∗ is the set of words on δ considered as an alphabet)
such that there exist q0, q1, . . . ql ∈ Q and σ0, . . . σl ∈ ⊥ · Γ∗ with (q0, σ0) = (q, σ), (ql, σl) = (q′, σ′), and for
each 0 < k ≤ l, we have either:

• tk = (qk−1, ak, γ, qk) ∈ δc and σk = σk−1γ,

• tk = (qk−1, ak, γ, qk) ∈ δr, and σk−1 = σkγ or σk−1 = σk = γ = ⊥, or

• tk = (qk−1, ak, qk) ∈ δi, and σk−1 = σk.

Note that when w = ε (i.e. l = 0), a run ρ over w is necessarily an empty sequence and this run goes

from any configuration onto itself. We write q
c,+γ
−−−→ q′ when (q, c, γ, q′) ∈ δc, q

r,−γ
−−−→ q′ when (q, r, γ, q′) ∈ δr,

and q
a
−→ q′ when (q, a, q′) ∈ δi. We also write A |= (q, σ)

u
−→ (q′, σ′) when there is a run of A over u from

(q, σ) to (q′, σ′), moreover we may omit A or the stacks σ or σ′, when it is clear or irrelevant in the context.
A run over w from (q, σ) to (q′, σ′) is accepting if q ∈ I, σ = ⊥, and q′ ∈ F . A word w is accepted by A

if there exists an accepting run of A over w. Note that it implies that ε is accepted iff I ∩ F 6= ∅. L(A),

9

the language of A, is the set of words accepted by A. A language L over Σ is a visibly pushdown language
(VPL) if there is a VPA A over Σ such that L(A) = L.

A VPAA = (Q, I, F,Γ, δ) is said to be deterministic if the following conditions hold: (i) if (q, a, γ, q′), (q, a, γ′, q′′) ∈
δc then γ = γ′ and q′ = q′′, (ii) (q, a, γ, q′), (q, a, γ, q′′) ∈ δr then q′ = q′′, (iii) (q, a, q′), (q, a, q′′) ∈ δi then
q′ = q′′, and (iv) |I| = 1. The set of deterministic VPA is denoted dVPA. A VPA is said to be unambiguous
if it admits at most one accepting run per input.

The size of a VPA A is defined by |A| = |Q|+ |δ|+ |Γ|.

q0 q1 q2 q3
c,+γ0 r,−γ r,−γ0

r,−γ0

c,+γ r,−γ

Figure 4: VPA A3 on Σc = {c} and Σr = {r}.

Example 5. The deterministic VPA A3 = (Q, I, F, γ, δ) is represented in Figure 4, where Q = {q0, q1, q2, q3},
I = {q0}, F = {q0, q3}, Γ = {γ0, γ}, and δ is represented by the edges of the graph. It recognizes the non
regular language {cnrn | n ≥ 0}.

Example 6. Let Σ = {a, b, c, d}. The context-free language {anbncmdm | n,m ≥ 0} is a VPL for the
partition Σc = {a, c} and Σr = {b, d}. However the context-free language L = {anbncmam | n,m ≥ 0} is not
a VPL for any partition of Σ.

3.2. Closure Properties

Closure under union is obtained thanks to non-determinism, while closure under complement is obtained
with a determinization procedure. We recall the product construction which underlies the closure under
intersection.

The product of the VPA A and B is a VPA that simulates in parallel A and B. A state of the product
is a pair of states: a state of A and one of B. The stack simulates both stacks. This is possible because the
stacks of A and B are synchronized, i.e. they are either both popped or both pushed. Therefore the stack
of the product contains pairs of symbols: a symbol from the stack of A and another from the stack of B.

The product is obtained by taking the cartesian product of the set of states and of the stack alphabet of
the two VPA, and by a synchronized product of the transition relation.

Definition 7 (Product). Let A1 = (Q1, I1, F1,Γ1, δ1) and A2 = (Q2, I2, F2,Γ2, δ2) be two VPA. The product
of A1 and A2 is a VPA:

A1 ⊗A2 = ((Q1 ×Q2), (I1 × I2), (F1 × F2), (Γ1 × Γ2), (δ1 ⊗ δ2))

where δ1 ⊗ δ2 is defined as follows, for all a ∈ Σ, q1, q
′
1 ∈ Q1, q2, q

′
2 ∈ Q2, γ1 ∈ Γ1, γ2 ∈ Γ2:

calls and returns ((q1, q2), a, (γ1, γ2), (q
′
1, q

′
2)) ∈ δ1 ⊗ δ2 iff (q1, a, γ1, q

′
1) ∈ δ1 and (q2, a, γ2, q

′
2) ∈ δ2.

returns on ⊥ ((q1, q2), a,⊥, (q′1, q
′
2)) ∈ δ1 ⊗ δ2 iff (q1, a,⊥, q′1) ∈ δ1 and (q2, a,⊥, q′2) ∈ δ2.

internals ((q1, q2), a, (q
′
1, q

′
2)) ∈ δ1 ⊗ δ2 iff (q1, a, q

′
1) ∈ δ1 and (q2, a, q

′
2) ∈ δ2.

10

Each transition of the product A1⊗A2 corresponds to a pair formed by a transition of A1 and a transition
of A2. Furthermore, any run ρ of A1 ⊗ A2 over a word u is in a one to one correspondence with a pair
formed by a run ρ1 of A1 over u and a run ρ2 of A2 over u. We therefore may write ρ = ρ1 ⊗ ρ2. Clearly
the language accepted by the product of two VPA is the intersection of the languages accepted by these
automata.

A VPA that recognizes the complement of the language of a VPA A is obtained by determinization [5]
of A, completion (adding a sink state and the corresponding transitions) and by complementing the set of
final states. The resulting VPA can be exponentially larger.

Finally, note that for a given structured alphabet Σ, the class of VPL over Σ is not closed under mirror
image. Indeed, Let c ∈ Σc and r ∈ Σr, the language L = {cnrn | n ≥ 0} is a VPL, but its mirror image
L′ = {rncn | n ≥ 0} is not. Moreover, it is not closed under morphism. For example, consider the language
L and a morphism h with h(c) = r and h(r) = c, then h(L) = L′ which is not a VPL.

The closure properties are summarized in the following proposition.

Proposition 8 (Closure [5]). The class of VPL is closed under union, intersection, complement, Kleene star
and concatenation. When the languages are given by VPA, these closure are effective and can be computed
in exponential time for the complement and polynomial for the other operations. If a VPA is deterministic,
its complement can be computed in polynomial time.

We now compare the expressive power of VPL with regular languages and context-free languages.
Given an NFA A (running on some alphabet that turns to be structured), one can easily construct in

linear time an equivalent VPA whose runs are in a one-to-one correspondence with the runs of A : for all
(p, a, q) ∈ δ we have (p, a, γ, q) ∈ δ′c if a ∈ Σc, (p, a, γ, q) ∈ δ′r and (p, a,⊥, q) ∈ δ′r if a ∈ Σr and (p, a, q) ∈ δ′i
if a ∈ Σi, where δ′ is the transition relation of the VPA and γ is a unique arbitrary stack symbol. Therefore
the class of VPL is a strict generalization of regular languages. Note that, this does not hold if the automaton
is not allowed to make return transitions on the empty stack (⊥), neither if it should accept only by empty
stack (and not by final states). Indeed, it would not be able to recognize, in the former case, the language
{r} where r ∈ Σr, and, in the latter case, the language {c} where c ∈ Σc.

While the class of VPL is a strict subclass of CFL (see Example 6), there is also a strong connection
the other way round between those classes. Recall that the tagged alphabet Σ̂ = (Σ,Σ,Σ) is a structured
alphabet where Σ = {a | a ∈ Σ} and Σ = {a | a ∈ Σ} are the call and the return symbols respectively. The
projection π : Σ̂ → Σ is defined as π(a) = π(a) = π(a) = a for all a ∈ Σ. Any CFL can be obtained as the
projection of some VPL.

Proposition 9 (Relation with CFL [5]). We have VPL (CFL. Let A ∈ VPL, one can construct in linear
time an equivalent NPA. Moreover, let L ∈ CFL(Σ) there exists a VPL L′ on Σ̂ such that π(L′) = L.

The main decision problems for VPA are all decidable. Decidability of the emptiness and of the mem-
bership problems are direct consequences of the corresponding decidability results for pushdown automata.
Then, as a consequence of the decidability of the emptiness and the closure under Boolean operations,
universality, inclusion and equivalence are all decidable.

Theorem 10 ([5]). The emptiness and membership problem for VPA are decidable in PTime. Universality,
inclusion and equivalence of VPA are ExpTime-c, and in PTime when the VPA are deterministic.

The inclusion problems of NFA into VPA and conversely are both decidable. However, inclusion of NFA
into non-deterministic pushdown automata (NPA) is undecidable, therefore so is the inclusion of VPA into
NPA. However, inclusion of an NPA into an NFA is decidable as one can compute the product of the
complement of NFA with the NPA. This gives a pushdown automaton that is empty if and only if the
inclusion holds. In contrast, for the inclusion of a NPA into a VPA, we prove the next proposition.

Proposition 11 (Inclusion with CFL). Given C ∈ CFL (defined by some NPA) and V ∈ VPL (defined by
some VPA), it is undecidable whether V ⊆ C (respectively C ⊆ V) holds.

11

Proof. The undecidability of V ⊆ C is a direct consequence of the undecidability of the inclusion of NFA
into NPA.

For the other direction, let (u1, v1), (u2, v2), . . . , (un, vn) be an instance of the Post Correspondence
Problem (PCP) defined on some finite alphabet ∆. We define a CFL and a VPL languages on the structured
alphabet Σ = (Σc,∅,Σr) with Σc = ∆ and Σr = {1 . . . n}. For all j, we let lj = |uj |. The CFL language is
C = {vi1 . . . vik#(ik)

lk . . . (i1)
l1 | i1, . . . , ik ∈ Σr}. Let V

′ = {ui1 . . . uik#(ik)
lk . . . (i1)

l1 | i1, . . . , ik ∈ Σr}. It
is easy to check that V ′ is a VPL on Σ, therefore its complement V = V ′ also is. Clearly the PCP instance
is negative if and only if C ⊆ V . Finally, note that C and V are obviously definable by NPA and VPA

respectively.

4. Visibly Pushdown Transducers

Visibly pushdown transducers (VPT) are visibly pushdown automata with outputs. They are a general-
ization of non-deterministic finite state transducers, and form a strict subclass of pushdown transducers.

We define a VPT as a VPA with an output morphism. While the input alphabet is structured and
synchronizes the stack of a VPT (i.e. the stack of its underlying VPA), the output is not structured: the
output alphabet is not necessarily a structured alphabet. In this section Σ = (Σc,Σi,Σr) is the input
structured alphabet and ∆ is the arbitrary output alphabet.

Definition 12 (Visibly Pushdown Transducers). A visibly pushdown transducer (VPT) from Σ to ∆ is a
pair T = (A,Ω) where the VPA A = (Q, I, F,Γ, δ) is the underlying automaton and Ω is a morphism from
δ to ∆∗ called the output.

A run ρ of T over a word u = a1 . . . al is a run of its underlying automaton A (Definition 4), i.e. it is a
sequence of transition ρ = t1 . . . tl ∈ δ∗. The output of ρ is the word v = Ω(ρ) = Ω(t1 . . . tl) = Ω(t1) . . .Ω(tl).

We write (q, σ)
u/v
−−→ (q′, σ′) when there exists a run on u from (q, σ) to (q′, σ′) producing v as output. The

transducer T defines a binary word relation R(T) = {(u, v) | ∃q ∈ I, q′ ∈ F, σ ∈ Γ∗, (q,⊥)
u/v
−−→ (q′, σ)}.

We say that a transduction is a VPT transduction whenever there exists a VPT that defines it. test As
usual, the domain of T (denoted by dom(T)) and the range of T (denoted by range(T)) are respectively the
domain and the range of R(T). We say that T is functional whenever R(T) is, and that T is deterministic
(resp. unambiguous) if A is.

The class of functional (resp. deterministic) VPT is denoted by fVPT (resp. dVPT), and the class of all
VPT (resp. functional VPT, resp. deterministic VPT) transductions is denoted by R(VPT) (resp R(fVPT),
resp. R(dVPT)). The size |T | of T = (A,Ω) is |A|+ |Ω|.

Remark 13. As VPA do not allow ε-transitions, neither do VPT on the input. However some transitions
might output the empty word ε. In that sense the class of VPT defined in Definition 12 is the class of
real-time VPT.

Visibly pushdown transducers have been first introduced in [48] and independently in [55]. In these
papers, VPT allow for ε-transitions that can produce outputs and only a single letter can be produced by
each transition. Adding ε-transitions to VPT can only be done by disallowing the use of the stack for such
transitions. Indeed, the visibly constraints, asks that the input word drives the behavior of the stack, therefore,
this is only compatible with internal ε-transitions.

When the two classes of transducers NFT and NPT are augmented with ε-transitions, then these new
classes enjoy closure under inverse, contrarily to their ε-free counterparts. However, with such internal
ε-transitions, the enhanced class of VPT is still not closed under inverse. Indeed, the following transduction
is a VPT transduction, but its inverse cannot be defined by such VPT:

{(cnrn, ε) | n ≤ 0 ∧ r ∈ Σr ∧ c ∈ Σc}

Morevover, using ε-transitions the way of [48] and [55] causes many interesting problems to be undecid-
able, such as functionality and equivalence (even of functional transducers). Therefore we prefer to stick to

12

Definition 12 of VPT, they are exactly the so called nested word to word transducers of [54] and correspond
to the definition of [21]. XML-DPDTs [34], equivalent to left-to-right attribute grammars, correspond to the
deterministic VPT.

In the sequel, we do not investigate further VPT augmented with ε-transitions.

Relations between the classes of transducers and of transductions we have considered so far can be
depicted as :

dVPT (fVPT (VPT R(dVPT) (R(fVPT) (R(VPT)

For the classes of machines, the first inclusion on the left is trivial as a determinitic VPT admits at most
one accepting run on any of its inputs and thus, is functional; moreover, it is strict as fVPT contains machines
that are not deterministic. The inclusion on the right is strict as VPT can describe non-functional relations
thanks to the non-determinism of their underlying VPA. The same argument holds for transductions,
separating strictly R(fVPT) from R(VPT). The first inclusion for transductions comes from the inclusion
of the corresponding classes of machines. It is strict since we will see an example in the next section of
a functional VPT that has no equivalent deterministic VPT. Finally, note that an unambiguous VPT is
necessarily functional but the converse is false as we will see in the next section.

4.1. Examples

We present various examples to illustrate the definition of VPT.

q0 q1
r/ba,−γ

c/a,+γ r/a,−γ

Figure 5: A VPT T1 on Σc = {c} and Σr = {r}.

Example 14. This first example is a deterministic VPT T1 = (A,Ω) represented in Figure 5. It operates
on the input structured alphabet Σ = (Σc,Σi,Σr) where Σc = {c}, Σr = {r}, and Σi = ∅. It produces words
over the alphabet ∆ = {a, b}.

The underlying automaton is the VPA A1 = (Q1, I1, F1,Γ1, δ1) where the set of states is Q1 = {q0, q1},
the set of initial states is I1 = {q0}, the set of final states F1 = {q1}, the stack alphabet is Γ1 = {γ}, and the
transition relation is δ1 = {(q0, c, γ, q0), (q0, r, γ, q1), (q1, r, γ, q1)}. The domain of T1 is the language L(A1),
i.e. the set:

dom(T1) = L(A1) = {cnrm | 1 ≤ m ≤ n}

The output morphism Ω1 is defined on δ as follows. Ω1((q0, c, γ, q0)) = a, Ω1((q0, r, γ, q1)) = ba, and
Ω1((q1, r, γ, q1)) = a.

