
Decision Problems of Tree Transducers with
Origin ?

Emmanuel Filiot1, Sebastian Maneth2, Pierre-Alain Reynier3, and
Jean-Marc Talbot3

1 Université Libre de Bruxelles
2 University of Edinburgh

3 Aix-Marseille Université & CNRS

Abstract. A tree transducer with origin translates an input tree into
a pair of output tree and origin info. The origin info maps each node
in the output tree to the unique input node that created it. In this
way, the implementation of the transducer becomes part of its semantics.
We show that the landscape of decidable properties changes drastically
when origin info is added. For instance, equivalence of nondeterministic
top-down and MSO transducers with origin is decidable. Both problems
are undecidable without origin. The equivalence of deterministic top-
down tree-to-string transducers is decidable with origin, while without
origin it is a long standing open problem. With origin, we can decide if
a deterministic macro tree transducer can be realized by a deterministic
top-down tree transducer; without origin this is an open problem.

Tree transducers were invented in the early 1970’s as a formal model for
compilers and linguistics [24, 23]. They are being applied in many fields of com-
puter science, such as syntax-directed translation [13], databases [22, 15], linguis-
tics [19, 4], programming languages [27, 21], and security analysis [16]. The most
essential feature of tree transducers is their good balance between expressive
power and decidability.

Bojańczyk [3] introduces (string) transducers with origin. For “regular” string-
to-string transducers with origin he presents a machine independent charac-
terization which admits Angluin-style learning and the decidability of natural
subclasses. These results indicate that classes of translations with origin are
mathematically better behaved than their origin-less counter parts.

We initiate a rigorous study of tree transducers with origin by investigating
the decidability of equivalence, injectivity and query determinacy on the follow-
ing models: top-down tree-to-tree transducers [24, 23], top-down tree-to-string
transducers [11], and mso definable tree-to-string transducers (see, e.g., [10]).

? The authors are grateful to Joost Engelfriet for his remarks for improvements and
corrections on a preliminary of this work. This work has been carried out thanks to
the support of the ARCHIMEDE Labex (ANR-11-LABX-0033) and the A*MIDEX
project (ANR-11-IDEX-0001-02) funded by the ”Investissements d’Avenir” French
Government program, managed by the French National Research Agency (ANR)
and by the PEPS project ”Synthesis of Stream Processors” funded by CNRS.

top-down tree-to-tree top-down tree-to-string mso tree-to-string
det nd det nd det nd

+ [12] − [14] ? − [14] + [10] −
with origin + + + − + +

Table 1. Decidability of equivalence

Unlike the string transducers of Bojańczyk [3], we will see that equivalent mod-
els of tree-to-string transducers do not remain equivalent in the presence of
origin. This motivates the study of subclass definability problems (definability of
a transduction from a class in a subclass) when considering the origin semantics.

Table 1 summarizes our results on equivalence; non-/deterministic are ab-
breviated by nd/det and decidable/undecidable by +/−. The “?” marks a long-
standing open problem, already mentioned by Engelfriet [7]. The first change
from − to + is the equivalence of nondeterministic top-down tree transducers.
In the non-origin case this problem is already undecidable for restricted string-
to-string transducers [14]. In the presence of origin it becomes decidable for tree
transducers, because origin implies that any connected region of output nodes
with the same origin is generated by one single rule. Hence, the problem re-
duces to letter-to-letter transducers [1]. What about nondeterministic top-down
tree-to-string transducers (column four in Table 1)? Here output patterns can-
not be treated as letters. By deferring output generation to a leaf they can
simulate non-origin translations with undecidable equivalence [14]. Finally, we
discuss column three. Here the origin information induces a structure on the out-
put strings: recursive calls of origin-equivalent transducers must occur in similar
“blocks”, so that the same children of the current input node are visited in the
same order (but possibly with differing numbers of recursive calls). This block
structure allows to reason over single input paths, and to reduce the problem to
deterministic tree-to-string transducers with monadic input. The latter can be
reduced [20] to the famous hdt0l sequence equivalence problem.

Injectivity for deterministic transducers is undecidable for all origin-free mod-
els of Table 1. With origin, we prove undecidability in the tree-to-string case and
decidability in the mso and top-down tree cases. The latter is again due to the
rigid structure implied by origins. We can track if two different inputs, over the
same input nodes, produce the same output tree. We use the convenient frame-
work of recognizable relations to show that the set of trees for which a transducer
with origin produces the same output can be recognized by a tree automaton.

