
January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

Visibly Pushdown Transducers with Well-nested Outputs∗

Pierre-Alain Reynier† and Jean-Marc Talbot

Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France

Visibly pushdown transducers (VPTs) are visibly pushdown automata extended with
outputs. They have been introduced to model transformations of nested words, i.e. words

with a call/return structure. When outputs are also structured and well nested words,

VPTs are a natural formalism to express tree transformations evaluated in streaming.
We prove the class of VPTs with well-nested outputs to be decidable in Ptime. Moreover,

we show that this class is closed under composition and that its type-checking against

visibly pushdown languages is decidable.

1. Introduction

Visibly pushdown automata (VPA) [2] (first introduced as input-driven pushdown

automata [4]) are pushdown machines defined over a structured alphabet whose

stack behavior is synchronized with the structure of the input word. A structured

alphabet is actually partitioned into call, internal and return symbols inducing a

nesting structure of the input words [2]. Words over a structured alphabet are called

nested words. The structure of the input word induces the behaviour of the VPA

regarding the stack: when reading a call symbol the machine must push a symbol

onto the stack, when reading a return symbol it must pop a symbol from the stack

and when reading an internal symbol the stack remains unchanged. Hence, the

nesting level at some position in a word corresponds to the height of the stack at

this position. The set of nested words accepted by a VPA is a visibly pushdown

language (VPL). Such languages enjoys good properties: emptiness is decidable and

they are (effectively) closed under Boolean operations. This implies in particular

that inclusion is decidable for VPL.

Visibly pushdown transducers (VPTs) [8, 9, 7, 10] extend visibly pushdown au-

tomata with outputs. Each transition is equipped with an output word; a VPT thus

transforms an input word into an output word obtained as the concatenation of all

the output words produced along a successful run of the machine (i.e. a sequence of

transitions from an initial configuration to some final configuration) on this input.

VPTs are a strict subclass of pushdown transducers (PTs) and strictly extend finite

state transducers (FST). Several undecidable problems for PTs become decidable for

∗This work has been realized thanks to the participation of LabEx Archimède (ANR-11-LABX-
0033) and of the foundation A*MIDEX (ANR-11-IDEX-0001-02), funded by the program ”In-

vestissements d’Avenir” lead by the ANR.
†This author was partly supported by the ANR project MACARON (ANR-13-JS02-0002).

1

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

2

VPTs (similarly to FST): functionality (in Ptime), k-valuedness (in co-NPtime)

and functional equivalence (EXPtime-complete) [7]. However, some decidability

results or valuable properties of finite-state transducers do not hold for VPTs [8]:

VPTs are not closed under composition and type-checking against VPA (deciding

whether the range of a transducer is included into the language of a given VPA) is

undecidable. The main reason of these facts is that ranges of VPTs can be arbitrary

context-free languages and the inclusion problem for context-free languages into

VPL is undecidable [8].

Unranked trees and more generally hedges can be linearized into nested words

over a structured alphabet (such as XML documents). In this case, the matching

between call and return symbols is perfect yielding well-nested words. So, VPTs are

a suitable formalism to express hedge transformations. Moreover, as they process

the linearization from left to right, they are also an adequate formalism to model

and analyze transformations in streaming, as shown in [6]. As VPTs output strings,

operating on well-nested inputs, they define hedge-to-string transformations. But if

the output strings are well-nested too, they indeed define hedge-to-hedge transfor-

mations [5].

In [7], by means of a syntactical restriction on transition rules, a class of VPTs

whose range contains only well-nested words is presented. Although ranges of such

class of VPTs may not be VPL languages, this class enjoys nonetheless good prop-

erties: it is closed under composition and type-checking against visibly pushdown

languages is decidable. This raises a natural question: does these good properties

come from the syntactic definition of this particular subclass or from a semantical

property of the range of these VPTs, for instance the fact that it contains only

well-nested words ?

In this paper, we consider classes of transductions (that is, of relations) over

nested words definable by VPTs. We first consider the class of globally well-nested

transductions, denoted Gwn, which is the class of VPT transductions whose range

contains only well-nested words. This class of transductions naturally defines the

class gwnVPT of transducers: a VPT is in gwnVPT if the transduction it defines is in

Gwn. Using a result from [11, 3], we prove the class gwnVPT to be decidable in Ptime.

Unfortunately, the proposed algorithm does not provide a deep understanding of

this class: the desired property of well-nestedness is only a global property for words

produced on accepting runs. To circumvent this problem, seeking a class closed

by composition as large as possible, we introduce almost well-nested transductions

(denoted Awn). This class slightly generalizes the class Gwn by allowing, in the range

of the transduction, words that may differ on a bounded number of symbols from

well-nested words: there must exist k ∈ N such that every output word contains at

most k unmatched calls and returns. As done for Gwn, we associate with the class of

transductions Awn the class of transducers awnVPT. For this class of transducers, it

turns out that such a boundedness property on unmatched calls and returns can be

considered not only on accepting runs but also on the partial runs on well-nested

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

3

words. So, although the two classes gwnVPT and awnVPT are defined in a semantical

way, we provide criteria on successful computations of VPTs characterizing precisely

each of them. From these criteria, we succeed in computing the natural k upper-

bounding the difference of outputs from well-nested words. Using this bound, we

prove that the two classes gwnVPT and awnVPT enjoy good properties: they are

closed under composition and type-checking is decidable against visibly pushdown

languages.

The paper is organized as follows: definitions and basic properties of VPTs are

presented in Section 2. We introduce in Section 3 the two classes of transductions we

consider in this paper as well as the corresponding classes of transducers. Together

with the (restricted) class introduced in [7], we prove also that they form a strict hi-

erarchy. Then, we give in Section 4 a precise characterization of the classes gwnVPT

and awnVPT by means of some criteria on VPTs. Section 5 describes decision pro-

cedure of the considered classes of transducers. Finally, the closure of gwnVPT and

awnVPT under composition and the decidability of type-checking are addressed in

Section 6.

2. Preliminaries

(Well) nested words The set of all finite words (resp. of all words of length at

most n) over a finite alphabet Σ is denoted by Σ∗ (resp. Σ≤n); the empty word is

denoted by ε. A structured alphabet is a triple Σ = (Σc,Σi,Σr) of disjoint alphabets,

of call, internal and return symbols respectively. Given a structured alphabet Σ,

we always denote by Σc, Σi and Σr its implicit structure, and identify Σ with

Σc ∪ Σi ∪ Σr. A nested word is a finite word over a structured alphabet.

The set of well-nested words over a structured alphabet Σ, denoted by Σ∗wn, is

defined by the following grammar:

Σ∗wn 3 w ::= ε | cw1rw2 | iw

where c ∈ Σc, r ∈ Σr and i ∈ Σi. E.g. on Σ = ({c1, c2},∅, {r}), the nested word

c1rc2r is well-nested while rc1r and rc1rc2 are not.

For a word w from Σ∗, we define its balance B as the difference between the

number of symbols from Σc and of symbols from Σr occurring in w. Note that if

w ∈ Σ∗wn, then B(w) = 0; but the converse is false as examplified by rc1rc2.

Lemma 1. Let w,w′ ∈ Σ∗. We have B(ww′) = B(w) + B(w′) = B(w′w).

We start with a decomposition property of nested words that can easily be

proven by induction on the length of words.

Lemma 2. Let w ∈ Σ∗. Then there exist unique words (ui)1≤i≤m, (vj)1≤j≤m, w0

in Σ∗wn, and unique symbols ri ∈ Σr, 1 ≤ i ≤ m and cj ∈ Σc, 1 ≤ j ≤ n, such that:

w = u1r1 . . . umrmw0c1v1 . . . cnvn

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

4

According to this decomposition of a word w ∈ Σ∗, we say that w contains exactly

m open returns (letters ri) and n open calls (letters cj). This means that these

symbols are not matched in w. We denote by Oc(w) and by Or(w) the number of

open calls and of open returns in w respectively. We define, for any word w, O(w)

as the pair (Or(w),Oc(w)) ∈ N2.