A run starts in the initial state q0. When in state q0, the transducer reads any number of c and for each
of them it outputs an a and pushes γ onto the stack (push operations are represented as +γ). In state q0 it
can also read an r if the top of the stack is γ (that is if at least one c was read before), it pops the symbol γ
(represented as −γ), outputs the word ba and changes its state to q1. While in q1, the transducer can read
as many r as they are symbols γ on the stack, for each r it outputs a and pops γ. The run is accepting if
and only if it ends in the final state q1.

Clearly T1 implements the following (functional) transduction {(cnrm, anbam) | 1 ≤ m ≤ n}. The range
of T1 is the context-free language range(T1) = {anbam | 1 ≤ m ≤ n} which is not a visibly pushdown language
for any partition of the output alphabet.

13

The next example presents a non-deterministic VPT. This VPT is, however, functional, furthermore
one can easily show that there is no equivalent deterministic VPT. In other words, it is an example of
non-determinizable functional VPT.

q0

q1

q2

q3

c/ac,+γ

c/bc,+γ

a/ε

b/ε

c/c,+γ

r/r,−γ r/r,⊥

c/c,+γ

r/r,−γr/r,⊥

Figure 6: A VPT T4 on Σc = {c}, Σr = {r}, and Σi = {a, b}.

Example 15. The VPT T4 of Figure 6 starts in state q0, it first reads a c and guesses the last letter to
be either an a or a b. If the last letter is an a, resp. a b, it outputs ac, resp. bc, and goes to state q1,
resp. q2. In states q1 and q2, the transducer performs a simple copy of the words formed by c and r letters.
Finally it checks that the last letter matches its initial guess, and if so enters the final state q3. The VPT

T4 implements the functional transduction {(cwα, αcw) | α ∈ {a, b}, w ∈ {c, r}∗}. Note that T4 uses return
transition on ⊥, it permits to read the return symbol r even when the stack is empty.

4.2. Expressiveness

The domain of a VPT is the language accepted by its underlying automaton, therefore the domain is
a visibly pushdown language. The range of a VPT is the image of the language of its runs by the output
morphism. The runs of a VPA form a CFL (even a VPL), and as the image of a CFL by a morphism is a
CFL, so is the range of a VPT. Finally, by Proposition 9, it is easy to show that for any CFL L there exists
a VPT such that its range is L.

Proposition 16 (Domain, range and image). Let T be a VPT. The domain of T is a VPL, and its range is
a CFL. Moreover, for any CFL L′ over Σ, there exists a VPT whose range is L′. All the constructions can
be done in PTime.

The class of VPT is a strict subclass of pushdown transducers. Indeed, any VPT is clearly a non-
deterministic pushdown tranducer. But some non-deterministic pushdown transductions are not VPT trans-
duction, for instance those non-deterministic pushdown transduction whose domain is a context-free language
but not a VPL. Obviously, VPT forms a strict superclass of finite state transducers.

This last result obviously does not hold for finite state tranducers with ε transitions, as our VPT do not
have ε-transitions, they can, therefore, not implement all transductions defined by such transducers.

4.3. Closure Properties

We now turn to closure properties. The product of a VPT T = (A,Ω) by a VPA B is defined as the
VPT whose underlying automaton is the product of A with B and whose output is the output of T , that is
T |B = (A⊗B,Ω ◦ π1) where π1 is the projection on the first component.

14

Proposition 17 (Domain restriction). R(T |B) = R(T)|L(B).

The range of T|B is equal to the image of L(B) by T . Therefore by Proposition 16, the image of a VPL

by a VPT is a context-free language.

Corollary 18. Let T be a VPT, and B be a VPA. The image of L(B) by T is a context-free language and
an NPA representing it can be computed in PTime.

Note also that for any word u ∈ Σ∗ the language {u} is a VPL, therefore one can compute a NPA

representing the image of a word in PTime.
As usual, thanks to non-determinism, transductions defined by VPT are closed under union.

Proposition 19 (Closure under union). The class of VPT is effectively closed under union. A VPT repre-
senting the union of T1 and T2 can be computed in O(|T1|+ |T2|).

However, it is not closed for other operators.

Proposition 20 (Non-Closure). The class of VPT and of dVPT are not closed under intersection, comple-
ment, composition, nor inverse. The class of dVPT is not closed under union.

Proof. The class of VPT and dVPT is not closed under intersection : inspired by finite state transducers, we
prove this result for a structured alphabet containing only internal symbols.

Let Σ = {a, b} and ∆ = {c} be two alphabets. Let T1 be a transducer defining the transduction
R(T1) = {(ambn, cm) | m,n ≥ 0} and the transducer T2 has the same underlying automaton and defines the
transduction R(T2) = {(ambn, cn) | m,n ≥ 0}. We have

R(T1) ∩R(T2) = {(anbn, cn) | n ≥ 0}

The domain of this transduction is not a VPL language (remind that a and b are internals). Therefore, this
transduction cannot be defined by a VPT.

Non-closure under inverse is a consequence of Proposition 16: the language of the domain and the co-
domain do not belong to the same family of languages. It is also a consequence of the fact that VPT, resp
dVPT, are realtime, and thus for any VPT T , for any word w, T (w) is a finite set while a word w can be
the image of an infinite number of input words.

Non-closure under composition can be proved by producing two VPT whose composition transforms a
VPL into a non CFL language. Formally, let Σ = (Σc,Σr,Σi) be the structured alphabet with Σc = {c},
Σr = {r1, r2}, Σi = {a}. First consider the following VPL language: L1 = {cnrn1 a

m | n,m ≥ 0}. We can
easily construct a VPT that transforms L1 into the language L2 = {cnanrm2 | n,m ≥ 0}. Applying the
identity transducer on L2 restricted to well-nested words, it produces the non CFL language L3 = {cnanrn2 |
n ≥ 0}. This identity transducer has a domain which is a VPL and thus it extracts from L2 the well-nested
words which form the non CFL set L3. Note that these two transducers are deterministic. Therefore this
completes the proof that neither VPT nor dVPT are closed under composition.

5. Decision Problems

In this section, we study relevant decision problems for transductions for the class of VPT: emptiness,
membership, type checking, functionality and k-valuedness, inclusion and equivalence.

5.1. Emptiness and Translation Membership

The emptiness problem asks, given a VPT T , whether R(T) = ∅ holds. Note that it amounts to check
the emptiness of dom(T).

The translation membership problem asks, given a VPT T and a pair of input and output words, u ∈ Σ∗

and v ∈ ∆∗ whether (u, v) ∈ R(T) holds.
The emptiness and translation membership problems are decidable in PTime for pushdown transducers.

Therefore, since VPT are pushdown transducers, these results trivially hold for VPT.

Proposition 21 (Decidable problems). The emptiness and the translation membership problems are decid-
able in PTime for VPT.

15

5.2. Type Checking

The type checking problem for a VPT T against VPA asks, given two VPA A,B defining respectively an
input language L(A) and an output language L(B) whether the images of any word of the input language
belong to the output language, i.e. whether R(T)(L(A)) ⊆ L(B) holds.

Theorem 22 (Type Checking). The type checking problem for VPT against VPA is undecidable.

Proof. Let Σ be an alphabet and Σ̂ = (Σc,Σi,Σr) the tagged alphabet on Σ. Recall that πΣ is the morphism
from Σ̂ into Σ that ’removes’ the tag, i.e. a, a and a are all mapped to a. Let A be a NPA and L = L(A)
and A2 a VPA with L2 = L(A2). Let T be the VPT from Σ̂ into Σ such that for all u ∈ Σ̂∗ we have
T (u) = πΣ(u). By Proposition 9, one can construct a VPA A1 with πΣ(L(A1)) = L, that is, if L1 = L(A1),
T (L1) = L. Therefore T (L1) ⊆ L2 if and only if L ⊆ L2. As the inclusion of a NPA into a VPA is undecidable
(Proposition 11), so is the type checking of VPT against VPA.

Note that this undecidability result is not a weakness of VPT as it already holds for the type checking
of finite state transducers against VPA (the transduction of the previous proof can be implemented by some
finite-state transducer).

One way to overcome this problem is to restrict the output class of languages to regular languages. In
this case, the type checking becomes decidable in ExpTime. We will see later how to get decidability of
type checking against VPA by restricting the class of VPT.

5.3. Functionality

A VPT T is functional if R(T) is a function. The functionality problem aims to decide whether a VPT

T is functional. In this section we prove that this problem is in PTime.
Let us start with some example.

q0

q4 q6q5

q2q1 q3

q7

c1/dfc, γ1
c3/a, γ3 r3/ε, γ3

c1/d, γ1
c3/f, γ3 r3/cab, γ3

r1/g, γ1

r1/bg, γ1

c2/ε, γ2 r2/cabcab, γ2

c2/abc, γ2 r2/bca, γ2

Figure 7: A functional VPT on Σc = {c1, c2, c3} and Σr = {r1, r2, r3}.

Example 23. Consider the VPT T of Figure 7. Call and return symbols are denoted by c and r respectively.
The domain of T is dom(T) = {c1(c2)

nc3r3(r2)
nr1 | n ∈ N}. For each word of dom(T), there are two accept-

ing runs, corresponding respectively to the upper and lower part of T (therefore it is not unambiguous). For
instance, when reading c1, it pushes γ1 and produces either d (upper part) or dfc (lower part). By following
the upper part (resp. lower part), it produces words of the form dfcab(cabcab)ng (resp. dfc(abc)na(bca)nbg).

The VPT T of Example 23 is functional. Indeed, the upper part performs the transformation:

c1c
n
2 c3r3r

n
2 r1 → dfcab(cabcab)ng = df(cab)2n+1g

16

and the lower part performs:

c1c
n
2 c3r3r

n
2 r1 → dfc(abc)na(bca)nbg = df(cab)2n+1g

The challenge for deciding functionality for VPT lies in the fact that for some functional VPT outputs are
produced in some desynchronised manner and the difference in their lengths might get arbitrarily long. This
notion has been formalized as the delay between two output words u and v as ∆(u, v) = ((u ∧ v)−1u, (u ∧
v)−1v). Note that the fact that delays remains bounded is the core of the proof of the decidability of
functionality for finite-state transducers [6]. As shown by this example, the delay between two outputs for
a VPT can grow arbitrarily, even if it is functional. Indeed, after reading c1c

n
2 , the upper part outputs just

d, while the lower part outputs dfc(abc)n: the delay between both outputs is fc(abc)n and grows linearly
with the height of the stack. For T to be functional, the upper run must catch up its delay before reaching
an accepting state. In this case, it will catch up with the outputs produced on the return transitions.

The decision procedure for functionality of VPT is based on the squaring construction [6] and on the
decidability of the morphism equivalence problem [47]. The square T 2 of a VPT T is realized through a
product construction of the underlying automaton with itself. Intuitively, it is a transducer that simulates
any two parallel transductions of T , where by parallel transductions we mean two transductions over the
same input word. Each transition of the square simulates two transitions of T that have the same input
letter. The output of a transition t of T 2 that simulates the transitions t1 and t2 of T is the pair of output
words formed by the outputs of t1 and t2. If Ω is the output morphism of T , we write OT for Ω(δ), that is,
the set of words that are output of transitions of T , then the output alphabet of T 2 is the set of pairs of
words in OT , i.e. OT ×OT .

Recall that the transitions of the product A1⊗A2 of two VPA, A1 and A2 (See Definition 7), are in a one
to one correspondence with pairs formed by a transition of A1 and a transition of A2 over the same input
letter. We can therefore write (t1, t2), where t1 and t2 are transitions of A1 and A2, to denote a transition
of A1 ⊗A2.

Definition 24 (Square). Let T = (A,Ω) be a VPT, where A = (Q, I, F,Γ, δ) and Ω is a morphism from δ
to ∆∗, and let OT = Ω(δ). The square of T is the VPT T 2 = (A⊗A,Ω′) where Ω′ is a morphism from δ⊗ δ
to OT ×OT defined as: Ω′((t1, t2)) = (Ω(t1),Ω(t2)).

Note that the square T 2 is a VPT and therefore its range is a context-free language (Proposition 16) over
the alphabet OT ×OT .

The procedure to decide functionality of a VPT T is based on the following observation. A run ρ =
(t1, t

′
1) . . . (tk, t

′
k) of T

2 simulates two runs, say ρ1 = t1 . . . tk and ρ2 = t′1 . . . t
′
k, of T over a same input word.

The output of ρ is the sequence of pairs of words Ω′(ρ) = Ω′((t1, t
′
1) . . . (tk, t

′
k)) = (Ω(t1),Ω(t

′
1)) . . . (Ω(tk),Ω(t

′
k)).

Therefore the projection on the first component, resp. second, of the output of ρ gives the output of the
corresponding run of T , that is Ω(ρ1) and Ω(ρ2) respectively. These projections on the first and second com-
ponents can be defined by two morphisms Π1 and Π2 as follows: Π1((u1, u2)) = u1 and Π2((u1, u2)) = u2.
Clearly, T is functional if and only if these two morphisms are equal on any output of T 2, i.e. if for all
w = (u1, u

′
1) . . . (uk, u

′
k) ∈ range(T 2) we have Π1(w) = Π2(w) that is u1 . . . uk = u′

1 . . . u
′
k. In other words

the two morphisms must be equivalent on the range of T 2.
This last problem is called the morphism equivalence problem. It asks, given two morphisms and a

language, whether the images of any word of the language by the first and the second morphism are equal.

Lemma 25. T is functional iff Π1 and Π2 are equivalent on range(T 2).

Plandowski showed that the morphism equivalence problem is decidable in PTime when the language is
a context-free language given by a grammar in Chomsky normal form.

Theorem 26 ((Plandowski [47]).). Let Φ1,Φ2 be two morphisms from Σ to ∆ and a CFG G (alternatively
a NPA), testing whether Φ1 and Φ2 are equivalent on L(G) can be done in PTime.

By Proposition 16, one can construct in PTime a pushdown automaton that recognizes the range of T 2.
Then, applying Theorem 26 directly yields a PTime procedure for testing the functionality of T .

Theorem 27 (Functionality). Functionality of VPT is decidable in PTime.

17

5.4. Equivalence and inclusion

The equivalence, resp. the inclusion, problems for transducers, asks whether two VPT T1 and T2 satisfy
R(T1) = R(T2) (resp. R(T1) ⊆ R(T2)).

These problems are already undecidable for finite-state transducers [25]. Therefore, they are also unde-
cidable for VPT.

Let us consider now functional VPT: given two functional VPT, T1 and T2, they are equivalent, resp. T1

is included into T2, if and only if their union is functional and they have the same domains, resp. the domain
T1 is included into the domain of T2. The domains being VPLs, testing their equivalence or the language
inclusion is ExpTime-c [5]. Testing the equivalence or the inclusion of the domains is easier when the VPT

are deterministic, it can be done in PTime [5]. Therefore both procedures, i.e. equivalence or inclusion
testing, can be done in PTime when the VPT are deterministic. If we assume that both transducers are
total, then obviously we do not have to test the equality or inclusion of their domains. Therefore, in that
case equivalence and inclusion of their transductions can also be tested in PTime.

Theorem 28 (Equivalence and inclusion of fVPT). The inclusion and the equivalence problems are :

• undecidable for VPT

• ExpTime-c for functional VPT

• in PTime for either deterministic VPT [54] or total functional VPT

5.5. k-valuedness

Given some (fixed) integer k ∈ N and a VPT T , T is said to be k-valued if u has at most k images by T
for all u ∈ Σ∗. The k-valuedness problem asks, given as input a VPT T , whether it is k-valued.