Motivation. Clearly, the more information we include in a transformation,
the more properties become decidable. Consider invertability: on the one ex-
treme, if all reads and writes are recorded (under acid), then any computation
becomes invertible. The question then arises, how much information needs to
be included in order to be invertible. This problem has recently deserved much
attention in the programming language community (see, e.g., [26]). Our work
here was inspired by the very similar view/query determinacy problem. This

problem asks for a given view and query, whether the query can be answered on
the output of the view. It was shown decidable in [2] for views that are linear
extended tree transducers, and queries that are deterministic mso or top-down
transducers. For views that include copying, the problem quickly becomes un-
decidable [2]. Our results show that such views can be supported, if origin is
included. Consider for instance a view that regroups a list of publications into
sublists of books, articles, etc. A tree transducer realizing this view needs copy-
ing (i.e., needs to process the original list multiple times). Without origin, we
do not know a procedure that decides determinacy for such a view. With origin,
we prove that determinacy is decidable. As expected: the world becomes safer
with origin, but more restrictive (e.g., the query “is book X before article Y in
the original list?” becomes determined when origin is added to the above view).

The tracking of origin information was studied in the programming language
community, see [25]. As a technical tool it was used in [9] to characterize the
MSO definable macro tree translations, and, in [17] to give a Myhill-Nerode
theorem for deterministic top-down tree transducers. From a linguistic point of
view, origin mappings on their own are subject of interest and are called “de-
pendencies” or “links”. Maletti [18] shows that dependencies (i.e., origins) give
“surprising insights” into the structure of tree transformations: many separation
results concerning expressive power can be obtained on the level of dependencies.

1 Preliminaries

For a nonnegative integer k we denote by [k] the set {1, . . . , k}. For an alphabet
A, we denote by A∗ the set of strings over A, and by ε the empty string. Let
w ∈ A∗ be a string of length k. Its length is denoted by |w| = k, and its set of
positions by V (w) = [k]. For j ∈ [k], w[j] denotes the j-th symbol of the string w.
A ranked alphabet Σ is a finite set of symbols σ each with an associated natural
k called its rank. We write σ(k) to denote that σ has rank k, and denote by Σ(k)

the set of all symbols in Σ of rank k. The set TΣ of trees over Σ is the smallest
set T so that if k ≥ 0, t1, . . . , tk ∈ T , and σ ∈ Σ(k), then σ(t1, . . . , tk) ∈ T .
For the tree σ() we simply write σ. The set V (t) of nodes of tree t ∈ TΣ is the
subset of N∗ defined as {ε} ∪ {iu | i ∈ [k], u ∈ V (ti)} if t = σ(t1, . . . , tk). Thus
ε denotes the root node, and ui denotes the i-th child of a node u. For a tree t
and u ∈ V (t) we denote by t[u] the label of node u in t, and by t/u the subtree
of t rooted at u. For a tree t′, we denote by t[u ← t′] the tree obtained from t
by replacing the subtree rooted in position u by the tree t′. Given a tree t ∈ TΣ
and ∆ ⊆ Σ, V∆(t) denotes the set of nodes u ∈ V (t) such that t[u] ∈ ∆.

Translations Let Σ,∆ be two ranked alphabets. A tree translation (from
TΣ to T∆) is a relation R ⊆ TΣ × T∆. Let A be an alphabet. A tree-to-string
translation is a relation R ⊆ TΣ × A∗. The domain of a translation R, denoted
dom(R), is defined as the projection of R on its first component. A translation
R is functional if R is a function.

Origin Translations Let s1, s2 be two structures (strings or trees). An
origin mapping of s2 in s1 is a mapping o : V (s2)→ V (s1). An origin translation

is a set of pairs (s1, (s2, o)) such that o is an origin mapping of s2 in s1. Given
v ∈ V (s2) and u ∈ V (s1), if o(v) = u then we say that “v has origin u” or that
“the origin of v is u”.

2 Tree Translations with Origin

Top-down Transducers A top-down tree transducer (top for short) is a
rule-based finite-state machine that translates trees over a ranked alphabet Σ
to trees over a ranked alphabet ∆. Rules are of the form q(σ(x1, . . . , xk)) → ζ,
where q is a state, σ ∈ Σ(k) a symbol of rank k, and ζ is a tree over ∆ of which
the leaves may also be labeled with symbols of the form q′(xi), for some state
q′ and i ∈ [k]. Applying this rule to a tree s = σ(s1, . . . , sk) produces, on the
output, a tree t obtained by replacing in ζ all symbols q′(xi) by a tree over ∆,
itself obtained as a result of evaluating si in state q′. The origin of all the nodes
of ζ labeled in ∆ is precisely the root node of s.

As an example, consider a topM1 over Σ = {h(1), a(0)} and ∆ = {f (2), a(0)}
with single state q and rules q(h(x1))→ f(q(x1), q(x1)) and q(a)→ a. It trans-
lates a monadic input tree of height n into a full binary tree of height n. Thus,
the origin of any output node u is the input node 1|u|.As another example,
consider M2 with states q0 and q and the rules q0(h(x1)) → f(q0(x1), q(x1)),
q(h(x1)) → h(q(x1)) and q0(a) → a, q(a) → a. This transducer translates a
monadic input tree of height n into a left-comb of monadic subtrees of decreas-
ing height. Thus, h(h(h(a))) is translated into f(f(f(a, a), h(a)), h(h(a))). Again,
the origin of node u is 1|u|.