Lemma 3. Let w ∈ Σ∗, the following equalities hold:

Or(w) = −min{B(w′) | w′w′′ = w}
Oc(w) = max{B(w′′) | w′w′′ = w}
B(w) = Oc(w)− Or(w)

Example 4. Let Σ = ({c1, c2},∅, {r}). For c1rc2r, B(c1) = 1, B(c1r) = 0,

B(c1rc2) = 1, B(c1rc2r) = 0. Hence, Or(c1rc2r) = 0 and Oc(c1rc2r) = 0

For rc1r and rc1rc2, B(r) = −1, B(rc1) = 0, B(rc1r) = −1, B(rc1rc2) = 0.

Hence, Or(rc1r) = Or(rc1rc2) = 1, Oc(rc1r) = 0 and Oc(rc1rc2) = 1.

Given (n1, n2) ∈ N2, we define ||(n1, n2)|| = max(n1, n2). Then, for a word w,

we have ||O(w)|| = max{Or(w),Oc(w)}; note that w ∈ Σ∗wn iff ||O(w)|| = 0, that is

O(w) = (0, 0).

Given a word w ∈ Σ∗, we define the height of w, denoted height(w), as

max{||O(w1)|| | w = w1w2}. We denote by |w| the length of w, defined as usual.

Definition 5. For any two pairs (n1, n2) and (n′1, n
′
2) of naturals from N2, we

define (n1, n2)⊕ (n′1, n
′
2) as the pair{

(n1, n2 − n′1 + n′2) if n2 ≥ n′1
(n1 + n′1 − n2, n′2) if n′1 > n2

Lemma 6. For any words w,w′ from Σ∗, O(ww′) = O(w)⊕ O(w′).

Proof. We consider the decompositions of w and w′ given by Lemma 2 and derive

from them the unique decomposition of ww′. By distinguishing two cases (whether

Oc(w) ≥ Or(w′) or not) one easily proves the result.

Proposition 7. (N2,⊕, (0, 0)) is a monoid, and the mapping O is a morphism from

(Σ∗, ., ε) to (N2,⊕, (0, 0))

Proof. Proving that (N2,⊕, (0, 0)) is a monoid is straightforward. The fact that O

is a morphism follows from Lemma 6.

Lemma 8. For any finite sequence of words v1, v2, . . . vn,

Or(v1v2 . . . vn) = max
1≤i≤n

(Or(vi)− B(v1v2 . . . vi−1))

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

5

Proof. The proof goes by induction on the length n of the sequence. This is obvious

for n = 1. Now, we consider n + 1 assuming this holds for n: Or(v1v2 . . . vn+1) is

equal by definition of ⊕ to{
Or(v1) if Oc(v1) ≥ Or(v2 . . . vn+1))

Or(v1) + Or(v2 . . . vn+1)− Oc(v1) if Oc(v1) < Or(v2 . . . vn+1))

Now, max(Or(v1),max2≤i≤n+1(Or(vi)− B(v1v2 . . . vi−1)))

= max(Or(v1),max2≤i≤n+1(Or(vi)− B(v2 . . . vi−1))− B(v1))

= max(Or(v1),Or(v2 . . . vn+1)− B(v1)) (by ind. hyp.)

Depending of the greatest of the two elements; if Or(v1) ≥ Or(v2 . . . vn+1) −
B(v1) = Or(v2 . . . vn+1) − Oc(v1) + Or(v1). We have Oc(v1) ≥ Or(v2 . . . vn+1).

If Or(v1) < Or(v2 . . . vn+1) − B(v1) = Or(v2 . . . vn+1) − Oc(v1) + Or(v1). Then,

Oc(v1) < Or(v2 . . . vn+1). In both cases, this is equal to Or(v1v2 . . . vn+1).

Transductions - Transducers Let Σ be a structured (input) alphabet, and ∆

be a structured (output) alphabet. A relation over Σ∗ ×∆∗ is a transduction. We

denote by T (Σ,∆) the set of these transductions. For a transduction T , the set of

words u (resp. v) such that (u, v) ∈ T is called the domain (resp. the range) of T .

For L ⊆ Σ∗, we denote by T (L) the set {v ∈ ∆∗ | (u, v) ∈ T for some u ∈ L}.

Definition 9. [8] A visibly pushdown transducer (VPT) from Σ to ∆ is a tuple

A = (Q, I, F,Γ, δ) where Q is a finite set of states, I ⊆ Q the set of initial states,

F ⊆ Q the set of final states, Γ a (finite) stack alphabet, and δ = δc] δr] δi the

transition relation where:

• δc ⊆ Q× Σc × Γ×∆∗ ×Q are the call transitions,

• δr ⊆ Q× Σr × Γ×∆∗ ×Q are the return transitions.

• δi ⊆ Q× Σi ×∆∗ ×Q are the internal transitions.

A stack (content) is a word over Γ. Hence, Γ∗ is a monoid for the concatenation

with ⊥ (the empty stack) as neutral element. A configuration of A is a pair (q, σ)

where q ∈ Q and σ ∈ Γ∗ is a stack content. Let u = a1 . . . al be a (nested) word on

Σ, and (q, σ), (q′, σ′) be two configurations of A. A run ρ of the VPT A over u from

(q, σ) to (q′, σ′) is a (possibly empty) sequence of transitions ρ = t1t2 . . . tl ∈ δ∗ such

that there exist q0, q1, . . . ql ∈ Q and σ0, . . . σl ∈ Γ∗ with (q0, σ0) = (q, σ), (ql, σl) =

(q′, σ′), and for each 0 < k ≤ l, we have either (i) tk = (qk−1, ak, γ, vk, qk) ∈ δc
and σk = σk−1γ, or (ii) tk = (qk−1, ak, γ, vk, qk) ∈ δr, and σk−1 = σkγ, or (iii)

tk = (qk−1, ak, vk, qk) ∈ δi, and σk−1 = σk. When the sequence of transitions is

empty, (q, σ) = (q′, σ′).

The length (resp. height) of a run ρ over some word u ∈ Σ∗, denoted |ρ| (resp.

height(ρ)) is defined as the length of u (resp. as the height of u).

The output of ρ (denoted output(ρ)) is the word v ∈ ∆∗ defined as the con-

catenation v = v1 . . . vl when the sequence of transitions is not empty and as ε

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

6

otherwise. We write (q, σ)
u|v−−→ (q′, σ′) when there exists a run on u from (q, σ)

to (q′, σ′) producing v as output. Initial (resp. final) configurations are pairs (q,⊥)

with q ∈ I (resp. with q ∈ F). A configuration (q, σ) is reachable (resp. co-reachable)

if there exist some initial configuration (i,⊥) and a run from (i,⊥) to (q, σ) (resp.

some final configuration (f,⊥) and a run from (q, σ) to (f,⊥)). A run is accepting

if it starts in an initial configuration and ends in a final configuration.

A transducer A defines transduction (ie a relation) from nested words to nested

words, denoted by JAK, and defined as the set of pairs (u, v) ∈ Σ∗ ×∆∗ such that

there exists an accepting run on u producing v as output. Note that since both

initial and final configurations have empty stack, A accepts only well-nested words,

i.e. JAK ⊆ Σ∗wn ×∆∗.

We denote by VPT(Σ,∆) the class of VPTs over the structured alphabets Σ

(as input alphabet) and ∆ (as output alphabet) and by VP(Σ,∆) the class of

transductions defined by VPTs from VPT(Σ,∆).

Given a VPT A = (Q, I, F,Γ, δ), we let OAmax be the maximal number of open

calls and of open returns in transition outputs in A, that is OAmax = max{||O(v)|| |
(p, α, v, γ, q) ∈ δc∪δr or (p, α, v, q) ∈ δi}. Similarly, we define OutAmax as the maximal

length of transition outputs in A, that is OutAmax = max{|v| | (p, α, v, γ, q) ∈ δc ∪
δr or (p, α, v, q) ∈ δi}. Finally, |S| denoting the cardinality of the set S, the size of

A is defined by
(

3 ∗ |Q|+ |Γ|+ |Q| ∗ |Q| ∗ |Σ| ∗ |Γ| ∗ OutAmax

)
.

Visibly pushdown automata We define visibly pushdown automata (VPA) [1]

simply as a particular case of VPT; we may think of them as transducers with

no output. Hence, only the domain of the transduction matters and is called the

language defined by the visibly pushdown automaton. For a VPA A, this language

is denoted L(A). Such languages are called visibly pushdown languages (VPL).