The k-valued transductions are a slight generalization of functional transductions. In the case of finite
state transducers, k-valued and functional transducers share the interesting characteristic to have decidable
equivalence and inclusion problems. In this section we show that deciding k-valuedness for VPT can be
done in co-NPTime. We, however, leave open the question of deciding the equivalence or the inclusion of
k-valued VPT.

The idea is to generalize the construction for deciding functionality presented in the previous section.
This previous construction is based on the square and the morphism equivalence problem. We use here the
k-power and the multiple morphisms equivalence problem [29], which generalizes the morphism equivalence
problem to k morphisms, instead of 2.

The main tool of the decision procedure is the class of bounded reversal counter automata introduced
by Ibarra [33]. We proceed in three steps. First, we have shown in [21] that the procedure of [29] for
deciding emptiness of such machines can be executed in co-NPTime. Second, as a direct consequence, we
show that the procedure for deciding the multiple morphism equivalence problem in [29] can be executed
in co-NPTime. Finally, we show how to use this last result to decide the k-valuedness problem for VPT in
co-NPTime.

5.5.1. Reversal-Bounded Counter Automata

A counter automaton is a finite state or pushdown automaton, called the underlying automaton, aug-
mented with one or several counters. On an input letter, a counter automaton behaves like the underlying
automaton, but on each transition it can also increment or decrement one or several of its counters. More-
over, the transitions can be guarded by zero tests on some of its counters, that is, transitions can be triggered
conditionally depending on whether the current value of some counters is zero.

Definition 29. Let m ∈ N, a counter automaton with m counters is a tuple C = (A, inc, dec, zero), where
A is an automaton, either NFA or PA, δ is the transition relation of A, inc, dec and zero are functions from
δ to {0, 1}m.

18

A run ρ of a counter automaton with m counters is a run of its underlying automaton, that is a sequence
of transitions ρ = t1 . . . tk ∈ δ∗, such that there exist for each 0 < i ≤ m some ci1, c

i
2 . . . c

i
k ∈ N which are the

successive values of the i-th counter such that the following conditions hold:

cij+1 = cij + πi(inc(tj)− dec(tj))

cij = 0 if πi(zero(tj)) = 1

The first condition states that the counter is incremented or decremented according to the value of the
functions inc and dec for the transition, and the second condition asks that the value of the i-th counter be
0 when i-th component of the value of the zero function for the transition is 1. Note that the values cij of
the counters are natural numbers, this implies that a transition that induces a decrease on a counter cannot
occur when this counter value is 0. A run is accepting if it is an accepting run of the underlying automaton.
As usual, the language L(A) of A is the set of words with at least one accepting run.

Counter automata are powerful and thus some essential problems are undecidable: with just two counters,
emptiness is undecidable [43].

We say that a counter is in increasing mode, resp. decreasing mode, if the last operation on that counter
was an increment, resp. a decrement. Reversal-Bounded Counter Automata, introduced by O. Ibarra in [33],
are counter automata such that each counter can alternate at most a predefined number of times between
increasing and decreasing modes. This restriction on the behavior of the counters yields decidability of the
emptiness problem.

Definition 30. Let r,m ∈ N, an r-reversal m-counter automaton A is an m-counter automaton such that
in any run (accepting or not) each counter alternates at most r times. We denote the set of r-reversal
m-counter automaton by RBCA(r,m), resp. RBCPA(r,m), when the underlying automaton is an NFA, resp.
when it is an NPA.

For finite state automata with reversal-bounded counters emptiness is decidable in PTime (if r and m
are fixed)[27]. The proof is developed in two steps. First they prove that there is a witness of non-emptiness
if and only if there is one of polynomial size. Then, testing emptiness can be done with an NLogSpace

algorithm similar to the one for testing emptiness of standard NFA.
Interestingly, adding a pushdown store (in other words, a stack) to these machines, does not break

decidability of the emptiness. A procedure for deciding emptiness of pushdown automata with reversal-
bounded counters was first published in [33]. In [21], we show that this procedure can be executed in co-
NPTime (for a fixed number of counters). For that we use a recent result that permits the construction in
linear time of an existential Presburger formula representing the Parikh image of a context-free language [56].
Our result has been improved in [28] where it is shown that the co-NPTime upper bound still holds even if the
number of counters is not fixed, for a slightly more general model (where increment/decrement/comparisons
of arbitrary constants are allowed). Moreover, [28] shows that this co-NP upper bound is also a lower bound.
Even if the model of [28] is slightly more general (a translation to our setting requires an exponential blow-
up), the proof of this lower bound can be easily adapted to our setting [53]. Therefore we have the following
theorem.

Theorem 31 ([33, 21, 28]). Let m, r ∈ N be fixed integers. The emptiness problem for r-reversal m-counters
pushdown automata is co-NPComplete. This result still holds if m is not fixed [28].

5.5.2. Multiple Morphism Equivalence Problem

The multiple morphism equivalence problem is a generalization of the morphism equivalence problem
(see Theorem 26). It asks, given a set of pairs of morphisms and a language L, whether for any word u in
L there is always at least one of the pairs of morphisms such that the image of u by both morphisms are
equal.

Definition 32 (Multiple Morphism Equivalence Problem). Given ℓ pairs of morphisms (Φ1,Ψ1), . . . , (Φℓ,Ψℓ)
from Σ∗ to ∆∗ and a language L ⊆ Σ∗, (Φ1,Ψ1), . . . , (Φℓ,Ψℓ) are equivalent on L if for all u ∈ L, there
exists i such that Φi(u) = Ψi(u).

19

The multiple morphism equivalence problem was proved to be decidable in [29] on any class of languages
whose Parikh images are effectively semi-linear. In the case of context-free languages, we show that it can
be decided in co-NPTime. It is in fact a consequence of the co-NPTime bound on the emptiness test for
RBCPA.

Theorem 33. Let ℓ ∈ N be fixed. Given ℓ pairs of morphisms and a pushdown automaton A, testing whether
they are equivalent on L(A) can be done in co-NPTime.

Proof. In order to prove this theorem, we briefly recall the procedure of [29] in the particular case of
pushdown machines. In order to decide the morphism equivalence problem of ℓ pairs of morphisms on a CFL

L, the idea is to construct an RBCPA(1, 2ℓ) that accepts the language L′ = {w ∈ L | Φi(w) 6= Ψi(w) for all i}.
Clearly, L′ = ∅ iff the morphisms are equivalent on L. We construct a pushdown automaton A′ augmented
with 2ℓ counters c11, c12, . . . , cℓ1, cℓ2 that simulates A on the input word and counts the lengths of the outputs
by the 2ℓ morphisms. For all i ∈ {1, . . . , ℓ}, A′ guesses some position pi where Φi(w) and Ψi(w) differ: it
increments in parallel (with ε-transitions) the counters ci1 and ci2 and non-deterministically decides to stop
incrementing after pi steps. Then when reading a letter a ∈ Σ, the two counters ci1 and ci2 are decremented
by |Φi(a)| and |Ψi(a)| respectively (by possibly several transitions as the counters can be incremented by at
most one at a time). When one of the counter reaches zero, A′ stores the letter associated with the position
(in the state). At the end of the computation, for all i ∈ {1, . . . , ℓ}, one has to check that the two letters
associated with the position pi in Φi(w) and Ψi(w) are different. If n is the number of states of A and m is
the maximal length of an image of a letter a ∈ Σ by the 2ℓ morphisms, then A′ has O(n ·m · |∆|2ℓ) states,
because for all 2ℓ counters one has to store the letters at the positions represented by the counter values.
This is polynomial as ℓ is fixed. Note that the resulting machine is 1-reversal bounded (counters start at
zero and are incremented up to a position in the output word, and then are decremented to zero).

We can conclude the proof by combining this result with the co-NPTime procedure for testing the
emptiness of 1-reversal counter pushdown automata (Theorem 31).

5.5.3. Deciding k-valuedness

We extend the squaring construction we used for deciding functionality. We define a notion of k-power
for the class of VPT, where k ∈ N. The k-power of T simulates k parallel executions on the same input. Note
that this construction is possible for VPT (but not for general PTs) because two runs along the same input
have necessarily the same stack behavior. Let T = (A,Ω) be a VPT with A = (Q, I, F,Γ, δ) and OT = Ω(δ)
the set of outputs of the transitions of T . As this set is finite, it, and all its power Ok

T , can be regarded as
an alphabet. The k-power of T is a VPT from words over Σ to words over (OT)

k defined as follows.

Definition 34 (k-Power). The k-power of T , denoted T k, is the VPT defined from Σ to (OT)
k by T k =

(Ak, ~Ω), where ~Ω is the morphism from δk (k times the ⊗-product of δ) to (OT)
k defined by ~Ω(t1, . . . , tk) =

(Ω(t1), . . . ,Ω(tk)).

The transducer T k can be viewed as a machine that simulates k copies of T . In other words let u =
a1 . . . an ∈ Σ∗, we have:

T k |= (p1, . . . pk)
u/(v11,...v1k)...(vn1,...vnk)
−−−−−−−−−−−−−−−−−→ (q1, . . . qk)

if and only if

T |= pi
u/v1i...vni
−−−−−−−→ qi for all 1 ≤ i ≤ k

The outputs of T k are sequences of k-tuples on OT . We consider now the morphisms that realize the
projection of the outputs of Tk onto one of its k components. For all k ≥ 0, we define the morphisms
Π1, . . . ,Πk as follows:

Πi : (OT)
k → Σ∗

(u1, . . . , uk) 7→ ui

Clearly, we obtain the following equivalence:

20

Lemma 35. T is k-valued iff (Πi,Πj)1≤i6=j≤k+1 are equivalent on range(T k+1).

Proof. First note that dom(T) = dom(T k).
Suppose that T is k-valued and let β ∈ range(T k+1). We prove that there exists i 6= j such that

Πi(β) = Πj(β). There exists u ∈ dom(T k+1) such that T k+1(u) = β. The word β can be decomposed

as β = (v11 , . . . , v
1
k+1) . . . (v

n
1 , . . . , v

n
k+1) where (vj1, . . . , v

j
k+1) ∈ (OT)

k+1 for all j. Since T is k-valued, there
exists i 6= j such that v1i . . . v

n
i = v1j . . . v

n
j . By definition of Πi and Πj , Πi(u) = v1i . . . v

n
i = w1

j . . . w
n
j = Πj(u).

Conversely, suppose that T is not k-valued. Therefore there exists u ∈ dom(T) = dom(T k+1) and
v1, . . . , vk+1 all pairwise different such that vi ∈ T (u) for all i. By definition of T k+1, each vi can be decom-
posed as v1i . . . v

n
i such that β = (v11 , . . . , v

1
k+1) . . . (v

n
1 , . . . , v

n
k+1) ∈ T k+1(u). By definition of Π1, . . . ,Πk+1,

we get Πi(β) = vi 6= vj = Πj(β) for all i 6= j. Therefore, Πi and Πj are not equivalent on range(T k+1).

By Proposition 16, the language range(T k) is a context-free language. By Theorem 33, as range(T k) is
represented by an automaton of polynomial size if k is fixed, we get:

Theorem 36 (k-valuedness). Let k ≥ 0 be fixed. The problem of deciding whether a VPT is k-valued is in
co-NPTime.

We conjecture that the equivalence of two k-valued VPT is decidable, but leave it as an open problem.
For k-valued FST, it is known to be decidable, and the procedure relies on the existence of a decomposition
of any k-valued FST as a finite union of functional FST [58, 50]. This decomposition is based on a notion of
delay between output of runs on the same input. Generalising this notion of delay to VPT is a challenging
open problem, and would likely lead to an effective decomposition result for k-valued VPT, as finite unions
of functional VPT. We now show that equivalence of finite unions of functional VPT is decidable. As a
consequence, a decomposition result for VPT would give decidability of equivalence for k-valued VPT.

Lemma 37. Given T, T1, . . . , Tk functional VPT, on can decide whether R(T) ⊆
⋃k

i=1 R(Ti) ?

Proof. We reduce this problem to the emptiness of a reversal-bounded counter pushdown automaton A,
such that L(A) 6= ∅ iff R(T) 6⊆

⋃k
i=1 R(Ti). A simulates a run of T on an input word u ∈ Σ∗, and in

parallel, check that for all i ∈ {1, . . . , k}, either u 6∈ dom(Ti) or Ti(u) 6= T (u). The construction of A is
similar to the k-valuedness test. A will guess a partition P1 ⊎ P2 of {1, . . . , k}, will check that (1) for all
i ∈ P1, u 6∈ dom(Ti), by simulating the run of the complement of the underlying VPA of Ti (assumed to
be deterministic), and (2) for all i ∈ P2, Ti(u) 6= T (u), by using two counters ci and di, initialised non-
deterministically to the same value, that point a mismatch in the output of T (u) and Ti(u) respectively at
the ci-th position, or that exhibit different output length. As for k-valuedness test, the counter have only
1-reversal.

This lemma gives immediately the following theorem:

Theorem 38. The following problem is decidable: given k1 functional VPT T1, . . . , Tk1
, and k2 functional

VPT G1, . . . , Gk2
, does

⋃k1

i=1 R(Ti) =
⋃k2

i=1 R(Gi) hold ?

6. Well-Nested VPT

The main results of the previous section showed that functionality and, more generally, k-valuedness are
decidable for VPT. As a consequence, the equivalence and inclusion problem for functional VPT is decidable.
All these problems are undecidable for pushdown transducers.

On the other hand, contrary to the class of NFT, the class of VPT is not closed under composition and
the type checking problem against VPA is undecidable. A closer look at the reason for this non-closure and
undecidability results points to an interesting subclass of VPT. Both of these weaknesses of the model can
be solved by adding a ’visibly’ constraint on the output of the VPT.

Indeed, the non-closure under composition can be viewed as a consequence of the fact that the stack
of the two involved VPT are not synchronized. The stack of the first VPT is guided by the input word,

21

while the stack of the second is guided by the output of the first VPT. Constraining the VPT with some
synchronization between its input and its output yields closure under composition.

A similar observation holds for the undecidability of the type checking. In this problem three stacks are
involved: the stack of the input VPA, the one of the involved transducer and the one of the output VPA.
The stack of the input VPA and the one of the VPT are both synchronized by the input word. On the other
hand, the stack of the output VPA is guided by the output of the VPT.

In this section we introduce the class of well-nested VPT (wnVPT). These transducers are VPT that
produce words over a structured output alphabet ∆ = (∆c,∆i,∆r). The “visibly” restriction for wnVPT asks
the nesting level of the input and the output words to be synchronized, that is the nesting level of the output
just before reading a call (on the input) must be equal to the nesting level of the output just after reading
the matching return (on the input). This simple syntactic restriction yields a subclass of VPT that is closed
under composition and has a decidable type checking problem against VPLs. Recently, these positive results
have been extended to more general classes of VPT suitable to describe tree-to-tree transformations [49].

6.1. Definition

A well-nested VPT is a VPT with a notion of synchronization between the input and the output. This
synchronization is enforced with the following syntactic restriction: for all call and return transitions that
use the same stack symbol, the concatenation of the output word of the call transition with the output word
of the return transition must be a well-nested word. Moreover the output word of any internal transition
must be a well-nested word.

Definition 39. Let T = (A,Ω) be a VPT with A = (Q, I, F,Γ, δ) and Ω a morphism from δ into ∆∗, T is
well-nested if:

• For all γ ∈ Γ, all tc = (q, c, γ, q′) ∈ δc and all tr = (p, r, γ, p′) ∈ δr, Ω(tc)Ω(tr) is well-nested.

• For all t ∈ δi, then Ω(t) is well-nested.