Formally, a top-down tree transducer M is a tuple (Q,Σ,∆, q0, R) where Q
is a finite set of states, q0 ∈ Q is the initial state, and R is a set of rules of
the form q(σ(x1, . . . , xk)) → ζ, where ζ is a tree over ∆ ∪ {q′(xi) | q′ ∈ Q, i ∈
[k]}, where each symbol q′(xi) has rank 0. Every state q ∈ Q realizes an origin
translation JqKo defined recursively as follows. Let s = σ(s1, . . . , sk) and ζ such
that q(σ(x1, . . . , xk))→ ζ is a rule of M . Let V = V (ζ)\V∆(ζ). For every v ∈ V ,
let (siv , (tv, ov)) ∈ JqvKo where qv ∈ Q and iv ∈ [k] such that ζ[v] = qv(xiv). Then
(s, (t, o)) ∈ JqKo with

– t = ζ[v ← tv | v ∈ V],
– o(v′) = ε for v′ ∈ V∆(ζ) and o(vv′) = ivov(v

′) for v ∈ V and v′ ∈ V (tv).

The translation realized by q is defined as JqK = {(s, t) | ∃o : (s, (t, o)) ∈ JqKo}.
The origin (tree) translation realized by M is JMKo = Jq0Ko, and the (tree)
translation realized by M is JMK = Jq0K.

Note that tops are forced to produce at least one symbol when they read
the leaf of an input tree. To inspect parts of the input tree without producing
output, a top can be equipped with regular look-ahead, leading to the class
of top-down tree transducers with regular look-ahead (topR). This is done by
changing the rules so that each left-hand side is of the form q(σ(x1, . . . , xk) : L)
where L is a regular tree language. Such a rule can be applied only if the input
tree σ(s1, . . . , sk) is in L. Alternatively, instead of L a state p of some given

finite tree automaton can be used. A topR M is deterministic if for any two
rules with left-hand sides q(σ(x1, . . . , xk) : L1) and q(σ(x1, . . . , xk) : L2), we
have L1∩L2 = ∅. Note that any topM can be transformed into a topR MR by
adding universal look-ahead languages. M is deterministic if MR is. The classes
of deterministic top-down tree transducers without and with regular look-ahead
are respectively denoted by dtop and dtopR. Note that dtop and dtopR

realize only functional translations (and functional origin translations).

MSO Transducers Deterministic MSO tree transducers (dmsot for short)
are logic-based tree transducers defined over monadic second-order logic (MSO).
Any tree s over a ranked alphabet Σ of maximal rank k is seen as a logi-
cal structure of domain V (s) over the node label predicates σ(x), σ ∈ Σ, and
successor predicates i(x, y), 1 ≤ i ≤ k, that relate a node x to its i-th child
y. By MSO[Σ] we denote all monadic second-order formulas over this signa-
ture, and write s |= φ whenever a tree s satisfies a formula φ ∈ MSO[Σ].
Let ∆ be a ranked alphabet of maximal rank `. To define the output tree
t ∈ T∆ of an input tree s ∈ TΣ , a dmsot uses MSO[Σ] formulas with one
or two free variables, interpreted over a fixed number of copies of s, to de-
fine the predicates of t over ∆. Formally, a dmsot from TΣ to T∆ is a tuple

M = (C, φdom, (φ
c
n(x))c∈C , (φ

c
δ(x))δ∈∆,c∈C , (φ

c,c′

i (x, y))i∈[`],c,c′∈C) such that C is
a finite set of copy indices, φdom is an MSO[Σ]-sentence which defines whether
the input tree s is in the domain, φcn, φ

c
δ are MSO[Σ]-formulas with one free vari-

able x which respectively define the nodes V (t) in the output tree t and their

labels, and φc,c
′

i are MSO[Σ]-formulas with two free variables x and y which
define the edge relations between the nodes in V (t).

Given a tree s ∈ TΣ , JMKo(s) is defined if s |= φdom, and it is then equal to
(t, o) where t is the structure whose domain is D = {(u, c) | s |= φcn(u)} (each
node (u, c) is denoted hereafter by uc), and for all uc ∈ D, uc is labeled by
δ ∈ ∆ if s |= φcδ(u), and a node uc22 ∈ D is the i-th child of a node uc11 ∈ D
if s |= φc1,c2i (u1, u2). The origin mapping o is defined by o(uc) = u (hence, for
any input node u, there are at most |C| nodes in the output with u as origin).
Additionally, for M to be an MSO tree transducer, it is required that t ∈ T∆.