Properties of computations in VPT/VPA For a VPT A = (Q, I, F,Γ, δ), we

define two sets PAwn and CAwn, subsets of Q×Q and (Q×Q)2, whose aim is to abstract

computations of A.

Definition 10. Let A = (Q, I, F,Γ, δ) be a VPT. The set PAwn is the set of pairs

(p, q) ∈ Q×Q such that there exist u ∈ Σ∗wn and a run (p,⊥)
u|v−−→ (q,⊥) in A.

Thanks to the grammar describing the set Σ∗wn and given in the preliminaries

on nested words, the set PAwn is obtained as the least subset of Q×Q satisying the

following rules:

(p, p) ∈ PAwn
(p, i, v, p′) ∈ δi (p′, q) ∈ PAwn

(p, q) ∈ PAwn

(p, c, γ, v, p′) ∈ δc (p′, q′) ∈ PAwn (q′, r, γ, v′, q′′) ∈ δr (q′′, q) ∈ PAwn
(p, q) ∈ PAwn

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

7

Elements of PAwn thus represent horizontal paths in A. In order to study vertical

loops in A, we also introduce a notion of vertical path. To this end, we consider the

set C(Σ) of contexts over Σ. A context is a pair of words (u1, u2) ∈ Σ∗ × Σ∗ such

that u1u2 ∈ Σ∗wn. C(Σ) is described by the following grammar:

C(Σ) 3 (u1, u2) ::= (ε, ε) | (cu1, u2r) | (w1u1, u2w2)

where w1, w2 ∈ Σ∗wn, c ∈ Σc and r ∈ Σr.

Definition 11. Let A = (Q, I, F,Γ, δ) be a VPT. The set CAwn is the set of pairs

((p, p′), (q′, q)) ∈ (Q × Q)2 such that there exist a context (u1, u2) ∈ C(Σ) and two

runs (p,⊥)
u1|v1−−−→ (p′, σ) and (q′, σ)

u2|v2−−−→ (q,⊥) in A.

Again, thanks to the description of C(Σ) by means of a grammar, this set is

obtained as the least subset of (Q×Q)2 satisfying the following rules:

((p, p), (q, q)) ∈ CAwn

(p, c, γ, v, p1) ∈ δc (q1, r, γ, v
′, q) ∈ δr ((p1, p

′), (q′, q1)) ∈ CAwn
((p, p′), (q′, q)) ∈ CAwn

{(p, p1), (q1, q)} ⊆ PAwn ((p1, p
′), (q′, q1)) ∈ CAwn

((p, p′), (q′, q)) ∈ CAwn
As a consequence of the above inductive definitions of PAwn and CAwn, we have:

Proposition 12. Given a VPA A, the sets PAwn, CAwn can be computed in polynomial

time in the size of A.

We present now results on runs of visibly pushdown machines. More precisely,

these results state first that sufficiently long runs of small height must contain a

(horizontal) loop on some well-nested word and secondly that, runs of great height

contain a (vertical) loop that let the stack grow.

Lemma 13. Let A be a VPT with set of states Q and ρ : (p,⊥)
u|v−−→ (q,⊥) be a

run of A over some word u ∈ Σ∗wn. Let h ∈ N>0. We have:

(i) if height(u) ≤ h and |u| > 3 ∗ (|Q| − 1)h+1, then ρ can be decomposed as

follows:

ρ : (p,⊥)
u1|v1−−−→ (p1, σ)

u2|v2−−−→ (p1, σ)
u3|v3−−−→ (q,⊥)

with u1u3 and u2 well-nested words and u2 6= ε.

(ii) if height(u) ≥ |Q|2, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1|v1−−−→ (p1, σ)

u2|v2−−−→ (p1, σσ
′)

u3|v3−−−→ (p2, σσ
′)

u4|v4−−−→ (p2, σ)
u5|v5−−−→ (q,⊥)

with u1u5, u2u4 and u3 well-nested words, and σ′ 6= ⊥.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

8

Proof. Let us start by proving point (i): we show that every run ρ on some input

word u ∈ Σ∗wn, that does not contain a loop as expressed in point (i), has a length

bounded by a function only depending on the height of u. We denote this function

f and will identify it using a recurrence relation. First, if the height of u is null,

then the length of ρ is at most |Q| − 1. Now, let us evaluate f(h + 1) by means

of f(h), for some h ∈ N. Consider a run ρ on some word u of height h + 1. As ρ

contains no loop, ρ contains at most |Q| − 1 configurations with empty stack. Let

us denote by w ∈ Σ∗wn the input word between two consecutive such configurations.

Either w is equal to some internal symbol, or w is of the form cw′r, with c ∈ Σc,

r ∈ Σr and w′ ∈ Σ∗wn. In the latter case, we can bound the length of the run on w′

by the value f(h). As a consequence, we obtain the following recurrence relation:

f(h+ 1) = (|Q| − 1)(f(h) + 2)

Together with the constraint f(0) = |Q| − 1, one can deduce the following solution:

f(h) = (|Q| − 1)(|Q|(|Q| − 1)h − 2)/(|Q| − 2). It is then easy to verify f(h) ≤
3(|Q| − 1)h+1, provided that |Q| ≥ 3.

Let us prove now point (ii): it is possible to extract from ρ on u a sequence of

runs ρ0, . . . , ρh−1 on words ū0, . . . , ūh−1 respectively such that:

• ρ0 = ρ, ū0 = u,

• for all 0 ≤ i ≤ h − 2, for some ū′i+1, ū
′′
i+1 ∈ Σ∗wn, ūi = ū′i+1ūi+1ū

′′
i+1 and

ūi+1 = cwr for some c ∈ Σc, r ∈ Σr and w ∈ Σ∗wn,

• for all 0 ≤ i ≤ h − 2, ρi+1 is the subrun of ρi running on ūi+1 and if the

starting and the ending configurations of ρi are of the form (pi, σi) and

(qi, σi) respectively then the starting and ending configurations of ρi+1 are

of the form (pi+1, σiγ) and (qi+1, σiγ) for some γ ∈ Γ.

When h ≥ |Q|2, by a simple pigeonhole principle argument, there must be two runs

ρj , ρk having the same state in their starting configurations as well as in their ending

configurations. By letting u1 = ū′0 . . . ū
′
j , u5 = ū′′j . . . ū

′′
0 , u3 = ūk, u2 = ū′j+1 . . . ū

′
k

and u4 = ū′′k . . . ū
′′
j+1, one obtains a pattern similar to the one in point (ii).

3. Classes of VPT producing (almost) well-nested outputs

We first recall the definition of (locally) well-nested VPT and then we introduce the

new classes of globally and almost well-nested VPT. Finally, we prove relationships

between these classes.

3.1. Definitions

Locally Well-nested VPTs In [7], the class of (locally) well-nested VPT has been

introduced. For this class, the enforcement of the well-nestedness of the output is

done locally and syntactically at the level of transition rules.

Definition 14 (Locally Well-nested) Let A = (Q, I, F,Γ, δ) be a VPT. A is a

locally well-nested VPT (lwnVPT) if:

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

9

i p1 p2 f
c|ccc, γ i|rr r|r, γ

c|cr, γ′ r|cr, γ′

(a) The VPT A1.

i p1 p2 f
c|cc, γ i|c r|rrr, γ

c|cr, γ′ r|rc, γ′

(b) The VPT A2.

Figure 1. Two VPTs in VP(Σ,Σ) with Σc = {c}, Σr = {r} and Σi = {i}.

• for any pair of transitions (q, c, v, γ, q′) ∈ δc, (p, r, v′, γ, p′) ∈ δr, the word

vv′ is well nested, and

• for any transition (q, a, v, q′) ∈ δi, the word v is well-nested.

A VPT transduction T is locally well-nested if there exists a lwnVPT A that realizes

T (ie JAK = T). The class of locally well-nested VPT transductions is denoted Lwn.

Proposition 15. [7] Let A be a locally well-nested VPT and (p, σ), (q, σ) two con-

figurations of A. For all well-nested word u, if (p, σ)
u|v−−→ (q, σ) then v ∈ ∆∗wn.