• For all t⊥ = (q, r,⊥, q′) ∈ δr, we have that Ω(t⊥) is call-matched (all call symbols have a matching
return).

We denote by wnVPT the class of well-nested VPT.

Example 40. In the example of Figure 8 the transducer is well-nested. Indeed, one can check that the outputs
associated with γ1 are u1 = c1c2r2c2a for the call and v1 = r1ar2 for the return, their concatenation forms
a well-nested word: u1v1 = c1c2r2c2ar1ar2 ∈ Σ∗

wn. Similarly, the outputs associated with γ2 are u2 = c1r1a
for the call and v2 = ε for the return, their concatenation produces a well-nested word: u2v2 = c1r1a ∈ Σ∗

wn.
Finally, the lone internal transition produces a well-nested word: c1r1 ∈ Σ∗

wn.

q0 q1
a/c1r1

c/c1c2r2c2a, γ1 r/r1ar2, γ1

c/c1r1a, γ2 r/ε, γ2

Figure 8: A wnVPT from Σc = {c},Σr = {r}, and Σi = {a} to ∆c = {c1, c2},∆r = {r1, r2}, and ∆i = {a}.

22

Note that this restriction implies that, in contrast with the class of VPT, some NFT have no equivalent
wnVPT. Indeed, the transduction that maps all input letter to a single call symbol c cannot be defined by
a wnVPT, while it easily can with an NFT.

Moreover, there are context-free languages that are not the range of any wnVPT. For example the
context-free language {rncn | n ≥ 0}, where r ∈ ∆r and c ∈ ∆c, is not the range of any wnVPT. But
the context-free language {anbn | n ≥ 0}, where a, b ∈ ∆i, is not a VPL, but it is the range of the VPT

transduction {(cnrn, anbn) | n ≥ 0}, which is easily defined by a wnVPT. Furthermore, any VPL, and
therefore any regular language, is, trivially, the range of some wnVPT. So the class of languages formed by
the range of wnVPT lies in between VPLs and CFLs.

The next proposition states that the image of a well-nested word by a wnVPT is always a well-nested
word. This is easily proved by induction on the length of the input word (note that on a well-nested word,
a VPT does not use any return transition on empty stack).

Proposition 41. Let T ∈ wnVPT, u ∈ Σ∗
wn and v ∈ T (u), then v ∈ Σ∗

wn. Moreover, for all u ∈ Σ∗
wn,

v ∈ Σ∗, and q, q′ ∈ Q if (q,⊥)
u|v
−−→ (q′,⊥) is a run of T then v ∈ Σ∗

wn.

In the next sections, we show that the class of well-nested VPT is closed under composition and has a
decidable type checking problem.

6.2. Composition

The closure under composition of wnVPT follows from the following observation. The well-nested prop-
erty of wnVPT states that two transitions, one that pushes a stack symbol and another that pops the same
symbol, produce two words whose concatenation forms a well-nested word. This well-nested property of a
wnVPT carries over to sequences of transitions. This is formalized in the following lemma and is proved
easily by induction on the length of the sequence.

Lemma 42. Let T be a wnVPT and v, v′ be two words such that vv′ ∈ Σ∗
wn. For any two runs (q1,⊥)

v/w
−−→

(q′1, σ), (q2, σ)
v′/w′

−−−→ (q′2,⊥) of T , then ww′ ∈ Σ∗
wn.

Given two well-nested VPT T1 and T2, consider a run of T1 over an input word and a run of T2 over the
output of the run of T1. Because T1 is a VPT, its stack content before reading a well-nested sub-word u is
the same than after reading u, that is the stack is unchanged after reading a well-nested word. Moreover,
because T1 is well-nested, the output of the sub-run of T1 over u is a well-nested word v. Therefore, the
stack content of T2 is the same before reading v than after reading it. In other words, the stacks of T1 and
T2 are synchronized on well-nested input words (when performing the composition of T1 with T2), but they
do not necessarily have the same height. As a consequence, it is possible to simulate both stacks with a
single stack. This is achieved by considering as a single move the sequence of moves of the second stack on
the sub-word v (output of the transition of T1).

The wnVPT T that implements the composition of T1 and T2 simulates both VPT as follows. A state of
T is a pair of states of T1 and T2. On input letter a, there is a transition from (q1, q2) to (q′1, q

′
2) if there is a

transition from state q1 to q′1 in T1 producing v, and if there is a sequence of transitions ρ of T2 from q2 to q′2
over v, all this assuming the stack content of each VPT does allow the moves. The output of this transition
is the output of ρ. The content of the stack of T consists of pairs (γ, σ) where γ is the stack symbol of T1

and σ is the sequence of stack symbols produced or consumed when T2 reads v.
We now formally provide the construction and prove its correctness.

Theorem 43 (Closure by composition). The class of wnVPT is closed under composition. Moreover, given
two wnVPT, one can construct in PTime a wnVPT defining their composition.

Proof. Wlog we suppose that the alphabets have no internal symbol (they can be simulated by a call directly
followed by a return, e.g. if a ∈ Σi then replace it by cara ∈ ΣcΣr). To simplify the presentation, we do
not give the details of the constuction of return transitions on the empty stack. Using the third item of

23

Definition 39, one can prove that when a VPT T2 is applied on the ouputs produced by some wnVPT T1,
then each time the stack of T1 is empty, so is that of T2.

Consider two wnVPT T1 = (A1,Ω1) and T2 = (A2,Ω2). We note Ai = (Qi, Ii, Fi,Γi, δi) for i ∈ {1, 2}.
We build a wnVPT T such that

∀u,w ∈ Σ∗, w ∈ T (u) ⇐⇒ ∃v ∈ Σ∗, v ∈ T1(u) ∧ w ∈ T2(v)

Let Γ′ = {σ ∈ Γ∗
2 | ∃q, q′ ∈ Q2, v ∈ Ω1(δ1) : (q,⊥)

v/.
−−→ (q′, σ)}. We define T = (A,Ω) with A =

(Q, I, F,Γ, δ) where Q = Q1 ×Q2, I = I1 × I2, F = F1 × F2, and Γ = Γ1 × Γ′. The transition relation δ is
defined as follows:

Calls: Let c ∈ Σc. Then (q1, q2)
c/w,(γ,σ)
−−−−−−→ (q′1, q

′
2) ∈ δ if there exists v ∈ Σ∗ such that (q1,⊥)

c/v
−−→ (q′1, γ) is

a run of T1 and (q2,⊥)
v/w
−−→ (q′2, σ) is a run of T2.

Returns: Let r ∈ Σr. Then (q1, q2)
r/w,(γ,σ)
−−−−−−→ (q′1, q

′
2) ∈ δ if there exists v ∈ Σ∗ such that (q1, γ)

r/v
−−→ (q′1,⊥)

is a run of T1 and (q2, σ)
v/w
−−→ (q′2,⊥) is a run of T2.

First, we establish that T is well nested. Let consider two transitions (q1, q2)
c/w,(γ,σ)
−−−−−−→ (q′1, q

′
2) and

(q3, q4)
r/w′,(γ,σ)
−−−−−−−→ (q′3, q

′
4) in δ. Let us show that ww′ ∈ Σ∗

wn. By definition of δ, there exist words v, v′ ∈ Σ∗

such that we have T2 |= (q2,⊥)
v/w
−−→ (q′2, σ), T2 |= (q4, σ)

v′/w′

−−−→ (q′4,⊥) and vv′ ∈ Σ∗
wn. Therefore by

Lemma 42 ww′ is well-nested. So we have shown that T is a wnVPT.
Second, we prove that T recognizes the composition of the transducers T1 and T2. Let u,w ∈ Σ∗, we

prove by induction on the length of u that there exists a run ρ on u in T , starting in an initial configuration,
and producing w as output, if and only if there exists a word v ∈ Σ∗, a run ρ1 on u in T1, starting in an
initial configuration and producing v as output, and a run ρ2 on v in T2, starting in an initial configuration
and producing w as output. Moreover, if ρi ends in some configuration (qi, γ

i
1 . . . γ

i
ni
) ∈ Qi × Γ∗

i , and ρ
ends in configuration ((p1, p2), (γ1, σ1) . . . (γk, σk)) ∈ Q × Γ∗, then we can require that p1 = q1, p2 = q2,
γ1 . . . γk = γ1

1 . . . γ
1
n1

and σ1 . . . σk = γ2
1 . . . γ

2
n2
.

The base case u = ε is trivial. For the induction, we distinguish two cases whether the last symbol of u
is a call or a return:

• if u = u′ · c with c ∈ Σc, then the result follows from the definition of the transitions of T : there exists

in T a push transition on c of the form ((q1, q2),⊥)
c/w
−−→ ((q′1, q

′
2), (γ, σ)) if and only if there exists a

word v and two runs in T1 and T2 of the form (q1,⊥)
c/v
−−→ (q′1, γ) and (q2,⊥)

v/w
−−→ (q′2, σ).

• if u = u′ · r with r ∈ Σr, then again by definition of the transitions of T , there exists in T a pop

transition on r of the form ((q1, q2), (γ, σ))
r/w
−−→ ((q′1, q

′
2),⊥) if and only if there exists a word v and

two runs in T1 and T2 of the form (q1, γ)
r/v
−−→ (q′1,⊥) and (q2, σ)

v/w
−−→ (q′2,⊥). By the induction

property, we have that the stacks are equal on each component, and thus the same pop transitions can
be triggered.

By definition, the run ρ is accepting if and only if both runs, ρ1 and ρ2 are accepting. This concludes
the proof of the correctness of our construction.

Remark 44. One can observe that the above construction, taking as input two transducers T1 and T2, is still
valid if T2 is not well-nested. In this case, the result of the construction is a VPT that correctly implements
the composition of T1 and T2.

24

6.3. Type Checking against VPL

In this section we show that the type checking problem is decidable for wnVPT.

Theorem 45 (Type Checking). The type checking problem for wnVPT against VPA is ExpTime-c. It is
in PTime if the VPA constraining the output language is deterministic.

Proof. For the ExpTime-hard part, first note that we can construct a wnVPT Tid whose domain is the
set of well-nested words on the structured alphabet Σ and whose relation is the identity relation. Given
any VPA A1, A2, we have that Tid(L(A1)) ⊆ L(A2) if and only if L(A1) ⊆ L(A2). This later problem is
ExpTime-c (See Theorem 10).

To prove it is in ExpTime, note that given a wnVPT T and two VPA A1, A2, we have T (L(A1)) ⊆ L(A2)
iff T |A1

◦ IdA2
= ∅, where IdA2

is a wnVPT that defines the identity function over the complement of
L(A2) (it is of exponential size in the size of A2 if A2 is non-deterministic, and of polynomial size if A2 is
deterministic). By Theorem 43, one can construct a wnVPT T ′ for T |A1

◦ IdA2
in ExpTime (and in PTime

if A2 is deterministic). Finally, the emptiness test can be done in PTime in the size of T ′.

7. Comparison to Tree Transducers

In this section we investigate the relative expressive power of wnVPT and several classes of tree trans-
ducers.

Relation between trees, tree automata, structured words and VPA have been thoroughly investigated
in [1]. Unranked trees can be encoded as well-nested words. The linearization of a tree is such an encoding,
it corresponds to a depth-first left-to-right traversal of the tree. This encoding corresponds to the common
interpretation of XML documents as trees [32]. A node n is encoded by a call (i.e. an opening tag) and its
matching return (i.e. closing tag), and the encoding of the subtree rooted at n lies in between this call and
return.

Through linearization, wnVPT can be used to define unranked tree transformations. An unranked tree
transformations is definable by a wnVPT if the relation on words, induced by the linearization of the input
and output trees, is. We compare the expressive power of wnVPT on unranked trees to several models of
tree transducers.

With the aim to apprehend the expressive power of wnVPT with regards to unranked tree transductions,
we first define the unranked tree transducers (UTT). They are macro forest transducers without parame-
ters [46]. We show that wnVPT are strictly less expressive than UTT. As a consequence, wnVPT are also
less expressive than macro forest transducers, a class that includes UTT.

A second model of unranked tree transformations is formed by the uniform tree transducers [38], a
model inspired by XSLT [13]. We show that the expressiveness of this model is incomparable with the one
of wnVPT.

Finally, a popular trick for defining unranked tree transformations, is to first encode trees as binary
trees and then use a binary tree transducer, such as the top-down tree transducers (TDTT) [14]. We recall
the first-child next-sibling encoding of unranked trees into binary trees, and we show that TDTT, with this
encoding, are incomparable to wnVPT. However, both classes are included into macro tree transducers, the
binary (or ranked) tree version of macro forest transducers.

7.1. Unranked Trees and Hedges - Ranked Trees

Unranked Trees and Hedges. We define unranked trees and hedges (that are sequences of unranked trees)
over an alphabet Σ. They are defined as terms over the binary operator · (concatenation of an unranked
tree with an hedge), the constant 0 (the empty hedge) and the alphabet Σ. They are generated by the
following grammar:

h := 0 | t · h t := f(h) where f ∈ Σ

We denote by HΣ and UΣ the set of hedges and unranked trees respectively. We identify the tree t and
the hedge t · 0, so that UΣ ⊂ HΣ. For all f ∈ Σ, we may write f instead of f(0). When it is clear from the

25

context we may also omit the operator ·. Note that all hedges are of the form t1 · · · · · tk · 0 for k ≥ 0 and
t1, . . . , tk ∈ UΣ. We extend · to concatenation of hedges in the following manner:

(t1 · · · · · tk · 0) · (t′1 · · · · · t
′
k′ · 0) = t1 · · · · tk · t′1 · · · · · t

′
k′ · 0

The height of an hedge is defined inductively as: height(0) = 0, height(t · h) = max(height(t), height(h)) and
height(f(h)) = 1 + height(h) where f ∈ Σ.

Example 46. The following tree f(f(a a a)b b b) is an unranked tree. Its root is labelled by f and has 4
children labelled f , b, b, and b respectively. The b’s are leaves while, the f child has 3 children labelled a.

Ranked Trees. A ranked tree is a tree whose symbols have a predefined fixed number of children. Unranked
trees can be encoded by ranked trees via, for example, a first-child next-sibling encoding (fcns).

A ranked alphabet is a pair (Σ, ar) where Σ is an alphabet and ar is a function that associates with each
letter its arity: ar : Σ → N. For k ∈ N, the set of letters of arity k is denoted by Σk.

The set T r
Σ of ranked trees over Σ is defined as the set of terms generated by the following grammar :

t := a | f(t1, . . . tk) where a ∈ Σ0 and f ∈ Σk

A binary tree is a ranked tree whose symbols have arity 0 or 2. The set of binary trees is denoted by T 2
Σ .

First-Child Next-Sibling Encoding. Unranked trees and hedges can be encoded into binary trees. We present
the first-child next-sibling (fcns) encoding [14]. Each node of the unranked tree is encoded by a node of the
binary tree. Consider the binary tree encoding t1 of the unranked tree t2 and suppose that the node n1

in t1 encodes the node n2 in t2. The left child of n1 encodes the first child of n2, while the right child of
n1 encodes the next sibling of n2. if n2 has no child (resp. no sibling) the left (resp. right) child of n2 is
labelled with the special symbol ⊥ /∈ Σ.

The encoding is defined on hedges by the function fcns : HΣ → T 2
Σ such that:

fcns(0) = ⊥
fcns(f(h) · h′) = f(fcns(h), fcns(h′))

Example 47 (Complete Binary Trees). Let tn denote the complete binary tree of height n over the alphabet
Σ = {f, a} where f , resp. a, has arity 2, resp. 0. We have t0 = a, t1 = f(a, a), t2 = f(f(a, a), f(a, a)), and
more generally tn = f(tn−1, tn−1). Their fcns encoding is defined inductively as:

fcns(t0) = a(⊥,⊥)
fcns(t1) = f(a(⊥, a(⊥,⊥)),⊥)
fcns(tn) = f(f(fcns(tn−2), fcns(tn−1)),⊥)

Therefore the height of fcns(tn) is equal to 2 + height(fcns(tn−1)) that is

height(fcns(tn)) = 2 ∗ height(tn)

Example 48 (Hedge). The hedge a1a2 . . . an is encoded as

a1(⊥, a2(⊥, a3(⊥, . . . an(⊥,⊥) . . .)))