For example, let Σ = {f (2), a(0), b(0)} and ∆ = {a(1), b(1), e(0)}. The yield of
a tree s ∈ TΣ is the monadic tree in T∆ obtained from its leaves, in preorder.
E.g., the yield of f(f(a, b), b) is a(b(b(e))). The yield translation is not in dtopR

but in dmsot. The preorder relation � on tree nodes obtained from the preorder
traversal of the tree is known to be MSO[Σ]-definable. To realize the yield in
dmsot, we only need one copy (C = 1). The domain formula is true and all
internal nodes are filtered out by φ1n(x) = leaf(x), where leaf(x) holds true if x
is a leaf. Labels are unchanged: φ1σ(x) = σ(x) for all σ ∈ Σ, and the first-child
relation is defined by φ1,11 (x, y), which expresses that x and y are leaves, and
that x � y ∧ ¬(∃z.x � z ∧ z � y).

dmsot can be extended with non-determinism, leading to the class of MSO

tree transducers (msot). All formulas φdom, φcδ and φc,c
′

i can use a fixed addi-
tional finite set of free second-order variables X. Once an assignment ν of each
variable of X by a set of nodes of an input tree s is fixed, the previous formulas

can be interpreted as before with respect to this assignment, thus defining an
output pair (tν , oν) (if the domain formula holds true). The set of outputs asso-
ciated with s is the set of all such pairs (tν , oν), for all assignments ν of X. In the
previous example, using a free variable X, one could also associate all scattered
substrings (seen as monadic trees) of the yield. Only leaves in X are kept, by
letting φ1n(x) = x ∈ X ∧ leaf(x), and φ1,11 (x, y) also requires that x, y ∈ X.

Origin-Equivalence Problem Given two tree transducers M1,M2 which
are either both in topR or both in msot, decide whether JM1Ko = JM2Ko.

Theorem 1. Origin-equivalence is decidable for mso tree transducers and top-
down tree transducers with regular look-ahead.

Sketch of Proof. Given a tree transducerM , we simply write dom(M) for dom(JMK).
Inequality of the domains implies inequivalence. As a first step, for both classes
of transducers, an equality test of the domains is performed. This is obviously
decidable due to the effective regularity of these sets. Then, for topR, by modi-
fying the output alphabet of M1 and M2 and their rules, we show how to turn
them into non-deleting 4 non-erasing 5 top without look-ahead, while preserving
origin-equivalence. Let us notice then that the constraint that origins should be
the same is strong: for all input trees s ∈ dom(M1), for all (t, o) ∈ JM1Ko(s),
M2 must produce, in a successful execution, the symbols of t exactly at the
same moment as M1, and conversely for all (t, o) ∈ JM2Ko(s). When consider-
ing non-erasing top, this property has a nice consequence: both M1 and M2

can be seen as symbol-to-symbol transducers, which means that each right-hand
side of a rule contains exactly one node with a label from ∆. To be precise,
the ∆-part of any right-hand side ζ of a rule of M1 or M2, with n leaves la-
beled by some q(xi), can be seen as a single symbol of rank n. For instance, if
ζ = f(q1(x1), h(q2(x1)), q3(x2)), then f(., h(.), .) is seen as a single symbol of ar-
ity 3. M ′1 and M ′2, two non-deleting non-erasing top without look-ahead, can be
built fromM1 andM2 respectively such that JM1Ko = JM2Ko iff JM ′1K = JM ′2K. Fi-
nally, it leads to solve an equivalence problem for (nondeterministic) non-deleting
symbol-to-symbol top-down tree transducers which is known to be decidable [1].

For msot, we show that the equality set E(JM1Ko, JM2Ko) of JM1Ko and
JM2Ko, defined as the set of trees s ∈ dom(M1) such that JM1Ko(s) = JM2Ko(s),
is effectively regular. Without origins, even simple msot translations yield a non-
regular set: e.g., the translations R1 : f(s1, s2) 7→ s1 and R2 : f(s1, s2) 7→ s2
are both msot definable but their (origin-free) equality set {f(s, s) | s ∈ TΣ},
is not regular. To show that the set E(JM1Ko, JM2Ko) is regular, we construct
an MSO formula that defines it. This formula expresses for instance that any
sequence of input nodes u1, . . . , un that are connected with successor formulas

φc,c
′

i (x, y) by M1 are also connected with successor formulas of M2 with the same
sequence of indices i, and conversely. It also expresses that the sequence of label

4 Non-deleting means that every xi occurring in the left-hand side of a rule also occurs
in its right-hand side.

5 Non-erasing means that the right-hand side of each rule contains at least one symbol
from ∆.

formulas φcδ(x) of M1 and M2 that hold on u1, . . . , un respectively, carry the same
respective output symbols δ. As a consequence, to check origin-equivalence of
M1 and M2, it suffices to check that dom(M1) = dom(M2) = E(JM1Ko, JM2Ko),
which is decidable since all these sets are effectively regular. ut

Origin-Injectivity Problem Given a tree transducer M from TΣ to T∆
either in dmsot or in dtopR, decide whether the function JMKo is injective.

Theorem 2. Origin-injectivity is decidable for deterministic mso tree transduc-
ers and deterministic top-down tree transducers with regular look-ahead.