Hence, any locally well-nested VPT transduction T is included into Σ∗wn ×∆∗wn.

Globally and almost well-nested VPT transductions we introduce now the

class of globally well-nested transductions and its weaker variant of almost well-

nested transductions. Unlike the definition of Lwn, done at the level of transducers,

these definitions are done at the level of transductions and thus, as semantical

properties.

Definition 16 (Globally Well-nested) A VPT transduction T is globally well-

nested if T (Σ∗wn) ⊆ ∆∗wn. The class of globally well-nested VPT transductions is

denoted Gwn.

A VPT A is globally well-nested if its transduction JAK is. The class of globally

well-nested VPT is denoted gwnVPT.

Definition 17 (Almost Well-nested) A VPT transduction T is almost well-

nested if there exists k in N such that for every word (u, v) ∈ T , it holds that

||O(v)|| ≤ k. The class of almost well-nested VPT transductions is denoted Awn.

A VPT A is almost well-nested if its transduction JAK is. The class of almost

well-nested VPT is denoted awnVPT.

3.2. Comparison of the different classes

Classes of transductions Gwn and Awn are defined by semantical conditions on the

defined relations. This yields a clear correspondence between the classes Gwn and

gwnVPT on one side and Awn and awnVPT on the other side. This is not the case

for Lwn: two examples of VPTs are given in Figure 1. It is easy to verify that

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

10

A1, A2 ∈ gwnVPT. But, none of these transducers belongs to lwnVPT. However,

one can easily build a transducer A′2 such that JA2K = JA′2K and A′2 ∈ lwnVPT.

Indeed one can perform the following modifications:

• the transition (p1, i, c, p2) becomes (p1, i, ε, p2)

• the transition (p2, r, rc, γ
′, p2) becomes (p2, r, cr, γ

′, p2)

• the transition (p2, r, rrr, γ, f) becomes (p2, r, crrr, γ, f)

On the contrary, as we prove below, the transduction JA1K does not belong to

Lwn: there exists no transducer A′1 ∈ lwnVPT such that JA′1K = JA1K.

Proposition 18. The following inclusion results hold:

• For transducers: lwnVPT (gwnVPT (awnVPT

• For transductions: Lwn (Gwn (Awn

Proof. The non-strict inclusions are straightforward. The strict inclusions

gwnVPT (awnVPT and Gwn (Awn follow from the constraint on the range. The

strict inclusion lwnVPT (gwnVPT is witnessed by A2, as explained above.

We prove now the strict inclusion Lwn (Gwn, and therefore consider the trans-

ducer A1. Observe that JA1K ∈ Gwn, we show that JA1K 6∈ Lwn. First note that

JA1K = {(cckirkr, ccc(cr)krr(cr)kr) | k ∈ N} and that

(Fact 1) the transduction defined by A1 is injective

(Fact 2) any word of the output can be decomposed as w1rrw2 where w1 = ccc(cr)k

and w2 = (cr)kr for some natural k and for each w1 with fixed k there exists a unique

w2 such that w1rrw2 is in the range of A1 (and symmetrically for w2 and w1).

(Fact 3) in any word of the output, the number of occurrences of the subword rr

is upper-bounded by 3 and no subword ccccc occurs.

By contradiction, suppose that there exists A′1 ∈ lwnVPT such that JA′1K = JA1K.
Now, for k sufficiently large and depending only on the fixed size of A′1, A′1 has

an accepting run for this input of the form given in the point (ii) of Lemma 13 and

additionnaly, v1v5, v2v4, v3 are well-nested due to Proposition 15.

Now, assume that v2 = ε and v4 = ε. Then, using a simple pumping argument

over the pair (u2, u4), one would obtain a different input producing the same output,

contradicting (Fact 1) as JA1K = JA′1K. So, v2 6= ε or v4 6= ε.

Our aim is to identify in which vj ’s the pattern rr mentionned previously occurs.

Now, by case inspection :

Case where the pattern rr is in v1: v2v3v4v5 is a suffix of w2. By a pumping

argument over the pair (u2, u4) using that either v2 6= ε or v4 6= ε, one would obtain

a different w′2 such that w1rrw
′
2 is in the range of A′1 (and thus, A1), contradicting

(Fact 2).

Case where the pattern rr is in v5 or split as the last letter of v1 and the first

letter of v2 (resp. as the last letter of v4 and the first letter of v5): follow the lines

of the previous case.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

11

Case where the pattern rr is in v2 or v4: using a pumping over the pair (u2, u4),

one could obtain outputs with unboundedly many subwords rr, contradicting (Fact

3).

Case where the pattern rr is split as the last letter of v2 and the first letter of v3:

v3 is well-nested. Hence, it can not start with some return symbol. Contradiction.

Case where the pattern rr is split as the last letter of v3 and the first letter of v4
As v3 is well-nested, it must be of the form c(cr)kr. So, v1v2 = cc. If v2 6= ε, v2 is

equal to c or cc. Using a pumping over the pair (u2, u4), one could obtain outputs

containing the subword ccccc, contradicting (Fact 3). Otherwise, if v2 = ε, then by

a pumping argument over the pair (u2, u4) using that v4 6= ε, one would obtain a

different w′2 such that w1rrw
′
2 is in the range of A′1 (and thus, A1), contradicting

(Fact 1).

Case where the pattern rr is in v3: v3 is well-nested and contains as a suffix after

this pattern rr a prefix of w2: depending on the form of this prefix:

• the prefix is of the form (cr)k
′
: v3 must be of the form cc(cr)k

′
rr(cr)k

′
and

thus, k′ = k. So, v1v2 = c. We then conclude as in the previous case.

• the prefix is of the form (cr)k
′
c: this is not possible as v3 ∈ Σ∗wn.

• the prefix is of the form (cr)kr: v3 must be of the form ccc(cr)k
′
rr(cr)k

′
. It

implies that v2 = ε and v4 = ε. Contradiction.

Hence, there is no situation in which rr can occur maintaining A′1 to be locally

well-nested. Therefore, such A′1 cannot exist.

4. Characterizations

We give now criteria on VPTs that aim to characterize the classes gwnVPT and

awnVPT. For the two classes, these criteria entail that on both horizontal or verti-

cal loops containing a reachable and a co-reachable configurations, the balance of

output words must be equal to 0.

Definition 19. Let A be a VPT. Let us consider the following criteria:

(C1) For all states p, i, f such that i is initial and f is final, for any stack σ,

then any accepting run

(i,⊥)
u1|v1−−−→ (p, σ)

u2|v2−−−→ (p, σ)
u3|v3−−−→ (f,⊥)

with u1u3, u2 ∈ Σ∗wn satisfies B(v2) = 0.

(C2) For all states p, q, i, f such that i is initial and f is final, for any stack σ, σ′,

then any accepting run

(i,⊥)
u1|v1−−−→ (p, σ)

u2|v2−−−→ (p, σσ′)
u3|v3−−−→ (q, σσ′)

u4|v4−−−→ (q, σ)
u5|v5−−−→ (f,⊥)

with u2u4, u3 ∈ Σ∗wn and σ′ 6= ⊥ satisfies B(v2) + B(v4) = 0 and B(v2) ≥ 0.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

12

Intuitively, if one of the two criteria from Definition 19 is violated then one can,

by a pumping argument, exhibit an arbitrary long sequence of well-nested words

on which the VPT A will produce a sequence of output words whose number of

unmatched calls or returns will strictly increase.

The following result follows from Propositions 23 and 25 that we prove in the

rest of this section.

Theorem 20. A VPT A is almost well-nested iff A verifies criteria (C1) and (C2).

The following lemma is an immediate consequence of the definitions.

Lemma 21. Let X ⊆ Σ∗ such that the set B(X) = {B(u) | u ∈ X} is infinite.

Then the set {O(u) | u ∈ X} is infinite as well.

Lemma 22. Let u ∈ Σ∗ and k be a strictly positive integer. Then O(uk) is equal to

(Or(u), (Oc(u)−Or(u))∗ (k−1)+Oc(u)) if Oc(u) ≥ Or(u) and to (Or(u)+(Or(u)−
Oc(u)) ∗ (k − 1),Oc(u)) otherwise.