Note that the height of the hedge is 1 while the height of its fcns encoding is equal to the number of nodes
in the hedge.

26

7.2. Unranked Tree Transductions.
An unranked tree transduction is a relation Ru between unranked trees, i.e. it is a subset of UΣ × UΣ.

We present some examples that we use later to separate classes of transductions.

Example 49 (Yield). The yield transduction transforms a hedge into the hedge containing its leaves. For
example, the tree f(g(ag(bc))def) is mapped to the hedge abcdef .

Example 50 (Duplicate). The duplicate transduction duplicates a subtree as follows:

R2 = {f(t) → f(tt) | t ∈ UΣ ∧ f ∈ Σ}

Example 51 (Swap). The swap transduction swap two subtrees. It is defined as Rswap = {f(t1t2) →
f(t2t1) | t1, t2 ∈ UΣ ∧ f ∈ Σ}.

Example 52 (Odd). The odd transduction transforms trees of the form f(an) by replacing the odd, resp.
even, leaves with leaves labelled a, resp. b. It is defined as Rodd = {f(a2n) → f((ab)n) | n ≥ 0}.

A ranked tree transduction is a relation Rr between ranked trees, i.e. it is a subset of T r
Σ ×T r

Σ . Through
first-child next-sibling encoding, a ranked tree transduction Rr can be used to define an unranked tree
transduction Ru as Ru = fcns−1 ◦Rr ◦ fcns.

7.3. wnVPT on Unranked Trees
Given an alphabet Σ, recall that the tagged alphabet Σ̂ is the structured alphabet defined as: Σ̂ =

(Σ,Σ,Σ) where Σ = {a | a ∈ Σ} is the set of call symbols, and Σ = {a | a ∈ Σ} is the set of return symbols.

Hedges to words. The linearization function lin : HΣ → Σ̂∗ transforms an hedge into a word. It corresponds
to a depth-first left-to-right traversal of the tree. It is defined as follows:

lin(0) = ε lin(t · h) = lin(t)lin(h) lin(f(0)) = f lin(f(h)) = f lin(h) f (h 6= 0)

We extend the function lin to sets of hedges as usual. Let S ⊂ HΣ, then lin(S) = {lin(t) | t ∈ S}.

Example 53. The word f ga gbcg g def f is the linearization of the tree f(g(ag(bc))def).

wnVPT on trees. With the linearization of trees, we can now define unranked tree transduction with wnVPT.
A wnVPT T implements a tree transduction TT ⊆ UΣ × UΣ if for all t ∈ UΣ we have:

R(T)(lin(t)) = lin(TT (t))

Example 54 (Yield). The yield transduction of Example 49 is easily defined by a wnVPT that deletes all
calls and returns and copy any internal to the output.

q0 q1 q2 q3
f/f,+γ a/a f/f,−γ

a/b

Figure 9: A wnVPT Todd on Σc = {f}, Σr = {r}, Σi = {a, b}.

Example 55 (Odd). The odd transduction of Example 52 maps trees of the form f(a2n) onto trees of the
form f((ab)n), the linearization gives:

fa a . . . a af → fa b . . . a bf

It can be defined by the wnVPT Todd of Figure 9.

Clearly, the duplicate and the swap transductions of Example 50 and 51 cannot be implemented by
wnVPT. Indeed, one can easily check that the linearization of the range of R2 (the duplicate transduction)
is not context-free. While regarding Rswap, with a classical pumping argument one can prove that it is not
definable by a wnVPT.

27

7.4. Transducers for Unranked Trees

Unranked Tree Transducers. we present here a model of unranked tree transducers (UTT) that run di-
rectly on unranked trees and more generally, on hedges. They are defined as parameter-free macro forest
transducers (MFT) [46].

With UTT, an hedge, f(h)h′, is rewritten in a top down manner. The root node of the left most tree,
f(h), is transformed into an hedge over the output alphabet according to an initial rule. Some of the leaves
of this output hedge are insertion points for the result of the recursive application of the rules on either the
hedge h of the children or on the hedge h′ containing the siblings.

Let Σ be an (unranked) alphabet. An unranked tree transducer (UTT) over Σ is a tuple T = (Q, I, δ)
where Q is a set of states, I ∈ Q is a set of initial states and δ is a set of rules of the form:

q(0) → 0 q(f(x1) · x2)) → r

where q ∈ Q, h ∈ HΣ, f ∈ Σ, and r is a right-hand side generated by the following grammar:

r ::= (q, x) | 0 | ur | rr
u ::= f(r)

with q ∈ Q and x ∈ {x1, x2}.
The semantics of T is defined via mappings JqK : HΣ → 2HΣ for all q ∈ Q as follows:

JqK(0) = {0}
JqK(f(h) · h′) =

⋃

q(f(x1)·x2)→rJrK[x1 7→h,x2 7→h′]

where J.Kρ for a valuation ρ : {x1, x2} → HΣ is defined by:

J0Kρ = {0}
J(q, x)Kρ = JqK(ρ(x))
JurKρ = {t · h | t ∈ JuKρ, h ∈ JrKρ}
Jr1r2Kρ = {h1 · h2 | h1 ∈ Jr1Kρ, h2 ∈ Jr2Kρ}
Jf(r)Kρ = {f(h) | h ∈ JrKρ}

The transduction of a UTT T = (Q, I, δ) is defined as R(T) = {(t, t′) | ∃q ∈ I, t′ ∈ JqK(t)}.

Example 56 (Yield). The yield transduction of Example 49 is defined by a UTT T = ({q0, q}, {q}, δ) with
the following rules:

q(f(x1) · x2) → q(x1) · q(x2) for all f ∈ Σ
q(f(x1) · x2) → f(q0(x1)) · q(x2) for all f ∈ Σ
q0(0) → 0

where the procedure (or state) q guesses (with non-determinism) whether the first tree, with its root labelled
f , has children or not. If it has no child then it outputs f and applies q0 (which only accepts 0). Otherwise,
it recursively calls q on the hedge of the children.

Example 57 (Swap). The swap transduction of Example 51 is defined by a UTT T = (Q, {q0}, δ) with
Q = {q0, q, q

′, q⊥} and the following rules:

q⊥(0) → 0
qid(0) → 0
q0(f(x1) · x2) → f(qswap(x1)) · q⊥(x2) for all f ∈ Σ
qswap(f(x1) · x2) → q′(x2) · f(qid(x1) for all f ∈ Σ
qid(f(x1) · x2) → f(qid(x1)) · qid(x2) for all f ∈ Σ
q′(f(x1) · x2) → f(qid(x1) · q⊥(x2)) for all f ∈ Σ

where the procedure (or state) q0 ensure that the transduction only accepts trees, qswap perform the swap
operation, q′ ensures that the root node has exactly 2 children, and qid performs the identity transduction.

28

Example 58 (Duplicate and Odd). The duplicate and odd transduction of Example 50 and Example 52 can
be defined with a transducer similar to the UTT of the previous example.

UTT can in fact simulate wnVPT. Therefore they are clearly strictly more expressive than wnVPT, as
duplicate and swap examples are definable by UTT but not by wnVPT.

Proposition 59. UTT are strictly more expressive than wnVPT.

Proof. Let Σ be an alphabet and T = (Q, I, F, {γ}, δ) be a wnVPT over Σ̂ that implements an unranked
tree transduction. We construct an equivalent UTT T ′ = (Q′, I ′, δ′). We let Q′ = Q × Q and I ′ = I × F .
We informally explain the rules of T ′ on an example. Let h = f(h1) · h2 be an hedge. Suppose that there
exists a run of T ′ on h from a pair of states (p1, q1). It means that there exists a run of T on lin(h) from
the configuration (p1,⊥) to (q1,⊥). When reading f , T ′ must apply a call transition of T on f of the form
tc = (p1, f , γ, p

′
1) for some p′1 together with a return transition tr = (q′1, f , γ, p

′′
1), for some p′′1 . Therefore

T ′ has to guess the transitions to apply and continue its evaluation of h1 from the state (p′1, q
′
1) and the

evaluation of h2 from the state (p′′1 , q1). If h2 is empty, then T ′ requires that p′′1 = q1. The rules of T ′ are
formally defined as follows, for all p, p′, p′′, q, q′ ∈ Q:

(p, p)(0) → 0

(p, q)(f(x1) · x2) → lin−1(uyv) · (p′′, q)(x2) if























tc = (p, f , γ, p′) ∈ δc
tr = (q′, f , γ, p′′) ∈ δr
u = Ω(tc)
v = Ω(tr)
y = (p′, q′)(x1)

Note that lin−1(uyv) (where y is considered as an internal symbol) is well-defined as T is a well-nested
VPT that implements an unranked tree transduction. Therefore the symbols of u and v are well-matched
and form an unranked tree.

A UTT T = (Q, I, δ) is non-duplicating, resp. order-preserving, if for all rules q(f(x1) · x2)) → r ∈ δ,
neither x1 nor x2 occur more than one time in r, resp. x2 never occurs before x1 in r in a depth-first
left-to-right order. In fact non-duplicating and order-preserving UTT are still more expressive than wnVPT.
Restricting further this class, one may consider non-duplicating and order-preserving UTT such that the
rule r ::= rr is replaced by r ::= rq(x2) where q ∈ Q. In other words, wnVPT are UTT such that the result
of the transformation of the siblings hedge must be directly concatenated to the result of the transformation
of the leftmost tree. Let us denote UTTS this class.

Proposition 60. UTTS and wnVPT are equally expressive.

Proof. The inclusion of wnVPT into UTTS follows from the proof of Proposition 59 where the built UTT is
actually a UTTS .

Conversely, for a UTTS T = (Q, I, δ), we define a wnVPT T ′ = (A′,Ω) over Σ̂ with A′ = (Q′, I ′, F ′,Γ′, δ′)
such that Q′ = Q, I ′ = F , F ′ = {q | q(0) → 0 ∈ δ}, Γ′ = δ and δ′ is given by:

• tc = (q, f , q1, f(x1, x2) → u1q1(x1)u2q2(x2)) belongs to δc with Ω(tc) = u1

• tr = (q′, f , q2, f(x1, x2) → u1q1(x1)u2q2(x2)) belongs to δr with Ω(tr) = u2 if q′(0) → 0 is a rule from
δ

It can be shown by induction that for any well-nested word u over Σ̂, there exists a run in T ′ from (q,⊥) to
(q′,⊥) with q′(0) → 0 is a rule from δ producing the word v iff in T , v ∈ Jlin−1(u)K.

29

Uniform Tree Transducers.. Inspired by XSLT transformations, Neven and Martens [38] have introduced
uniform tree transducers (UUTT) as a simple model of unranked tree transductions. They form a strict
subclass of UTT. They also operate in a top-down manner but a rule is always applied to all children
uniformly. Their work mainly investigates the complexity of the type checking problem parameterized by
several restrictions on the transformations [39, 40, 41].

A uniform tree transducer over an alphabet Σ is a tuple T = (Q, q0, δ) where Q is a finite set of states,
q0 ∈ Q is the initial state and δ is a set of rules of the form q(a) → r where r is inductively defined by:

r ::= 0 | ur u ::= a | q | f(r)

where a, f ∈ Σ, q ∈ Q.
The semantics of T is defined via mappings JqK : HΣ → 2HΣ for all q ∈ Q as follows:

JqK(0) = {0}
JqK(t1 · · · · · tk) = {t′1 · · · · · t

′
k | t′i ∈ JqK(ti), 1 ≤ i ≤ k}

JqK(f(h)) =
⋃

q(f)→r∈δJrKh

where J.Kh for an hedge h = t1 · · · · · tk ∈ HΣ is defined by:

J0Kh = {0}
JurKh = {t′h′ | t′ ∈ JuKh, h′ ∈ JrKh}
JaKh = {a}
JqKh = JqK(h)
Jf(r)Kh = {f(h′) | h′ ∈ JrKh}

The transduction of T = (Q, q0, δ) is defined as R(T) = {(t, t′) | t′ ∈ Jq0K(t)}.
As these transducers have the ability to duplicate subtrees, they can clearly define some transductions

that cannot be defined by wnVPT. On the other hand, the transduction Rodd of Example 52 cannot be
defined by a uniform tree transducer as different transformations are applied on odd and even children
respectively.

Proposition 61. wnVPT and UUTT are incomparable.

Macro Forest Transducers.. We defined the UTT as a restriction of macro forest transducers (MFT), they
are MFT without parameters. Therefore, MFT are strictly more expressive than wnVPT. They are actually
also strictly more expressive than UTT [46].

7.5. Transformations by means of Ranked Tree Transducers.

In this section we investigate the expressive power of ranked (binary) tree transducers (that run on fcns
encodings of unranked trees) to define unranked tree transductions.

Top-down binary tree transducers.. Let (Σ, ar) be a ranked alphabet with constant and binary symbols only.
A top-down binary tree transducer (TDTT) over Σ [14] is a tuple T = (Q, I, δ) where Q is a set of states,
I ⊆ Q is a set of initial states and δ is a set of rules of the form

q(a) → t q(f(x1, x2)) → r

where q ∈ Q, t ∈ T r
Σ , a ∈ Σ0, f ∈ Σ2, and r is a term generated by the following grammar:

r ::= a | (q, x) | f(r, r)

where a ∈ Σ0, f ∈ Σ2, q ∈ Q, and x ∈ {x1, x2}.
The semantics of T is defined via mappings JqK : T r

Σ → 2T
r
Σ for all q ∈ Q as follows:

JqK(a) = {t | q(a) → t ∈ δ}
JqK(f(t1, t2)) =

⋃

q(f(x1,x2))→rJrK[x1 7→t1,x2 7→t2]

30

where J.Kρ for a valuation ρ : {x1, x2} → T r
Σ is inductively defined by:

JaKρ = {a}
J(q, x)Kρ = JqK(ρ(x))
Jf(r1, r2)Kρ = {f(t1, t2) | t1 ∈ Jr1Kρ, t2 ∈ Jr2Kρ}

The transduction of a TDTT T = (Q, I, δ) is defined as

R(T) = {(t, t′) | ∃q ∈ I, t′ ∈ JqK(t)}

The height of the image of a tree t by a TDTT is linearly bounded by the height of t.

Proposition 62. Let T be a TDTT. There exists k ∈ N, such that for all (t, t′) ∈ R(T), h(t′) < k h(t)
holds.

We recall that TDTT can define unranked tree transductions since a TDTT T on Σ ∪ {⊥} defines the
unranked tree transduction TU given by fcns−1 ◦R(T) ◦ fcns = TU .

Example 63 (Yield). The yield transduction maps every tree onto the hedge formed by its leaves. Yield
is not definable by a TDTT. Indeed, the fcns encoding of an hedge a1 . . . an has height n. Consider the
complete binary tree of height n. The height of its fcns encoding is proportional to n. However it has
2n leaves. Therefore the height of the fcns encoding of its yield is 2n. According to Proposition 62 this
transduction cannot be defined by a TDTT.

The yield example shows that wnVPT can define transduction that are not definable with TDTT. On the
other hand, because TDTT can duplicate and swap parts of the input, they can define some transductions
that wnVPT cannot.

Proposition 64. TDTT and wnVPT are incomparable.