Sketch of Proof. Let us denote by R(JMKo) the set of pairs of trees (s1, s2) ∈
dom(M)2 such that JMKo(s1) = JMKo(s2). Clearly, JMKo is injective iffR(JMKo)∩
(6=TΣ) = ∅, where 6=TΣ is the difference relation over TΣ . Take a pair (s1, s2) ∈
R(JMKo). We can define its top- and left-most overlap s1⊗s2 that aligns the same
nodes of s1 and s2 (recall that a node is a string over N). Nodes in V (s1)∩V (s2)
are labeled, in s1⊗s2, by the pair of their respective labels in s1 and s2. Nodes in
V (s1) \V (s2) or V (s2) \V (s1) are labeled by pairs (σ,⊥) or (⊥, σ), for a special
padding symbol ⊥. Interestingly, JMKo(s1) = JMKo(s2) if M produces the same
output symbols when processing a node in V (s1)∩V (s2), and does not produce
anything when processing a node in V (s2) \ V (s1) ∪ V (s1) \ V (s2).

When M ∈ dtopR, this last observation allows us to construct a dtopR M ′

reading trees s1 ⊗ s2 ∈ TΣ ⊗ TΣ , that simulates in parallel two executions of
M on s1 and s2 respectively, and checks that M produces the same symbols at
the same moment, for the common nodes of s1 and s2, and nothing elsewhere.
Then, dom(M ′) equals the set of trees s1 ⊗ s2 such that (s1, s2) ∈ R(JMKo)
and is regular, as dtopR have regular domains. In other words, the relation
R(JMKo) is recognizable [5]. It is easily shown that 6=TΣ is, as well, recognizable.
Since recognizable relations are closed under intersection, one gets decidability
of injectivity for origin-translations of dtopR.

When M ∈ dmsot, R(JMKo) is also a recognizable relation. To prove that,
we first transform M into two transducers M1,M2 ∈ dmsot that run on trees in
TΣ⊗TΣ . While processing trees s1⊗s2, Mi simulates M on si, so that JMiKo(s1⊗
s2) = JMKo(si). Then, {s1 ⊗ s2 | (s1, s2) ∈ R(JMKo)} = E(JM1Ko, JM2Ko), and
the result follows since E(JM1Ko, JM2Ko) is regular for M1,M2 ∈ dmsot. ut

Application to Query Determinacy Let Q (resp. V) be a functional
tree translation (resp. origin tree translation) from TΣ to T∆, called the query
(resp. the view). We say that Q is determined by V if for all trees s1, s2 ∈
dom(V), if V (s1) = V (s2) then Q(s1) = Q(s2). This generalizes the injectivity
problem: the identity tree translation is determined by a view V iff V is injective.

Corollary 3. Let Q (resp. V) be a tree translation (resp. an origin tree trans-
lation) defined by either a dtopR or a dmsot. It is decidable whether Q is
determined by V .

Proof. Let Q1, Q2 be tree translations from TΣ ⊗ TΣ to T∆ defined by Qi(s1 ⊗
s2) = Q(si), for all s1, s2 ∈ TΣ . Note that the Qi are definable by dtopR (resp.

dmsot) if Q is. Let r(V) be the set of trees s1⊗s2 such that s1, s2 ∈ dom(V) and
V (s1) = V (s2). Q is determined by V iff Q1(s) = Q2(s) for all s in r(V), iff Q1

and Q2 are equivalent on r(V). As seen before to solve the injectivity problem, we
show that the pairs (s1, s2) such that V (s1) = V (s2) is a recognizable relation,
for transducers in dtopR or dmsot. So, r(V) is regular. The result follows as
equivalence of dtopR or dmsot is decidable on regular languages [20]. ut

3 Tree-to-String Translations with Origin

A top-down tree-to-string transducer (ytop for short)M is a tuple (Q,Σ,∆, q0, R)
where Q, q0, Σ are defined as for top-down tree transducers, ∆ is an alphabet,
and every rule is of the form q(σ(x1, . . . , xk)) → ζ, where ζ is a string over ∆
and the symbols q′(xi), with q′ ∈ Q and i ∈ [k]. The definition of JqKo is as for
top-down tree transducers, only that t and tv are strings over ∆. In this way we
obtain JMKo and JMK. ytop generalize top, as right-hand sides of rules of top
can be encoded as well-bracketed strings. The converse is false: even considering
strings as monadic trees, a ytop can for instance easily implement string rever-
sal, which is impossible using top. As for top, we can equip this model with
regular look-ahead, and consider deterministic machines. This defines the classes
of deterministic top-down tree-to-string transducers (with regular look-ahead):
ydtop (ydtopR).

We give a ydtop M implementing string reversal. It takes as input monadic
trees over the alphabet Σ = {a(1), b(1), e(0)} and produces output strings over
the alphabet ∆ = {a, b}. It has states q, qa, qb and rules q(σ(x1))→ q(x1)qσ(x1)
and qσ(σ′(x1))→ qσ(x1) for σ, σ′ ∈ Σ(1), and leaf rules q(e)→ ε and qσ(e)→ σ
for σ ∈ Σ(1). Clearly, for s = a(a(b(e))) JMK(s) = baa = w. Note that the origin
of each letter of w is the leaf of s (here, 111). Hence, the origin translation JMKo
is not mso definable: there may be unboundedly many letters having such a leaf
as origin (by contrast, the translation JMK is mso definable, as tree-to-string mso
transducers are equivalent to ydtopR of linear size increase [9, 8]). In Sec. 4 we
show how to decide whether the origin translation of a ydtopR is mso definable.