Proof. By definition of ⊕ and by induction on k, computing O(u)⊕ O(uk).

Proposition 23. Let A be a VPT. If A does not satisfy (C1) or (C2), then A is

not almost well-nested.

Proof. Let us assume that A does not satisfy (C1). Hence there exists an accepting

run as described in criterion (C1) such that B(v2) 6= 0. We then build by iterating

the loop on word u2 accepting runs for words of the form u1(u2)ku3 for any natural

k, producing output words v1(v2)kv3. Let us denote this set by X. As B(v2) 6= 0

and by Lemma 1, the set B(X) is infinite. Lemma 21 entails that A is not almost

well-nested.

Assume now that A does not satisfy (C2). Hence, there exists an accepting run

as described in this criterion such that either (i) B(v2) + B(v4) = b 6= 0 or (ii)

B(v2) < 0. In the case of (i), from this run, one can build by pumping accepting

runs for words of the form u1(u2)ku3(u4)ku5 for any natural k, producing output

words v1(v2)kv3(u4)kv5. As before, Lemmas 1 and 21 imply that A is not almost

well-nested.

Now, for (ii) assuming that B(v2) + B(v4) = 0. As B(v2) < 0, it holds

that B(v4) > 0 and thus, Or(v2) > Oc(v2), Or(v4) < Oc(v4). From the run of

the criterion, one can build by pumping accepting runs for words of the form

u1(u2)ku3(u4)ku5 for any natural k, producing output words v1(v2)kv3(v4)kv5.

Now, we consider O(v1(v2)kv3(v4)kv5) which, by associativity of ⊕, is equal to

O(v1)⊕ O((v2)k)⊕ O(v3)⊕ O((u4)k)⊕ O(v5). Now, by Lemma 22, it is equal to

O(v1)⊕ (Or(v2) + (Or(v2)− Oc(v2)) ∗ (k − 1),Oc(v2))⊕ O(v3)⊕
(Or(v4), (Oc(v4)− Or(v4)) ∗ (k − 1) + Oc(v4))⊕ O(v5)

It is easy to see that for k varying, the described pairs are unbounded, falsifying

the almost well-nestedness of A.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

13

Let us prove now the converse. Given a VPT A = (Q, I, F,Γ, δ), we define the

integer NA = 3 ∗ (|Q| − 1)(2|Q|
2+1).

Lemma 24. Let A be a VPT. If A satisfies the criteria (C1) and (C2), then for

any accepting run ρ such that |ρ| ≥ NA, there exists an accepting run ρ′ such that

|ρ′| < |ρ| and ||O(output(ρ′))|| ≥ ||O(output(ρ))||.

Proof. Let A = (Q, I, F,Γ, δ) and ρ be an accepting run for some word u outputing

v such that |ρ| ≥ NA. We distinguish two cases, depending on height(ρ):

Case where height(ρ) ≤ 2|Q|2 : in this case, by definition of NA, we can apply

the point (i) of Lemma 13 twice and prove that ρ is of the following form:

(i,⊥)
u1|v1−−−→ (p, σ)

u2|v2−−−→ (p, σ)
u3|v3−−−→ (q, σ′)

u4|v4−−−→ (q, σ′)
u5|v5−−−→ (f,⊥)

with u2, u4 ∈ Σ∗wn \ {ε}. Then, by criterion (C1), we have B(v2) = B(v4) = 0.

In the following, we prove that at least one of u2 and u4 can be removed from u

while preserving the value Or(u): let us denote by v′ (resp. v′′) the resulting output

word once u2 (resp. u4) is removed from the input. Observe also that removing one

of this part of the run does not modify the balance B(.) of the output of any prefix

v1 . . . vl of the output sequence as B(v2) = B(v4) = 0. Now, we appeal to Lemma 8;

depending on the vi defining Or(v1 . . . v5) as a maximum value,

• if the maximum is reached at a position vi different from v2, then as

B(v1v3 . . . v5) = B(v1 . . . v5), Or(v) = Or(v′) allowing to remove u2,

• the reasoning is similar if the maximum is reached for v4 and thus, Or(v) =

Or(v′′) allowing to remove u4.

Finally as the overall balance of the output is preserved and as Oc(v) = B(v) +

Or(v), we obtain O(v) = O(v′) (resp. O(v′′)), yielding the result.

Case where height(ρ) > 2|Q|2 : in this case, we can apply the point (ii) of

Lemma 13 twice and prove that ρ is of the following form:

(i,⊥)
u1|v1−−−→ (p1, σ)

u2|v2−−−→ (p1, σσ1)
u3|v3−−−→ (q1, σσ1σ2)

u4|v4−−−→ (q1, σσ1σ2σ3)
u5|v5−−−→ (q2, σσ1σ2σ3)

u6|v6−−−→ (q2, σσ1σ2)
u7|v8−−−→ (p2, σσ1)

u8|v8−−−→ (p2, σ)
u9/v9−−−−→ (f,⊥),

with u1u9, u2u8, u3u7, u4u6, u5 ∈ Σ∗wn and σ1, σ3 6= ⊥.

Then the two following runs can be built: the one obtained by removing the parts

of ρ on u2 and u8, and the one obtained by removing the parts of ρ on u4 and u6,

yielding runs whose length is strictly smaller than |ρ|. Let us denote these two runs

by ρ′ and ρ′′ respectively, and their outputs by v′ and v′′. As A verifies the criterion

(C2), we have that B(v) = B(v′) = B(v′′), as B(v2) + B(v8) = B(v4) + B(v6) = 0

and B is commutative. In order to obtain the result, we study Or(v).

By Lemma 8,

Or(v) =
9

max
i=1
{Or(vi)− B(v1 . . . vi−1)}

Then, we distinguish two cases:

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

14

• If the maximum corresponding to Or(v) is not obtained for i ∈ {4, 5, 6},
then we prove that Or(v′′) ≥ Or(v): when we remove parts of ρ on u4 and

u6, we have:

Or(v′′) = max{Or(v1),Or(v2)− B(v1),Or(v3)− B(v1v2),Or(v5)− B(v1v2v3),

Or(v7)− B(v1v2v3v5),Or(v8)− B(v1v2v3v5v7),Or(v9)− B(v1v2v3v5v7v8)}

As B(v4) + B(v6) = 0 and the maximum corresponding to Or(v) is not

obtained for i ∈ {4, 5, 6}, we obtain:

Or(v′′) = max{Or(v),Or(v5)− B(v1v2v3)}

This proves Or(v′′) ≥ Or(v).

• If the maximum corresponding to Or(v) is obtained for i ∈ {4, 5, 6}, then

we prove that Or(v′) ≥ Or(v): when we remove parts of ρ on u2 and u8,

denoting by v′ the resulting output word, we have:

Or(v′) = max{Or(v1),Or(v3)− B(v1),Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),

Or(v6)− B(v1v3v4v5),Or(v7)− B(v1v3v4v5v6),Or(v9)− B(v1v3v4v5v6v7)}

As the maximum corresponding to Or(v) is obtained for i ∈ {4, 5, 6}, we

can write:

Or(v) = max{Or(v4)− B(v1v2v3),Or(v5)− B(v1v2v3v4),Or(v6)− B(v1v2v3v4v5)}
= max{Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),Or(v6)− B(v1v3v4v5)} − B(v2)

By criterion (C2), we have B(v2) ≥ 0 and thus:

max{Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),Or(v6)− B(v1v3v4v5)} ≥ Or(v)

In addition, by Lemma 8, we have Or(v) ≥ Or(v1) and Or(v) ≥ Or(v9) −
B(v1v2v3v4v5v6v7v8). By criterion (C2), the latter property can be written

as Or(v) ≥ Or(v9)−B(v1v3v4v5v6v7) thanks to the property B(v2)+B(v8) =

0. Using these facts, we can simplify the previous expression and obtain:

Or(v′) = max{Or(v3)− B(v1),Or(v4)− B(v1v3),Or(v5)− B(v1v3v4),

Or(v6)− B(v1v3v4v5),Or(v7)− B(v1v3v4v5v6)}
= max{Or(v3)− B(v1v2),Or(v4)− B(v1v2v3),Or(v5)− B(v1v2v3v4),

Or(v6)− B(v1v2v3v4v5),Or(v7)− B(v1v2v3v4v5v6)}+ B(v2)

= Or(v) + B(v2)

The last equality follows from the fact the maximum corresponding to Or(v)

is obtained for i ∈ {4, 5, 6}. This concludes this case proving that Or(v′) ≥
Or(v).