Macro Tree Transducers.. We say that, contrary to TDTT, wnVPT have the ability to concatenate hedges
(and so do UTT). This is the reason why TDTT cannot define the yield transduction, while wnVPT can.

We have already mentionned MFT; they turn out to be a slight generalization of macro tree transducers
(MTT) [19]. MFT can be viewed as macro tree transducers (MTT) with the ability to concatenate hedges.
However, thanks to parameters, MTT have also the possibility to express hedge concatenation (for the
first-child-next-sibling encoding).

A transduction is linear size increase when the size of every output tree is linearly bounded by the size
of the corresponding input tree. For linear size increase transduction, the class of functional macro tree
transductions is closed under composition [37]. Moreover, any MFT transduction can be obtained as the
composition of two MTT [46]. Therefore, for linear size increase functional unranked tree transductions
the class of macro forest and macro tree transducers are equivalent. Moreover, the linear size increase
macro tree transductions are exactly the MSO definable functional transductions [18]. Functional wnVPT
transductions are linear size increase (as there is no duplication), therefore MSO transductions and macro
tree transductions subsume functional wnVPT transductions.

7.6. Summary

In this section, we summarize on Fig. 10 the relative expressiveness of the classes we have considered.
UTT are strictly more expressive than TDTT. However, if the derivation r ::= rr is disallowed in the

definition of the right-hand sides of UTT, we obtain a class which is equivalent to TDTT with the fcns
encoding of unranked trees. Indeed, a rule q(f(x1) · x2) → r of a UTT corresponds to a rule q(f(x1, x2)) →
fcns(r) of a TDTT.

31

UUTT (

6⊆ 6⊇

UTTS = wnVPT (UTT (MFT

6⊆ 6⊇

TDTT (

Figure 10: Relative expressiveness of classes of transducers for unranked trees

8. Visibly Pushdown Transducers with Regular Look-ahead

In this section, we investigate the extension of visibly pushdown transducers with visibly pushdown look-
ahead (VPTla). They are visibly pushdown transducers that can check, at any time, whether the longest
well-nested subword starting at the current position belongs to a regular (VPL) language. First, we show
that VPTla are not more expressive than VPT, but are exponentially more succinct. Removing look-aheads,
even from a deterministic VPTla, can be done at the price of adding non-determinism, but only in an
unambiguous manner. This closure by regular look-aheads shows the robustness of the class of VPT. We
then prove that the class of deterministic VPTla coincides exactly with the class of functional VPT, yielding
a simple characterization of functional VPT. More generally, we show that any relation definable by a VPT

can be uniformized by a function definable by a deterministic VPTla.
An interesting corollary of these results is that any functional VPT is equivalent to an unambiguous one,

a result which was already known [10] for VPT, and also for finite-state transducers [15, 51, 16], and which
was extended to k-valued transducers and k-ambiguous finite-state transducers [50].

Finally, we show that while VPTla are exponentially more succinct than VPT, checking equivalence or
inclusion of functional VPTla is, as for VPT, ExpTime-c. Additionally, we derive similar results for visibly
pushdown automata with look-ahead.

8.1. Definitions

In order to simplify notations and proofs we suppose that the structured alphabet has no internal symbols,
that is Σ = (Σc,∅,Σr). Indeed, as previously suggested, one can encode an internal symbol with a specific
call symbol directly followed by a specific return symbol. Moreover we also assume for simplicity that words
are well-nested. More precisely, we suppose that VPA and VPT do not allow return transitions on the empty
stack (⊥). Furthermore, their stack must be empty in order to accept a word. It is not difficult however to
extend the results of this section to the general definitions of VPA and VPT.

Given a word w over Σ we denote by prefwn(w) the longest well-nested prefix of w. E.g. prefwn(crc) = cr,
prefwn(crcrrcrr) = crcr. We define a VPT T with visibly pushdown look-ahead (simply called look-ahead
in the sequel) informally as follows. The look-ahead is given by a VPA A. On a call symbol c, T can trigger
the look-ahead starting from a chosen initial state p of the VPA. The look-ahead tests membership of the
longest well-nested prefix of the current suffix of the input (that starts by the letter c) to L(A[p]), where
A[p] is the VPA A with a single initial state fixed to be p. If the prefix is in L(A[p]) then the transition of T
can be fired. When we consider nested words that encode trees, look-ahead corresponds to inspecting the
subtree rooted at the current node and all right sibling subtrees (in other words, the current hedge).

A visibly pushdown automaton with look-ahead is a visibly pushdown automaton A and a look ahead
VPA B. Each call transition of A is associated with a state of B. A call transition can be triggered only if
the longest well-nested prefix starting at the current call position belong to L(B[q]).

Definition 65 (VPAla). A VPA with look-ahead (VPAla) is a triple Ala = (A,B, ξ) where A,B are two VPA

and ξ : δAc → QB is a function that associates with any call transition of A a state of B.

Let u ∈ Σ∗. A run of Ala on u = a1 . . . al is a run ρ = t1 . . . tl ∈ δA of A such that, if tk ∈ δAc , then we
have prefwn(ak+1 . . . al) ∈ L(B[ξ(tk)]). The size of a VPAla Ala = (A,B, ξ) is the size of A plus the size of B.
We denote transitions of Ala as tuples (q, α, p, γ, q′), where t = (q, α, γ, q′) is a transition of A and p = ξ(t).

Such transitions are also denoted by q
α,p,γ
−−−→ q′ in the sequel.

32

q0

c/a, qa,+γ

c/c, q¬a,+γ

a/a, qf ,+γ

r/r,−γ

qa qf

q¬a

c,+γ

r,−γ
a,+γ

c,+γ

r,−γ

a,+γ

c,+γ

r,+γ

Figure 11: A VPTla (left) and its look-ahead (right) on Σc = {c, a} and Σr = {r}

A VPAla is deterministic when the input symbol, the top of the stack symbol and the look-ahead determine
univocally the next transition. For call transitions, this means that the look-aheads must be disjoint, i.e.
for a given state q and a given call symbol c, the language of the look-aheads associated with all transitions
from q with input letter c must be disjoint. Moreover, the look-ahead automaton must be deterministic.

Definition 66 (Deterministic VPAla). A VPAla Ala = (A,B, ξ) is deterministic if

• B is deterministic

• A is deterministic on return transitions

• for all t1, t2 ∈ δAc , if t1 and t2 are transitions from the same state and on the same symbol, then
L(B[ξ(t1)]) ∩ L(B[ξ(t2)]) = ∅.

Note that deciding whether some VPAla is deterministic can be done in PTime. One has to check that
for each state q and each call symbol c, the languages of the VPLs guarding the transitions from state q and
reading c are pairwise disjoint.

Definition 67 (VPTla). A visibly pushdown transducer with look-ahead (VPTla) from some alphabet Σ to
some alphabet ∆ is a pair T = (Ala,Ω) where Ala = (A,B, ξ) is a VPAla and Ω is the output morphism
define from δA to ∆∗, where δA is the transition relation of A.

All the notions and notations defined for VPT, like transduction relation, domain, range, and so on, can
be defined similarly for VPTla.

Transducers with look-ahead are particularly well-suited for defining transductions whose behavior may
depend on some part of the input that lies further after the current position in the input word. We now
give an example of such a transduction.

Example 68. Let Σc = {c, a},Σr = {r} be the call and return symbols of the alphabet. Consider the
transductions such that: (i) a and r are mapped to a and r respectively; (ii) c is mapped either to c if no a
appears in the longest well-nested word starting at c, and to a if an a appears. E.g. ccrrarcr is mapped to
acrrarcr, and cccrrcrcarrr to aacrraraarrr.

The VPTla T represented in Figure 11 implements this transduction. The look-ahead automaton is
depicted on the right, while the transducer in itself is on the left. When starting in state qa, respectively q¬a,
the look-ahead automaton accepts well-nested words that contain an a, respectively do not contain any a.
When starting in state qf it accepts any well-nested word. The transducer rewrites c into a if the well-nested
word starting at c contains an a (transition on the top), otherwise it just copy a c (transition on the right).
This is achieved using the states qa and q¬a of the look-ahead automaton. Other input symbols, i.e. a and
r, are just copied to the output (left and bottom transitions).

33

8.2. Expressiveness

We show in this section that adding look-aheads to VPT does not add expressiveness. In other words,
every VPTla is equivalent to a VPT. Furthermore, we show that one can effectively construct an equivalent
VPT with an unavoidable exponential blow-up.

First, let us present in Example 69 a VPT that is equivalent to the VPTla defined in Example 68.

Example 69. The VPT T defines the transduction of Example 68, it is defined by Q = {q, qa, q¬a}, I = {q},
F = Q, Γ = {γ, γa, γ¬a} and δ contains the following transitions:

q or qa
c/a,γ
−−−→ qa q or qa

c/a,γa
−−−−→ q q

c/c,γ¬a
−−−−−→ q¬a

q or qa
a/a,γ
−−−→ q q¬a

c/c,γ¬a
−−−−−→ q¬a

q or q¬a
r/r,γa
−−−−→ qa q or q¬a

r/r,γ
−−−→ q q¬a

r/r,γ¬a
−−−−−→ q¬a

The state qa, resp. q¬a, means that there is, resp. is not, an a in the longest well-nested word that starts
at the current position. The state q indicates that there is no constraints on the appearance of a. If T is in
state q and reads a c, there are two cases: it outputs an a or a c. If it chooses to output an a, then it must
check that an a occurs later. There are again two cases: either T guesses there is an a in the well-nested

word that starts just after c and takes the transitions q
c/a,γ
−−−→ qa, or it guesses an a appears in the well-nested

word that starts after the matching return of c, in that latter case it takes the transition q
c/a,γa
−−−−→ q and uses

the stack symbol γa to carry over this information. If on c it chooses to output c, it must check that there

is no a later by using the transition q
c/a,γ¬a
−−−−−→ q¬a. Other cases are similar.

Note that the VPT of Example 69 relies heavily on non-determinism. The construction we present
replaces look-aheads with non-determinism.

The main challenge when constructing a VPT equivalent to a given VPTla is to simulate an unbounded
number of look-aheads at once. Indeed, a look-ahead is triggered at each call and is ’live’ until the end of the
well-nested subword starting at this call. If the input word has height k ≥ 1, then for a given run of a VPTla,
there might be k simultaneously running look-aheads. For example, on the word ckrk there are k running
look-aheads after reading the last c, that is, there is one look-ahead for each strictly smaller nesting level.
Furthermore, there is another case that might produces many simultaneous running look-aheads. Consider
the word c1crcrcr . . . crr1, in this case when reading c a new look-ahead is triggered, this look-ahead will
run until r1, therefore, after reading k successive cr there are (at least) k simultaneous running look-aheads.
Note that these k look-aheads all started at the same nesting level.

Recall that summaries, that were defined in the context of the determinization of VPA (see [5]), are pairs
of states. More precisely, for a given VPA, a pair (p, q) is a summary if there exists a well-nested word w
such that (q,⊥) is accessible from (p,⊥) by reading w. In the next theorem, we uses summaries to handle
the simulation of look-aheads that started at a strictly less deeper nesting level and a subset construction
for those that started at the same nesting level.

Theorem 70. For any VPTla (resp. VPAla) Tla, with n states, one can construct an equivalent VPT (resp.

VPA) T ′, with O(n · 2n
2+1) states. Moreover, if Tla is deterministic, then T ′ is unambiguous.

Proof. We first prove the result for VPAla. LetAla = (A,B, ξ) withA = (Q, I, F,Γ, δ) andB = (Qla, F la,Γla, δla).
We construct the VPA A′ = (Q′, I ′, F ′,Γ′, δ′) as follows (where IdQla denotes the identity relation on Qla):

• Q′ = Q× 2Q
la×Qla

× 2Q
la

,

• I ′ = {(q0, IdQla ,∅) | q0 ∈ I},

• F ′ = {(q,R, L) ∈ Q′ | q ∈ F,L ⊆ F la},

• Γ′ = Γ× 2Q
la×Qla

× 2Q
la

× Σc.

34

The automaton A′ simulates A and its running look-aheads as follows. A state of A′ is a triple (q,R, L).
The first component is the state of A. The second and third components are used to simulate the running
look-aheads. When reading a call c, A′ non-deterministically chooses a new look-ahead triggered by A. This
look-ahead is added to all running look-aheads that started at the same nesting level. A′ ensures that the
run will fail if the longest well-nested prefix starting at c is not in the language of the chosen look-ahead.
The L component contains the states of all running look-aheads triggered at the current nesting level. The
R component is the set of summaries necessary to update the L-component. When reading a call the L
component is put onto the stack. When reading a return, A′ must check that all look-ahead states in L are
final, i.e. A′ ensures that the chosen look-aheads are successful.

After reading a well-nested word w if A′ is in state (q,R, L), with q ∈ Q, R ⊆ Qla × Qla and L ⊆ Qla,
we have the following properties. The pair (p, p′) ∈ R iff there exists a run of B from p to p′ on w. If some
p′′ is in L, there exists a run of a look-ahead that started when reading a call symbol of w at depth 0 which
is now in state p′′. Conversely, for all look-aheads that started when reading a call symbol of w at depth 0,
there exists a state p′′ ∈ L and a run of this look-ahead that is in state p′′.

w c w′ r

L
new l-a p0

push c, R, L ∪ {p0} pop c, R, L ∪ {p0}

R L′′ ⊆ F la

R′′

L′

R′

Figure 12: Simulating the look-aheads

Let us consider a word wcw′r for some well-nested words w,w′ (depicted on Fig. 12). Assume that A′

is in state (q,R, L) after reading w (on the figure, the relation R is represented by dashed arrows and the
set L by bold points, and other states by small points). We do not represent the A-component of the states
on the figure but rather focus on R and L. The information that we push on the stack when reading c is
the necessary information to compute a state (q′, R′, L′) of A′ reached after reading wcw′r. After reading

the call symbol c, we go in state (q′, IdQla ,∅) for some q′ such that q
c,p0,+γ
−−−−−→ q′ ∈ δc, where p0 ∈ Qla is the

starting state of a new look-ahead. Note that determinism of A is preserved. On the stack we put the tuple
(γ,R, L ∪ {p0}, c) where γ,R, L, p0, c have been defined before.

Now, suppose that after reading wcw′ the VPA A′ is in state (q′′, R′′, L′′). It means that A is in state
q′′ after reading wcw′, and (p, p′) ∈ R′′ iff there exists a run of B from p to p′ on w′, and L′′ is the set of
states reached by the look-aheads that started at the same depth as w′. Therefore we first impose that any
transition from (q′′, R′′, L′′) reading r must satisfy L′′ ⊆ F la. Clearly, R′ can be constructed from c, R and
R′′. Finally, L′ is a set such that for all p ∈ L ∪ {p0}, there exists p′ ∈ L′ and a run of A from p to p′ on
cw′r. If such an L′ does not exist, there is no transition on r. The set L′ can be constructed from L ∪ {p0}
and R′′.

We now define the transitions formally:

1. for all q,R, L, c, γ, we have: (q,R, L)
c,(γ,R,L∪{p0},c)
−−−−−−−−−−−→ (q′, IdQla ,∅) ∈ δ′c whenever q

c,p0,γ
−−−−→ q′ ∈ δc,

2. for all R,L, r, γ, q′′, R′′, L′′, q′, R′, L′, we have: (q′′, R′′, L′′)
r,(γ,R,L,c)
−−−−−−−→ (q′, R′, L′) ∈ δ′r iff the following

conditions hold:

(i) q′′
r,γ
−−→ q′ ∈ δr,

35

(ii) L′′ ⊆ F la,

(iii) R′ = {(p, p′) | ∃s
c,γ
−−→ s′ ∈ δlac · ∃(s′, s′′) ∈ R′′ · (p, s) ∈ R and s′′

r,γ
−−→ p′ ∈ δlar },

(iv) for all p ∈ L, there exist p′ ∈ L′, γ ∈ Γ, s, s′ ∈ Qla such that (s, s′) ∈ R′′, p
c,γ
−−→ s ∈ δlac ,

s′
r,γ
−−→ p′ ∈ δlar .