Undecidability Results By a construction similar to the above string
reversal example, any string-to-string rational relation can be shown to be im-
plementable as a ytop such that the origin of every output symbol is the unique
leaf of the input monadic tree. This ”erasing” of origin info shows that origin-
equivalence of ytop is harder than equivalence of string-to-string rational rela-
tions known to be undecidable [14]. A similar technique can be used to show
that origin-injectivity of ydtop is also undecidable, by an encoding of the Post
Correspondence Problem. This contrasts with the positive results presented in
Sec. 2. There, origin-equivalence of msot relied on the regularity of the set
E(JM1Ko, JM2Ko), and one can easily come up with two ydtopM1,M2 such that
this set is not regular. E.g., take the transducer M1 = M for string reversal of
before, and M2 the identity with rules q(σ(x1))→ qσ(x1)q(x1) and qσ(σ′(x1))→
qσ(x1) for σ, σ′ ∈ Σ(1), and leaf rules as for M . Now E(JM1Ko, JM2Ko) is the set
of palindromes on ∆∗ (seen as monadic trees), which is not regular.

Equivalence of ydtopR Though it is not possible to obtain decidability
results by regular sets (or recognizable relations), we manage to prove, using
more involved techniques, that origin-equivalence of ydtopR is decidable.

Theorem 4. Origin-equivalence is decidable for deterministic top-down tree-to-
string transducers with regular look-ahead.

Sketch of Proof. Let M1,M2 be two ydtopR. We first check whether M1 and M2

have the same domain D. If not we output “not equivalent”. Otherwise, we build
ydtop transducers without look-ahead M ′1, M ′2, and a regular tree language D′

such that JM1Ko = JM2Ko iff M ′1 and M ′2 are origin-equivalent on D′.
Secondly, we transform the two ydtop into end-marked leaf-producing ydtop

such that origin-equivalence is preserved: the leaf-producing property requires
that transducers produce only at the leaves. The end-marked property means
that every output string has a final end-marker. Both properties are obtained
by modifying the input alphabet and the rules. For the last one, only the initial
rules of the transducers are concerned. We still denote them (M ′i)i=1,2.

Last, we reduce the origin-equivalence problem of these ydtop to the equiv-
alence problem of monadic ydtop, where ‘monadic’ means that every input
symbol has rank 0 or 1. This is done by only considering partial output strings
produced on root-to-leaf paths of the input tree. We give now some details on
this last part. Let s be a tree, w = a1 . . . an ∈ ∆∗ a string with ai ∈ ∆ for all
i, and o : V (w) → V (s) an origin mapping. Let U = {u1, . . . , uk} ⊆ V (s) be a
set of (distinct) nodes (in this order). We define Πu1,...,uk(w, o) as the string in
(∆ × [k])∗ obtained from w by erasing ai if o(i) 6∈ {u1, . . . , uk}, and changing
ai into (ai, j) if o(i) = uj . We give a key result which allows one to reduce our
origin-equivalence problem of ydtop to two instances of the equivalence problem
of monadic ydtop: for s ∈ dom(M ′1)∩dom(M ′2), M ′1(s) = M ′2(s) iff the following
two conditions are satisfied: (1) Πu(M ′1(s)) = Πu(M ′2(s)) for every u ∈ VΣ(0)(s),
(2) Πu1,u2(M ′1(s)) = Πu1,u2(M ′2(s)) for every u1 6= u2 ∈ VΣ(0)(s).

4 Subclass Definability Problems

Deterministic MSO tree-to-string transducers (dmsots for short) can be defined
as a particular case of dmsot transducers (their origin-equivalence is decidable
by Theorem 1). While dmsots are equivalent to ydtopR of linear size increase [9,
8], this is not true in the presence of origin; there are such ydtopR for which
no origin-equivalent dmsots exists (e.g. the string reversal example of Sec. 3).
However, every dmsots effectively has an origin-equivalent ydtopR (obtained
by following the respective constructions for origin-less transducers). Can we
decide for a given ydtopR whether its origin translation is dmsots definable?

Theorem 5. For a given ydtopR M , it is decidable whether or not there exists
an origin-equivalent dmsots. If so, then such a dmsots can be constructed.