Now, in both cases, as for any word w, we have Oc(w) = B(w) +Or(w), we have

also respectively Oc(v′′) ≥ Oc(v) and Oc(v′) ≥ Oc(v). This entails, according to the

case to be considered, ||O(v′′)|| ≥ ||O(v)|| or ||O(v′)|| ≥ ||O(v)||.

Proposition 25. Let A be a VPT. If A satisfies (C1) and (C2), then every accept-

ing run (i,⊥)
u|v−−→ (f,⊥) of A verifies ||O(v)|| ≤ NA.OAmax.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

15

Proof. If |v| ≤ NA then the result is trivial; otherwise, assuming the existence of a

minimal counter-example of this statement, a contradiction follows from Lemma 24.

Now we can show a precise characterization of transducers from gwnVPT

amongst those in awnVPT.

Definition 26. Let A be a VPT. We consider the following criterion:

(D) For all (u, v) ∈ JAK , if |u| ≤ NA then v ∈ ∆∗wn.

Theorem 27. Let A be a VPT. Then A is globally well-nested iff A verifies criteria

(C1), (C2) and (D).

Proof. The left-to-right implication is trivial using Proposition 23. For the other

direction, we prove that for all u ∈ Σ∗wn and all v ∈ ∆∗ such that (u, v) ∈ JAK, it

holds that v ∈ ∆∗wn. The proof goes by induction on the length of u. For the base

case, if |u| ≤ NA, then the criteria (D) gives the result. For the induction step,

we assume the result for any input word of length smaller than k ; we consider a

word u such that |u| = k + 1 and a word v such that (u, v) ∈ JAK. By Lemma 24,

there exists a word u′ such that |u′| ≤ k and for any v′ such that (u′, v′) ∈ JAK,
||O(v)|| ≤ ||O(v′)||. As, by induction hypothesis, v′ is well-nested, ie ||O(v′)|| = 0,

we have ||O(v)|| = 0. So, v is well-nested.

5. Deciding the classes of almost and globally well-nested VPT

In this section, we prove that given a VPT A, it is decidable to know whether

JAK ∈ Awn and whether JAK ∈ Gwn.

Proposition 28. Given a VPT A = (Q, I, F,Γ, δ) and states p, q of A, deciding

whether there exists some stack σ such that (p, σ) is reachable and (q, σ) is co-

reachable can be done in Ptime.

Proof. This is an immediate consequence of the observation that such pairs (p, q)

are exactly the elements obtained as the projection on the second and third com-

ponents of the set CAwn ∩ I ×Q×Q× F , which can be computed in Ptime thanks

to Proposition 12.

Theorem 29. Let A be a VPT. Whether JAK ∈ Awn can be decided in Pspace.

Proof. By Theorem 20, deciding the class awnVPT amounts to decide criteria

(C1) and (C2). Therefore we propose a non-deterministic algorithm running in

polynomial space, yielding the result thanks to Savitch theorem.

In this proof, by abuse of notation, given a run ρ whose output is some word v,

we may simply write B(ρ) to denote B(v).

We claim that A satisfies (C1) and (C2) if and only if it satisfies these criteria

on ”small instances”, defined as follows:

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

16

• Criterion (C1): consider only words u2 such that height(u2) ≤ |Q|2 and

|u2| ≤ 2.|Q||Q|2 .

• Criterion (C2): consider only stacks σ′ such that |σ′| ≤ |Q|2 and words

u2, u4 of height at most 2.|Q|2 and length at most |Q|2.|Q||Q|2 .

The non-deterministic algorithm follows from the claim: in order to exhibit a wit-

ness of the fact that A 6∈ awnVPT, the algorithm guesses whether (C1) or (C2) is

violated, and a pair of states (p, q) and one or two runs, according to the criterion,

of exponential size, which can be done in polynomial space. Using Proposition 28

it also satisfies that there exists a stack σ such that (p, σ) is reachable and (q, σ) is

co-reachable.

To prove this claim, we show, by induction on u ∈ Σ∗wn, that for every run

(p,⊥)
u|v−−→ (q,⊥) that can be completed into an accepting run, and for every de-

composition of this run according to criterion (C1) or (C2), the property stated by

the corresponding criterion is fulfilled.

Cases u = ε and u = a ∈ Σi: The result directly follows from the hypothesis as

they are small words.

Case u = u1u2 with u1, u2 ∈ Σ∗wn \ {ε}. Consider a run ρ : (p,⊥)
u1u2|v−−−−→ (q,⊥).

First, consider a decomposition of ρ according to criterion (C2). This decomposition

is necessarily either completely in the sub-run on u1, or in that on u2 (this follows

from the observation that in (C2), the matched loops modify the stack: σ′ 6= ⊥).

The result follows by induction. Second, consider a decomposition of ρ according to

criterion (C1). If the decomposition is completely in the sub-run on u1, or in that

on u2, then the result follows by induction. Otherwise, the decomposition of ρ looks

as follows: ρ : (p,⊥)
u′
1|v

′
1−−−→ (p1,⊥)

u′′
1 |v

′′
1−−−−→ (p2,⊥)

u′
2|v

′
2−−−→ (p1,⊥)

u′′
2 |v

′′
2−−−−→ (q,⊥) where

ui = u′iu
′′
i for i ∈ {1, 2}. Let us denote by ρ1 the run (p1,⊥)

u′′
1 |v

′′
1−−−−→ (p2,⊥) and by

ρ2 the run (p2,⊥)
u′
2|v

′
2−−−→ (p1,⊥). The loop under consideration is represented by

the run ρ1ρ2.

By induction hypothesis applied on u1, any decomposition of ρ1 according to

criteria (C1) and (C2) fulfills these criteria. Using Lemma 13, one can identify

such decompositions if the height or the length of the run is large enough. Using

the according criterion and the definition of the mapping B(.), one can remove the

identified loop while preserving the value of B(.). Applying iteratively this process,

we can build from ρ1 a run ρ′1 such that B(ρ′1) = B(ρ1), height(ρ′1) < |Q|2 and

|ρ′1| < |Q||Q|
2

.

A similar construction can be done for ρ2, yielding some run ρ′2.

By construction of ρ′1 and ρ′2, we have B(ρ′1ρ
′
2) = B(ρ1ρ2). Moreover, it is routine

to verify that the run ρ′1ρ
′
2 satisfies the constraints of the hypothesis on its height

and length, and thus B(ρ′1ρ
′
2) = 0.

Case cur. We consider some run ρ as follows ρ : (p,⊥)
c|v0−−→ (p′, γ)

u|v−−→ (q′, γ)
r|v4−−→

(q,⊥).

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

17

We first consider a decomposition of ρ according to criterion (C1). If it is com-

pletely in the sub-run on u, then the result follows by induction. Otherwise, we have

p = q and the run ρ itself satisfies the conditions of criterion (C1). Using standard

horizontal and vertical pumping and the induction hypothesis on u, we can assume

that the height of u is strictly less than |Q|2 and that the length of u is strictly

less than |Q|(Q|2 (otherwise by a pumping reasoning we can exhibit a decomposition

that satisfies either criterion (C1) or criterion (C2) and using the induction hypoth-

esis remove this part of u). Then, the word cur satisfies our initial requirements on

the height and the size, and we thus have B(v0vv4) = 0, as expected.