We sketch the proof of correctness of the construction. Let w ∈ Σ∗ such that w is a prefix of a well-nested
word, i.e. it is a word with no unmatched return, but it may have some unmatched calls. We define sh(w)
as the longest well-nested suffix of w, we call sh(w) the subhedge of w. For instance, if w = c1c2r2c3r3, then
sh(w) = c2r2c3r3. However if w = c1c2, then sh(w) = ε.

First, one can check (e.g. by induction on the length of w) that the successive computations of the R
component of the state ensures that the following property holds: for all words w ∈ Σ∗ prefix of a well-nested
word, if there is a run of A′ from q′0 to (q,R, L) on w, then for all p, p′ ∈ Qla, (p, p′) ∈ R iff there is a run
of A on sh(w) from p to p′.

With this last property it is easy to show that the following property also holds: let w = c1w1r1c2w2r2 . . . cnwnrn
where all wi are well-nested. A run of T on w will trigger a new look-ahead at each call ci, all these look-
aheads will still be ’live’ until rn. These look-aheads are simulated by the L component of the state of
A′. If there is a run of A on w, it means that all look-aheads accepts the respective remaining suffixes
of w, and therefore after reading ri there are i accepting runs of the previous look-aheads. Suppose that
those accepting runs are in the states Qi after reading ri. By suitable choices of L-components (A′ is non-
deterministic on L-components), we can ensure that there is an accepting run of A′ such that after reading
ri the L-component of the states is Qi, for all i. Conversely, if there is an accepting run of A′ on w, then
one can easily reconstruct accepting runs of the look-aheads.

Next, let show that if A is deterministic, then A′ is unambiguous. Indeed, it is deterministic on return

transitions. If there are two possible transitions q
c,p1,γ1
−−−−→ q1 and q

c,p2,γ2
−−−−→ q2 on a call symbol c, as A is

deterministic, we know that either the look-ahead starting in p1 or the look-ahead starting in p2 will fail. In
A′, there will be two transitions that will simulate both look-aheads respectively, and therefore at least one
continuation of the two transitions will fail as well. Therefore there is at most one accepting computation
per input word in A.

Finally, let show that the construction also works for transducers. Let T = (Ala,Ω) where Ala = (A,B, ξ)
is a VPAla. We construct T ′ = (A′,Ω′) where A′ is the VPA obtained as above, and Ω′ is obtained thanks
to the following observation. Each transition t′ of the new VPA A′ is associated with one transition t of
the original VPAla A (but several transitions of A′ might be associated with the same transition of A). We
simply define the output morphism Ω′(t′) as Ω(t). One can easily check that R(T) = R(T ′).

8.3. Succinctness.

The exponential blow-up in the construction of Theorem 70 is unavoidable. Indeed, it is obviously
already the case for finite state automata with regular look-ahead. These finite state automata can be easily
simulated by VPA on flat words (in (ΣcΣr)

∗, recall that we suppose the alphabet Σ has no internal symbol)
in that case the stack is useless. For example, consider for all n the language Ln = {vuv | |v| = n}. One
can construct a finite state automaton with regular look-ahead with O(n) states that recognizes Ln. For all
i ≤ n, when reading the i-th letter ai the automaton uses a look-ahead to test whether the m − n − i-th
letter is equal to ai, where m is the length of the word. Without a regular look-ahead, any automaton has
to store the first n letters of w in its states, then it guesses the m−n-th position and checks that the prefix
of size n is equal to the suffix of size n. A simple pumping argument shows that the automaton needs at
least |Σ|n states.

Proposition 71 (Succinctness). VPAla are exponentially more succinct than VPA.

36

8.4. Functional VPT and VPTla

While there is no known syntactic restriction on VPT that captures all functional VPT, we show that the
class of deterministic VPTla captures all functional VPT. Given a functional VPT we construct an equivalent
deterministic VPTla. This transformation yields an exponentially larger transducer.

We prove a slightly more general result: for a given VPT T we construct a deterministic VPTla Tla such
that R(Tla) is included into R(T) and the domain of T and Tla are equal. Clearly, this implies that if T is
functional then Tla and T are equivalent.

For a given VPT the number of accepting runs associated with a given input might be unbounded. The
equivalent VPTla has to choose only one of them by using look-aheads. This is done by ordering the states
and extending this order to runs. Similar ideas have been used in [17] to show an equivalent result for top-
down tree transducers. The main difficulty with VPT is to cope with nesting. Indeed, when the transducer
enters an additional level of nesting, its look-ahead cannot inspect the entire suffix but is limited to the
current nesting level. When reading a call, choosing (thanks to some look-ahead) the smallest run on the
current well-nested prefix is not correct because it may not be possible to extend this run to an accepting
run on the entire word. Therefore the transducer has to pass some information from one level to the next
level of nesting about the chosen global run. For a top-down tree transducer, as the evaluation is top-down,
the transformation of a subtree is independent of the transition choices done in the siblings subtrees.

Theorem 72. For all VPT T , one can construct a deterministic VPTla Tla with at most exponentially many
more states such that R(Tla) ⊆ R(T) and dom(Tla) = dom(T). If T is functional, then R(Tla) = R(T).

Proof. We first sketch the construction and then formally define it.

Sketch of the construction We order the states of T and use look-aheads to choose the smallest runs
wrt to an order on runs that depends on the structure of the word. Let T = (A,Ω) be a functional VPT
with A = (Q, q0, F,Γ, δ). Wlog we assume that for all q, q′ ∈ Q, all α ∈ Σ, there is at most one γ ∈ Γ such
that (q, α, γ, q′) ∈ δ. A transducer satisfying this property can be obtained by duplicating the states with
transitions, i.e. by taking the set of states Q× δ.

We construct an equivalent deterministic VPTla T ′ = ((A′, B, ξ),Ω′), where (A′, B, ξ) is a deterministic
VPAla with A′ = (Q′, q0, F

′,Γ′, δ′) and

• Q′ = {q0} ∪Q2,

• F ′ = F ×Q if q0 6∈ F otherwise F ′ = (F ×Q) ∪ {q0}.

• Γ′ = Γ×Q×Q.

The look-ahead automaton B is defined later.
Before defining δ′ formally, let us explain it informally. There might be several accepting runs on an

input word w, each of them producing the same output, as T is functional. To ensure determinism, when T ′

reads one symbol it must choose exactly one transition, the look-ahead are used to ensure that the transition
is part of an accepting run. The idea is to order the states by a total order <Q and to extend this order
to runs. The look-ahead will be used to choose the next transition of T that has to be fired, so that the
choice will ensure that T follows the smallest accepting run on w. However the look-ahead can only visit
the current longest well-nested prefix, and not the entire word, so it can not, on its own, check that the run
on this well-nested prefix is compatible with a complete accepting run on the whole input word. Therefore
the “parent” of the call c has to pass some information about the global run to its “child” c. In particular,
when T ′ is in state (q, q′) for some state q′, it means that T is in state q and the state reached after reading
the last return symbol of the longest-well nested current prefix must be q′.

Consider a word of the form w = c1w1r1w2c3w3r3 where wi are well-nested, this word is depicted on
Fig. 13. Suppose that, before evaluating w, T ′ is in state (q1, q3). It means that the last transition T has
to fire when reading r3 has q3 as a target state. When reading the call symbol c1, T

′ uses a look-ahead to
determine the smallest triple of states (q′1, q

′
2, q2) such that there exists a run on w that starts in q1 and

such that after reading c1 it is in state q′1, before reading r1 it is in state q′2, after reading r1 it is in state

37

q2 and after reading r3 it is in state q3. Then, T
′ fires the call transition on c1 that with source and target

states q1 and q′1 respectively (it is unique by hypothesis), put on the stack the states (q2, q3) and passes to
w1 (in the state) the information that the chosen run on w1 terminates by the state q′2, i.e. it goes to the
state (q′1, q

′
2). (see Fig. 13). On the figure, we do not explicit all the states and anonymous components are

denoted by . When reading r1, T
′ pops from the stack the tuple (γ, q2, q3) and therefore knows that the

transition to apply on r1 has target state q2 and the transition to apply on r3 has target state q3. Then it
passes q3 to the current state.

(q1,q3)

(q′1,q
′

2) (q′2,q
′

2)

(q2,q3) (,q3)

(,) (,)

(,q3)
look-ahead to choose

the smallest (q′1, q′2, q2)i

i+1

c1 w1 r1 w2 c3 w3 r3

push (γ,q2,q3) pop (γ,q2,q3)

Figure 13: From VPT to deterministic VPTla.

When the computation starts in q0, we do not know yet what return transition has to be fired at the
end of the hedge. This case can be easily treated separately by a look-ahead on the first call symbol that
determine the smallest 4-tuple of states (q1, q

′
2, q2, q3) which satisfies the conditions described before, but to

simplify the proof, we assume that the VPT accepts only words of the form cwr, where w is well-nested, so
that one only needs to consider triples of states.

Formal construction of T ′ We define the transition relation formally. For all states q1, q
′
1, q

′
2, q2, q3 ∈ Q,

it is easy to define a VPA Aq1,q′1,q
′

2,q2,q3
whose size is polynomial in the size of T that accepts a word w iff it

is of the form c1w1r1w3 where w1, w3 are well-nested and there exists a run of T on w that starts in state q1
and is in state q′1 after reading c1, in state q′2 before reading r1, in state q2 after reading r1 and in state q3
after reading w3. Note that if w3 = ε then if q3 6= q2, then w 6∈ L(Aq1,q′1,q

′

2,q2,q3
). We denote by Aq1,q′1,q

′

2,q2,q3

the complement of Aq1,q′1,q
′

2,q2,q3
.

Let < be a total order on states, extended lexicographically to tuples. We let Bq1,q′1,q
′

2,q2,q3
be a VPA

with initial state pq1,q′1,q′2,q2,q3 that defines the language:

L(Bq1,q′1,q
′

2,q2,q3
) = L(Aq1,q′1,q

′

2,q2,q3
) ∩

⋂

(s1, s
′

2, s2) ∈ Q3

(s1, s
′

2, s2) < (q1, q
′

2, q2)

L(Aq1,s1,s′2,s2,q3
)

Such a VPA exists as VPA are closed by intersection and complement. Its size however may be exponential
in |Q|. We define the look-ahead VPA as the union of all those VPA, B =

⊎

Bq1,q′1,q
′

2,q2,q3
. We now define

the call and return transitions of A′, as well as the mappings Ω′ and ξ, as follows. For all c ∈ Σc, r ∈ Σr, γ ∈
Γ, q1, q

′
1, q

′
2, q3, q ∈ Q, u ∈ Σ∗:

• if t = (q1
c,γ
−−→ q′1) ∈ δAc ∧ Ω(t) = u, then

t′ = (q1, q3)
c, (γ,q2,q3)
−−−−−−−→ (q′1, q

′
2) ∈ δA

′

c ∧ Ω′(t′) = u ∧ ξ(t′) = pq1,q′1,q′2,q2,q3

• if t = q0
c,γ
−−→ q′1 ∈ δAc ∧ Ω(t) = u, then

t′ = q0
c, (γ,q3,q3)
−−−−−−−→∈ δA

′

c ∧ Ω′(t′) = u ∧ ξ(t′) = pq0,q′1,q′2,q3,q3(q
′
1, q

′
2)

• if t = (q′2
r,γ
−−→ q2) ∈ δAr ∧ Ω(t) = u, then

t′ = (q′2, q)
r,(γ,q2,q3)
−−−−−−→ (q2, q3) ∈ δA

′

r ∧ Ω′(t′) = u

38

Let us show now that the transducer T ′ is deterministic: return transitions are fully determined by the
states q′2, q2, q3 and the input letter r (by our first assumption there is at most one transition in T from q′2 to
q2). For call transitions, suppose that from (q1, q3) there are two possible look-aheads from states pq1,q′1,q′2,q2,q3
and pq1,s′1,s′2,s2,s3 . By definition of the look-aheads, we have L(B[pq1,q′1,q′2,q2,q3]) ∩ L(B[pq1,s′1,s′2,s2,s3]) = ∅.
Moreover, there cannot be two transitions with the same look-ahead as transitions are fully determined by
q1, q3, q2, q

′
2, q

′
1 (there is at most one call transition by our assumption with source and target states q1 and

q′1 respectively). A simple analysis of the complexity shows that the look-ahead A has exponentially many
more states than T (the exponentiation comes from the complement in the definition of Bq1,q′1,q

′

2,q2,q3
and

from the intersection).

This construction, followed by the construction of Theorem 70, allows one to recover a result that was
already shown in [11]:

Corollary 73. For all functional VPT T , one can effectively construct an equivalent unambiguous VPT T ′.

The resulting unambiguous VPT might be doubly exponentially larger, while the construction of [11],
which is more direct, is singly exponential.

8.5. Decision Problems

In this section, we study the decision problems for VPAla and VPTla. In particular, we prove that
while being exponentially more succinct than VPA, resp. VPT, the equivalence and inclusion of VPAla and
functional VPTla remains decidable in ExpTime, as equivalence of VPA and functional VPT.

Theorem 74. The emptiness problem for VPAla, resp. VPTla, is ExpTime-c, even when the look-aheads
are deterministic.

Proof. The upper bound for VPAla is obtained straightforwardly by first removing the look-aheads (modulo
an exponential blow-up) and then checking the emptiness of the equivalent VPA (in PTime). Checking
emptiness of a VPTla amounts to check emptiness of its domain, which is a VPAla.

For the lower-bound, we reduce the problem of deciding emptiness of the intersection of n deterministic
top-down tree automata, which is known to be ExpTime-c [14].

Given n deterministic top-down binary tree automata T1, . . . , Tn over an alphabet ∆, one can construct in
linear-time n deterministic VPA A1, . . . , An that define the same languages as T1, . . . , Tn respectively, modulo
the natural encoding of trees as nested words over the structured alphabet ∆̃ = {ca | a ∈ ∆}⊎{ra | a ∈ ∆} [23]
The encoding corresponds to a depth-first left-to-right traversal of the tree. For instance, enc(f(f(a, b), c)) =
cfcfcaracbrbrfccrcrf .

We now construct a VPAla A over the alphabet Σ = ∆̃ ⊎ {ci | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ n} such that A
is empty iff

⋂

i L(Ti) = ∅. The language of A contains all words of the form wn,t = c1r1 . . . cnrnenc(t) for
some ranked tree t ∈

⋂

i L(Ti) over ∆.
The VPAla A works as follows. The n first call symbols are used to run n look-aheads. When the i-th call

ci is read, a look-ahead Bi checks that enc(t) ∈ L(Ai): it first count that 2(n− i+1) symbols have been read
and go to the initial state of Ai. If the look-ahead does not accept the suffix, then the computation stops.
Therefore there is an accepting run of A on wn,t iff enc(t) ∈

⋂

i L(Ai). Clearly, A is empty iff
⋂

i L(Ai) = ∅.
Finally, note that the size of |A| is polynomial in

∑

i |Ai| and that as the Ai are deterministic so are the
look-aheads.

It is now easy to prove that testing functionality is ExpTime-c.

Theorem 75. Functionality of VPTla is ExpTime-c, even for deterministic look-aheads.

Proof. For the ExpTime upper-bound, we first apply Theorem 70 to remove the look-aheads. This results
in a VPT possibly exponentially bigger. Then functionality can be tested in PTime (Theorem 27).