Sketch of Proof. It relies on the notion of bounded origin: an origin translation τ
is of bounded origin if there exists a number k such that for every (s, (w, o)) ∈ τ

and u ∈ V (s): |{v ∈ V (w) | o(v) = u}| ≤ k, ie every input node can be
the origin of only a bounded number of output positions. By their definition,
origin translations of mso transducers have bounded origin. The bounded origin
property can be decided for a ydtopR M : we transform M into a ydtopR

transducer M ′ that takes input trees of M , but with one node u marked. The
transducer M ′ produces output only on the marked node. Thus, the length of its
output equals the number of positions that have u as origin. Decidability follows
from that of finiteness of ranges [6]. The proof then builds an origin-equivalent
dmsots following the constructions in the literature. ut

Macro Tree Transducers At last we consider a more powerful type of
transducer: the macro tree transducer (mac). For simplicity, we only look at total
deterministic such transducers. A mac extends a top-down tree transducer by
nesting of recursive state calls. Thus, a state q is now of rank m+ 1 and takes,
besides the input tree, m arguments of type output trees. In the rules, these
arguments are denoted by parameters y1, . . . , ym. Thus, a rule is of the form
q(σ(x1, . . . , xk), y1, . . . , ym) → ζ, where ζ is a tree over (nested) states, output
symbols, and the parameters which may occur at leaves. As example, consider
a mac with initial rule q0(h(x1)) → q(x1, a) and these rules: q(h(x1), y1) →
q(x1, q(x1, y1)) and q(a, y1)→ b(y1, y1). For a monadic input tree h(. . . h(a) . . .)
of height n + 1, it produces a full binary tree of height 2n. Thus, macs can
have double-exponential size increase; all models discussed so far have at most
exponential size increase. A total deterministic macro tree transducer (mac) is
a tuple M = (Q,Σ,∆, q0, R) where Σ, ∆ are as before, Q is a ranked alphabet
with Q(0) = ∅, q0 ∈ Q(1), and R contains for every q ∈ Q(m+1), m ≥ 0, σ ∈ Σ(k),
and k ≥ 0, a rule q(σ(x1, . . . , xk), y1, . . . , ym)→ ζ, where ζ is a tree over Q∪∆∪
{x1, . . . , xk, y1, . . . , ym} such that xi occurs in ζ at a node u if and only if u is the
first child of a Q-labeled node (and symbols yj are of rank zero). We denote ζ by
rhs(q, σ). Every state q ∈ Q(m+1) of M induces a function JqK : TΣ × Tm∆ → T∆.
Let s = σ(s1, . . . , sk) ∈ TΣ and t1, . . . , tm ∈ T∆. Then JqK(s, t1, . . . , tm) = [ζ]
where ζ = rhs(q, σ) and [ζ] is defined recursively as follows. If ζ = yj then
[ζ] = tj . If ζ = d(ζ1, . . . , ζ`) with d ∈ ∆(`), then [ζ] = d([ζ1], . . . , [ζ`]). If ζ =
q′(xi, ζ1, . . . , ζ`) with q′ ∈ Q(`+1) and i ∈ [k], then [ζ] = Jq′K(si, [ζ1], . . . , [ζ`]).

Origin Semantics We define the origin semantics of M using the macMs

and the decorated version dec(s) of an input tree s (see Definition 4.15 of [9]).
Let s be an input tree of M . Then dec(s) is obtained from s by relabeling every
node u by 〈s[u], u〉. For a state q and input symbol 〈σ, u〉 the macMs applies the
(q, σ)-rule of M , but with every output symbol d replaced by 〈d, u〉. The origin of
an output node then simply is the second component of the label of that node. In-
tuitively, when a mac applies a rule at input node u and generates output inside
of parameter positions, then all these outputs have origin u. Note that such nodes
may be duplicated later and appear unboundedly often (at arbitrary positions
of the output tree). Let us see an example of an origin translation that cannot
be defined by the previous models (but for which the non-origin translation can
be defined): in fact we consider the identity on trees s over {f (2), a(0)}. The mac
M has these rules for q0: q0(a) → a and q0(f(x1, x2)) → f(q(x1, a), q(x2, a)),

and these rules for q: q(f(x1, x2), y1)→ f(q(x1, y1), q(x2, y1)) and q(a, y1)→ y1.
Thus, JMKo(s) = (s, o) where o(u) = u if u is an internal node, and o(u) = ε
if u is a leaf. Thus, all leaves have the root node as origin. Clearly, none of our
previous models can realize such an origin translation.

Deciding whether the translation of a mac can be defined by a dtopR is a
difficult open problem: a mac can use its parameters in complex ways, but still
be definable by a dtopR. However, with origin, we are able to prove decidability.

Theorem 6. For a given mac M , it is decidable whether or not there exists an
origin-equivalent dtopR. If so, then such a dtopR can be constructed.