Consider now a decomposition of ρ according to criterion (C2). If it is completely

in the sub-run on u, then the result follows by induction. Otherwise, there exists

a decomposition of u as u = u1u2u3, with u1u3, u2 ∈ Σ∗wn, and there exists a run

(p′,⊥)
u1|v1−−−→ (p, σ)

u2|v2−−−→ (q, σ)
u3|v3−−−→ (q′,⊥). First, if |σ| ≥ |Q|2, then one can find

in this run a decomposition according to criterion (C2), and by induction hypothesis

on u, the corresponding matched loops have a null effect in the computation of

B. When removing these matched loops, we thus obtain new input words u′1 and

u′3 with output words v′1 and v′3 such that B(v′1) + B(v′3) = B(v1) + B(v3), and

B(v1) ≥ B(v′1). We thus assume now that |σ| < |Q2| and let k = |σ|.
We decompose u′1 as follows: u′1 = w0c1w1c2 . . . ckwk. Using standard horizontal

and vertical pumping (Lemma 13) and the induction hypothesis on u, we can assume

that the height of wi’s is strictly less than |Q|2 and that the length of wi’s is

strictly less than |Q||Q|2 . A similar reasoning can be done on word u′3. Thus, the

two words cu′1 and u′3r satisfy the conditions on their height and size to ensure that

B(v0v
′
1) + B(v′3v4) = 0, and B(v0v

′
1) ≥ 0. This entails B(v0v1) + B(v3v4) = 0, and

B(v0v1) ≥ 0 as we wanted to prove.

This concludes the induction, and thus the proof.

The previous algorithm could be extended to handle in addition criterion (D),

yielding a Pspace algorithm to decide whether a VPT A is globally well-nested.

However, we can use a recent result to prove that this problem is in Ptime.

Theorem 30. Let A be a VPT. Whether JAK ∈ Gwn can be decided in Ptime.

Proof. This proof heavily relies on results from [3, 11] showing that deciding

whether a context-free language is included into a Dyck language can be solved

in Ptime.

We first erase the precise symbols of the produced outputs keeping track only of

the type of the symbols: we build from A a VPT A′ defined on the output alphabet

Σ′ with Σ′c = {(}, Σ′r = {)} and Σ′i = ∅. A transition of A′ is obtained from a

transition of A by replacing in output words of the transition of A call symbols by (

and return symbols by) and removing internal symbols. It is then easy to see that

A is in gwnVPT iff A′ is in gwnVPT (actually, for each run in A producing v, its

corresponding run in A′ produces some v′ such that O(v) = O(v′)). Then, as shown

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

18

in [9], one can build in polynomial time a context-free grammar GA′ generating the

range of A′. Finally, we appeal to [3, 11] to conclude.

6. Closure under composition and Type-checking

6.1. Definitions and existing results

In this section, we consider two natural problems for transducers : the first one is

related to composition of transductions. The second problem is the type-checking

problem that aims to verify that any output of a transformation belongs to some

given type/language. For VPT, the natural class of ”types” to consider is VPL.

Definition 31 (Closure under composition) A class T of transductions in-

cluded in Σ∗×Σ∗ is closed under composition if for all T, T ′ in T , the transduction

T ◦ T ′ is also in T . It is effectively closed under composition if for any transducers

A, A′ such that JAK, JA′K ∈ T , A ◦A′ is computable and JA ◦A′K is in T .

A class of transducers T is effectively closed under composition if for any two

transducers A,A′ in T, A ◦A′ is computable and A ◦A′ is in T.

Definition 32 (Type-checking (against VPA)) Given a VPT A and two VPA

B,C, decide whether JAK(L(B)) ⊆ L(C).

The following results give the status of these properties for arbitrary VPTs and

for lwnVPT:

Theorem 33 ([8, 7]) Regarding closure under composition, we have:

• The class VP(Σ,Σ) is not closed under composition.

• The class lwnVPT is effectively closed under composition.

In addition, the problem of type checking against VPA is undecidable for (arbitrary)

VPT and is EXPtime-complete for lwnVPT.

6.2. New results

Actually, regarding the closure under composition of the class lwnVPT, though it

is not explicitly stated, the result proved in [7] is slightly stronger. It is indeed

shown that for any VPT A,B such that A ∈ lwnVPT, there exists an (effectively

computable) VPT C satisfying JCK = JAK ◦ JBK. In addition, if B ∈ lwnVPT, then

C ∈ lwnVPT.

We extend this positive result to any almost well-nested transducer; one of the

main ingredients to prove this result is the set UPSA defined for any VPT A as{
(p, p′, n1, n2)

∃σ ∈ Γ∗, (p, σ) is reachable and (p′, σ) is co-reachable and

∃u ∈ Σ∗wn, (p,⊥)
u|v−−→ (p′,⊥) and O(v) = (n1, n2)

}

Proposition 34. Let A in awnVPT. Then the set UPSA is finite and computable

in exponential time in the size of A.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

19

(p, p) ∈ IPCAwn
(p, p, (0, 0)) ∈ S

(p, i, v, q′) ∈ δi (q′, q, (n1, n2)) ∈ S (p, q) ∈ IPCAwn
(p, q,O(v)⊕ (n1, n2)) ∈ S

(p, c, γ, v1, p
′) ∈ δc (p′, q′, (n1, n2)) ∈ S (q′, r, γ, v2, q

′′) ∈ δr (q′′, q, (n′1, n
′
2)) ∈ S

(p, q) ∈ IPCAwn
(p, q,O(v1)⊕ (n1, n2)⊕ O(v2)⊕ (n′1, n

′
2)) ∈ S

Figure 2. A rule system characterizing the set UPSA.

Proof. For a VPT A = (Q, I, F,Γ, δ), we consider triples of the form (p, q, (n1, n2))

where p, q ∈ Q such that (p, q) ∈ IPCAwn and (n1, n2) ∈ N× N. We consider the set

S of such triples, as the least one satisfying the rules from Figure 2.

Using an induction on the structure of runs, one easily proves that S = UPSA.

In addition, the set S is finite and can be computed in exponential time. Obviously,

rules from Figure 2 can be turned into an algorithm whose iterations will inspect

each inference rule for each possible inputs. Such an iteration may add at least one

new triple in S. As S = UPSA and by Proposition 25, it is known that in triples

(p, p′, (n1, n2)), n1, n2 are bounded exponentially in the size of A which ensured

termination for the algorithm.

Theorem 35. Let A,B be two VPTs. If A is almost-well nested, then one can

compute in time 22
O(|A|)∗O(log2(|B|)) a VPT C such that JCK = JAK ◦ JBK. Moreover,

if B is also almost well-nested, then so is C, and if A and B are globally well-nested,

then so is C.

Proof. We present the construction of C. By Proposition 34, UPSA is finite and

we let K be the computable integer value max{||(n1, n2)|| | (p, p′, n1, n2) ∈ UPSA}.
Given A = (QA, IA, FA,ΓA, δ

A) and B = (QB , IB , FB ,ΓB , δ
B), we define C =

(QC , IC , FC ,ΓC , δ
C) as

QC = QA ×QB × Γ≤KB IC = IA × IB × {⊥}
ΓC = ΓA × Γ

≤OA
max+K

B FC = FA × FB × {⊥}

Now for the transition rules δC :

• ((p, q, σ), i, w, (p′, q′, σ′)) ∈ δCi if there exist a word v ∈ ∆∗ and a stack σ0 ∈
Γ∗B such that σ = σ0σ1, σ′ = σ0σ

′
1, O(v) = (|σ1|, |σ′1|), and (p, i, v, p′) ∈ δAi

and there exists a run (q, σ1)
v|w−−→ (q′, σ′1) in B,

• ((p, q, σ), c, w, (γ, σ3), (p′, q′, σ4)) ∈ δCc if there exist a word v ∈ ∆∗, two

stacks σ0, σ2 ∈ Γ∗B and a stack symbol γ ∈ ΓA such that σ = σ0σ1,

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

20

O(v) = (|σ1|, |σ2|), σ0σ2 = σ3σ4, (p, c, v, γ, p′) ∈ δAc and there exists a

run (q, σ1)
v|w−−→ (q′, σ2) in B, such a transition exists provided the bounds

on the sizes of the different stacks are fulfilled, i.e. |σ| ≤ K, |σ4| ≤ K, and

|σ3| ≤ OAmax +K

• ((p, q, σ), r, w, (γ, σ3), (p′, q′, σ′)) ∈ δCr if there exist a word v ∈ ∆∗, a

stack σ0 ∈ Γ∗B such that σ0σ1 = σ3σ, σ0σ2 = σ′, O(v) = (|σ1|, |σ2|),
(p, r, v, γ, p′) ∈ δAr and there exists a run (q, σ1)

v|w−−→ (q′, σ2) in B such a

transition exists provided the bounds on the sizes of the different stacks are

fulfilled, i.e. |σ| ≤ K, |σ′| ≤ K, and |σ3| ≤ OAmax +K

Intuitively, in a state of C, we store the current states of A and B. In addition, a

part of the top of the stack of B is also stored in the state of C to allow the simulation

of B. The (finite) amount that needs to be stored in the state is identified using the

set UPSA.