The lower bound is a direct consequence of the lower bound for the emptiness problem. Indeed, one can
construct a VPTla that produces two different outputs for each word in its domain, this VPTla is therefore
functional if and only if it is empty.

39

The equivalence and inclusion problems for VPA are ExpTime-c (see [5]). Therefore, one can decide the
equivalence and inclusion for VPAla by first removing the look-ahead with an exponential blow-up, and then
use the ExpTime procedure for VPA. This yields a 2-ExpTime procedure. We show in the next result,
that it is possible to decide it in ExpTime. The idea is to construct in PTime two alternating (ranked)
tree automata equivalent to the VPA modulo the first-child next-sibling encoding. Look-aheads are encoded
as universal transitions. The result follows from the fact that the equivalence and inclusion problems for
alternating tree automata are decidable in ExpTime [14].

Theorem 76. The equivalence and inclusion problems for VPAla is ExpTime-c, even when the look-aheads
are deterministic.

Proof. Let A1, A2 be two VPA. We show how to check L(A1) = L(A2) in ExpTime. Well-nested words
over the alphabet Σ = Σc ⊎ Σr can be translated as unranked trees over the alphabet Σ̃ = Σc × Σr. Those
unranked trees can be again translated as binary trees via the classical first-child next-sibling encoding [14].
VPA over Σ can be translated into equivalent top-down tree automata over first-child next-sibling encodings
on Σ̃ of well-nested words over Σ in PTime [23]. Look-aheads of VPA inspect the longest well-nested prefix
of the current suffix. This corresponds to subtrees in first-child next-sibling encodings of unranked trees.
Therefore VPA with look-aheads can be translated into top-down tree automata with look-aheads that
inspect the current subtree. Top-down tree automata with such look-aheads can be again translated into
alternating tree automata: triggering a new look-ahead corresponds to a universal transition towards two
states: the current state of the automaton and the initial state of the look-ahead. This again can be done in
PTime. The VPA A1 and A2 are equivalent if and only if their associated alternating trees are equivalent,
which can be tested in ExpTime [14].

Lower bounds The lower bounds are a direct consequence of the lower bound for the emptiness problem.
Indeed, a VPAla is empty if and only if it is equivalent to, resp. included into, the empty language.

As a consequence of the ExpTime bound for testing equivalence or inclusion of VPAla and the ExpTime

bound for testing functionality, the equivalence of two functional VPTla is in ExpTime. Indeed, it amounts
to check the equivalence or inclusion of the domains and to, then, check that the union is still functional.

Theorem 77. The equivalence and inclusion problems for functional VPTla is ExpTime-c, even if the
transducers and their look-aheads are deterministic.

9. Conclusion

In this paper, we have introduced the class of visibly pushdown transducers. We have shown that,
contrarily to the more expressive class of pushdown transducers, it enjoys good algorithmic and closure
properties. We however leave some problems as open. Let us mention the two that we consider the most
important ones:

• Problem 1 Given two k-valued VPT T0, T1, decide whether they are equivalent.

• Problem 2 Given a functional VPT T , decide whether it is equivalent to a deterministic one.

The first problem is known to be decidable for finite state transducers [50] and undecidable for pushdown
transducers. The second problem is challenging for efficient evaluation of streaming transformations. Indeed,
a transformation that can be defined by a deterministic VPT can be evaluated with a memory that only
stores the stack and the current state, which is, in practice, very efficient on very wide and reasonably
deep structured documents, such as XML ones. Again, this problem is decidable (in PTime) for finite state
transducers [12, 59, 6] and undecidable for pushdown transducers.

40

10. Acknowledgments

Emmanuel Filiot is an FNRS research associate and Jean-François Raskin is Professeur Francqui de
Recherche 2015-2018 (ULB) funded by the Francqui foundation. This work was partially supported by
ANR project DELTA, grant ANR-16-CE40-0007, by the ARC project “Transform” (Fédération Wallonie-
Bruxelles), and the FNRS CDR project “Flare” J013116F.

References

[1] Alur, R., 2007. Marrying words and trees. In: 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2007. Vol. 5140 of LNCS. pp. 233–242.

[2] Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L., 2008. First-order and temporal logics for
nested words. Logical Methods in Computer Science 4 (4).

[3] Alur, R., Chaudhuri, S., 2010. Temporal reasoning for procedural programs. In: Barthe, G., Hermenegildo, M. V. (Eds.),
VMCAI. Vol. 5944 of Lecture Notes in Computer Science. Springer, pp. 45–60.
URL http://dx.doi.org/10.1007/978-3-642-11319-2

[4] Alur, R., Madhusudan, P., 2004. Visibly pushdown languages. In: 36th ACM symposium on Theory of computing, STOC
2004. pp. 202–211.

[5] Alur, R., Madhusudan, P., 2009. Adding nesting structure to words. Journal of the ACM 56 (3), 1–43.
[6] Béal, M.-P., Carton, O., Prieur, C., Sakarovitch, J., 2003. Squaring transducers: an efficient procedure for deciding

functionality and sequentiality. Theoretical Computer Science 292 (1), 45–63.
[7] Berstel, J., dec 2009.
[8] Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., Simon, J., 2007. XQuery 1.0: An XML query

language, W3C recommendation.
[9] Bray, T., Paoli, J., Maler, E., Yergeau, F., Sperberg-McQueen, C. M., Nov. 2008. Extensible Markup Language (XML)

1.0 (Fifth Edition). W3C recommendation, W3C, http://www.w3.org/TR/2008/REC-xml-20081126/.
[10] Chistikov, D. V., Majumdar, R., 2013. A uniformization theorem for nested word to word transductions. In: Implemen-

tation and Application of Automata - 18th International Conference, CIAA 2013, Halifax, NS, Canada, July 16-19, 2013.
Proceedings. Vol. 7982 of Lecture Notes in Computer Science. Springer, pp. 97–108.

[11] Chistikov, D. V., Majumdar, R., 2013. A uniformization theorem for nested word to word transductions. In: CIAA. pp.
97–108.

[12] Choffrut, C., 1977. Une caractérisation des fonctions séquentielles et des fonctions sous-sq́uentielles en tant que relations
rationnelles. Theoretical Computer Science 5 (3), 325–337.

[13] Clark, J., 1999. XSL Transformations (XSLT) version 1.0, W3C recommendation.
[14] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M., 2007. Tree

automata techniques and applications.
[15] Eilenberg, S., 1974. Automata, Languages, and Machines. Academic Press.
[16] Elgot, C. C., Mezei, J. E., 1965. On relations defined by generalized finite automata. IBM Journal of Research and

Development 9, 47–68.
[17] Engelfriet, J., 1978. On tree transducers for partial functions. Information Processing Letters 7 (4), 170–172.
[18] Engelfriet, J., Maneth, S., 2003. Macro tree translations of linear size increase are MSO definable. SIAM Journal on

Computing 32, 950–1006.
[19] Engelfriet, J., Vogler, H., 1985. Macro tree transducers. Journal of Computer and System Sciences 31 (1), 71–146.
[20] Filiot, E., Gauwin, O., Reynier, P.-A., Servais, F., 2011. Streamability of nested word transductions. In: FSTTCS. pp.

312–324.
[21] Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M., 2010. Properties of visibly pushdown transducers. In:

35th International Symposium on Mathematical Foundations of Computer Science, MFCS 2010. pp. 355–367.
[22] Filiot, E., Servais, F., 2012. Visibly pushdown transducers with look-ahead. In: SOFSEM 2012: Theory and Practice of

Computer Science - 38th Conference on Current Trends in Theory and Practice of Computer Science, Špindler̊uv Mlýn,
Czech Republic, January 21-27, 2012. Proceedings. Vol. 7147 of Lecture Notes in Computer Science. Springer, pp. 251–263.

[23] Gauwin, O., 2009. Streaming tree automata and xpath. Ph.D. thesis, Université Lille 1.
URL http://tel.archives-ouvertes.fr/tel-00421911/

[24] Gauwin, O., Niehren, J., Tison, S., 2009. Earliest query answering for deterministic nested word automata. In: 17th
International Symposium on Fundamentals of Computation Theory, FCT 2009. Vol. 5699 of LNCS. pp. 121–132.

[25] Griffiths, T. V., 1968. The unsolvability of the equivalence problem for lambda-free nondeterministic generalized machines.
Journal of the ACM 15 (3), 409–413.

[26] Groups, W. X. Q. W., 2007. The XPath 2.0 standard.
[27] Gurari, E. M., Ibarra, O. H., 1983. A note on finite-valued and finitely ambiguous transducers. Theory of Computing

Systems 16 (1), 61–66.
[28] Hague, M., Lin, A. W., 2011. Model checking recursive programs with numeric data types. In: 23rd International Confer-

ence on Computer Aided Verification, CAV 2011. pp. 743–759.
[29] Harju, T., Ibarra, O. H., Karhumaki, J., Salomaa, A., 2002. Some decision problems concerning semilinearity and com-

mutation. Journal of Computer and System Sciences 65, 278–294.

41

http://dx.doi.org/10.1007/978-3-642-11319-2
http://www.w3.org/TR/2008/REC-xml-20081126/
http://tel.archives-ouvertes.fr/tel-00421911/

[30] Harris, W. R., Jha, S., Reps, T. W., 2012. Secure programming via visibly pushdown safety games. In: Madhusudan, P.,
Seshia, S. A. (Eds.), Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July
7-13, 2012 Proceedings. Vol. 7358 of Lecture Notes in Computer Science. Springer, pp. 581–598.

[31] Heizmann, M., Hoenicke, J., Podelski, A., 2010. Nested interpolants. In: Hermenegildo, M. V., Palsberg, J. (Eds.), POPL.
ACM, pp. 471–482.

[32] Hors, A. L., Hgaret, P. L., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne, S., 2004. Document object model (dom),
W3C recommendation.

[33] Ibarra, O. H., 1978. Reversal-bounded multicounter machines and their decision problems. Journal of the ACM 25 (1),
116–133.

[34] Koch, C., Scherzinger, S., 2007. Attribute grammars for scalable query processing on XML streams. International Journal
on Very Large Data Bases 16 (3), 317–342.

[35] Kumar, V., Madhusudan, P., Viswanathan, M., 2007. Visibly pushdown automata for streaming XML. In: 16th interna-
tional conference on World Wide Web, WWW 2007. pp. 1053–1062.

[36] Madhusudan, P., Viswanathan, M., 2009. Query automata for nested words. In: 34th International Symposium on Math-
ematical Foundations of Computer Science, MFCS 2009. Vol. 5734 of LNCS. Springer Berlin / Heidelberg, pp. 561–573.

[37] Maneth, S., 2003. The macro tree transducer hierarchy collapses for functions of linear size increase. In: 23rd Conference
on Foundations of Software Technology and Theoretical Computer Science, FST TCS 2003. pp. 326–337.

[38] Martens, W., Neven, F., 2003. Typechecking top-down uniform unranked tree transducers. In: 9th International Conference
on Database Theory, ICDT 2003. pp. 64–78.

[39] Martens, W., Neven, F., 2004. Frontiers of tractability for typechecking simple xml transformations. In: 23th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2004. pp. 23–34.

[40] Martens, W., Neven, F., 2005. On the complexity of typechecking top-down xml transformations. Theoretical Computer
Science 336 (1), 153–180.

[41] Martens, W., Neven, F., 2007. Frontiers of tractability for typechecking simple xml transformations. Journal of Computer
and System Sciences 73 (3), 362–390.

[42] Megginson, D., 2004. Simple API for XML (SAX 2.0).
URL http://www.saxproject.org/

[43] Minsky, M. L., 1967. Finite and Infinite Machines. Prentice-Hall.
[44] Murata, M., 1999. Hedge automata: a formal model for xml schemata.
[45] Neven, F., Schwentick, T., 2002. Query automata over finite trees. Theor. Comput. Sci. 275 (1-2), 633–674.

URL http://dx.doi.org/10.1016/S0304-3975(01)00301-2

[46] Perst, T., Seidl, H., 2004. Macro forest transducers. Information Processing Letters 89 (3), 141–149.
[47] Plandowski, W., 1994. Testing equivalence of morphisms on context-free languages. In: Second Annual European Sympo-

sium on Algorithms, ESA 1994. pp. 460–470.
[48] Raskin, J.-F., Servais, F., 2008. Visibly pushdown transducers. In: 35th International Colloquium on Automata, Languages

and Programming, ICALP 2008. Vol. 5126 of LNCS. pp. 386–397.
[49] Reynier, P.-A., Talbot, J.-M., 2014. Visibly pushdown transducers with well-nested outputs. In: Proc. 18th International

Conference on Developments in Language Theory (DLT’14). Vol. 8633 of LNCS. Springer, pp. 129–141.
[50] Sakarovitch, J., de Souza, R., 2010. Lexicographic decomposition of k -valued transducers. Theory of Computing Systems

47 (3), 758–785.
[51] Schützenberger, M. P., 1976. Sur les relations rationnelles entre monoides libres. Theoretical Computer Science 3 (2),

243–259.
[52] Segoufin, L., Vianu, V., 2002. Validating streaming XML documents. In: 21th ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems, PODS 2002. pp. 53–64.
[53] Servais, F., 2011. Visibly pushdown transducers. Ph.D. thesis, Université Libre de Bruxelles.

URL http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/

[54] Staworko, S., Laurence, G., Lemay, A., Niehren, J., 2009. Equivalence of deterministic nested word to word transducers.
In: 17th International Symposium on Fundamentals of Computation Theory, FCT 2009. Vol. 5699 of LNCS. pp. 310–322.

[55] Thomo, A., Venkatesh, S., Ye, Y. Y., 2008. Visibly pushdown transducers for approximate validation of streaming XML.
In: 5th international conference on Foundations of information and knowledge systems, FoIKS 2008. pp. 219–238.

[56] Verma, K. N., Seidl, H., Schwentick, T., 2005. On the complexity of equational horn clauses. In: 20th International
Conference on Automated Deduction, CADE 2005. Vol. 3632 of LNCS. pp. 337–352.

[57] Walmsley, P., Fallside, D. C., Oct. 2004. XML Schema Part 0: Primer Second Edition. W3C recommendation, W3C,
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

[58] Weber, A., 1993. Decomposing finite-valued transducers and deciding their equivalence. SIAM Journal on Computing
22 (1), 175–202.

[59] Weber, A., Klemm, R., 1995. Economy of description for single-valued transducers. Information and Computation 118 (2),
327–340.

42

http://www.saxproject.org/
http://dx.doi.org/10.1016/S0304-3975(01)00301-2
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

	Introduction
	Preliminaries
	Words.
	Morphism.
	Languages.
	Transductions.
	Structured Alphabets and Nested Words.

	Visibly Pushdown Automata
	Visibly pushdown automata
	Closure Properties

	Visibly Pushdown Transducers
	Examples
	Expressiveness
	Closure Properties

	Decision Problems
	Emptiness and Translation Membership
	Type Checking
	Functionality
	Equivalence and inclusion
	k-valuedness
	Reversal-Bounded Counter Automata
	Multiple Morphism Equivalence Problem
	Deciding k-valuedness

	Well-Nested VPT
	Definition
	Composition
	Type Checking against VPL

	Comparison to Tree Transducers
	Unranked Trees and Hedges - Ranked Trees
	Unranked Tree Transductions.
	wnVPT on Unranked Trees
	Transducers for Unranked Trees
	Transformations by means of Ranked Tree Transducers.
	Summary

	Visibly Pushdown Transducers with Regular Look-ahead
	Definitions
	Expressiveness
	Succinctness.
	Functional VPT and VPTla
	Decision Problems

	Conclusion
	Acknowledgments