Sketch of Proof. First, if τ is the origin translation of a dtopR, and v, v′ are
nodes in τ(s) for some tree s such that v′ is a descendant of v, then the origin of
v′ must be a descendant of the origin of v (see [17]). We call this property of an
origin translation order-preserving. Consider now a mac with order-preserving
origin translation. Is it definable by a dtopR? To see this is not true, consider
this mac for the identity: q0(a) → a and q0(f(x1, x2)) → q(x1, q0(x1), q0(x2)),
plus the rules q(f(x1, x2), y1, y2)→ q(x1, y1, y2) and q(a, y1, y2)→ f(y1, y2). For
the input tree f(f(· · · f(a, a) · · ·), a) that is a left-comb, the origin of each f -node
is its left-most descendant leaf. Not the order is the problem, but, there are too
many connected output nodes with the same origin. Intuitively, the connected
output nodes of a dtopR can only span the size of a right-hand side. We say that
an origin translation τ is path-wise bounded-origin if there exists a number k such
that are at most k output nodes with the same origin on each path of the output
tree. Both the order-preserving and path-wise bounded-origin properties can
decided. For a mac with these two properties, and nondeleting and nonerasing
in its parameters (which can both be obtained by regular look-ahead), the depth
of nested state calls on the same input node is bounded. An origin-equivalent
dtopR can be constructed by introducing one state for each of these finitely
many different nestings of state calls. ut

Conclusions and Future Work. We have shown that several important
decision problems for tree transducers become decidable in the presence of origin
information. Some problems remain open, such as the decidability of equivalence
of macs with origin. In the future we would like to study other notions of origin
such as unique identifiers instead of Dewey nodes, or, sets of nodes (one of which
is guaranteed to be origin) instead of one node. A lot of work remains to be done
on determinacy; for instance, we would like to show that a query determined by
a view with origin can be rewritten into a tractable class of queries.

References

1. Y. Andre and F. Bossut. On the equivalence problem for letter-to-letter top-down
tree transducers. Theor. Comput. Sci., 205(1-2):207–229, 1998.

2. M. Benedikt, J. Engelfriet, and S. Maneth. Determinacy and rewriting of top-down
and MSO tree transformations. In MFCS, pages 146–158, 2013.

3. M. Bojanczyk. Transducers with origin information. In ICALP, pages 26–37, 2014.

4. F. Braune, N. Seemann, D. Quernheim, and A. Maletti. Shallow local multi-
bottom-up tree transducers in statistical machine translation. In ACL, pages 811–
821, 2013.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison,
and M. Tommasi. Tree automata techniques and applications, 2007.

6. F. Drewes and J. Engelfriet. Decidability of the finiteness of ranges of tree trans-
ductions. Inf. Comput., 145(1):1–50, 1998.

7. J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In R. Book, editor, Formal language theory; perspectives and open
problems. Academic Press, New York, 1980.

8. J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and
MSO definable tree translations. Inf. Comput., 154(1):34–91, 1999.

9. J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are
MSO definable. SIAM J. Comput., 32(4):950–1006, 2003.

10. J. Engelfriet and S. Maneth. The equivalence problem for deterministic MSO tree
transducers is decidable. Inf. Process. Lett., 100(5):206–212, 2006.

11. J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and
two-way machines. J. Comput. Syst. Sci., 20(2):150–202, 1980.

12. Z. Ésik. Decidability results concerning tree transducers I. Acta Cybern., 5(1):1–20,
1980.

13. Z. Fülöp and H. Vogler. Syntax-Directed Semantics - Formal Models Based on Tree
Transducers. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 1998.

14. T. V. Griffiths. The unsolvability of the equivalence problem for lambda-free non-
deterministic generalized machines. J. ACM, 15(3):409–413, 1968.

15. S. Hakuta, S. Maneth, K. Nakano, and H. Iwasaki. Xquery streaming by forest
transducers. In ICDE, pages 952–963, 2014.

16. R. Küsters and T. Wilke. Transducer-based analysis of cryptographic protocols.
Inf. Comput., 205(12):1741–1776, 2007.

17. A. Lemay, S. Maneth, and J. Niehren. A learning algorithm for top-down XML
transformations. In PODS, pages 285–296, 2010.

18. A. Maletti. Tree transformations and dependencies. In MOL, pages 1–20, 2011.
19. A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The power of extended top-down

tree transducers. SIAM J. Comput., 39(2):410–430, 2009.
20. S. Maneth. Equivalence problems for tree transducers (survey). In AFL, pages

74–93, 2014.
21. K. Matsuda, K. Inaba, and K. Nakano. Polynomial-time inverse computation for

accumulative functions with multiple data traversals. In PEPM, pages 5–14, 2012.
22. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comput.

Syst. Sci., 66(1):66–97, 2003.
23. W. C. Rounds. Mappings and grammars on trees. Math. Syst. Th., 4(3):257–287,

1970.
24. J. W. Thatcher. Generalized sequential machine maps. JCSS, 4(4):339–367, 1970.
25. A. van Deursen, P. Klint, and F. Tip. Origin tracking. J. Symb. Comput.,

15(5/6):523–545, 1993.
26. J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Enhancing semantic bidirection-

alization via shape bidirectionalizer plug-ins. J. Funct. Program., 23(5):515–551,
2013.

27. J. Voigtländer and A. Kühnemann. Composition of functions with accumulating
parameters. J. Funct. Program., 14(3):317–363, 2004.