To prove the correction of this construction, we consider the following definition:

Definition 36. Given a run ρ : (p,⊥)
u|v−−→ (p′,⊥) of A, we define Max-bal(ρ) as

the largest non-negative integer n such that ρ can be decomposed as ρ : (p,⊥)
u1|v1−−−→

(p1,⊥)
u2|v2−−−→ (p′,⊥) and n = Or(v2) or n = Oc(v1).

The following lemma states that a run of A and a run of B can be combined to

build a run of C, provided there exists a word v ∈ ∆∗ produced by the run of A,

and taken as input of the run of B. Observe also that we may add a stack in the

state of C, considered as an unused stack added ”below” the run of B, provided the

size of the resulting stack stored in the state never exceeds the bound K. This is

obtained thanks to the definition of Max-bal. The proof is a rather standard (but

technical) induction on the length of u.

Lemma 37. If we have a run ρ : (p,⊥)
u|v−−→ (p′,⊥) of A, two stacks σ, σ′ ∈ Γ∗B such

that O(v) = (|σ|, |σ′|), and a run (q, σ)
v|w−−→ (q′, σ′) of B, then ((p, q, σ0σ),⊥)

u|w−−→
((p′, q′, σ0σ

′),⊥) is a run of C, for every stack σ0 ∈ Γ
≤K−Max-bal(ρ)
B .

The next lemma states the result in the other way: a run in C implies the

existence of corresponding runs in A and B.

Lemma 38. If there exists a run ((p, q, σ),⊥)
u|w−−→ ((p′, q′, σ′),⊥) in C, then there

exists a word v ∈ ∆∗ and a stack σ0 ∈ Γ∗B such that:

• there exists a run ρ : (p,⊥)
u|v−−→ (p′,⊥) in A

• σ = σ0σ1, σ′ = σ0σ2, and O(v) = (|σ1|, |σ2|)
• there exists a run (q, σ1)

v|w−−→ (q′, σ2) in B

Theorem 35 follows from Lemma 37 and 38 and from the definition of initial

and final states.

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

21

Corollary 39. The classes Gwn and Awn are (effectively) closed under composition.

Theorem 40 (Type-checking against VPA) Given an almost or a globally

well-nested VPT A and two VPA B,C, whether JAK(L(B)) ⊆ L(C) is 2EXPtime−
complete.

Proof. We prove the upper-bound complexity for A being almost well-nested and

the lower bound for A being globally well-nested.

For the upper bound, restricting the domain of A to L(B) is easy: it suffices to

compute the product VPA of A and B. Then, VPA being closed under complemen-

tation, we compute C, the complement of C. Note that the size of C is at most

exponential in the size of C. We then turn C into a transducer C ′ defining the

identity relation over L(C) (this is obvious by simply transforming rules of C into

rules of transducers outputting their input). Now, by Theorem 35, one can build a

transducer defining the composition of JAK ◦ JC ′K in doubly exponential time in the

size of A and B and single exponential time in the size of C. Now, it is sufficient to

test whether the VPA underlying this transducer is empty or not.

Now, for the lower bound, we appeal to a result from [11] stating that the inclu-

sion problem of a context-free language into a parenthesis language given respec-

tively as a context-free grammar G and a parenthesis grammar GP is 2EXPtime-

hard. More precisely, we recall that a context-free grammar is defined by a set

of terminals T , a set of non-terminals N (amongst which one is distinguished and

called the axiom) and a set P of productions. Parenthesis grammars are a particular

case of context-free grammars whose productions are of one of the forms

X → (Y1, . . . , Yn) X → a

for some non terminal X,Y1, . . . , Yn and (,), a stand for terminals from T such

that a is different from (and from).

We prove now that this problem can be reduced in polynomial time to the type-

checking problem for gwnVPT. First, note that it is known from [8] that a VPT AG
whose range is precisely L(G), the language defined by G, can be built from G in

polynomial time. Note also that for the structured alphabet Σ = ({ (}, {) }, T r
{(,)}), the language L(GP) defined by the grammar GP is included into Σ∗wn.

Finally, we can show that L(GP) is actually a VPL. Indeed, we build in polynomial

time from GP a VPA AGP
as follows: states Q of AGP

are strict suffixes of right-

hand sides of rules of the form X → (Y1, . . . , Yn) together with the axiom of the

grammar S. The initial state is S and the unique final state is the empty suffix ε.

The stack alphabet is identical to Q and the transition rules are defined as:

Xω
(, ω−−→ ω′ ∈ δc if X → (ω′ ∈ GP

Xω
a−−→ ω ∈ δi if X → a ∈ GP

)
) , ω−−−→ ω ∈ δr

For the correctness of the construction, one can prove that the configuration

(αk . . . αn, γ1 . . . γ`) of AGP
is reached after reading the nested word w iff S ⇒∗

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

22

wαk . . . αnγ` . . . γ1 is a left derivation of GP , where the γi are strict suffixes of

right-hand sides of productions.

We now give the reduction for the inclusion test to the type-checking problem:

L(G) ⊆ L(GP) ?

• Build in polynomial time from G the VPT AG.

• Test whether AG is globally well-nested in polynomial time (Theorem 30)

• If the test fails, return false

• Build in polynomial time the VPA AGP

• Return JAGK(Σ∗) ⊆ L(AGP
) (Type-checking)

7. Conclusion

In this paper, we have considered and precisely characterized the class of VPT with

well-nested outputs. We have shown that this class is closed under composition and

that its type-checking against VPA is decidable. We have restricted ourselves in this

paper to transducers with well-nested domains. We conjecture that this restriction

can be easily relaxed and thus, one could consider transducers based on nested

word automata [2]. We left open the problem of deciding the class Lwn. As we have

described on some examples, this problem is far from being trivial. In [5], a clear

relationship between the class lwnVPT and hedge-to-hedge transducers is described;

investigating such a relationship for gwnVPT is also an interesting problem.

Bibliography

[1] R. Alur and P. Madhusudan, Visibly Pushdown Languages, STOC , (2004), pp. 202–
211.

[2] R. Alur and P. Madhusudan, Adding Nesting Structure to Words, JACM 56(3) (2009)
1–43.

[3] A. Bertoni, C. Choffrut and R. Radicioni, The inclusion problem of context-free
languages: Some tractable cases, Int. J. Found. Comput. Sci. 22(2) (2011) 289–299.

[4] B. v. Braunmühl and R. Verbeek, Input-driven Languages are Recognized in log n
Space, FCT , LNCS 158, (Springer, 1983), pp. 40–51.

[5] M. Caralp, E. Filiot, P.-A. Reynier, F. Servais and J.-M. Talbot, Expressiveness of
visibly pushdown transducers, Proceedings Second International Workshop on Trends
in Tree Automata and Tree Transducers, TTATT 2013 , EPTCS 134 (2013), pp. 17–
26.

[6] E. Filiot, O. Gauwin, P.-A. Reynier and F. Servais, Streamability of Nested Word
Transductions, FSTTCS , LIPIcs 13, (Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2011), pp. 312–324.

[7] E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais and J.-M. Talbot, Properties of
Visibly Pushdown Transducers, MFCS’10 , LNCS 6281, (Springer, 2010), pp. 355–
367.

[8] J.-F. Raskin and F. Servais, Visibly pushdown transducers, ICALP , LNCS 5126
(2008), pp. 386–397.

[9] F. Servais, Visibly pushdown transducers, PhD thesis, Université Libre de Bruxelles
(2011).

January 7, 2016 23:0 WSPC/INSTRUCTION FILE wnVPT

23

[10] S. Staworko, G. Laurence, A. Lemay and J. Niehren, Equivalence of deterministic
nested word to word transducers, FCT , LNCS 5699 (2009), pp. 310–322.

[11] A. Tozawa and Y. Minamide, Complexity results on balanced context-free languages,
FOSSACS , LNCS 4423, (Springer, 2007), pp. 346–360.

